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ANALOGIES FROM COMPLEX ANALYSIS AND HEAT CONDUCTION
FOR WAVE PROPAGATION*

EDWARD G. DUNNEf AND DALE H. MUGLERT

Abstract. D. V. Widder [Arch. Rational Mech. Anal., 21 (1966), pp. 108-119] showed that solutions of
the heat equation share many of the properties of solutions of Laplace’s equation, i.e., of analytic functions. In
this paper, we show that those analogues extend to solutions of the wave equation. They include represen-
tation of a solution as a convolution transform or in a series of polynomials, and extend Widder’s list of
properties to include the wave equation with remarkable similarity.

1. Introduction. The theory of analytic functions is so closely connected with
Laplace’s equation that it has been likened to the theory of properties of solutions of
that partial differential equation. In 1975, D. V. Widder [8] connected that theory with
the theory of heat conduction by refining a set of analogues (which he had listed earlier
in [7]) between analytic functions and solutions of the heat equation. That book is the
primary source for this paper, in which we extend those analogies to include solutions of
the third classical ‘““differential equation of physics’’—the wave equation.

The wave equation in one space variable,

2 62
P u(x,t)= pye u(x, t),
is the form considered in this paper. As a hyperbolic differential equation, it falls into a
different class from the equations considered by D. V. Widder, yet we shall show that
the analogies may be extended to the solutions of this equation in a fairly natural way.
We will refer to the entire class of solutions by means of the following definition.
DEFINITION. Let S be an arbitrary region of the (x, ¢)-plane. Then

1) ulx,t)eW inS o u,(x,t)=u.x,t) inS.

We shall use Widder’s symbolism as much as possible, to make it easier to
recognize analogies. For example, the topic in the second section is the representation
of solutions in terms of a series of polynomials, and all the polynomials used will be
connected with the letter v. The analogue of the source solution defined in § 3 will
similarly be referred to as k(x, ). The Appell transformation and the resulting
associated functions used in the inverse expansion described in § 4, will again be
connected with the letter w. The connection between those associated functions and the
distributions labeled with an w will be fully explained at the end of § 5, where the topic
of generating functions leads to a natural question of how the two forms are related.
Any part of each analogy may be found in the final summary section which lists the table
used by D. V. Widder along with an extra column for the set of analogues for the wave
equation.

There are a variety of transformations which map solutions to solutions in class W.
We list a few here that are used in what follows.

1) Integration with respect to a parameter,

b

u(x,t,y)eW forasy=bh - Iu(x,t,y)dyeW.
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2 EDWARD G. DUNNE AND DALE H. MUGLER
2) Finite convolution,
t
ulx,)ew - J. ulx,t—y)g(y)dye W if u(x,0)=0and u,(x,0)=0.
0

Both 1) and 2) follow from Leibniz’s rule.
3) Component multiplication,
ux,)=px+t)+yx—-teW,vx,t)=ax+t)+Bx—t)eW
> wxtH=ax+)ox+)+Bx -t (x—-t)e W,
which can be verified by direct evaluation of the derivatives of w(x, ?).

2. Series expansion in wave polynomials. It is a classical result that any analytic
function f(x) is expressible as a power series of the monomials x" with coefficients
related to the derivatives of the function. Widder has shown that solutions of the heat
equation can be expressed in terms of a set of polynomials v,(x, t) generated by the
exponential solution of the heat equation, "% We seek to extend the analogy to
solutions of the wave equation.

We begin by considering the polynomials generated by the exponential solutions to
the wave equation

ea(x+t) and ea(x—t)’
where « is an arbitrary complex parameter. If, instead, we consider the parameter as a
complex variable z and expand about the point z =0

n

(2) e(x+t)z - Z (x+t)n_z_,
n=0 n!

we generate a set of polynomials v, (x, ) = (x +¢)". Similarly, expansion of e " yields
a second set of polynomials ,,(x, t) = (x —¢)". Note that 5, (x, t) = v,(x, —t). Werefer to
this whole class of polynomials as wave polynomials.

To see that these polynomials are solutions of the wave equation, we differentiate
directly. The first partials with respect to x,

LS ulx, )=n(x+6"""=nv._1(x, 1) and 2 Dp =nD,_1,
ax ax
exhibit the same pattern as do the first partials for the monomials and the heat
polynomials. Further derivatives are

d 9 ?

o v, =nv,-; and % v,=nn—-1)v, 2= Py U,
The second set of polynomials differs only in that (6/9¢)0, = —nd,—;. It is easily shown
that they too are solutions of the wave equation.

The most important analogy that can be made using wave polynomials concerns
their use in series expansions of functions in class W. Such solutions may be rather
arbitrary functions, and need not have the differentiability properties possessed by a
series of wave polynomials. Thus the representable functions necessarily form a
subclass of the entire set of solutions.

We next demonstrate that fairly arbitrary functions can be used to construct
solutions of the wave equation. We first transform the equation

(3) Uxx (xa t) = utt(x’ t) into Qén (59 17) = O’
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by the standard change of variables ¢é¢=x+¢t and n=x—t with Q(£ n)=
u((é+n)/2, (£—n)/2). Solving the transformed equation yields

UEM = () +v(n)

where ¢ and ¢ are arbitrary functions of ¢ and 7 respectively. Then
4) ux,t)=¢(x+1+yx—1.

The functions ¢ and ¢ need only be twice differentiable, so that u(x, ¢) will be a solution
to the wave equation.

In order to make a polynomial series expansion we restrict our class of solutions.
The additional hypothesis that will be necessary here is a property of all solutions of the
heat and Laplace equations, where solutions are actually analytic.

DEFINITION. Let T be aregion of the (x, ¢)-plane which contains an open segment
of the x-axis including (0, 0). We say u(x, )€ W°in T if:

1) ulx,t)eWin T,

(2) fx)=u(x,0) and g(x)=u.(x,0) are analytic for |x|<m, where m=
max {{x + ¢|: (x, t)e T}.

THEOREM 1. Let T =T(p)={(x, t): |x £ t|<p, t =0}. Then

u(x,t)e Win T if and only if
) u(x, ) =Y o0 {@uwn(x, )+ byda(x, 1)} for (x, )eT.

Proof. If u(x, t) e W°, we use the analysis above to say that
ulx,t)=¢d(x+t)+¢(x—1).
These two functions can be expressed in terms of u and u, at t =0. We get

ulx, 0)=fx)=¢(x)+y¢x), wx 0=gx)=¢'(x)—¢'(x).

The second condition implies that

X

s -u=[ g de+K,

0

so that

X

1 1 1(* 1
g de+3 K and v =25 [ s@© de-3K

0

© o=+

0

Using these representations for ¢ and ¢ in (4) gives the d’Alembert formula

1 1 x+t
) wle =S+ 0+ —0b+5 [ g(©)de
x—t
The forms for ¢ and ¢ in (6) show that if f and g are analytic in a neighborhood of the
origin, then so are ¢ and ¢. Expanding ¢(v) in a Maclaurin series for the variable
v=x+t and ¢ () for 0 =x — 1 gives

ulx,t)=Y a,o"+ Y b,o".
n=0 n=0

Each series exists since ¢ and ¢ are analytic. Writing these series in terms of x and ¢
proves the sufficiency.

Since the series converges uniformly in the indicated region, the necessity is a result
of the wave polynomials all being in we.
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Now that we have shown existence of a series expansion in wave polynomials for a
function u(x, ) in class W°, we give an explicit formula for the coefficients in terms of
the derivatives of u(x, ). First, we consider the d’Alembert formula (7) for the wave

equation with Cauchy data u(x, 0)=f(x) and u,(x, 0) = g(x). From (4) we can write
u(x, t) as ¢(x +1t)+¢(x —¢t). Examination of (6) and (7) gives for ¢ and ¢

1 1 x+t
a0 =3fx+n+3 [ @) de=o0w)

(8) 1 1 x—t
sx=0=316-0-3| 8@ de=@).

Since both f and g are analytic about the origin, we know that ¢ and ¢ also have series
expansions:

o n v" ~ o n 5"
p(0)= Y ¢$70)= and @)=Y ¢v"(0)—
n=0 n! n=0 n!
Then, by direct evaluation of the derivatives from (6), we see that

o'(v)= %{ux(v, 0) +u.(v, 0)}, ¢"(v)= %{uxx(v, 0)+ u, (v, 0)} and so on,
V@) =3B 0~ (5,0}, ()= (7 0~ (5,0} ands0 on.

Hence, we can express ¢ (v) and ¢(7) as

1 12 a" a”
$(0)=5u0,0+5 T ( (0, 0)+ == ul0, 0))
)] n n
1 1 3 .
W(@)=5u(0,00+3 T (5 w0, 00~ (0,0) "
It then follows directly that u(x, ¢) has the series expansion
(10) ux,t)=u(0,0)+ ¥ aw,+ ¥ b0,
n=1 n=1
where
1 9" 3"
=3 n! (ax" u(@, O)+ax"_1 ot u(0, 0))’
1 /& 3" n=l
b= 7 (e 40 O =540, 0),

One should note that a,, = b, for all n =1 if and only if g(x) = u,(x, 0) is identically zero.
The region of convergence for the wave polynomial series is determined by the
strips of convergence for ¢ (x + t) and ¢ (x —¢). The expansion for the first converges for
|x +¢|<p1, where
L —Tim o,
P11 now
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with a, as defined above. Similarly, (x —t) converges in |x — t| < p, with
1
—=Tim |b,|"'".
P2 n->00

The region of convergence for the series expansion of u(x, t) is the intersection of these
two strips. Also, since there is only physical significance for =0, only the upper
half-plane is usually considered. That leaves

T(pl,p2)=|x+t|<plﬂ|x—t|<pzﬂt§0

for the region of convergence. Graphically the region is as shown in Fig. 1.

FiG. 1

If ¢ is not restricted to nonnegative values, the region is a rectangle. If u,(x, 0) is

identically zero, or if p; = p,, then the region is a triangle in the upper half-plane (see
Fig. 2),

Fi1G. 2.

Note that the boundaries x +¢=c¢; and x —t=c, are characteristics of the wave
equation (1).

Example. 1t is instructive to work through an example which will demonstrate
some of the properties given above. Start with Cauchy data u(x, 0) =2 sin x, u,(x, 0) =
6x>. By the d’Alembert formula (7), when we separate the solution into its two parts, we
are left with

(A) d(w)=sinv+v> and ¢(@)=sindo+7°.
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We may differentiate directly and use formulas (A) as well as 4(0,0)=0to finda, =1,
az=5/3!, and as,+1=(—1)"/(2n +1)! for n>1. Evaluating for the other coefficients
yields a series representation for the solution as

U 1) = 018, D42 o3, )+ 3 A

6 L onan D
_ 7 _ (="
+01(x, t)—6 1)3()6, t)+n§2 (2” + 1)! 02n+1(x9 t)~

This representation may also be found by expanding ¢ and ¢ in Maclaurin series and
rearranging terms. The formulas for the region of convergence confirm that the
representation is valid for all 1 =0.

3. The source solution. For the heat and wave equations, the source solutions as
used below model various properties of the singular function f(x) = 1/x, especially with
respect to their use in convolution integrals. Widder [8, p. 31] has given some
“essential” properties of the “‘source’ solution k(x, ) of the heat equation. They are:

(A) k(x,t)>0,t>0; B) lim,ok(x,t)=0,x#0;
(C) limso+ k(0, t) = 0; D) [T k(x,t)dx=1,t>0;
(B) limeos [y k(x,£)dx=1,6>0.

The solution he defines for the heat equation as a source is k(x, t) = (1/ «/-477—1?) e ¥4 gt
t>0,and 0 if r=0.

The physical interpretation of such a solution of the heat equation is as an impulse
of heat energy (of magnitude one) applied to an infinite bar at time ¢=0. The
temperature at (x, t) = (0, 0) is instantaneously infinite, but dissipates as time goes by.
The total amount of heat in the bar remains 1.

An analogous “‘source” for the wave equation would represent an instantaneous
point displacement at the origin of the infinite string. Rather than diffusing, however,
the displacement is propagated along the string in both directions.

One of the important applications of the source solution of the heat equation is its
use as the kernel in the Poisson transform. That is, in a convolution integral with the
boundary values of a heat function, it produces the values of that function for positive ¢.
An analogous ‘‘source” for the wave equation would initially need to be such that its
convolution with a rather arbitrary function would be defined, since the boundary
values of a solution to the wave equation need only be in C*. Thus we would not expect
a source for the wave equation to be as nice a function as the one for the heat equation.

To construct a source solution of the wave equation, we will employ the Dirac delta
“function” §(x), which is actually a distribution. We will discuss later how it may be
considered as a limit of a sequence of wave functions. Recall that it may be thought of as
a function which is identically zero except at the origin, where it is infinite in such a way
that [*, 8(x) dx = 1. We define

(11) k(x, t)=%[5(x+t)+6(x—t)]

as the wave source solution. This models the physical situation that half the displace-
ment travels down the positive x-axis and half down the negative x-axis, both with
speed of propagation equal to one. For example, attime ¢t = 1, x + ¢ and x — ¢ are zero at
—1 and +1, respectively.
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As defined above, k(x, t) satisfies all the requirements for a source, although it
must be interpreted as a distribution or measure. Concerning Widder’s properties
(A)-(E) listed earlier, the first condition must be modified slightly to be (A) k(x, t) =0,
t>0. But properties (B) and (C) follow from the definition of the delta function, and
properties (D) and (E) follow from the theory of distributions.

The use of the source as a kernel in a convolution representation integral can be
immediately recognized for this k (x, t), although we shall shortly expand and justify this
representation using another approach. The property of the delta function that is used is
that

[ o= nfx) dx = fixo).

Thus, for a rather arbitrary function f(x),

©

k(x, t)*f(x)= _[_ k(x—y, )f(y)dy =%_[_ [B(x—y+t)+8(x—y—-0)If(y)dy

= U+ 0+ 0]

which is known to be the general form of a wave function when u,(x, 0)=0.
To expand the use of k(x, t) to a representation integral for the general solution of
the wave equation, we begin with a rather classical method called the ‘“method of

descent’’. The general form of the solution to the wave equation in two space variables is
[4, p. 205]

fxi+&1, x2+ &)
u(t X1, x2) 2 atJ‘ J m d§1 d§2

1 gxi+&1, x2+ &)
o LI Py oy d¢, dés,

where R is £5 + £3 = t*. Consider the second integral alone, and suppose that g depends
only on its first argument. The integral then becomes

(12)

%J:g(xl"'fl){‘l‘_ 'j j %—z} déi.

Let z=¢, and y=x+¢&;. The limits —¢<¢] <t become x —t<y<x+t, and the
integral becomes

1 x+t Vi2—(y—x)2 d
(13) | o] ]
27 ), —Ve—(y-x2 Nt = (y—x)"—2z
Define 1 Jmf dz for x| <
(14) K(x,1)={ 27 —xt =2
0 for |x|>1.

Then the integral (13) may be written as a convolution integral, L’:: g(y)K(y—
x,t)dy, where g(y)=u,(y,0). Since —t<y—x<¢ and K(y —x, t)=0 for y outside
of this domain, the above integral may be seen as a convolution integral over the real
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line,

[ smr(y-xnay.

Since the first integral may be rewritten in exactly the same way, it follows from
(12) that

[}

(15) w0 =2 fKG-x0dv+[ g0IK(-x,0dy.

The definition of K (x, ¢) in (14) is as an improper integral, which may be evaluated to
show that in actuality K (x, ) is 1 for |x| <t, but is 0 otherwise. This evaluation may be
used to write K (x, #) in terms of the Heaviside function Y (x), which is defined by

1 ifx=0,
Yix)= {o if x>0,
The resulting expression for K (x, t) is
1
(16) K(x, t)=5[Y(x+t)— Y(x—1)).

As a derivative distribution, it is well known that Y'(x)=8(x). Note now that the
derivative of the first integral in (15) is with respect to ¢, and that if we differentiate (16)
we obtain

%K(x, ) =%%[Y(x - Y(x —t)]=%[6(x +H)+8(x—]=k(x, ).

The representation for u(x, t) now obtained from (15) is a convolution form of the
d’Alembert formula (7),

17) u(x, t)=f(x)*k(x, t)+gx)*K(x, t).

As before, the functions f and g are initial values of the wave function u(x, ), as
f(x)=u(x,0) and g(x) = u.(x, 0).

In contrast to the Poisson transform for the heat equation, this representation is a
sum of two terms. This should not be surprising, since solutions of the heat equation are
unique given only the functional values on the boundary, while solutions of the wave
equation also require the values of the derivative at ¢ = 0 for uniqueness.

Finally, we return to the definition of k (x, ) as a distribution. Using the property of
the delta function that j'iooo f(x)8(x) dx = f(0), §(x) may be identified with the sequences
of C* functions {f,(x)} such that

tim [ f()fux) dx = £(0).

n->00 J—oo

The sequence {¥n/(27) e "’} which is frequently identified as such a sequence is also
connected with Widder’s heat source solution. Although not a sequence, that heat
source function is such that, for fixed x, the limit as ¢ - 0 is nearly identical to that of the
above sequence as n —> 0.

We note that the wave source (11) may be identified with a different such sequence,
each function of which is itself a C* wave function. One example is the sequence of
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functions k, (x, t), where

k.(x,t)= L [ n + n }
T2 M nP(x 0 1+ (x—10)2)
It may easily be checked that each &, (x, ¢) is a solution of the wave equation and that this
sequence may be identified with 3[8(x +¢)+8(x — )] = k(x, t).

4. The Appell transformation and associated expansions. A function f(x) which is
analytic in |x| < p can be transformed into a function analytic in |x|> p by the inversion
operator

1y =1£(3).

For the solution of the heat equation, Widder has shown that the analogous operation is
the Appell transformation, Ap (u(x, t))=k(x, t) - u(x/t, —1/t), where k(x,t) is the
source solution. If u(x, t) is a solution of the heat equation in the half-plane —o0 <t <0,
then Ap (u(x, t)) is a solution in the half-plane 0 <t <o,

Our analogous transform for solutions of the wave equation maps solutions from
the triangle |x £ t| <p, t >0 to the infinite wedges |x £ | >p, t > 0. We define the Appell
transformation for functions of class W by

1 1 1 1
AP (u(x, 1) = Ap (B + 1) +y(x —1) =—— & ——) +— ().

Itis readily checked that Ap (u(x, t)) € W, since it is the sum of adequately differentiable
functions of x +¢ and x —t. Furthermore, ¢ (x +1¢) valid for |x +¢/<p is mapped to
1/(x +t)¢(1/(x + 1)) valid for |x + | > p in the same way as the inversion operator for
analytic functions. Similarly for the region of validity for ¢, |x —t|<p is moved to
|x —t|> p. Thus, Ap (u(x, t)) is valid in the intersection of these two regions, |x +¢|>
pNlx—t|>p=|xxt|>p=T""(p).

When applied to the wave polynomials, the Appell transformation generates a set
of associated functions which can be used in series expansions valid outside the region of
convergence for a series of wave polynomials. It is immediate that

1
(18) Wa(x,t)=Ap (va(x, 1)) = Gro
and
wn(x, t) = Ap (5n(x’ t)) = W

As before, we note w,(x, t) = w,(x, —t). We expect an associated expansion to have a
general form

u(x, t)= § CcaWn(x, t)+ E AW, (x, t).
0 0

n= n=

We next give a criterion for u(x, t) to have an associated expansion.
THEOREM 2.

(19) ulx,t)= Y cowalx,t)+ Y dw,(x,t) inx+t>piNx—t>p,
0

n=0 n=
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if and only if

(20) u(x, t)= J' e “0(y) dy +I e “ "M (y) dy,
0

0

where 6(y)€{1, p1} and A(y)e{l, po}.
Proof. 1t is easily verified that

1

(21) Wn(x, t)=(x_+t)n—+1

1 oo
- e—(x+t)y ndy,
n! 0

with a similar formula for w,(x, t). Also, since #(y) and A (y) are analytic, we assume
that they have Maclaurin expansions

Cn n dn n
6(y)=L—y" and A(y)=X—y"
n! n!
where ¢, =D"0(0) and d,, = D"A(0). We then proceed as follows:

(22) u(x, t)= Z CaWn(x, )+ Z d.w,.(x,t)

n=0

if and only if

©

5 1 © o R
u(x,t)= z Cn"_'J‘ e —(x+1t)y "dy+ Z d, __J e (x t))’y dy
n=0 nilJo

0

if and only if

© _ © o © d, A
u(x,t)=J e ("“”( Tty )dy+j “ '”( Ty )dy-
0 n=0M: n=0 M.

We justify the interchange of operations by the growth restrictions on 6(y) and A(y).
We proceed by considering the series for ¢, and for d,, separately. The interchange of
operations

(23) J': e"”'”(Z % y") dy =Y cawn(x, )

e o]
J e—(x+t)y (Z ¢
0

Now, for sufficiency we assume 6(y) {1, p,}, so that

is valid if

") dy <.

(e o]

z

n=0

Sn y _O(e(p1+e)lyl) ly| > .

That is, the integral in (23) is dominated by
M_[ o xHOY ePrrelyl dy, |y| =y, 0<y<oo
0
for some M. The integral converges for x +¢ > p; + ¢, hence the first half of (19) holds for

x +t> p. Similarly, the second half holds for x —¢> p,. We have, then, that equation
(19) holds for x +t>p,Nx —t > p,.
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For necessity we again work in two parts. We express u(x, t)=¢(x +t)+¢(x —1t).
We assume that ¢(x+1¢) =) c.w.(x, t) converges for x +¢>p;. When this is so, we
know that

(24) Tim [cq|'" = p1.

n-»00

Since

lim =1
n-so e (n e "2 )1/”
the inequality (24) yields
nleal"”
e =Pt

Tim =p; < lim
nsoe-(n"e "V2m )1/" n->o e+ (n!)
by Stirling’s formula for n!. An entire function f(z)=Y a,z" has growth {1, p,} if and
only if lim, -« n|a.|"’" = ep;. Hence, the series
2 Cnon

(25) X =y

n=0MN!

has growth {1, p,}. But, we have defined series (25) to be 8(y). Therefore, 8(y) {1, p1}.
Applying the same arguments for A(y) =Y (d./n!)y" we see that A(y)e {1, p,}. Thus,
the theorem is proved.

Alternatively, the associated functions can be related to the derivatives of the source
solution. The analogy from analytic functions is that inverse monomials can be
expressed in terms of derivatives of the singular function by

(26) o) = (=12 pox

Also, the associated functions for the heat equation are related to the derivatives of the
source solution by

n

n k(x’ t)’

27 wa(x, 1) =(=2)"

as Widder has shown [8, p. 168]. We find that we may express associated functions in
terms of the source solution for the wave equation. However, to do so involves
derivatives of the Dirac §-function, which is actually a distribution. As these derivatives
will also be distributions, we cannot expect them to coincide with the associated
functions from the Appell transformation, but they are related in another way, as will be
shown later.

The expression for the associated functions in terms of the source solution
originates from the biorthogonality property for the v, and w,. It is seen that, for
analytic functions and for solutions of the heat equation respectively, we have

1
— § Vm(2)Wa(2) dz = 8,1,
2mi r

1 o
T I O (X, )Wn (X, 1) AX = By,
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where 8., , is the Kronecker delta. A natural choice for w, (x, t) as an associated function
for the wave equation is

D" "8(x+1) D"§(x—1t)

(28) wa(x, )=(=1) YR @n(x, 1) =(=1)"

n!

Following Lighthill [5, pp. 16-21]and Arsac[1, p. 80], we see that D"8(x) is defined by
the convolution integral

(29) I ¢ (x)D"8(x) dx =j (—1)"6(x)¢ ™ (x) dx.
Hence, for the biorthogonality property we get
* > D"8(x +t "
[ om0 =[G 22D
0 J—0 .
p O _ 1 n an
_[ &L Sx+)(-1)"— (x+1"dx
Jw n! dx
(30a) 0, m>n, since the derivative is identically zero,

1, m=n, since the integral of the §-function over
the real axis is defined to be 1,

0, m<n, since the integral is zero
by convolution with § (x —(—1)).

= Omn

The same arguments hold for the biorthogonality of 7,,(x, ¢) and @, (x, ) so that
(30b) J D (X, D (X, 1) dx = Sy .

5. Generating functions. For analytic functions, the “‘singular function” provides
a generating function for two series involving the monomials and the inverse mono-
mials. For example, the series involving only the inverse monomials has the form

o r"

1 ©
f(x_r)= = z wn(x)rn= Z n+1+
X—r n=0 n=0X

Widder has shown that the heat polynomials and the associated functions are generated
by the source solution in much the same way (see § 6, Table 1, no. 8).

In the case of the wave equation, our source solution is a distribution which does
not easily generate a series of ordinary functions. However, we shall now exhibit a wave
function which is actually a close analogue of the generating function used by Widder,
and show that it generates series involving the wave polynomials and associated
functions in an analogous way. At the start, we note that by associated functions in this
case we mean the functions such as w,(x, #)=(x +¢)""*" and not the distributions
w,(x,t). We will shortly return to these two forms and relate each distribution to its
respective function via the source solution.

For the wave equation, we use the function

WO(x9 t) = WO(xa t)+ Wo(x, t)
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as a generating function. This is analogous to the generating function used by Widder,
since the source solution k(x, t) for the heat equation actually equals wo(x, t). In our
case, the series involving the associated functions has the form

[e o) (o o)
Wolx=rt)= ¥ wa(x,)r" + ¥ Walx, )r",
n=0 n=0

which is valid in the region |r| <|x % ¢|. The second series which also involves the wave
polynomials has the form

Woly =25 =0= 3 vl Owa(y, )+ 3 8n(x, D5n(y,5),

convergent for |x +¢|<|y +s|, |x —t|<|y —s]|.
We now wish to relate the two separate forms of the associated functions. One is
derived from the Appell transform

1 N
(a) Wn(xa t) =T Aan+D Wn(xa t) = (x __t)n+1y

(x+1)
and was used in § 4 to provide a series expansion of a function in W°. The other is
analogous to derivatives of the source solution

=(—1)"D"6(x+t) &, (x t)=(—1)"D"8(x—t)

(b) wn(x, 1) py ) pr

and was used in the previous section for the biorthogonality property.

First note that the monomials and the heat polynomials are given by v,(x) =
1/z%z" and v,(x, t) =k(x, t)*x", respectively. The wave polynomials also satisfy this
kind of relation, in the form v, (x, t) + 8, (x, t) = 2k (x, t) *x". In our case, k(x, t) may be
convoluted with any (not necessarily C*) function so that the associated functions may
also be represented in this form:

1 1
w”(x’ t)= (x +t)n+1 =6(x+t)*xn+1'

But 1/x"*'=(=1)"/n'D"(1/x) so that
-n" /1
o (x. £) = 8(x +t)*{(n—!)D"(—>}.

X
However, such distributions satisfy D" (u *v) = (D"u)*v = u*(D"v) [6, p. 166], so that

(-1)"'D"s(x+1t)) 1
n! }*_'

Wa(x, t) ={

x
But this connects the two forms (a) and (b):

1
W (X, 1) = @n(x, £)*—.
x
The arguments follow identically for @, (x, ?).
In particular, the Wy(x, ¢) function used as generating function above is related to

the source solution directly by

Wolx, t) =2k(x, t) *%
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TABLE 1

EDWARD G. DUNNE AND DALE H. MUGLER

Analytic functions

Solutions of the heat equation

Sol, of the wave

1. Singular function

f(x)=l
X

Source solution

e-x’/(ﬂl

k(x, )= e
T

Source solution
1
k(x,1)= E[s(x +1)+8(x—1)),

where & is the Dirac delta

2. Inversion

it 1(3)

Appell transformation

1
Ap Lu(x, 1= ks, Dl -7)

Appell transformation

Aplutr, 1= o)+ =1y 1)

x+t \x+t/ x—t \x—t

= wolx, ”"’(ﬁ) Fgx, W(i)’

with ¢ and ¢ as in 2)

3. Monomials

v (x)=x"

Heat polynomials

[n/2) xn—!k ‘k

. =n! —_—
s 0=t L o b

‘Wave polynomials

v.(x, )=(x+0"and  T,(x,1)=(x—1"

4. Inverse monomials

W) = 113" =~y

Associated functions
Wa(x, 1) = Ap [v,(x, 1)]

=k(x, Yo (x, =01~

n

Associated functions

1
(@) wu(x, )= Gro =Ap [va(x, 1)]
and
Walx, )= oot =Ap[d.(x,1)]
(b) w.(x,1)= (—_nl% D"8(x +1)
and
anix, =" prgge gy
n!

5. Restricted analyticity, fe A°
1
L G

2milrx—z

flx)=

[, a restricted circle of the complex z-plane

Huygens property, u € H®

u(x, 1) =I k(x =y, t—=s)u(y,s)dy, s<t

Poisson transform, ue W
u(x, 1)=k(x, t)*u(x, 0)+ K(x, 1) xu,(x, 0),
with K (x, 1) as in (14).

7. Biorthogonality

—LJ Vm(2)Wn(2).dz =8y n
2mi Jp

Biorthogonality
I

e LD O (X, =OWa(x, 1) dx =8,

Biorthogonality

+oo
j U (X, Don(x, 1) dx

+o0
=8mn = j DO (X, ), (x, 1) dx
w0

8. Generating function

1
x-r

©
=T walr" Jrl<lx]
n=0

1 o
——= L oa()wa(0), [x|<le|
t—x n=0

Generating function

w,(x, r"

ke=r,1)= ngo 2"n!

2 valx, OHwa(y,
kaoy,tts)= 3 e Dralns)
n=0 2"n!

Generating function

w ©
Wolx=r,0)= L wa(x, Or"+ L Wa(x, )r"
n=0 n=0
©
Woly—x,s-1)= Zovn(x, Hwa(y, s)
et

+ OZD B (x, )Wy, 5),
n=0

where Wy(x, 1) =k(x, 1)*1/x.

9. Maclaurin expansion

flx)= O)ID a0, (x)
n=0

Polynomial expansion

u(x, )= E a,v,(x,t)
n=0

Polynomial expansion

u(x, 1)= o):a {@nvn(x, 1)+ baba(x, 1)}
n=0

10. Inverse expansion

f)= £ buwa(x)

Associated expansion

ulx, t)= Eo bawa(x, 1)

Associated expansion

u(x, 9= E {eaWn(x, 1)+, (x, 1}
n=0

11. Criterion for polynomial expansion
In largest interval |x| < p, where fe A°

Criterion for polynomial expansion
In widest strip |t| < o where u € H®

Criterion for polynomial expansion
In largest region T(p) where u ¢ W°

12. Criterion for inverse expansion
A. Valid for |x|>p if

° 1
f=IlglgeA for|x|<;
B. Valid for x >p if

f=[ eomanse.p
(]

Criterion for associated expansion
A. Valid for 1> ¢ if

1
u=Aplg), geH’ for lr] <—
B. Valid for x > o if

u(x, N=I e " B(r) dr, d {2, 0}

Criterion for associated expansion
A. Validin T™'(p) if

1
u=Aplgl, geW°’ in T(;)

B. Valid for x +t>py, x =t > p, if
w w

u(x,r)=j é“*"yo(y>dy+I &5 (y) dy,
0 0

with 9e{1, p,} and A €{1, p,}.
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6. Summary. Inorder to provide a convenient summary of the analogies that have
been listed in the previous sections, we conclude with Table 1. The first two columns and
the form of the table are drawn directly from [8, p. 196]. The corresponding analogies
for the wave equation in each case are given in the third column.

Since the numbering of the analogies was kept in accordance with that in [8], it is
easy to see that one analogy (no. 6) was omitted from Table 1. That particular analogy
involves operational calculus, and the precise analogue for the wave equation does not
appear to have a convenient form. However, the symbolic form does provide a nice
analogue of the Poisson transform.

The integral representation of a solution of the heat equation as the Poisson
transform can be written [8, p. 155] as

ulx, t)=e™u(x, 0).

The corresponding analogue for the wave equation is a form of the d’Alembert formula
(7), and is

(31) u(x, t) = cosh (tD)u(x, 0) +sinh (tD)D " u,(x, 0).

The symbolic use of e as e™f(x) = f(x +1) is used to see that the first term is indeed
Au(x+1,0)+u(x—10)] If

D u(x,0)= T &, 0) de,

0

the second term can be seen to match that in (7) in a similar manner.

REFERENCES

[1] J. ARSAC, Fourier Transforms and the Theory of Distributions, Prentice-Hall, Englewood Cliffs, NJ, 1966.

[2] R. P. BoAs, JR., Entire Functions, Academic Press, New York, 1954,

[3] G.F. CARRIER AND C. E. PEARSON, Partial Differential Equations, Atademic Press, New York, 1976.

[4] P. R. GARABEDIAN, Partial Differential Equations, John Wiley, New York, 1964.

[5] M. J. LIGHTHILL, Introduction to Fourier Analysis and Generalised Functions, Cambridge University
Press, London, 1958.

[6] W. RUDIN, Functional Analysis, McGraw-Hill, New York, 1973.

[7] D. V. WIDDER, Some analogies from classical analysis in the theory of heat conduction, Arch. Rational
Mech. Anal., 21 (1966), pp. 108-119.

[8] , The Heat Equation, Academic Press, New York, 1975.




SIAM J. MATH. ANAL. © 1982 Society for Industrial and Applied Mathematics
Vol. 13, No. 1, January 1982 0036-1410/82/1301-0002 $01.00/0

A NONLINEAR EVOLUTION PROBLEM ARISING
IN THE PHYSICS OF IONIZED GASES*

D. HILHORSTY

Abstract. We consider a Coulomb gas in a special experimental situation: the pre-breakdown gas
discharge between two electrodes. The equation for the negative charge density can be formulated as a
nonlinear parabolic equation degenerate at the origin. We prove the existence and uniqueness of the
solution as well as the asymptotic stability of its unique steady state. Also some results are given about
the rate of convergence.

1. Introduction. In this paper we study the nonlinear evolution problem
U = exu, +(g(x)—u)u, onD =(0,00)x(0,T),

P u(0,)=0 forte[0, T],
u(x, 0)=y(x) for x € (0, 00),

where ¢ is a positive constant, g is a given function which satisfies the hypothesis
H;.ge C*([0, )); g(0)=0; g'(x)>0 and g"(x) <0 for all x =0 and the initial function
¢ satisfies the hypothesis H,:
(i) ¢ is continuous, with piecewise continuous derivative on [0, c0);
(i) ¢(0) =0 and ¢(0) =K € (0, g(®0));
(iii) there exists a constant M, =g'(0) such that 0 =¢'(x) =M, at all points x
where ¢' is defined.

In § 2 we briefly describe how the problem arises in physics and give the derivation
of the equations.

In § 3 we present maximum principles for certain linear and nonlinear problems
related to P; the uniqueness of the solution of P follows directly from those principles.

In § 4 we prove that P has a classical solution which satisfies furthermore the
condition

(%) u(o,)=K forte[0,T], T<oo.

The methods used here are inspired by those of van Duyn [7], [8] and Gilding and
Peletier [13]. We also consider the limit case €| 0 and prove that u tends to the
generalized solution of the corresponding hyperbolic problem.

We then investigate the behavior of u as ¢ > 00 and prove that it converges towards
the unique solution ® of the problem P, defined as follows

ex®"+(g(x)—d)d' =0,
®(0)=0, ®(00) = Ao =: min (max (g(c0) — ¢, 0), K).

Qualitative properties of d have been extensively studied by Diekmann, Hilhorst and
Peletier [6]. Here we analyze its stability. In § 5, following a method of Aronson and
Weinberger [2] based on the knowledge about lower and upper solutions for the
steady state problem Py, we prove that ® is asymptotically stable.

In § 6 we investigate the rate of convergence of u towards its steady state. The
function ® turns out to be exponentially stable when the function g grows fast enough
to infinity as x -» 00; the proof, based on constructing upper and lower solutions for
the function u —®, follows the same lines as that of Fife and Peletier [10]. We also

Po
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consider the case when g increases less fast and show that provided £ < g(0) — K and
® converges algebraically fast to K as x - oo the function u —® decays algebraically
fast; this is done by obtaining first that property for a weighted integral of u —®
according to a method of II'in and Oleinik [14] and van Duyn and Peletier [9]. Finally
we consider the corresponding hyperbolic problem and obtain a similar result of
algebraic convergence.

2. Physical derivation of the equations. The physical context of the present
problem has been described in some detail by Diekmann, Hilhorst and Peletier [6].
Here we shall summarize it again and explain how one can obtain the time evolution
problem P.

One considers an ionized gas between two electrodes in which the ions and
electrons are present with densities n;(r) and n.(r, t) respectively, where r= (x, x2,
x3). The ions are heavy and slow and the density n;(r) may therefore be regarded as
fixed. The electrons are highly mobile. The problem is then to find x.(r, ) for given
n;(r) and in particular to find out whether given an initial electron distribution, the
electrons stabilize and if so to evaluate the time needed for such a stabilization.

A special situation of practical interest is a so-called pre-breakdown discharge
which spreads out in filamentary form (cf. Marode [17] and Marode, Bastien and
Bakker [18]). In this situation there is cylindrical symmetry about the x3-axis and the
particle densities depend on r = (xI +x3)"/* only. We thus have effectively a two-
dimensional Coulomb gas with circular symmetry. The starting equations are

(i) Coulomb’s law for the electric field E,

10

(2.1) __rE=_Cd(ne_ni),
ror

where C, is a fixed constant;

(ii) a constitutive equation for the electric current j,

on,
ar’

(2.2) j=n.uE+kT

in which the first term represents Ohm’s law and the second term is due to thermal
diffusion, u being the mobility, £ Boltzmann’s constant and T the temperature; and
(iii) the continuity equation for the electron density,

on, 19

2.3 — ==y
2.3 ot rarr]
If we set

Vx

u(x, t)=J ne(r, t)rdr

0

and

Vo

glx)= L ni(r)rdr,

we obtain, after redefining the constants, the equation

(2-4) U; =£xuxx+(g(x)_u)ux9
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where ¢ =2kT/(uC,), and the boundary condition
(2.5) u(0,1)=0.

Furthermore one makes the hypothesis that the total charge is positive and fixed, that
is

J (ni(r)—n.(r, t))rdr=N >0,
0

from which we deduce the boundary condition at infinity;
(2.6) u(, 1) =K = g(0)—N.

Clearly K € (0, g(0)).
Equations (2.4) and (2.5) together with the initial condition

2.7 u(x, 0)=y(x)

constitute the mathematical formulation of the problem which we propose to study
in this paper. Furthermore the condition (2.6) will turn out to be satisfied at all finite
times ¢ and also, for low enough values of the small parameter ¢, at the time ¢ = 00,
This latter property expresses the fact that all the electrons stay attached to the ions
at low enough temperature; we shall also see that if the temperature rises above a
critical value then some of the electrons escape to infinity, and if it rises even further
above a second critical value then all the electrons escape to infinity.

3. Maximum principles for some degenerate parabolic operators—uniqueness
theorem. In this section we prove maximum principles for some linear and nonlinear
operators which have a degeneracy at the origin; these principles hold for functions
ue C*(D)N C(D), where C*'(D) is the set of continuous functions on D with two
continuous x-derivatives and one continuous #-derivative. It will follow easily from
those maximum principles that P can have at most one solution u € c*'(D)Nnc(D)
such that u, is bounded in D.

We begin by defining a linear operator L as follows

3.1) Lu =¢exu,+b(x, u, +c(x, Hu —u,,

where the functions b and ¢ are continuous on D and such that the quantities b/(1+x)
and ¢ are bounded on D. First we consider the bounded domain Dg = (0, R)x (0, T),
where R is a positive constant. In the same way as for a uniformly parabolic operator
one can prove the following maximum principle which holds in fact for a much wider
class of degenerate parabolic operators (see, for example, Ippolito [15] or Cosner [4])

THEOREM 3.1. Supposec =0.Letu e C*Y(Dg)N C(Dg) satisfyLu =00n (0, R) X
(0, T). Then if u has a positive maximum in Dg, that maximum is attained on ((0, R) X
{oh U o, R}x[0, TY).

Next, following a method due to Aronson and Weinberger [2], we derive a
comparison theorem for a class of nonlinear evolution problems.

THEOREM 3.2. Letu and v € C*'(Dg)N C(Dr) and suppose that either u, or v, is
bounded on Dg. Let u and v satisfy

Lv—vv,=zLu—uu, on(0,R)*x(0,T],
and let ’
O0=v=u=K on (0,R)x{0}and {0, R}x[0, T].
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Thenv=uin (0,R)X(0, T].
Proof. Let

at

w=@Ww-u)e *,

where
—1 a. b
@ (g})e)% (c(x, £) = uy(x, 1))

(in the case where u, is bounded). Then w satisfies
exwe, +(b(x, t)—v)w,+(c(x, ) —u,—a)w—w, =0
and
w=0 on(0,R)x{0}and {0, R}x[0, T].
Thus we deduce from Theorem 3.1 that
w=0 1in(0,R)x(0, T],

which completes the proof of Theorem 3.2. 0
Now let us consider the unbounded domain D. To begin with we present a
Phragmen-Lindelof principle which is a special case of a theorem due to Cosner [4].
THEOREM 3.3. Suppose that b/(1+ x) and ¢ are continuous and bounded in D. Let
ue C*(D)NC(D) satisfy Lu=0 on (0, 00)x (0, T] and the growth condition

. . —BR -
3.2) hsglaglf e [Orgta§xT u(R, 1)]=0
for some positive constant B. If u=0 for t=0 and on {0}X[0, T] then u=0 in
(0, 00)x (0, T].
Making use of Theorem 3.3 one can prove a comparison theorem on the
unbounded domain D.

THEOREM 3.4. Letuandve C*Y(D)N C (D) be such that either u, and v or u and
v, are bounded on D and that

lu(x, o)), lo(x, )| = Ce®*
for some positive constants C and B, and uniformly in t € [0, T). Suppose that
Lv—vv,=Lu—uu, on (0,00)x(0,T]
and that
0

IA

v=u=K on (0,0)x{0} and {0} %[0, T].

Then v =u in (0,00) X (0, T].

Finally let us come to the question of uniqueness of the solution of problem P.

DEFINITION. We shall say that u is a classical solution of problem P if it is such
that (i) u € C>"(D)N C (D), (ii) u and u, are bounded in D, (iii) u satisfies the equation
in D, (iv) u satisfies the initial and boundary conditions.

THEOREM 3.5. Problem P can have at most one solution.

Proof. Apply Theorem 3.4 twice to deduce that if # and v are two such solutions
then their difference w = u — v satisfies w =0 and w =0 and thus w=0. 0O

4. Existence and regularity of the solution. In order to be able to prove the
existence of a solution of the nonlinear degenerate parabolic problem P, we consider
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certain related nonlinear uniformly parabolic problems on bounded domains and
observe that they have a unique solution; we then deduce that P has a generalized
solution, in a certain sense. It finally turns out that this solution is in fact a classical
solution of P and thus the unique solution of P and that it also satisfies condition ().
Finally we consider its limiting behavior as € | 0.

4.1. Existence. Let us first introduce some notation. Let D, = (0, n) X (0, T'). We
denote by C,..([0, n]) the space of functions v which are twice differentiable and
such that v” is Holder continuous on [0, n] with exponent a. We also use the spaces
C.(D,), Cr1o(D,) and Cs,.(D,), defined in Friedman [11, pp. 62, 63].

Consider the problem

u=e(x+1/n)uy+(@x)—u)u, inD,,
P, u(0,1)=0, u(n,t)=K, tel0, T],
u(x, 0) = ¢ (x), x€(0, n),
with n =g (K) and where ¢, is such that

(i) ¢n € C*([0, 0]);
(ii) ¢, satisfies Hy;
(iii) ¢%(0)=0 and ¢, (x)=K for x e[n —1, o).
In what follows we shall denote by H,, properties (i) — (iii). The following theorem holds:
THEOREM 4.1. There exists a unique solution u,, € Cy,o(D,) of P, forany a € (0, 1);
furthermore u, satisfies the inequalities

4.1) 0=u,(x, t)=min (M, x, K),
4.2) 0=u,,(x,) =M,,

for all (x,t)e D,.

Proof. The existence and uniqueness of u, € C,,.(D,) is a consequence of
Theorem 5.2 of LadyZenskaja [16, pp. 564-565]. The inequalities in (4.1) can be
deduced by means of a comparison theorem analogous to Theorem 3.2. From the
linear theory (Friedman_[l 1, p. 72]) we deduce that the function w = u,, € Co.o(D5,);
thus w e C*(D,) N C(D,,). Furthermore w satisfies

wi=e(X+1/n)We +(g(x) —un +&)wx +(g'(x) —w)w,
4.3) 0=w(,n=M,, O=w(n, t)=M,,,

w(x, 0) = Y (x).

The bounds on the function w(n,t) follow from the fact that the function
max (0, My, (x —n)+K) is a lower solution of the boundary value problem

1
o+ )87 +(g)-4)6'=0,  #(O=0, (=K

and consequently a lower bound for u,. Clearly the set
{we C([0, n]) such that 0= w(x) =M, }

is invariant with respect to the problem (4.3), and thus the inequalities (4.2) are
satisfied.

Next we deduce, from Theorem 4.1, the existence of solution of P. We begin by
approximating the initial function ¢ by a sequence of smooth functions {¢,}.
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LEMMA 4.2. Let the function i satisfy H,. Then there exists a sequence {is,} which
satisfies the properties H, given at the beginning of this section with M,,, = M,, for all
n, such that ¢, » ¢ as n - 0, uniformly on [0, ).

Proof. Let no=g '(K) be such that for all n=n, the point x;, defined by
M, (x1,—1/n)=4(x1,) is such that 1/n <x;, =n—2 and the point x,, defined by
X2n =n =2+ (K —¢(n—2))/ M, satisfies n —2 <x,, <n —1. Also define

( 1
0, —0<x=—,
n
1 1
M,,,(x——), _<x§x1m
Wk (x) =1 " "
'J/(X), Xin <X én-—2,
My(x—n+2)+¢(n-2), n—2<x=Xan,
K, Xon <X < +00,

Note that, for all x,

|k (x)— ¢(x)| = max (A—@, K-y —2)).
n

Next introduce the function
0 if |x|=1,

p(x)=
C exp (—21—) if [x| <1,
|x[* -1

where the constant C is such that _(R pdx =1, and let

o =22

Finally define

wn(x>=jﬂpan<x—y>w:<<y>dy, xe[0, nl,

with 8, =min (1/n, x1,—1/n,n —2—X14 X2, —1n+2,n—1-x,,)/10. We now show
that ¢, has the desired properties. Firstly ¢, € C*([0, n]). The uniform convergence of
{.} to ¢ follows from the continuity of ¢, uniformly in # and in x and the uniform
convergence of ¢} to ¢ as n - 00, Finally properties (ii) and (iii) of H,, can be deduced
for ¢, from the fact that ¢ also satisfies them.

Next we prove the following theorem.

THEOREM 4.3. P has a unique classical solution. Furthermore this solution also
satisfies condition (*):

(%) linoao u(x,t)=K foreachte (0, T].
Proof. We rewrite the parabolic equation of problem P, as

4.4) u=e(x+1/n)uy +clx, t)u,,
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where

c(x, t)=g(x)—un(x, ).
From Theorem 4.1 we know that for all (x', ¢), (x", t) € D, and for all n =n,
4.5) |t (x', £) — u, (x", )| = My|x"—x"|.

Now fix I =Zno; (4.4) and (4.5) enable us to apply a theorem of Gilding [12] about
the Holder continuity of solutions of parabolic equations, and we obtain

|t (x, ) = un(x, t")| = Clt' —1""/?

for all n = I and for all (x, t'), (x, t") € Dy, with |¢'—t"| = 1. Here the constant C depends
on I but not on n. The set {u, (x, t)}»~;is bounded and equicontinuous in Dj, and thus
there exists a continuous function u;(x, t) and a convergent subsequence {u,, (x, 1)}
with n, = I such that u,, (x, t) > ur(x, t) as ny, > 0, uniformly on Dy. Then, by a diagonal
process, it follows that there exists a function u(x, t) defined on D and a convergent
subsequence, denoted by {u;(x, t)} such that u;(x, t)-> u(x, t) as j - %, pointwise on D.
Since this convergence is uniform on any bounded subset of D, the limit function u is
continuous on D.

It remains to show that u is a solution of P; to that purpose we shall proceed in
two steps: firstly we show that u is a generalized solution of P in a certain sense and
then we conclude that it is in fact a classical solution. We shall say that u is a generalized
solution of P if it has the following properties:

(i) u is continuous and uniformly bounded in D;

(ii) u(0,t)=0forall te[0, T];
(iif) u has a bounded generalized derivative with respect to x in D;
(iv) u satisfies the identity

(4.6) ” (ud:— e (xu, —u)b, — (g —u/2)ud, —ug'¢] dx dt+J (x)¢(x,0)dx =0
D 0
for all ¢ € C'(D) which vanish for x =0, large x and t = T.
Let us check that u satisfies those properties.
(i) We already know that u is continuous on D and furthermore, since u(x, t) =
lim;,« u;(x, t), we have that 0= u =K.
(ii) This property follows from a similar boundary condition in P,.
(iii) Let ¢ be an admissible test function and let L = n, be such that supp ¢ < D;.
Since |u;,| is uniformly bounded with respect to j = L for all (x, t) € Dy, it follows that
there exists a subsequence {(;, ).} and a bounded function p € L*(Dy) such that

(4 )x—>p in LZ(DL) as ji > 0.
Now let £ € C} (Dy). Then
4.7) (@) )= (p, {)  as x>0,

where (-, -) denotes the inner product in L*(Dy). Butsince u;, - u as ji - %, uniformly
on Dy, we have
(48) (M]‘k, {x)—)(u’ {x) as jk—)w‘

Hence, combining (4.7) and (4.8), we find that p is the generalized derivative of u.
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(iv) Since u;, is a classical solution of P,, it follows that

“ [ujk(bt - 8(<x +}.1;)(u,~k)x - ujk)tbx - (g —%) Ujx — ufkg'tb] dx dt
Dy

4.9 L
@9 +J U, (x)$ (x,0) dx =0.
0

The sequences {u; } and {u}.} converge to u and u>, respectively, strongly in L*(Dy)
as ji = 0. Furthermore since (u;, ), is uniformly bounded we have

1
J-I ]— (u;)xpx dx dt >0 as ji - 0.
k

Dr

Thus letting j, > 00 we obtain (4.6). Because ¢ has been chosen arbitrarily, we may
conclude that u is indeed a generalized solution of P.

It remains to show that u is a classical solution of P. One can do it by using a
classical bootstrap argument (see, for example, Gilding and Peletier [13]) to show
that for whatever n, L >0 there exists a(n, L) € (0, 1) such that

(4'10) ue C2+a((n’ L) X (77, T)),
where a and |ju||c,,, may be estimated independently of T. In particular,
ueC*(D)NC(D).

Since furthermore u and u, are uniformly bounded u is a classical solution of
problem P and by Theorem 3.5 it is the unique solution of P.

Finally let us analyze the behavior of u for large x; since we have 0=su=K
and u, =0, u(0,t)=lim,. u(x, t) is well defined for all te[0, T] and such that
0=u(o0, t) =K. Next we show that u(co, t)=K by constructing a time dependent
lower solution for P. Consider the problem

Uy = Xty + (K —u)uy,
(4.11) u(xo,t)=0, xozg '(K),
u(x, 0)=y¢(x).
Since u, =0 we have that
XUy +(g(x) — U, — Uy = exug, + (K —u)u, —u, +(g(x) — K)u,
= exuy + (K —w)u,—u, forallx=g '(K).

A

Thus a lower solution & of (4.11) with 4, =0 is also a lower solution of P on
[x0, ) %[0, T]. We search such functions &, which satisfy furthermore

ix(00,t)=K —k forall te[0, T] and with k € (0, K).
Writing
=K -1,
reduces this to finding an upper solution ¥ of
U = EXVyy + VU,

vi(xo, t)=K, v(00, t)=0.
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Next we look for such a function &, also requiring that

A (X
uk(x,t)—fk(tﬂ).
Setting
_ X
=

one can easily derive that fk should be an upper solution for the boundary value
problem

enf"+(f+n)f'=0,
f(xo)=K,  f(0)=0.
Let xo>max (¢, g '(K)), and take

o

f(n)= k+(K_k)(xlo>l_x0/E_

One can check that indeed f; is an upper solution for problem 7 and consequently
that d,(x,t)=K — fk (x/(¢+1)) is a lower solution for problem P on the sector {t=
0, x = xo(t + 1)} provided that x, is large enough. Since k can be chosen arbitrarily
in (0, K) it follows that u (00, t)=K for all t<oco, 0

4.2. The limiting behavior as € | 0. In this section we study the limiting behavior
of the solution u of P as ¢ 0. To begin with, we consider the following hyperbolic
problem:

u = (g(x)—uwu, inD,
u(x, 0)=y(x) for all x € (0, ),

and make some heuristic considerations about the solution i of problem H; they are
due to Wilders [23]. One possible configuration of g and ¢ is drawn in Fig. 1; the
corresponding characteristics are represented in Fig. 2. Their equations are

H

L g~ O))

Along those characteristics @ is constant, i.e., #=(x(0)). Also, since ¢(0)=0 it
follows that the line x =0 is the characteristic passing through the point (0, 0) and

yA

—
4
]

FiG. 1
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FiG. 2

consequently that & automatically satisfies a boundary condition of the form #(0, t) =
0. Next we deduce from the fact that ¢ is nondecreasing that two characteristics do
not intersect. Suppose that there exist two characteristics issuing from the points x = a
and x = b(a < b) on the initial line, intersecting each other at the point (x, £) = (x*, 1*).
Then if they would intersect transversally we would have —(g(x*)—y(a))>
—(g(x*)— /(b)) and hence ¢(a) > (b), which is impossible. Now if the characteristics
would be tangent to each other at the point (x*, t*) we would have —(g(x*)—¢(a)) =
—(g(x*)—¢ /(b)) and consequently ¢(a)=(b); both characteristics would then be
described by the same differential equation dx/dt= —(g(x)—/(a)), which, by the
standard uniqueness theorem for ordinary differential equations, implies a = b. Finally
we conclude that since the initial condition ¢ is continuous and nondecreasing, no
shock wave can occur and i (-, ) is continuous at all times.

In [19] Oleinik proved existence and uniqueness of the generalized solution of
Cauchy problems and boundary value problems related to problem H but since the
boundary line x =0 is a characteristic for H (which is reflected in the relation
g(0)—i(0,0)=0), problem H does not satisfy all the assumptions made in [19].
This leads us to give here a proof of the existence of a solution of problem H, by
showing that the solution u of problem P tends to a limit as £}0; the uniqueness is
a consequence of [19]. Following [19, Lemmas 18 and 19], we say that & is a
generalized solution of H if it satisfies

(i) @ is bounded and measurable in D;
. ﬁ(xl’ t)—ﬁ(x% t)
(ii)
X1~ X2

=M, for all points (xy, t), (x2, t) € D;

(iii) @ satisfies the identity

4.12) ” [aqs, (g —g)ﬁqﬁx - ag'qs] dx di + Lw U ()b (x, 0) dx =0

D

for all ¢ € C'(D) which vanish for large x and t=T.

Next we shall prove the following theorem.

THEOREM 4.4. The solution u(x,t) of P tends uniformly on all compact sub-
domains of D to a limit # as € |0, where ii is the unique generalized solution of H.

The function @ is furthermore continuous, nondecreasing in x at all times t€[0, T
and satisfies the boundary conditions @1 (0, t) =0 and (%0, t) = K.
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Before proving Theorem 4.4, let us introduce a class of upper and lower solutions
for problem P which depend neither on & nor on time. They will turn out to be very
useful both to prove that (o0, t) =K in Theorem 4.4 and to study the asymptotic
behavior of u as ¢ > o in the next sections. Next we define

s (x):=min (M,x, K)

s (x, A, x1, v)'=max (0, A(l — (xil)_,/))’

where the constants A €[0, K], » >0 and x; >0 are chosen in the following manner:
(a) If £ <g(c0), we choose x1>0 so that g(x;)>¢, then A >0so that A <g(x;)—¢
and finally » >0 so that

and

(4.13) v=e'(glx1)—A)—1.

(b) If £ = g(c©), we set A =0, which amounts to setting s~ =0.
It is easily seen that s~ satisfies the inequality

Ex(s7)'+(g—s)s)'=0 forall xe[0,0)\{x1}, £€(0, ¢).

Thus if &€ < g(c0), given any A < Ao =min (g(o) — ¢, K), one can find £; and # satisfying
(4.13) and such that s (-, A, £1, 2) = ¢. Applying the comparison Theorem 3.4 we
deduce that s (-, A, £1, #) = u (and thus that Ao = u(c, ¢) for all = 0). Similarly one
can check that u=s".

Proof of Theorem 4.4. The uniqueness of the solution of problem H can be proven
along the same lines as in the proof of [19, Thm. 1, Lemma 21]. Next we show its
existence. Fix I =1. Since u and u, are bounded uniformly in ¢ we deduce from
Gilding [12] that u is equicontinuous on Dy; thus, there exists a subsequence
{ue, }n=rof u and a function iz; € C (Dy), such that u,_-> iy as €, | 0 uniformly in D; and
such that for all A <K, one can find x; and » satisfying (4.13) and s (-, A, x1, )=
ir(+,t)=s"(-). Then by a diagonal process, it follows that there exists a bounded
continuous function & and a converging subsequence denoted by {u., } such that u., > i
as &, | 0, pointwise on D and uniformly on all compactsubsetsof D. Since 0 = (u,, ) = M,,
7 is nondecreasing in the x-direction and satisfies (ii); u., (0) =0 implies the same
property for #. The boundary condition (00, t)=K follows from the inequalities
sTCLAxLv)Sa(,)=s" () forall A <K.

It remains to show that i is a generalized solution of H. Let ¢ € C (D) vanish
for large x and ¢ =T, and let L =1 be such that ¢ vanishes in the neighborhood of
x =L and for x > L. Because the functions u,, are classical solutions of P, we have

jj [uekqb: — £ (Xlhgyy — Ue, )by — (g u

2”‘) UeDx — uekg’qﬁ] dx dt

Dp

L
+J' $()b(x, 0) dx = 0.
0
Now letting &, {0 we deduce that i satisfies (4.12); because ¢ has been chosen
arbitrarily we conclude that i is indeed the generalized solution of H and that {u,}
converges to iZ as £ 0. 0
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5. Asymptotic stability of the steady state. Adapting a method due to Aronson
and Weinberger [2] we investigate the stability of the solution ® of problem P,. To
that purpose we consider the solution u of the corresponding evolution problem P;
since its dependence on ¢ plays a central role in what follows, we denote this solution

by u(x, t, ). We show that for all the functions ¢ satisfying the hypothesis H,, given
in the introduction we have that

u(x, t,¢)>d(x) ast->o0,

To begin with we prove two auxiliary lemmas.
LEMMA 5.1. (1) Let &<g(©) and A\, %1,7 satisfy (4.13). The function
u(x, t,s (+,A, 21, 9)) is nondecreasing in time and such that

(5.1) lim u(x, t,57(, X, £1, 9)) = ¢alx),

where @3 is the unique solution of
ex¢"+(g(x) =)' =0,
#(0)=0, $(o)=A.
(ii) The function u(x, t, s*) is nonincreasing in time. Furthermore

(5.3) lirg}> ux, t,s)=ao.

(5.2)

Proof. First note that it follows from the proofs in § 4 that problem P with initial
value s (x, A, £1, #) has a unique classical solution u(x, t, s (-, A, £1, 7)) with u(c0, t) =
A for all r=oco. Applying repeatedly Theorem 3.4, one can show that
u(x, t,s”(+,\, £1, 7)) is nondecreasing in time and that u(x, , s*) is nonincreasing in
time; it also follows from Theorem 3.4 that

ulx, t,s (-, A, £1, ) = ¢s(x),

and that

u(x, t, s )= d(x).

Now for each x, u(x, t, s (-, X, £1, #)) is nondecreasing in ¢ and bounded from above.
Therefore it has a limit 7 —(x) as > o0 and one can use standard arguments (see for
example Aronson and Weinberger [2]) to show that 7~ € C,..,((0, 0©)) N C([0, ©)) and
satisfies the differential equation in (5.2) and the boundary conditions 7~ (0) =0 and
77(00) = A. Finally since ¢ is the unique solution of problem (5.2) we have that 7~ = ¢;.
Similarly one can show that u(x,t,s’) converges to a function 7'¢€
Cs.4((0, 0)) N C([0, o)) which satisfies the steady state equation, the boundary condi-
tion 77(0) = 0 and the condition ®(0) = 77 (00) = K. The fact that 77 (c0) = ®(c0) follows
from [6, Lemma 5.1]. Consequently 7" = ®.

LEMMA 5.2. ¢; is an increasing and continuous function of . More precisely if
X1= X, we have

0=é¢3,— P, =hi— Ao
Proof. Let m = ¢3,— ¢, It satisfies the differential equation

exm"+(g —dz,)m'—¢i,m =0
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and the boundary conditions m(0) =0 and m () = A, — A =0. Suppose that m attains
anegative minimum at a certain point £ € (0, 00); then m(£) <0, m'(¢§)=0and m"(¢£) =0
which is in contradiction with eém”(£) = ¢5,(£)m(£). Thus m =0. In the same way
one can show that m cannot attain a positive maximum, which implies m =X, — A,.
Finally we are in a position to prove the following theorem.
THEOREM 5.3. Let ®(x) be the solution of problem P,. Suppose  satisfies the
hypothesis H,, then for each x =0

}Lrg u(x, t, ) =d(x).

If ¢ = g(0) — K the convergence is uniform on [0, ©); if € > g(c0)—K it is uniform on
all compact intervals of [0, c©).

Proof. Since the functions u and u, are bounded uniformly in ¢, we apply the
Arzela-Ascoli theorem and a diagonal process to deduce that there exists a function
7€ C ([0, )) and a sequence {u(t,)} with u(t,,) = u(-, t,, ) such that u(t,) > 7 as £, > 0,
uniformly on all compact subsets of [0, ). Let £ <g(); then for each A<Ao=
min (g(©)—¢,K) one can find # and £; satisfying (4.13) and such that
ST N Ry, D)=y Applying Theorem 3.4 we obtain

(5.4) u(x, t,s (-, X, £, D) =uln, ) Sulx, t,s7).
Letting ¢ > o0 in (5.4) and applying Lemma 5.1 we obtain

$i=7=d forallA<2,.

Next we deduce from Lemma 5.2 that
D—r<ro—A foralli<a,
and thus, that r = ®. If ¢ = g(o0), then the inequalities
O=ulx,t,)=ulx, t,sh
imply
O=r=9=0.

Thus also in this case we have that 7 = ®. Finally we conclude that as t >0, u(-, ¢, ¢)
converges to ®, uniformly on all compact intervals of [0, 00). This convergence result
can be made slightly stronger in the case that ¢ = g(c0) — K : since then ®(c0) = K and
since u is nondecreasing in x one can apply Diekmann [5, Lemma 2.4] to deduce
that the convergence is uniform on [0, ). 0

6. Rate of convergence of the solution towards the steady state. In this section
we analyze the rate of convergence of the solution u of P towards its steady state ®.
The results which we are able to derive depend strongly on the behavior of g as x - oo,
If g tends to infinity fast enough, we can prove exponential convergence with a certain
weighted norm. In the more general case, when £ < g(c0) — K we find that the solution
converges algebraically fast towards its steady state on all finite x-intervals. No results
are available in the case ¢ =g(o0)— K, which coincides with the physical situation
when some (or all the) electrons escape to infinity.

We write

ulx, t, ) =d(x)+v(x,t).
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Then v satisfies the problem

U = EXUy + (g — D), — D'v — 00y,
(6.1) v(0,1)=0,

v(x, 0)=¢(x)—d(x).

Now let us make the change of function

v(x, t)=exp (-—J. g({%;)({)d
0

£) 5x, )
Problem (6.1) becomes
0, = ex0,, —q(x)0 + h(x, 0, 5y),

6.2) (0,1 =0,

* -®
¥(x, 0) =exp (L % d{) (W (x) —D(x)),
where
2 , _
q(x)=(g(x)4—‘1>(x» LEX () glx)-D(x)
34 2 2x
and

h(x, 3, 5,) = —exp (—Lx g(‘v%?(;) d{) 5(5x —g("—)z;f@ 5).

In particular, there exists M >0 such that
i (x, 6, 5l=M(5IP+]5.),  0<x<oo,

where the notation ||+ || indicates the sup-norm.

In what follows we shall distinguish two cases: (i) the case when liminf ;.. g(x) =
8>0: this is so if g(x)= CoVx for all x = x, for some positive constants Cy and x»;
(ii) the case when liminf, .. q(x) =0.

6.1. Case when g tends to infinity at least as fast as Vx for x » 0. The theorem
we give next is very similar in its form and in its proof to a theorem of Fife and
Peletier [10].

THEOREM 6.1. Suppose that there exist constants x,, Co= 0 such that

(6.3) g(x)=CoVx forallx Zx,.

Then there exist positive constants 8, u, C such that if

exp (L %@ at) - =5

then

exp (J‘O g)—®Q)

26l d{)(u(', t, w)—cb)"éce‘“‘, tz0,

where the notation ||-|| indicates the sup-norm.
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Proof. To begin with we note that with the hypothesis of Theorem 6.1 we have
that v (00, t) =0 (since £ < g(c0) — K) or equivalently
(_ I 8(0) =D
0 2l
Next let us consider the boundary value problem
(6.4)  exw"—(q(x)+A)w=—60(P(R)+A) min (D(x), (x/R) D(R)),w(0)=0,

where

lim exp

xX—>00

d{) 30x, 1) =0.

. “g(O)—d
<I>(x)=exp(L g(()zeg 19)

The right-hand side of the differential equation in (6.4) has been chosen in a special
manner so that one can exhibit upper and lower solutions for a problem closely related
to (6.4); more precisely we shall prove in the appendix that this problem has at least
one solution w € C*([0, )) with w,w' and w"” bounded such that

dg) ®(x).

0<w(x)=min (d(x), (%)-%ci)(%))

for all constants »o>1 provided that the constants 8 € (0, 1), & >0 and A <O satisfy
certain conditions. We adjust 6 such that |w|+|lw'||=1.
We are now in a position to prove Theorem 6.1. Let

z(x, )=Bwx)+y)e *,
in which B, y and w are positive constants still to be determined, and let
Mz =¢exz,,—q(x)z+h(x, 2, z,)— 2.

(i) The function q is positive for x near zero and, because of condition (6.3),
also for large x; thus there exists §o>0 and ¢i, {>€(0,%0) such that go=
min {g(x): x €[0, {;]JU[{2, )} is positive; therefore

Mz=Be (A +p)w+y(=Go+un)+MB(1+7)?).
Choose
0<u <min (—A, o);
assume that y is known (we shall specify it later), and choose
¥qo—p)
M1+y)*

Then #z =0 for all x €[0, {{]U[{,, ) and ¢ =0,
(ii) Let {1 =x ={5; since w(x)>0 on (0, c©), and since w is continuous we have

B:

m=min{w(x): {1 =x=}>0.
Therefore
Mz =B e (A +p)m+y(=q+p)+MB(1+7)),
where g is an arbitrary constant such that

G <min {q(x): x € [0, )}.
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Hence
Mz =Be (A +u)m+y(=g+qo)).
Therefore if we choose
A+
T

we have
Mz=0 for{1=x=(,and r=0.

Thus for the above choice of B, v and u the function z is an upper solution of the
equation (¢ = 0. Let

sup o(x, 0) =4,
[0,00)
where 8§ = By. Then
0(x,0)=z(x,0) forallxe[0,c0),
and hence by Theorem 3.4
0(x,t)=z(x,t) forall xe[0,0), ¢t=0.

In a similar manner one can show that if
inf 0(x,0)=-6
nf (x, 0)

then
0(x,t)=—z(x,t) forall xe[0,0), ¢=0.
Hence if |5(-, 0)|= 8 then ||§(-, t)| = Ce ™ where we define

C=B(1+vy)=(1+1/y)é. 0

6.2. Algebraic decay rate in the case that £ <g(c0)— K. Provided that ¢ <
g(0)—K and that the initial function ¢ converges algebraically fast to K as x » 0,
we prove that the solution u of P converges algebraically fast to the steady state
solution @ for all finite values of x. To that purpose we show that a certain weighted
space integral of the function |u —®|?, for some integer p =1, decays algebraically in
time; a similar proof, with exponent p = 1, has been given, for example, by van Duyn
and Peletier [9].

THEOREM 6.2. Provided that € < g(c0)—K and that y=s (-, K, X1, ) for some
X1, v satisfying (4.13) with A = K, we have that

[ @+ (-2 @luts & ¥) S0P dx
(6.5) 0

é“::o (sT=D)P +(P-5)?) dx]/t
forallt>0and p=[1/7]+1.

Proof. Since |v(x, t)|° =(s"(x)—s " (x, K, %1, #))” it follows that [¢° (v(x, t))" dx is
defined for all =0. If p=2 let us multiply the differential equation in (6.1) by v”™"
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and integrate with respect to x; we obtain

a
dt

D= O

s o) P s o)
I L oax =[exvxv”"1]3°—[ev—] —e(p—l)[ x0° % (v,)* dx
p P Jo 0

0

v"* (7 v? IR LA
+[g——] —J- (g’+d>'(p—1))—dx—[<l>—-—+ ]
plo Jo p p p+1llo
Since v tends to zero at least as fast as x” as x - 0, the equation above can be written
in the simpler form

d oovp bt =) oo 2 )
—I —dx =| exvew ] —e(p=1)| xv° “(v,) dx
dtlo p 0 0
(6.6) - )
’ ’ v
—I (g+d'(p—1))—dx.
0 p

Now let us define the functions v™ and v~ as the solutions of (6.1) with initial values
v (x,0)=s"(x)-P(x) and v (x,0) =5 (x, K, %1, ) — P(x), respectively. By Theorem
3.4 we know that v*=0 and v~ =0. Furthermore, it follows from Lemma 5.1 that
v" is nonincreasing in time and v~ nondecreasing. Of course both v™ and v~ satisfy
(6.6) and in order to simplify this expression we use the following lemma which we
shall prove later.

LEMMA 6.3. Let £ <g(0)—K. Then lim,,ox®'(x)=0. If furthermore =
s (-, K, %1, v) for some %1, v satisfying (4.13) with A =K (we suppose furthermore
that v>1 if e<(g(0)—K)/2) and ¢ e Ci4(x3,0)) for some a,x3>0, then
lim, o xu,(x, t) =0 for all t € (0, ).

From Lemma 6.3 and formula (6.6) we deduce that v satisfies

oo +\p oo oo
0L geeep-1)] 202002 ds-[ (g +@(p-1)
dtly p 0 0

(0)?

p

dx.

If p =1, similar calculations yield

i co N —_J‘oo .
dt.[) vidx= \ g'v” dx.

Since 0<g'(x)<g'(0) and 0 <®'(x) <®'(0), we have for all p=1

1
g'(0)+(p - 1)®'(0)

J; (0 (x, 1) dx = L (g'(x)+(p—DP'(x)) (v (x, 1))’ dx,

and thus

[, @0+ (-1 ) dr

o

S@O+(p-DPO) @@ 0) dr

—(8'(0)+(p-1)¥'(0)) L dr L ')+ (p=DP')) (" (x, 7))" dx.

In what follows we apply the following lemma that we shall prove later.
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LEMMA 6.4. Let ye C([0,0)) with y' € L((0, ©)) and y' =0 such that

t
(6.7) 0§y(t)§N—Mj y(r) dr
0
for some constants N =0, M >0. Then
N
6. =—
(6.8) y (1) M

Since the function [y (g'(x)+(p — 1)®'(x))(v* (x, £))? dx is continuous and nonincreas-
ing (because v is nonincreasing), we deduce from Lemma 6.4 that

J': (g'(x)+(p— D (x)) 0" (x, ) dx = (Jj (0" (x, 0))" dx) / ‘

Similarly one can show that

f (g'(x)+ (p = 1) ()= v (x, )" dx g( Lw (—v™(x, 0))de)/ L

Formula (6.5) is then deduced from the fact that
[o(x, ) =max (v (x, )", (=0 (x, )"V = (0" (x, )" + (v (x, 1))". 0

Proof of Lemma 6.3. We first show that lim, . x®'(x) = 0. Since
ex®'x) = s ()= | (O~ POIV(Q) s S oK,

we have
0=xP'(x)=K.
Furthermore

_g§—%-¢

(x®) =x®"+ ' = ®'=0 for x large enough.

€

Since the function x®' is bounded and decreasing for large x, we deduce that there
exists E [0, K] such that

lim x®'(x) =E,

which implies
O(x)~EInx+C asx->00,

Since

lim ®(x)=K,
we deduce that E =0.
Next we show that lim,. xu, =0 by making use of Bernstein’s argument, in a
similar way as in Aronson [1] and Peletier and Serrin [21].
Let

n 3n
R, = (5, 3‘) x (0, T], n>3x;
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and let

o0 =",

where N =supg,u —infg u. The function ¢ increases from 0 to N as r increases
from 0 to 1. Note that ¢'(r)=2N(2—r)/3>0 and ¢"(r)=—-2N/3 <0 and define a
new function w such that

u=inf u +¢p(w).
R,

Then w satisfies the differential equation

¢"(w)
¢'(w)

Set p = w, and differentiate the last equation with respect to x; we get

W; = eXW,, +€X (wx) +(g— ¢(w)—1nfu)wx

n ”

¢ m ! 3
Dt = EXDyx + €D +E—D +25x—,ppx+ex( )p
' ¢ ) ¢’

+(g—¢ —igf u)px+(8' —¢'p)p,

and thus

= (p )t~ EXPPxx = ex(z”) ,p +€(%ﬁ—¢ )
(6.9)

n

+23x%p pet(g— ¢~mfu+e)ppx+gp

Let R¥ = (3n/4, 5n/4)x (0, T), and let { =1 —4(x —n)*/n>. Set z = ¢*p°.
(i) If z attains its maximum value at the lower boundary of R, we have

3
sup z=z(x,0) where x€ [ n]
2 2’2

Hence,
R}

Since ¢ =3/4 in (3n/4, 5n/4) and since u, = ¢'(w)w, we find

S“"‘b MG

suPI“XI<_

(ii) If z attains its maximum value at an interior point (X, f) of R, we have at
that point
2, =2{'p*+2{pp. =0,

X2y — 2, =0.

(6.10)

The last inequality can be cast in the more explicit form

LGP — exppe) Zex({Pp* +LL"p* + 4L, ppe + £D2).
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Using (6.9), (6.10) and the inequality
|4¢8 ppe| = £°p% +4%p?

we obtain
2 () Jac AN S SN
_£€(¢’> =( 2£§¢ x ¢ x¢)p
g—¢—infg u+e

+(:2g;'+ 360~ ell"— @),

X
Since (¢"/¢') = —3, this implies
20p* = 6>+ {Galpl,

where the 4;’s are positive and depend only on N and n. Since
2

€
(GlpP ="+ 2 p
it follows that
2

z(x, t)ém_ax (Z(x, t))é(gl‘l‘%s 663.

R,
Therefore

%1/2
3

max |w,¢|<
R}
Finally u, = ¢'(w)w, and ¢'=4N/3 imply that
max |u,|= 16N€5/%/9.
R}

Note that N =supgz, (K —s (x, K, %1, 7)) (which behaves as x°, where #>0)
is furthermore such that 7 > 1 if £ <(g(c0)—K)/2.
Thus
(K —S_(-xa Ka x-l) 17))
9 .

(6.11) max |u,| =16%3’> sup
R,

R-Vl

If £ <(g(c0)—K)/2 %5 is bounded uniformly in n, and we deduce that xu, tends to
zero as x - 0. If on the other hand (g(c0)—K)/2 =¢ < g(0) — K, then we only have
that 7>0in (6.11) and sup, (K —s " (x, K, X1, 7)) tends to zero as x - c0. However €3>
tends to zero as 1/x when x - co, which also yields the result. 0

Proof of Lemma 6.4. Integrating by parts we get

J y (1) dT=ty(t)—I (1) dr = ty(¢).
0 0

Also we deduce from (6.7) that

t
N
=
L y(r)dr=yr,

and thus (6.8) follows. 0O
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Next we deduce from Theorem 6.2 that there is also pointwise convergence.
More precisely we prove the following theorem.

THEOREM 6.5. Provided that ¢ < g(©)—K and that 4 =s (-, K, %1, ) for some
X1, v satisfying (4.13) with A = K, we have that

(6.12) lg'()+(p = DRCNP(u(-, b, ) - D)= 1/2,, for all t>0,

and p =[1/7]+1, where

¢ =[2((x" 0 + k") g0 4K sup lg'0)

(6.13) 1/2p
-J-O ((s+—(l>)"+(fb—s_)")dx] .

In particular, if £ <(g(00)—K)/2 and # > 1, then p =1 and formulas (6.12) and (6.13)
simplify as follows

(6.14) g’ ()u(:,t,¢)— <I>)||<—— for all >0,

where

o 1/2

c=[2(@or+k sup i) '@-s K rMar]
x€[0,00 0

Proof. To prove Theorem 6.5 we need the following auxiliary lemma.

LEMMA 6.6. Let ¢ be defined for 0 = x <0 and satisfy the conditions

(i) ¢(x)=0 and $(0)=0;
(ii) ¢ is Lipschitz continuous with constant l;
(i) fo & (x) dx =N,

Then

sup | (x)| = V2N
0=x<o0
We omit here the demonstration of this lemma since the main ideas of the proof are
given in the proof of Peletier [20, Lemma 3].
Now let us apply Lemma 6.6 to the function (g’'+ (p — 1)®')|u —®|”; it is non-
negative, equal to zero at the origin and its derivative is continuous by parts and
bounded by

(ki + kP2 @O +k” sup lg'ol)

x&[0,00)

at all points where it is defined. Finally the bound on its integral is given in Theorem
6.2. Inequality (6.12) follows. 0O

6.3. Asymptotic behavior of the solution i of the hyperbolic problem H as ¢ - co.
THEOREM 6.7. Let ¢ satisfy H, and be such _{hat Yv=s (+,K, %1, v) for some
X1>0, v>1 satisfying (4.13) with A =K and deﬁne ®(x) =min (g(x), K). Then

lg'()@(-, 4 v)-®d)|= forallt>0
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where C is the constant defined in Theorem 6.5.

Proof. Let € €(0, (g(00)—K)/2)} 0 in inequality (6.14), note that the constant C
does not depend in ¢, and use the fact that ® converges to ® uniformly on [0, 00) as
el0 (see[6]). O

Appendix. In what follows we shall prove the following theorem:

THEOREM Al. Suppose that there exist constants x», Co >0 such that the condition
(6.3) is satisfied. There exist 6 €(0,1), #>0 and A <O such that the Cauchy-Dirichlet
problem (6.4) has at least one solution w € C?([0, ©)) with w, w', w" bounded and

0< w(x)=min (D(x), (x/R) " D(R)) for all x € (0, ).

Proof. Let n =1, and consider the boundary value problem

(A1) e(x + 1)w"—<q,,<x)+)t>w =—6(®'(R)+A) min (D, (x), (x/R) "D, (R)),

n

(A2) w(0)=0,
where
. * ()= @)
‘D"(")“e"p(L 2+ 1/n)d{)q’(x)’
and

_(glx) —<I>(x))2+g'(x)+<1>'(x) _g(x)=D(x)

)= T 1/m) 2 2x+1/n)’

vo> 1 is arbitrary and where the constants 6 € (0, 1), # >0 and A € (—®'(R), 0) satisfy
some additional conditions which will be given later. Obviously zero is a lower solution
for the differential equation in (A1). We shall now construct an upper solution. Firstly
we deduce from the asymptotic behavior of g that there exists #: =1 and go> 0 such
that g, (x) =2qo for x ZR 1. Alsoif A > max (—qo, —P'(R)) and 6 <(go+A)/(D'(R)+ 1),
then the function (x/ &)™ "°®,(R) is an upper solution of the differential equation (A1)
for x = R '=max (R, 2evo(vo+ 1)/qo). Next we note that ®, is an upper solution of
(A1) on [0, &] and thus that min (@, (x), (x/ R) D, (R)) is an upper solution of (A1)
on [0, ). Finally we conclude that there exists at least one solution w, € C*([0, ©))
of (A1), (A2)[3, Thm. 1.7.1], such that

0=w,(x)=min (&Jn (x), (%) VO&J,,(% )),

which, since d, = &3, implies that

(A3) 0= w, (x) =min (cb(x), (%) @ )).
Furthermore, the inequalities (A3) and

— )2 ' '
(A4) |qn(x)|§M+§_i?L

dex 2

yield, together with (A1),

|wi(x)|=C for all x €[0, ),
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where C >0 is independent of n. Now let us integrate (Al); we get
wn(x)=w,(0)

(A5) [ @0+ Q)= 0@ ) +) min B 0), @) ")
. e@+1/n),

and again using:-(A3) and (A4) we obtain
lwh(x)|=C for all x [0, o).

Using the Arzela—Ascoli theorem and a diagonal process, we deduce that there exist
a function w € C'([0, ©)) and a subsequence {w,, } of {w, } such that w,, > w as n; -0
uniformly in C'([0, 0)) on all compact subsets of [0, ). Also setting n = n, in (A5)
and letting n, » 00, we deduce that w satisfies the differential equation

(A6) exw"—(q(x)+\)w =—0(P'(R) +A) min (B(x), (x/ R) " D(R))
and the boundary condition

w(0)=0.
It follows from (A6) that w € C*((0, 0)), and since

lim w"(x) =[(®'(0)+2)w'(0) - 6(P'(%R) +0)®(0))/e,

we deduce that in fact w € C*([0, c0)). Finally the strict inequality w >0 is proven by
means of a maximum principle argument. [
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BOUNDED POSITIVE SOLUTIONS OF SEMILINEAR SCHRODINGER
EQUATIONS*

C. A. SWANSON'

Abstract. The Schrodinger equation (1) Au+f(x, u)=0 is considered in an exterior domain Q) in
R", n=2, where f is Holder continuous and nonnegative and f(x, u)/u is majorized above and below by
nonnegative functions g(|x|, #) which are monotone in u for u >0, |x|= 0. Conditions on f are found which
are necessary and sufficient for (1) to have a uniformly positive bounded solution in Q = R?, and correspond-
ing results in Q<= R", n=3. Such theorems constitute the only characterizations discovered to date of
partial differential equations possessing positive solutions with specified behavior at co.

1. Introduction. Positive solutions u(x) of the semilinear Schrédinger equation
(1) Lu=Au+f(x,u)=0, xel)

will be considered in exterior domains Q) of n-dimensional Euclidean space R", n =2,
where f is Holder continuous and nonnegative, and f(x, u)/u is monotone in u for
u > 0; detailed hypotheses are listed in § 2. Our main objective is to extend the known
characterization of the existence. of a bounded positive solution of the ordinary
differential equation
2
@ TU g, ) =0
dx

to R", where g(x, u) is either nondecreasing in u (superlinear case) or nonincreasing
in u (sublinear case) for each x =0. Equation (2) was first studied in the case
ug(x, u)=p(x)u”, y >0, when (2) is usually called the Emden-Fowler equation. The
historical origin dates back to Lane [15], Emden [9] and Fowler [10], [11]. Excellent
summaries of the applications to gas dynamics, fluid dynamics, astrophysics, relativistic
mechanics, particle physics and chemistry have been given by Bellman [4], Conti,
Graffi and Sansonne [8], Wong [24], with many additional references contained therein.

The one-dimensional theorem below, in the form given by Coffman and Wong
[7], will be extended to n dimensions. Earlier similar results were proved by Atkinson
[3], Belohorec [5], [6], Izyumova [13], Moore and Nehari [16] and Nehari [18].

THEOREM 1.1. Let f(x, u) = ug(x, u) be continuous and nonnegative for 0 <x <
00, 0<u <0, and suppose that g(x, u) is either nonincreasing or nondecreasing in u
for each x. Then (2) has a bounded positive solution in some interval (xo, ©), xo>0 if
and only if

(3) J xg(x, ¢) dx <o

for some ¢ > 0.
A positive solution u(x) of (1) in Q < R? is always uniformly positive (see Lemma
4.2), but is not necessarily bounded; for example, the radial equation

Au+rlogr)u*=0, r=|x|>1

has the unbounded positive solution u(x)=3(log r)l/ 2 rzro>1. It is therefore a

natural question to ask for conditions analogous to (3) which are necessary and

* Received by the editors June 27, 1980, and in revised form March 17, 1981. This work was supported
in part by the Natural Sciences and Engineering Research Council Canada under grant A3105.
+ University of British Columbia, Vancouver, Canada V6T 1Y4.
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sufficient for (1) to have a bounded positive solution in an exterior domain of R
The conclusions are given in §§ 3 and 4, also containing corresponding results in R",
n = 3. Our principal results, contained in Theorems 3.1, 4.3, and 4.4, are summarized
in Theorem 1.2.

MaiN THEOREM 1.2. Suppose that the function f in (1) satisfies the positivity,
monotony and regularity conditions (A), (B), (C) and (D) listed in § 2, in an exterior
domain Q< R". If n =2, condition (6) is sufficient and condition (12) is necessary for
the existence of a bounded uniformly positive solution u(x) of equation (1) in Q. If
n =3, condition (8) is sufficient and (16) is necessary for (1) to have a positive solution
u(x) with |x|"2u(x) bounded in Q.

In the case of Emden-Fowler type equations (21), this theorem generates
necessary and sufficient conditions (22), (23) for the existence of a bounded positive
solution in ) (see Theorem 4.5). These are the only known characterizations, as far
as we are aware, of partial differential equations possessing a positive solution with
specified behavior at infinity.

2. Preliminaries. Points in Euclidean n-space R" are denoted by x=
(x1, X2, *, x,) and the Euclidean norm of x is written |x|. The notation below will
be used throughout:

S,={xeR":|x|=a}, a>0,
G,={xeR":|x|>a}.

The measure on S, and S; will be denoted by s and w, respectively: ds = " do.

For a bounded domain M < R", let C*(M), C*™" (M) denote the usual Holder
spaces, 0<a <1,n=1,2, - [14], [20].

An exterior domain Q) in R", n =2 has the property that G, < () for some positive
number a. For convenience, a function g:[0, c0) % (0, 00) [0, o) is called monotone
in the second variable when g(r, u) is either nondecreasing in u for each fixed r or
nonincreasing in u for each fixed r. The Schrodinger equation (1) is to be considered
in an exterior domain () under assumptions selected from the list below.

Assumptions.

(A) feC* (M xJ) for some a in 0<a <1, for every bounded domain M < Q and
for every bounded positive interval J.

(B) f(x,u)=0 for all x € Q) and for all u =0.

(C) f(x,u)=ug, (x|, u) for all xeQ, u=0, where gi(r, u) is continuous and
nonnegative for 0 =r <00, 0 <u <00 and monotone in u for each r.

(D) f(x, u) = ug(|x|, u) for all x € Q, u =0, where g, C*(I xJ) for all bounded
intervals I =[0, 5], J=[a, b], 0<a<b, 0<a <1, and g,(r, u) is monotone in u for
each r=0.

For example, all the assumptions (A)—-(D) hold in the Emden-Fowler prototype
f(x, u)=p(x)u”, y>0, where p is nonnegative in Q and p € C*(M) for every bounded
domain M < Q. In this case, we can take

g1(r, w) =[min P,
ga(r, u) =[max p(x)Ju”"".
Then each g;(r, u), i =1, 2 is increasing in u if y > 1 (superlinear case) and decreasing

in u if 0<+y <1 (sublinear case). The existence theorem below was proved recently
by E. S. Noussair and the author [21, p. 125].
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THEOREM 2.1. Let L, ) and a be as above, and let a be a positive number such
that G, < Q. Under assumptions (A) and (B), if there exist positive solutions v, w of
Lv=0,Lw =0, respectively in G, v, wE c*e (M) for every bounded subdomain
M < G, such that w(x)=v(x) throughout G, US,, then (1) has at least one solution
u satisfying w(x)=u(x)=v(x) throughout G,US,, ue C* (M) for every bounded
M < G,.

Versions of this theorem for bounded domains had been given much earlier by
Nagumo [17], Amann [2] and others.

In particular, let v be the function defined in G, by v(x)={(r), r =|x| = a, where
¢ is assumed to be a positive solution in the space C>™*[a, b] for all b>a of the
ordinary differential equation

@ L (11 %) e galr 1) =0,
r dr
COROLLARY 2.2. Suppose that (4) has a positive solution { € C***[a, b] for some
a >0 and for all b > a such that {(r) = Kr*™", where K is some positive constant. Then,
under assumptions (A), (B) and (D), (1) has a positive solution u(x) satisfying
Klx" " =u(x)=¢(x|) forallxe G,US,, n=2.
In fact, computation shows that

LApSY
dr dr
éi (r"_l de

dr dr

and hence Lo =0 for all x € G, by (4). Since w(x)=Kr>™", r=|x| satisfies Lw =0,
Corollary 2.2 follows from Theorem 2.1.

-1
r" Lv=

) +r" 7 f(x, v)

)+w*an&m{o»

3. Sufficient conditions for bounded positive solutions. If n =2, Liouville’s
change of variable r = ¢°, h(s) = {(e*) transforms (4) into the canonical form

(5) h"(s)+e*h(s)ga(e’, h(s))=0.

By Theorem 1.1, (5) has a bounded positive solution % (s) in some interval (s, ) if
and only if

J se*gyef, ¢) ds <o
for some ¢ >0, which is equivalent to
(6) J rlogrga(r, c)dr<oo

for some ¢ > 0. Furthermore, standard regularity theory [14] shows that & € C***[s0, 5]
for all s>s, if go€ C% as in assumption (D). If (6) holds, then a bounded positive
solution A (s) of (5) in (so, c©) satisfies £"(s) <0 by (5), from which A'(s) > 0 throughout
(80, ) by a standard obvious argument. Consequently, there exist positive constants
K and K, such that K;=h(s)=¢(r)=K; for all r in [a, ©), where a =exp so, and
£ € C*"*[a, b] for all b > a. By Corollary 2.2, condition (6) is then sufficient for (1) to
have a positive solution u(x) in G, < R? satisfying K; = u(x) = K, for some constants
K; and K,, 0<K;<K,.
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- If n =3, the change of variables

r=B(s)=(us)",  h(s)=sL(B(s)),

where u = (n —2)7", transforms (4) into

h(s)) 0.

™ B(s)+5 BT P h(s)g( B6)

Theorem 1.1 shows that (7) has a bounded positive solution A(s) in some interval
(s0, ) if and only if

j 7B (S)]zn_zgz(ﬂ(s), f) ds <o,
for some ¢ >0, which is equivalent to
8) j rex(r,cr’ ") dr<co,  nz3

for some ¢ > 0. If (8) is satisfied, then, by exactly the same argument given above in
the case n =2, there exists a solution £(r) of (4) such that Kir* " ={(r)=K,r* " for
all r=a, where a, K; and K, are positive constants. Corollary 2.2 therefore shows
that (8) is sufficient for (1) to have a positive solution u(x) satisfying K =) s
K,r* " forall xe G, US,, n=3, 0<K; <K,. This establishes the theorem below.

THEOREM 3.1. Under assumptions (A), (B) and (D), (1) has a bounded positive
solution u(x) in an exterior domain G, < R", for some a >0, with |x|" *u(x) uniformly
positive and bounded if (6), (8) hold for n =2, n 23, respectively.

4. Necessary conditions for bounded positive solutions. The spherical mean of
a function u: R" » R over the sphere S, of radius r is defined by

9) U(r)=

1 J‘ 1
u(x)ds=
5(S,) Js, ) w(S1)
A proof of the lemma below is given in [19, p. 70].
LEMMA 4.1. If assumption (C) holds, then the spherical mean U (r) of a positive-
valued solution u(x) of (1) in G, satisfies the ordinary differential inequality

_ 4 n—ld_U> r
(10) dr(’ ar )= woisy)

fora<r<oo,

The next lemma is a special case of a result in [22, p. 917]; see also [1, p. 935],
[23 p. 147].

LEMMA 4.2. Every positive solution of the differential inequality Au=0in G, US,
satisfies the inequality

L u(x) dw.

L u(x)g(r, u(x)) dow,

-2

(11) u(x)>(l l) inf (v, Ixlza, nz2

THEOREM 4.3. Under assumptions (A), (B), (C), a necessary condition for (1) to
have a bounded positive solution in an exterior domain G, < R2, b>0,is

(12) j rlogrgi(r, c) dr<o

for some positive number c.
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Proof. If u(x)is positive in G, U S,, a > b, Lemma 4.2 shows that u(x) is uniformly
positive for |x|=Za, n =2, and hence, there are positive constants K; and K, such that
K1 =u(x)=K, for all |x| = a. In the superlinear case, i.e., g;(r, u) nondecreasing in u,
Lemma 4.1 then yields the inequality

d( d
(13) —-&;(r—élr—]) = K,rgi(r, K1), rza.

In the sublinear case, i.e., g:(r, u) nonincreasing in u, (13) is replaced by

d( d
—E(rg; =K, rg:(r, K5), r=a.

In both cases there exists a positive number ¢ such that

d( d
(/&)= =
(14) dr(r n = K,rgi(r, ¢), rza.

Multiplication by log r and integration by parts over (a, r) gives
(15) —rlogrU'(r)+alogaU'(a)+U(r)-Ul(a) =K, J tlogtgi(t, c)dt

However, since V(r) =rU'(r) is nonincreasing by (10), it follows that U'(r) >0 for all
r>a;in fact, if V(R)<0 for some R > a, then

U(-UR)= L YO g2 viR)tog .

contradicting the positivity of U(r) for all r > a. Since U(r) is bounded, (15) implies
the conclusion (12) of Theorem 4.3.
THEOREM 4.4. Under assumptions (A), (B), (C), a necessary condition for (1) to

have a positive solution u(x) with |x|"_2u(x) bounded in an exterior domain G, < R",
n=3,b>0,is

(16) j rg1(r, cr*™") dr <o,

for some positive number c.
Proof. By Lemma 4.2, there exist positive constants K; and K, such that

(17) KixP " =ux)=Kx"

for all |x|= a, where a > b. Then similarly to (14), assumption (C), (10) and (17) show
that

(18) 1(r

_d(aadU
dr

ar ) =K, rg(r, cr’ ™), r=za,

where ¢ = K; or ¢ = K, according as g(r, u) is nondecreasing or nonincreasing in u,
respectively. The change of variables

r=B(s)=(us)",  h(s)=sU(B(s)),
where u = (n —2)7', transforms (18) into

(19) —h"(s)ZK1s [B($)]"81(B(s), c[B()I™),
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n = 3. We mulitiply (19) by s and integrate by parts over (A, s) to obtain

—sh(s)+ AR(A)+h(s)~ h(A)Z K, | sTBOT81(B(6), c[BET™) ds
A
(20) ,

=K J' rg1(r, cr*™") dr,
where a =B(A), r=B(s) and K, is another positive constant. A standard argument
similar to that used in the proof of Theorem 4.3 shows that sh'(s) is bounded if A(s)
is positive and h"(s) <0. However, h(s)=(n —2)r""2U(r) is positive and bounded by

hypothesis, and therefore (20) implies (16). This completes the proof of Theorem 4.4.
In the case that (1) is the Emden-Fowler equation

21) Au+p(x)u” =0, v>0,

where p(x) is nonnegative in  and p € C*(M) for every bounded domain M < Q, we
define

Py(r)= gllig} p(x), Pyr)= max p(x).

Then assumptions (C) and (D) hold, where

gi(r, u)=Pi(ru”"", g2(r, u)=Py(r)u” .

Conditions (6), (8), (12), (16) of Theorems 3.1, 4.3 and 4.4 reduce to, respectively
(22) J- rlog r Py(r) dr < oo, n=2,
23) j PPyr dr<co, o=n—l-y(n—2), n=z3,
(24) j rlog rPy(r) dr <o, n=2,
(25) J r’Py(r) dr < oo, n=3.

Necessary and sufficient conditions for (21) to have a positive solution u(x) with
|x|"_2u(x) bounded in exterior domain are obtained under the additional hypothesis

. P;(r)

26 lim su <00,
(26) P B,

THEOREM 4.5. If (26) and the hypotheses accompanying (21) are fulfilled, a
necessary and sufficient condition for (21) to have a positive solution u(x) with |x|" *u(x)
bounded in an exterior domain G, in R" for some b>0 is (22) in the case n =2, or
(23) in the case n =3.

Proof. The sufficiency of (22), (23) is the content of Theorem 3.1. By assumption
(26), (24) implies (22), and (25) implies (23). Hence, Theorems 4.3 and 4.4 establish
the necessity of (22) and (23), respectively.

5. Concluding remarks. In the superlinear case y >1, conditions (22) and (23)
also characterize nonoscillatory equations (21), i.e., equations (21) for which there
exist positive solutions in some exterior domain [20, pp. 1001-1002]. This is not true
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in the sublinear case 0 <y <1; in fact it was shown recently by E. S. Noussair and
the author [21, p. 132] that nonoscillatory sublinear equations (21) are characterized
by the condition

27 J- rPy(r) dr < oo, n=3.

Since 0 =1+ (rn—2)(1—v)>1 in the sublinear case, condition (23) is not necessary
for nonoscillation of (21). An analogue of (27) is not known if n =2, but a sufficient
condition for nonoscillation of (21) is [21, p. 130], [23, p. 152],

(28) J r(log r)*P,(r) dr < oo, n=2.
The necessary condition [22, p. 920], [23, p. 152]
J rP,(r) dr < oo, n=2

can easily be improved, but it is not clear at this writing that (28) is necessary for
nonoscillation (sublinear case).

Recently Gidas, Ni and Nirenberg [12] have given sufficient conditions for certain
positive solutions of the autonomous equation Au+f(u)=0 in R" to be radially
symmetric about a point. An explicit solution is demonstrated in the case f(u)=u",
vy=(n+2)/(n—2), n =3. However, since f(u) is independent of x in [12], the problem
studied here does not arise; for example, in the case of (21) with p(x) identically equal
to 1, condition (22) is never satisfied and (23) is satisfied if and only if y>n/(n —2).
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A NONLINEAR-BOUNDARY VALUE PROBLEM SUGGESTED
BY THE LAPLACE* EQUATION FOR AN ELASTIC AND
AXISYMMETRIC MEMBRANE

ANNE-MARIE LEFEVERE*t

Abstract. This paper concerns the existence of solutions for a nonlinear boundary value problem
related to the Laplace equation
1 d 9

i, where A6 =~

Af+ 5= —
o(1+6'"> T dx (1+67)"?

and equations A8+ F(6+ 6,) =g+ F(6y), related to the precedent one. These results are obtained by a
regularization and the use of Galerkin and monotonicity methods. Maximal, minimal and periodic solutions
are also studied.

1. Introduction. The starting point of this paper concerns the equilibrium shape
of an elastic and axisymmetric membrane, governed by the Laplace equation
d 9 1 f

>

—_—— + =
dx 1+6%V2 e(1+6V> T

subject to appropriate boundary conditions. Here, 6:x —» 6(x) is the equation of the
meridian, f is the jump of pressure and T is the surface tension. Such an equation
arises in problems of crystal growth, for instance in Czochralski growth [10] and in
floating zone melting [12]. In the present paper, we mainly study the existence and
uniqueness of solutions 8 for the following problem, related with the first one

1 1
Af+———=g, 0<x<L,
0 90 g x

0(0)=6(L)=6,>0,
where A0 =—(d/dx)6'/(1+ 6'>)"?, and g belongs to L?(10, L[), g > 1. For our study,
there is no extra difficulty in considering a more general case, replacing 1/6 —1/6,

by F(8)— F(6,), where F is a continuous decreasing and positive function on ]0, co[.
Let u = 6 — 6,. We obtain the problem called P(6,, L, g),

Au+F(u+6o)=g+F(6),
u(0)=u(L)=0.

However, the problem P(6,, L, g) in its variational formulation is not coercive on
WP (Q) for p>1. (It is coercive on Wl (Q), but Wit (Q) is not a reflexive Banach
space.) Therefore, we introduce the operator A, such that

d _
Apu = _a (,ullp 2'4’),

where 1<p <0 and p =q’, and we replace A by A, = A+¢eA,, € >0. We note that
A, is coercive on W57 (Q).

The regularized problem, which we call P, (6o, L, g), will be treated by a Galerkin
method (applicable to the Laplace equation) and by a monotonicity method.

* Received by the editors February 8, 1980 and in final revised form March 25, 1981.

+ Université de Pau, Faculté des Sciences Exactes, Dept. de Mathématiques, Avenue Philippon, 64000
Pau, France.
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In the two cases, upper and lower solutions are used. However the existence of
such functions is not sufficient to guarantee the existence of solutions for P(6,, L, g).
They must satisfy additional conditions which allow to get estimates, independent of
€, on the derivatives of the approximate solutions, and then to pass to the limit when
e->0.

The organization of the paper is as follows.

Section 2: Notations and basic lemmas.

Section 3: Positive solutions by a Galerkin method.

Section 4: Maximal and minimal solutions.

In the two following sections one is interested in the case F(u)=1/u.

Section 5: Some comments on the existence of upper and lower solutions.
Conditions on the data L, 6,, g, insuring the existence of upper and lower solutions
which satisfy the hypotheses of the existence theorems for P(6,, L, g), are investigated.

Section 6: Periodic solutions for A@+1/6 =f. This section is an application of
the results of § 4.

2. Notations and basic lemmas. Cg (Q) is the vector space of C™ functions with
compact support in {). We use classical notation and results concerning Sobolev spaces.
Let =10, L[. For p=1, W™?(Q) denotes the Sobolev space of functions u € L?(Q)
such that the distributional derivatives d“u/dx* e L*(Q), 1=k =m.

If p=2, we write W™*(Q)=H"™ (). We recall that W§” (Q) = {u|u e W?(Q),
u(0)=u(L)=0} and by the Poincaré inequality |lulwsrw=ou'|"dx)"’? is an
equivalent norm to [[u|lw»q)on W§? (Q). Foroo>p =1 thespace W * 1/p+1/p' =
1, denotes the dual of W5 (Q).

Note that, since n = 1, we have by the Sobolev embedding theorem

(2.1) WP (Q)c C™ VYP(Q))  (with continuous embedding).

For any pair of functions u, v in L?(Q), such that u = v a.e. in ), we define the convex
set

[u, v]={z]z e L?(Q),u=z=v a.e.in Q}.

We now point out our definition of upper and lower solutions.
DEFINITION 2'1‘, A function we W"P(Q), p>1, is called a lower solution of
P(6o, L, g)if AweL?(Q), w+60>0 and if

Aw+F(w+6p)=g+F(6y) a.e.in(],
w(0)=0, w(L)=0.

2.2)

An upper solution is defined by reversing the above inequality signs. Observe
that this definition does not imply that w € C'(Q). Now we give some lemmas which
will be used in the next sections.

LEMMA 2.1,

() Let V=Wg"(Q), 1<p<c0 and let fe V'. Then there is a unique u. € V such
that A u. =f.

(ii) Iffurther,f e L°(Q), whereq Zp', thenu, € W>*(Q), Au, € L*(Q),Apu. € L* ().

Proof.

(i) This follows directly from [9, Thm 1.2, Chap. II].
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Indeed A., which maps V into V', is bounded. More precisely,
”Aev“V' = 8”1)”‘{,_1 +L1/p’,
(2.3) (A, 0)

->
lollv

A, is hemicontinuous, and since the application 4 :X - ¢|X [P 2X + X/(1+X*)"? is
strictly monotone on R, A, is strictly monotone.

(ii) Since A(ul)e L (Q) and A.u. € L(Q), we have h(u.)e W"(Q) and h(u’)e
C°(Q). Since h" exists, we write u. =h"'[h(u.)]. h~" is uniformly Lipschitzian on
any bounded set of R. Now using Stampacchia’s results [15], we get u: e wha(Q).
Therefore u, € W>9(Q) and so by (2.1) u. € C'(Q). Next, again from the results of
[15], it follows that u./(1+u??)"*e W™(Q). Thus Au,eL(Q) and A,u, =
A u.—Au. e LY(Q).

Remark 2.1 If fe L?(Q) and f=0, then A,u, =0 and Au, =0 a.e. in Q.

The two following remarks follow from Stampacchia’s results [15].

Remark 2.2. For a function ue W>(Q), q=1, Au=—u"/(1+ u'?)3"?,

Remark 2.3. If ue W"*(Q) and AueL?(Q), g =1, then u € W>*(Q).

Lemma 2.2 is a consequence of the weak maximum principle.

LEMMA 2.2, Let 1<p <00, Let u, ve W"P(Q) satisfy A.u, A.v € L” (),

Av—A.u=0 ae.in(,
v(0)=u(0), v(L)y=u(L).

Then v = u (we have the same result if A, is replaced by A).
Proof. Since v —ue W"(Q), (v—u) e W"P(Q) (cf. [15]) and
—d/dx(v—u) ifv—u<0

d _ .
a(v—u) —{0 fo—u=0 a.e.in ().

o iflofly >0,

(2.4)

Multiplying (2.4) by (v—u) € WP (Q), and integrating over £, we get
- L_ (h(v'(x) =A@’ (x))('(x) - u'(x)) dx 20,

where Q" ={x e Q/v(x)—u(x)<0}.

Hence, on ), u—v is constant (locally) and this constant is necessarily 0.

The following lemma will supply a priori bounds on the derivatives of the
approximate solutions. ,

LEMMA 2.3. Let 00>p>1, and let u, ve W¢?(Q) be such that AueL?(Q),
Au=0a.e. in Q (resp. A,u =0) and

(2.5) 0=u=v (resp.v=u=0).

Then |u'|Lo@) =|0'| e
Proof. Multiplication of (2.5) by A,u, integration by parts and the Holder
inequality yield

I |u'|” dx éI P 72u'y’ dx =|u'|riolv' |-
Q Q

Then, using the Young inequality, we get

-1

1
‘14'|pL"(m§;|v'|pL"<n)+p |u'[Ze -
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Lemma 2.3 follows. (This result remains valid for p = 0.)

For each function z € L?(Q) such that z+6,=a >0, let B,z be the solution
(existence and uniqueness are provided by Lemma 2.1) of the nonlinear boundary
value problem

(2.6) Ay, =g+F(0p)—F(z+6y) a.e.in(, y:(0)=y.(L)=0.

The mapping B, will be used to define the sequences converging to the minimal
and maximal solutions of P(6,, L, g).

LEMMA 2.4, Let z; be in L°(Q) and z; +69=a>0,i=1,2. If ;. =B.z, i=1, 2
and z1=z5 a.e. in ), then y;. = y,..

Proof. We have

Ayie —Acyze = —F(80+21)+F(60+z2), yie(0) =y (L)=0, i=1,2.
Since F is decreasing and z; = z,,
Acy1e —Aey2. =0, yie(0)=yi(L)=0, i=1,2.
Therefore by Lemma 2.2, y;. = y,..
3. Positive solutions by a Galerkin method. Consider the problem
(3.1) Au+F(u|+60)=g+F(6o),
(3.2) u(0)=u(L)=0.

Any positive solution of (3.1), (3.2) is solution of P(6y, L, g) and conversely. Let
ge L(Q), where ¢ >1. Let p=q' and 0> p > 1. We study problem (3.1), (3.2) as the
limit of the regularized problem P (6,, L, g)

(3.3) eApu, + Au, +F(lu.|+ 60) = g+ F(6y),
3.4) u.(0)=u.(L)=0.

Now, suppose that u, is a smooth solution of (3.3), (3.4), then u, is a solution of the
following variational problem.
Problem. Find u, € W (Q) such that
sJ' lullPulo’ dx +J L‘IE—,vz,l/zdx+J' F(|lu.|+ 60)v dx
o a(l+u; ")

_ J (g+F(8o))vdx Vve W (Q).
Q

Conversely, by a standard argument, a solution of this problem satisfies (3.3) in the
distribution sense in () and so is a weak solution.

In the sequel we shall solve P (6o, L, g) in its weak form.

THEOREM 3.1. Let g€ L(Q), where q>1, and g=0. Then P.(6o,L, g) has a
positive solution u, € W§* (Q)N W>(Q).

Proof. We use the Galerkin method. Let {w;}, a sequence of functions in WP (Q)
such that for each m, wy, w,, - + -, w,, are linearly independent, and the linear combina-
tions of the w; are dense in W¢” (Q).

Next we seek u,.,, such that

m
Uem = Z 'fimwi,
i=1

(3'5) (Aeuem’ W!)+ (F(‘usm‘ + 00)9 wi) = (g +F(00)’ wi)a 1 § i

IA
3
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The existence of u., follows from a fixed point theorem [9, Lemma 4.3 chap I)];
further, there is a constant C;, independent of m, such that for an “approximating
solution” u.,, there holds

G

(3.6) |u2m|u’m)§;1‘/?—’1-
It follows that the sequence u.,, is bounded in W§” (Q). Therefore, by (2.3)

(37) ||Asusm"W_1""(ﬂ)§ Cz.

By (3.6), (3.7) and by the compact embedding theorem of W'” () into L”(€}),
there exists a subsequence (still denoted u,,,) such that as m -» oo

(3.8) Uem = Ue  weakly in W§P (Q), strongly in LP(€)) and a.e. in Q,
(3.9 Alem > x weaklyin W7 (Q).

(Indeed, here, since n =1, (3.6) implies that u.,, is equicontinuous and there exists a
subsequence which converges uniformly to u..)

Passing to the limit m - 00 is now a standard matter. Let i be fixed and m >i.
Letting m - 00 in (3.5) and using (3.8), (3.9) and the Lebesgue dominated convergence
theorem we get

(x, wi) = (g +F(80)) — (F(|lu|+ 60), w;) Vi.

The finite linear combinations of the w; are dense in W§” () so that
(3.10) (x, v) = (g +F(80)) — (F(Juc| + 60), v) Vve W5”(Q).

It remains to show that x = A u.. This follows essentially from the monotonicity and
hemicontinuity of A, (cf. [9, chap. II]). Then by restriction of (3.10) to functions v
in €5 (Q), we find that

(3.11) A.u, =g+F(680)—F(u.|+ 6o)

in the distributional sense in Q. Since g € LY (Q) and F (ju.|+ 6o) € LY (Q), equality (3.11)
holds a.e. in Q. A.u. € L*(Q) and by our assumptions on g and F

(3.12) Au.z0 a.e.in(l.

Then Lemma 2.2 yields u, = 0.

Remark. We can give another proof of Theorem 3.1 by proving that u -
A.u+F(lu|+ 8,) is a pseudomonotone operator.

Now we study the behavior of u,, when £ - 0. The a priori estimates for P (6o, L, g)
do not allow the passage to the limit when £ » 0. Under stronger assumptions than
in Theorem 3.1, we establish the existence of a positive solution for P(6o, L, g).

THEOREM 3.2. Letge LY(Q), g>1, g =0. Suppose there exists v € Wy (Q), where
o>p>1andp=q', such that Av € L7 (Q) and

(3.13) Av=g+F(0y) a.e.in.

Then P(6,, L, g) has a positive solution ue Wy (Q).
Proof. 1t follows from Theorem 3.1 that P.(6,, L, g) has a positive solution u,
such that Au, € L/(Q), A,u.L(Q). By (3.12) and Remark 2.

(3.14) Au. =0 a.e.infd.
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By (3.11) and (3.14), we have
(3.15) Au. =g +F(00)—F(lu.|+ 60).
(3.13) and (3.15) yield

Av—Au, ZF(lu.|+60) =0.

Thus, by Lemma 2.2, v Z u,. On the other hand, since u. =0, A,u. € L*(Q) and
Apu. =0, we can apply Lemma 2.3 so that

(3.16) luelze) = v'|Le@).

It follows from (3.16) that the u, solution of P_(6y, L, g) is bounded uniformly
in W () and that |e(A,u., y)| is bounded by &|y'|reo)|v'|2Fq), Yy € W7 (Q).

There exists a subsequence (still denoted u.) such that u. converges to u weakly
in Wo* (Q), uniformly on (), and Au, converges weakly star to x in W1’°°(Q). Passing
to the limit in the variational formulation, as previously, we get

(Au, y)+F(ul+ 60, y)=(g+F(80),y) VyeWs"(Q);
ue WP (Q) and u=0. Then u is a solution of P(6o, L, g).

Remark. v being a particular upper solution of P(6o, L, g), we shall see that the
previous result is contained in Theorem 4.1.

So this method can appear to be less interesting than the following one in § 4.
However it applies, under slight modifications, to a fairly general problem involving
the Laplace equation. Thus, we get the following.

THEOREM 3.3. Let g € L*(Q)), g =0. Suppose there is v € Ho(Q) N H*(Q) such that
Av=g+1/6pa.e. in Q. Then the problem

1 1
u+ =g+—,
(u+00)(1+u12)1/2 g 00
has a positive solution u € H 2(Q).
We must use an additional a priori estimate on u~,, (obtained with a special basis
for the Galerkin method) and on u and the rest of the proof is similar to the given
one.

A

u(@=ul)=0

4. Maximal and minimal solutions. The construction of solutions by monotonicity
methods has been used by many authors, but for problems involving a second order
uniformly elliptic operator (cf. [1], [4], [5], [6], [13]). Further, here, under suitable
assumptions, we can also obtain properties of monotonicity for the derivatives of the
iterates, which provides upper bounds for them.

We first give an existence theorem for g positive or negative on ().

THEOREM 4.1. Suppose that

(i) geL(Q),g>1, g=0 (resp. g=0).

(ii) There exists an upper solution v (resp. a lower solution w) of P(6o, L, g) such
that v (resp. w) belongs to WP (Q), where p>landpz=q',and v=0 (w=0).

Then P(6o, L, g) has a minimal solution umin and a maximal solution umax which
belong to W§P(Q)NIO0, v] (resp. WoP(Q)N[w, 01). That is, if z is any solution of
P(6o, L, g) suchthat 0=z=v (W=2z=0) then Umin=2 = Umax-

Proof. We treat the case g=0. For g=0 the proof is identical with obvious
reversals of inequalities. Using the mapping B, defined by (2.6), we introduce the
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sequences u., and v,, by means of

Uen = Belten—1, where u.o=0,

Ven = BoUe,—1, wWhere v.o=0.

Let us show that u.1 = u.o and v.1 =v.0. We have
Avz=g+F(0o)—F(v+80¢)=A.v.1 a.e.in.

From hypotheses (i), (ii), we get A.v.1=0. This yields A,v.1=0, and therefore
A.v.1 = Av,;. Then by Lemma 2.2, it follows that v = v,; and since A u.1=0, u.1=0.

Now suppose v., =V.n,—1. Then by Lemma 2.4 v.,+1 = BV = BoVen—1 = Uen. SO
by induction the sequence v.,, £ being fixed, is monotone decreasing. Similarly u.,,
¢ being fixed, defines a monotone increasing sequence. Further, since u.o=v.o,
Uen = U, by the same arguments. Then

4.1) OSUANS SUn 1S Un =" SV S Vep1 =" =0.

Thus, by Lemma 2.3, the derivatives of the iterates verify here

4.2)  |uwn-alrr@=lumlerey= =il =0l = = okl
Hence,
(4.3) lenllwary = venllwira =|v'|Lr@).

Furthermore we have, for all n and for e Z» >0,
(4.4) Ven SUpns  Uen = U

In fact, v.o=uv,0. Suppose U.,—1=u,,-1, then A u.,—A,u,,=0. Since A, u., =0,
Apu.n =0. Therefore A u., = A, u.,. So (4.4) follows from Lemma 2.2.

Now, n being fixed, let £ »0. The sequence v,, is uniformly bounded and
equicontinuous because of (4.1), (4.3). Since it is monotone by (4.4), the full sequence
ven (not merely a subsequence) converges uniformly on () by the Ascoli-Arzela
theorem, and by (4.3) it converges weakly in WoP(Q). Let v, = lim, o Ven. Un € WP (Q)
and, by the same arguments as in § 3, v, satisfies

Av,=g+F(00)—F(v,—1+60) a.e.inQ,
Un (0) = Upn (L) =0.

From (4.1) we deduce that the sequence v, is still monotone. In the same way the
full sequence v, converges tO Umax, Where Umax€ WP (Q), and is a solution of
P(6,, L, g). (Similarly u, =1lim, o u., converges t0 Umin € WP (Q) and is a solution of
P(60, L, 8)).

Now, let z be a solution of P(6,, L, g) in W (Q) such that

uo=0=z=v=v,.

An induction yields u, =z =v,. Hence, Umin =2z = Umax. Observe that we cannot
establish z = v,, for all ¢ >0 and all n.

If we suppose only g € LY(Q)), where g > 1, an existence theorem can be proved
under appropriate conditions on the upper and lower solutions.
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THEOREM 4.2. Letge L*(QY), where q>1. Let v and w be upper and lower solutions
of P(6o, L, g) in W"P(Q), where ©>p>1andp=q', such that

(4.5) A, A,weL?(Q), Aw=0, Awp=0 ae.inQ.

4.6) max (”ﬂAw dx

R I Avdx)§k<1.
Q

Then P(6o, L, g) has a maximal solution and a minimal solution in W§> (Q)N
[w, v].

Proof. As in Theorem 4.1, we define two sequences u,, and v, by U, = Blten—1
and v., = B.U.n—1, Where u.o= w_and v.0=v. Using (4.5), we see that v and w are
upper and lower solutions in C'(Q) for P. (6o, L, g), for any & >0, and that w =0=uv.
Then by induction

A

4.7) WSEUAS SUp 1S Un =" SUen SVUep 1= S0, =0.

In this case the a priori bounds on the derivatives of the iterates do not result of
monotonicity properties for these last.

Since Uen = Bellon—-1, Uon € CH(Q) by Lemma 2.1. Then there exists A, € {) such
that u.,(A.,) =0. Integrating (2.6) over [x, A.,] (with u,, and u,, 1 replacing y. and
z) we get

Uen(x)
A+ul(x)*

By the hypotheses on F, (4.7) and Definition 2.1
Aw =g+F(60)—F(w+00)=g+F(080) = F (ten+1+ 60)
=g+F(60)—F(v+6p)=Av.
Then from (4.6), (4.8), (4.9), we finally get

(4.8)  euly(X)|utn(x)]P>+ j " (g + F(80) = F (ton_1+ 60)) dt.

(4.9)

k
4.10 ut, ()| =—5+5.
(4.10) e ()| = 72

Because of (4.10) u., and v,, are uniformly bounded in W§> (Q). Let € > 0. By
the classical method of the diagonal, we construct a sequence u,. From the sequence
u.1, we can extract a subsequence u.,; which converges uniformly to u;. From the
sequence u.,,, we extract a subsequence u.,, converging to u,. By repeating this

method, the sequence u.,, extracted from u. ,, converges uniformly to u,. u,€
W™ (Q) and verifies

Au, =g+F(80) —F(un—1+6o).

(Since A is strictly monotone, any converging subsequence extracted from u., ,
converges to the same function u,.) Similarly we construct a sequence v,. These two
sequences are still monotone. Letting n - 00, they converge uniformly to umi, and
Umax Which belong to W§™ (Q) and are solutions of P(6o, L, g). By Remark 2.3, this
yields tmin, Umax€ C' ().

As in Theorem 4.1, if z is a solution of P(8y, L, g) such that w =z =v, then
uminéz = Umax-.

Under somewhat restrictive assumptions we give a second method of monotone
sequences. In the present scheme our hypotheses are as follows

(4.11) geL*(Q), g=0(resp.g=0), gx)=g(L—x) ae.inQ.
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There is an upper solution v (a lower solution w) of P(6,, L, g)
(4.12) such that v e H*(Q), v =0 (resp. w=0) and v(x) = v(L — x)
(w(x)=w(L—x)).

For each function ze C'(Q)N[0,v] (C'()N[w,0]), define the image y of the
mapping T to be the solution of the Dirichlet problem

—y"'=(g+F(6))—F(z+60)(1+2z%** ae.inQ, yeH Q)NHQ).

We first establish

LEMMA 4.1. Suppose g L*(Q), g=0 and g(x)=g(L—x). Let z; be in C'(Q)N
[0,v], and let y;=Tz;, i =1, 2. If z:(x) = z2(x), |21 (x)|=|252(x)| and z;(x) = z:(L —x),
x €Q), then y1(x) = ya(x), [yt ()| =|ys (x)| and yi(x) = y(L —x) for x e Q). (For g =0 the
inequalities relative to the derivatives are reversed.)

Proof. Let ¢ =y, —y,. By our assumptions on g, y; and y;, i =1, 2. ¢ satisfies

(4.13) —¢"=0 a.e.in(}, $0)=0¢(L)=0.

Therefore, y; =y,. Since g(x)=g(L—x) and z;(x)=z;(L —x), it is easily seen that
yi(x)=y;(L—x) (which yields y;(x)=—yi(L—x)). Thus by integrating (4.13) over
[x, L/2] and since —y{ =0, we get |y} (x)| =|y>(x)|. Now we state the following result.

THEOREM 4.3. Let (4.11) and (4.12) be satisfied. Let u, and v, defined by
U, =Tu,—1, v, = Tv,_1 where ug=0 (resp. uo=w) and vo=v (resp. vo=0). Then the
sequences u, and v, converge uniformly and monotonically t0 Umin and Umax, Which
belong to H*(Q) N[0, v] (resp. H*(Q) N[w, 01) and are solutions of P(6,, L, g), giving

(4.14) USUIS  "SUS SUpin=Umax=""' "=V, = =01 =o.
Further,
(4.15) lolslutl=- - =lunl= - =|uminl Slumal = - =Slon|=- - - =vi] = vol.

(The inequalities of (4.15) are reversed for g =0.)

Proof. 1t is easily seen that the pair of functions v1, vo satisfies the hypotheses of
Lemma 4.1 (v, vo replacing z;, z,), as well as uo, u; and uo, vo. We have (4.14),
(4.15) by an induction argument using Lemma 4.1. Since the sequences u, and u,
are uniformly bounded, the sequence u, is equicontinuous and —u, =
(g +FO0o—F (tn_1+ 60))(1 +u'21)*>? is bounded in L*(Q2). Hence the sequence u, is
also equicontinuous. An application of the Ascoli-Arzela theorem shows that the full
sequence u, converges uniformly on Q) to umin and that the full sequence of the
derivatives converges uniformly on { to u /.

Next we examine the integral equation which is equivalent to u, = Tu, 1,

un(x) = L G(x, 1)(g +F(80) = F (un—1(t) + 60)) (1 + w21 (1)** dt,

where G is the Green’s function of the Laplace operator relative to the boundary
conditions u,(0)=u,(L)=0. Letting n > and applying the Lebesgue dominated
convergence theorem, we see that upm, = lim u, is solution of P(6o, L, g). As previously,
we prove by induction that u.y;, and um.x are minimal and maximal solutions of
P(eo, L, g) in [uo, Uo].
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This monotonicity method can be adapted to the Laplace equation. In the
definition of the mapping T, F(z + 6,) is obviously replaced by 1/(z + 6,)(1 + 22
and Lemma 4.1 remains valid for g=0 or g=-1/6,. We get

THEOREM 4.4. Let ge L*(Q) be such that g=0 (resp. g=—1/60) and g(x)=
g(L—x) a.e. in Q. Suppose there is v € H*(Q), v =0 (resp. v =0) such that

v+ L = +l (resp. inequality reversed)
(0 +8o)(1+v?) 2= 8T, P mequatiy reversed:

Then the problem

A

1 1
+ =g+—

Tty +u)? 8Ty
has a minimal solution and a maximal solution in H*(Q) N[0, v] (resp. H 2(Q) N v, 0)).

We conclude this section with a uniqueness result.

THEOREM 4.5. Let the hypotheses (4.5), (4.6) hold. Suppose that the derivative of
F exists and is bounded for u € [w, v]. Assume furthermore
(4.16) L=2/M)"*(1-k***, where M = sup |F'(t+8,).

WEt=v

Then there exists a unique solution of P(8,, L, g) in [w,v]NC Q).

Proof. Theorem 4.2 insures the existegce of at least a solution. Let u; and u, be
two solutions of P(6,, L, g) in [w, v]1N C' (). Thus,

(4.17) Aui—Au,+F(ui+600)—F(uy+ 60) =0.

A u(0)=u(L)=0

By similar arguments to those of Theorem 4.2, we see that

(4.18) luf(x)|= i=1,2.

k
We multiply (4.17) by z = u; — u,, and integrate over Q

ui u; ,
(419) J.n ((1+u;2 1/2“‘(1+uz2)1/2>2 dx =Iﬂ (F(u2+00)—F(u1+00))z dx.

We use the mean theorem and (4.18) to bound from below the left-hand side of
(4.19). Then, by the Poincaré inequality, we get

2

(1~k2)3/2I z’zdxéMI zzdxéML J' 2% dx.
Q Q Q

Hence, we conclude that under the condition (4.16), z=0 in Q.

S. Some comments on the existence of upper and lower solutions. The previous
results show the importance of finding upper and lower solutions for P(6o, L, g). The
purpose of this section is to show that, under conditions on the data L, 6,, g, there
exists such functions.

A first result is contained in

THEOREM 5.1. Suppose ge L(Q), q> 1, satisfies |g +F(0o)|L1y<1. Then there
exists an upper solution v =0, in W (Q), for P(6,L, g).

Proof. Let G =(g+F(6,))" and let v, € W5 (Q) N W>*(Q) be the solution of

eAv.+Av, =G ae.in(), v.(0)=0v.(L)=0

(where p=q' and ©>p>1). Since |G|.1q)<1, it follows that |v.| =)= C. Then
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there exists a subsequence, still denoted v., which converges to v € Wo™ (Q) such that
Av = G. Thus, it is easily seen that v is an upper solution for P(6,, L, g) and since
G=0,v=0by Lemma 2.2,

Now we study more precisely the case F(u) = 1/u and we suppose that g € L*(Q).
Let g and 6, be given, we can show that, provided L is sufficiently small, there exist
upper and lower solutions of P(6,, L, g) in a simple family naturally related to the
problem: the family of functions z associated to arcs of circle and verifying z(0) =
z(L)=0.

Let ¢ €[—7/2, w/2]. We note z4, the one of the above functions such that
z4(0)=1tg¢. Thus, Azy =2sinp/L, z4 € WP (Q), where p <2 if ¢ = Fm/2, otherwise
Z4 € COO(Q)

Suppose supq g > 0. By using Definition 2.1 and an upper bound of z,, we find
that z4, ¢ € ]0, 7r/2] is an upper solution if L satisfies

1- 1
(5.1) 1zcosé (sup g +-—>L2+2(00 supg—1+cos@d)L—46,sin p =0.
in ¢ Q 6o Q
Suppose infg g <0. In the same way, z4, ¢ €[—7/2, O[ verifies (2.2) if L satisfies
1 —_
(5.2) ,°—°S¢(inf g+l)L2+2(eo inf g —1+cos ¢)L — 46, sin ¢ = 0.
in ¢ Q 6o Q

For z4, ¢ €[—m/2, 0[, to be a lower solution we add the condition
(5.3) ngn Z¢>"'00.

Relations (5.1), (5.2), (5.3) yield the following results z4; ¢ € ]0, /2] is an upper
solution of P(6,, L, g) if
(504) Léhl(GOa ¢9 Sgp g)a

where

4a sin ¢
ap +cos ¢ —1+((apu +1—cos ¢)>+4(1—cos ¢))

hl(ay ¢’ /-") =

1/2

z4, @ €[—m/2,0[ is a lower solution of P(6o, L, g) if
(5.5) L= h2(009 ¢3 igf g))

where

4asin ¢
ap+cos d—1—((au +1—cos ©)*+4(1—cos ¢))

hZ(aa ¢9 /-") = 1/2¢

Under the condition (5.4) or (5.5), Theorem 4.1 applies. When g has not a
constant sign, we have the following analogous result.

THEOREM 5.2. Let ge L™(Q). Then there exists a mapping k :R* XR">R" such
that, for L <k (8o, |g|=~«), the hypotheses of Theorem 4.2 are satisfied.

Proof. Consider in the family z4, ¢ €[0, /2] an upper solution z, and in the
family z4, ¢ €[—7/2,0] a lower solution zz of P(6o, L, g) which verify (4.6). This
yields the condition

24(0) za(L)
(1+250%7 (1+zL(L))"*

=2sina <1.
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Then a < /6 and similarly we find 8 > —/6.
Now by (5.4) and (5.5), we conclude that the condition

5.6 L< i
(5.6) max [¢ max h1(6o, ¢, sup g), Jmax h2(6o, ¢, inf g)]

insures the existence of upper and lower solutions of P(6,, L, g) which satisfy the
hypotheses of Theorem 4.2, and thus the existence of a solution. Since 4, is a decreasing
function of supg g (for ¢ =0) and h; an increasing function of infg g (for ¢ =0), we
can replace (5.6) by the sufficient condition

< 0, —_— o
L maX[(bg}g/ & (60, &, lglrew)s pomax  ha(6o, ¢, |g|r=@)]

Theorem 5.2 follows and we note that k is a decreasing function of |g| =)

6. Periodic solutions for Au+1/u =f. In this section we study the existence of
periodic solutions for

1
6.1) Au +;=f,

i.e., solutions which satisfy the periodic boundary conditions
(6.2) u(0)=u(L), u'(0)=u'(L).

We first give a nonexistence result.

THEOREM 6.1. Let fe L'(Q) satisfy |flLiy=1 and |, f(x) dx =0. Then the prob-
lem (6.1), (6.2) has no solution in w2lQ).

Proof. Let us assume the existence of such a solution for problem (6.1), (6.2);
then Aue L'(Q) and 1/u e L'(Q).

We multiply (6.1) by u and integrate by parts over () to find

2 x
6.3) L T+ L= L fudx = L £(x) L W/(6) dt dx.

It follows easily from (6.3) that
|| <|flerlu'lLr @

But this contradicts our assumption and Theorem 6.1 is therefore established.
We now give conditions under which the unique solvability of problems P (6o, L, g)
implies the existence of a periodic solution for (6.1). Our assumptions are as follows.

({) feL™(Q), f>0a.e. in Q. We set
_ 1

" supa f’ M_infﬂf'

(ii) There exists an upper solution v of P(u, L, f —1/u) satistying (4.5).

(iii) There exists a lower solution w of P(A, L, f—1/A) satisfying (4.5).

(iv) v and w verify the hypotheses (4.6) and (4.16) (with A replacing 6o).

Remark. If problem (6.1), (6.2) associated to f has a solution u, then problem
(6.1), (6.2) associated to —f admits —u as solution.

THEOREM 6.2. Under the assumptions (i)-(iv) stated above, problem (6.1), (6.2)
has a solution y € CY(Q) such that A =y (0)= pu.

Proof. For all 6pe[A, u], we observe that v and w are respectively upper and .
lower solutions for P(8, L, f—1/6,), and it follows from the § 4 that P(6,, L, f—1/60)
has a unique solution ug, in C'({) N[w, v] such that |ub, (x)|=k/(1—k>)'>.
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Therefore, ug, is uniformly bounded. Then, by an application of the Ascoli-Arzela
theorem, uy,(x) is a continuous function in 6o, on [A, u], for all x € [0, L].

Thus, the function U defined on [A, w] by U (6o) = up,(0) —ugs, (L) is a continuous
function on [A, x].

On the other hand, P(u, L, f—1/u) has a unique solution in [w, v]. It follows
from Theorem 4.1 and (i) that this solution u, is in fact in [0, v]. We also have u;, =0
a.e. in Q, which implies that U(w)=0. Similarly, the solution u, of P(A,L,f—1/A)
is in [w, 0]. Since uy =0 a.e. in Q, we have U(A)=0.

The intermediate value theorem for continuous functions now implies that there
exists a, A = a = u, such that U(a)=0.

Let u, be the solution of P(a, L, f—1/a) in [w,v] and let y =u, +a, then y is a
solution of (6.1), (6.2).

Remark. Using § 5 and making some computations, we find that for L =0.74,
the hypotheses of Theorem 6.2 are satisfied.
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DIFFERENTIAL INEQUALITIES OF HIGHER ORDER AND THE
ASYMPTOTIC SOLUTION OF NONLINEAR BOUNDARY
VALUE PROBLEMS*

F. A. HOWESY

Abstract. Two differential inequality results of Nagumo on initial and boundary value problems for systems
[Proc. Phys. Math. Soc. Japan, 19 (1937), pp. 861-866; 21 (1939), pp. 529-534] are combined to yield
existence and comparison results on certain boundary value problems for nth order scalar nonlinear
differential equations and their system analogues. This theory is then applied to several classes of singularly
perturbed boundary value problems of higher order. Many examples are discussed in order to motivate the
theory and indicate avenues of further study.

1. Introduction. We consider here some differential inequality theorems for
boundary value problems involving systems which, in particular, simplify considerably
several recent results for scalar boundary value problems of higher order. At the same
time, we use these results to extend the theory of certain singularly perturbed nonlinear
second-order boundary value problems to higher-order differential equations. Our
treatment of such phenomena is motivated, on the one hand, by the simplicity and
directness of our approach. On the other hand, there does not appear to be any general
theory whatsoever for higher-order perturbed nonlinear boundary value problems.
This paper constitutes, then, a first attempt to develop such a theory along the lines of
the author’s previous work [11], [15].

Before discussing the most general results, we study a third-order problem in order
to illustrate our ideas in the simplest setting.

2. The scalar problem. The third-order scalar boundary value problem

y'=fty,y,y"),  a<t<b,

(2.1)
y(@)=A,, y'(a)=A: y'(b)=B;

and various generalizations have been studied by several authors using the method of
comparison functions (cf., for example, [23], [21], [19] and the references contained
therein). The basic idea is to employ the solutions of certain differential inequalities, in
conjunction with a growth estimate on f as a function of y”, to obtain a priori bounds on
solutions of (2.1), and to then apply a fixed point or continuation argument. An
important consequence of this approach is that in the course of proving the existence of
a solution of the boundary value problem, one obtains simultaneously an estimate of
this solution in terms of the solutions of the differential inequalities.

Suppose now that we rewrite the boundary value problem (2.1) as a system
consisting of a first-order initial value problem and a second-order boundary value
problem, namely

yl=z’ Y(a)=A0a
2"=f(ty,22), z(a)=A,, z(b)=B.

(2.2)
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This suggests that it might be profitable to examine existence and comparison results for
the more general system on (a, b)

y,=g(f,)’,2), Y(a)=A09

2"=f(ty,2,2), z(a)=Ai: z(b)=B.
Indeed, earlier results of Nagumo [26], [27] imply that if there exist two pairs of
comparison functions (u, v) and (a, B) satisfying the appropriate inequalities, then the
boundary value problem (2.3) has a solution (y, z) = (y(¢), z(¢)) with u(t) = y(t) = v(¢t)
and a(t) = z(¢t) = B(t) on [a, b] provided that f(z, y, z, w) = O(lw|*) as |w| > o0 uniformly
for y in [u, v] (={x: u(¢t) = x =v(¢)}). The functions u and v are required to satisfy the
inequalities

2.4) u=vo, u(@)=Ao=v(a),

(2.3)

and for ¢ in (a, b]
(2.5) u'(t)y=g(t, u(), z), v'()zgtv(t), z)

for any z in [a, B]. Similarly, the functions o and B8 are required to satisfy the
corresponding second-order inequalities

(2.6) a=B, a(@a)=A =8(a), a(b)=B,=8(0b),
and for ¢ in (a, b)
(2.7) a"(Ozf(ty, a@),a'(t), B"(O=fy,B1),B 1)

for any y in [u, v]. The precise result is contained in the following theorem.

THEOREM 2.1. Suppose that

(1) the function g = g(t, y, z) is continuous in the domain D =[a, b]1x [u, v]X[a, 8]
and the function f = f(t, y, z, w) is continuous in the domain @ x R';

(2) the comparison functions u, v(a, B) are of class CV[a, bJ(CP[a, b]) and satisfy
the inequalities (2.4), (2.5) ((2.6), (2.7));

(3) (Nagumo condition ) for (t,y, z) in 9,

f(ta y, 2, W)=O(|Wl2) as|w|—->oo,

Then the boundary value problem (2.3) has a solution (y, z) = (y(t), z(t)) of class
C"Va, b]x C?[a, b] such that

u®)=y)=v@) and a(t)=z(t)=B()

fora=t=b.

Proof. The existence of the functions (u, v) and («, B) together with the assump-
tion of the Nagumo condition allow us to find bounds for y,z and z' and apply
Schauder’s fixed point theorem as in [9, Chap. 12, Pt. 2], [7] and [22]. The details are
straightforward and are omitted. O

Before turning to the general nth order scalar problem, we make two remarks.

First of all, the differentiability assumptions on the functions (u, v) and («, 8) can
be weakened in the following sense (cf. [3]and [20]). The functions u and v need only be
piecewise continuously differentiable on (a, b] provided that u'(v') is replaced by
u'(v)) at a point of nondifferentiability. (Here w’ (w’) denotes the right-hand
(left-hand) derivative.) Similarly, the functions a« and 8 need only be piecewise twice
continuously differentiable provided that o’ =a! and BL =B. at a point of
nondifferentiability, and that «"(B") is replaced by a”(8%) at such a point.
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Secondly, we note that Theorem 2.1 applies to the special case (2.1) if we assume,
in addition to the Nagumo condition, the existence of functions u# and v of class
C®[a, b] such that

u=so, u'=v, u@=Ao=v(a),
u'la)=A1=v'(a), u'(by=B1=v'(b),
and for ¢ in (a, b)
u"(zf@y, u'(0,u"), v"O=f(y, v'@),v"(Q?)

for any y in [u, v]. Indeed, we can apply this theorem to the system (2.2) (with
a =u', B =v') and deduce the existence of a solution (y(¢), y'(¢)) of (2.2) which satisfies
u)sy@)sv@)and u'()=y'(t)s0v'(t) fora=t=b.

Consider now the general nth order scalar boundary value problem

y(n)=f(t,))9y,,'”’y(n_l))’ a<t<b’
y(i)(a) =A, 0=j=n-2, y("—z)(b) =B, _».

One advantage of our approach is that it is just as easy to treat (2.8) as it was to treat
(2.1) since Nagumo’s lemma [27] applies equally well to systems.

We begin by rewriting (2.8) as an (n —2)nd-order initial value problem together
with a second-order boundary value problem, namely

(2.8)

Y§=Yi+1, yi(a)=Ai—l, i=19'.',n_33
(2.9) Yn2=2,  ya-20a)=An-s,
Z"=f(t, Yi, " " Yn-2, 2, Z’)) Z(a)zAn—Za Z(b)an—Q*

This leads us to consider an existence and comparison result for the more general
system on (a, b)

y=gty z), ya)=A,
2"=f(ty,z,2"), z(a)=¢ z(b)=n,

where y, g, A are in R™. The same two results of Nagumo [26], [27] suggest that if there
exist functionsu =u(¢), v=v(¢) in R™ and scalar functions «, 8 which satisfy inequalities
analogous to (2.4), (2.5) and (2.6), (2.7), respectively, then the problem (2.10) has a
solution (y, z) = (y(¢), z(¢t)) with u(?)=y(f)=v(¢) and a(t)=z(t)=B(t) for a=t=b
provided that f satisfies a Nagumo condition uniformly in y in [u, v]. (Here the
inequality = for vectors is to be interpreted as stating that the corresponding scalar
inequality holds for respective components of the vectors and [u,v]=
{win R™: u(¢t) =w=v(¢)}.) Indeed, as regards u and v we need only require that

(2.10)

2.4) u=syv, u(a)=A=v(a),
and for tin(a,b]andi=1,:- -, m
(2.5") ui()=gi(t,4:(1),z),  vi(t)zg(t, V1), z)

for any z in {a@, B8], where
l‘ii=(y19 ttt, yi——19 U; yi+1, Tty )’m)
and

A
Vi=()’1, s Yi—1, Ui Uigty, t 0 Ym)
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for y; in [u;, v;](j #i); cf. [27]. Then we have the following result for (2.10) which is
proved by mimicking arguments in [7], [22] and [9, Chap. 12, Pt. 2].

THEOREM 2.2 Suppose that

(1) the function g=g(t,y, z) is continuous in the domain @, =[a, b]1x[u, v]X[a, B8]
and the function f = f(t,y, z, w) is continuous in the domain &, X R";

(2) the comparison functions (u, v)((a, B)) are of class C"a, bJ(CP[a, b)) and
satisfy the inequalities (2.4"), (2.5') ((2.6), (2.7) with y replaced by y and [u, v] replaced by
[u, v]);

(3) (Nagumo condition) for (t,y, z) in D1,

ft,y, z, w)=0(wl*) as|w|>c0.

Then the boundary value problem (2.10) has a solution (y, z) = (y(t), z(t)) of class
C%0a, b1x C?[a, b] such that

u)=sy(@t)=sv(t) and a(t)=z(t)=B(1)

foras=t=b.

We note that less differentiability can be required of the comparison functions
u,v,a and B (cf. our earlier remark). Also, if the function g is quasi-monotone
nondecreasing with respect to y for each fixed ¢ in [a, b] and each fixed z in [a, 8], then
the differential inequalities in (2.5") can be replaced by the simpler ones

w()=gtu(),z), Vv()zglv@),z2);

cf. for example [3, Chap. 1]. As aresult of this observation, we can apply Theorem 2.2 to
study the scalar problem (2.8) since in the equivalent system (2.9) the corresponding
function g is simply (y», y3, * * *, z) which is certainly quasi-monotone nondecreasing
for each fixed z. In fact, we need only assume that the function f = f(t, y, z, z') satisfies a
Nagumo condition and that there exist functions u and v of class C™[a, 5] such that

u® =", u®@)=A,=0v%) k=0,--+-,n-2,
u"P(b)=B,2=0""2(b),
and for ¢ in (a, b)
u(OZf(ty, u""2(0), u" V),

o) =ft,y, v 20, 0" V(1)),

for any y=(y1,***, yn—2) With y; in "™ v P1=1=n-2). Then we can apply
Theorem 2.2 to the problem (2.9) (with u= (u, u',- -+, u""™), v=(0, 0", -+, "),
a=u""?and B =" ) and deduce the existence of a solution y = y(¢) of (2.8) which
is of class C™[a, b] and which satisfies for k =0, - -, n —2,

u®=y®)=0"*@¢) onla, bl

Before discussing a more general problem in the next section we remark that this
result for (2.8) is due to Kelley [21] who gave a rather complicated proof. In addition,
we note that it is sometimes necessary to weaken the restriction imposed by the Nagumo
condition (cf. Theorem 4.1 below). This condition assures us that a bound on z' implies
a bound on z", and so Theorem 2.2 (and Theorem 2.1 as well) are valid if we simply
make this assumption which is called a generalized Nagumo condition (cf. [10]or [21]).
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3. The general problem. We consider now the following boundary value problem
on (a, b):

y=gty 2z, ya=A,
z’=h(ty, z2,7), 2a)=§ zb)=n,

where y, g, A belong to R™ and z, h, &, hto R". The results of § 2 suggest that in order to
study this problem we can simply combine earlier theory on the properties of invariant
regions for initial value problems and boundary value problems for systems of differen-
tial equations.

Let us consider first the initial value problem in R™ fora <t=b

(3.2) y=G(y), ya)=A

Suppose that there exist M real-valued functions r; = r;(t, y) of class C"([a, b]x R™)
such that fori=1,:---, M

(3.1)

(3.3) ’o= Z—;i-i-[grady r]- G(t,y)=0

when r; = 0. (Here grad,, denotes the gradient taken with respect to the components of
w, while - denotes the usual Euclidean inner product.) Then it is known (cf. [1] or [8])
that if the function G is continuous in the region

Q={(y)inla, b]XR™: ri(t,y)=0,i=1,- -+, M}
and if the initial pair (a, A) belongs to (), the problem (3.2) has a solution y = y(¢) of class
C"[a, b] such that
r(ty(t)=0 onl[a,b] fori=1,---,M.

In other words, () is an invariant region for (3.2) since trajectories which originate there
remain there on [a, b].
Consider next the boundary value problem in R" for a <t <b:

(3.4) 2 =H(12,7), z2a)=§& z(b)=mn.

It turns out that the existence of functions similar to the r; also allows us to deduce an
existence and estimation result for solutions of (3.4) provided the right-hand side
satisfies a growth condition with respect to z'. In this vector case we say that H=
(Hi, -+, H,) satisfies a Nagumo condition if one of the following two situations obtains
(cf. [22)):

(1) forj=1,- -, n there exist positive, nondecreasing continuous functions ¢; on
(0, 00) such that

Jm s/ ¢;i(s) ds =0

and
|I{i(t9 z, W)l = (Pl(lw]l)

for (¢, z) in compact subsets of [a, b]XR" and all w in R";
(2) there exists a positive, nondecreasing continuous function ¢ on (0, 00) such that

s?/@(s) >
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and

M z, W)l = e (Iwl)

for (¢, z) in compact subsets of [a, b] X R" and all win R". (Here || || is the usual Euclidean
norm.)

Suppose now that there exist N real-valued functions p; = p;(t, z) of class C*®
([a, b1 xR") such thatfor I=1,--+, N

9 3

3.5) pl= F‘;I*— [2 grad, ﬁ] -2/ +[%#7]) -2 +[grad, p;] - H(t,2,2') =0
when p; =0 and p; =0. (Here % is the Hessian of p; with respect to z and p; = dp,/9t +
[grad, p/] - Z'.) And let us define the region

€={(tz)in[a, b]XR": pi(t,z)=0,l=1,--- N}

Then it is known (cf. [22]) that if the function H= H(¢, z, w) is continuous and satisfies a
Nagumo condition in the domain €X®R", and if the initial and terminal pairs
(a, &), (b, m) belong to & and can be joined by a smooth pathin &, the problem (3.4) has a
solution z = z(¢) of class C?[a, b] such that

pi(t,z(1))=0 on[a,b] forl=1,---,N.

Put succinctly, & is an invariant region for this boundary value problem.

We are now ready to study the problem (3.1). As a preliminary, we say that
condition (3.3') holds if there exist M functions r; = r;(¢, y) of class C(€2) which satisfy
condition (3.3), with G(¢, y) replaced by g(t, y, z), for all (¢, z) in &; while we say that
condition (3.5') holds if there exist N functions p; = p; (¢, z) of class C®(&) which satisfy
condition (3.5), with H(z, z, z') replaced by h(¢, y, z, '), for all (¢, y) in Q. In other words,
we require (3.3) to hold uniformly with respect toz in & and (3.5) to hold uniformly with
respect to y in (). This uniformity allows us to prove the following result by arguing as in
[7]. For ease of exposition, we define the domain

F={(ty,z)in[a, bIxR"": ri(t,y)=0,i=1, - ,M; p(t,2)=0,[=1,--- ,N}.

THEOREM 3.1. Suppose that

(1) the function g=g(t,y, z) is continuous in ¥ and the function h=h(t,y, z, w) is
continuous in F xXR";

(2) conditions (3.3') and (3.5') hold;

(3) the function h satisfies a Nagumo condition uniformly with respect to y in Q).

Then the boundary value problem (3.1) has a solution (y, z) = (y(t), z(t)) of class
C%la, b]1x C?[a, b] such that on [a, b]

ri(tyt)=0 fori=1,---,M
and
pi(t,2(t)=0 forl=1,---,N.

We note that the comparison functions r; and p; afford a variety of ways of
describing solutions of (3.1). For example, if M =N =1 and if (¢, y) =yl — y.(¢) and
p(t, z) =|jzl| — y2(¢) satisfy the appropriate inequalities, then we obtain bounds on the
norm of the solution of the form |ly(¢)|| = y1(¢) and ||z(¢)|| = y.(¢). On the other hand, for
M =2m and N =2n, let us define

ri(tay)=yi_vi(t)’ ri+m(t’y)=_Yi+ui(t)a
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fori=1,----,m,and
pt,2)=zi—Bi(t),  prea(t,z)=—zi+ai(2),
for [=1,- - -, n. If these functions satisfy the proper inequalities, then we obtain the

two-sided bounds (cf. § 2)
u(t)=y(t)=v:(t) and o (t)=z,(t)=Bi(t)

on the solution (y, z).

Some applications of the theory of this section and the previous one to singular
perturbation problems are given in the next section. We close with several remarks.

Remark 3.1. An existence result for the problem (3.1) was proved by Hartman
[7]; however, he did not give estimates for the solution of the generality afforded by our
bounding functions r; and p,.

Remark 3.2. Under certain assumptions a result similar to Theorem 3.1 holds if
the Dirichlet boundary conditions for z are replaced by Robin boundary conditions of
the form

Piz(a)— Q172 (a), P,z(b) + Q,2'(b)

prescribed (cf. [10], [21] and [24]). Here P, Q;(i=1,2) are nonnegative definite
(n X n)-matrices.

Remark 3.3. The arbitrariness of the dimensions m and » in the formulation of the
problem (3.1) allows us, in particular, to treat a number of boundary value problems for
scalar differential equations. As an illustration, consider the fifth-order equation
yO=ft,y, 9, ,y*) on (ab). If the boundary conditions are that
y(a), y'(a), y"(a), y"(a), y"(b) are prescribed, then we would set z =y" and apply
Theorem 3.1 with m =3 and n = 1. On the other hand, if the boundary conditions are
that y(a), y'(a), y'(b), y"(a), y"(b) are prescribed, then we would set z;=y', z, = y"
and apply Theorem 3.1 with m =1 and n =2.

4. Singular perturbation problems of higher order. We consider now some appli-
cations of the above theory to several classes of singularly perturbed boundary value
problems of order three and higher. The general plan calls for us to first regard the given
problem as the combination of a singularly perturbed second-order problem and an
unperturbed initial value problem. Then we apply previous theory (cf., for example, [4],
[11], [15], [28], [31)) to the perturbed part and evaluate the contribution of the
unperturbed variables with the aid of our differential inequality results.

To fix these ideas, let us consider first a result for an nth-order scalar equation
which is related to an earlier theorem of Levinson [25] for a third-order equation. The
problem is

Sy(n)=f(t, Y, y". . -’y(n_l))’ a<t<b, n§3,

(4.1) ;
vy @, e)=A, 0=j=n-2, y"2(be)=B, .,

where ¢ is a small positive parameter. Following [25] (cf. also [6], [14]), let us assume
that the corresponding reduced (¢ = 0) equation

(4.2) 0=ftY,Y, -, Y" ™),  a<t<b,
has a solution Y = Y.(¢) of class C"[a, #] such that

Y (a)=A; forj=0,-+-,n-2,
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and a solution Y = Yx(¢) of class C"[tg, b] such that
Yg—z) (b) =B,
with a =tg <t = b. In addition, let us assume that at a point ¢, in (¢, #r.)
Y (to)= Y% (t)(=0;) forj=0,---,n-2,
and that
YTV (to)# YRV (t) = ur
Then, if the functions Yz, Yz are stable in the sense that
fye-o[Yo(£)]Zk>0 on[a, to]

and

fyo-o[Yr(#)]=—k <0 on [t b]

for [X(0)]=(t, X(1), X'(t), - - -, X" P(¢)) and some positive constant k, and if the
crossing condition
4.3) (ur —pr)f(to, 00, 1, "+ * , 02, A) >0

holds for all A strictly between u; and wg, we anticipate that the full problem (4.1) has a
solution y = y(¢, €) of class C(")[a, b] for each £ >0 sufficiently small. Moreover, this
solution should satisfy

lim y?@, e)=Y"(t) on[a,b]

e->0"
forj=0,:--,n—2,and
YEU@U), ast<t,
YE V@), te<t=b,

where Y (¢)=Y.(¢t) on [a, ty] and Y (¢t) = Yr(¢) on [¢, b].
In order to verify this we rewrite (4.1) as the system

tim v ¢)={

yi=Yirt, yila,e)=Ai, i=1--+,n-3,
(4'4) y:l—Z =2, yn—z(a, 8) = An—3’
52"=f(t, Y1, "5 Yn-2, 2, Z,)y z(a, 5)=An—2’ Z(by E)=Bn—2,

and apply; Theorem 2.2 (with assumption (3) replaced by the generalized Nagumo
condition) in conjunction with our previous scalar theory [14]. The idea is that the
asymptotic behavior of the solution of (4.1) as ¢ >0" is really determined by the
behavior of the solution of the last problemin (4.4) withy; = Y;(¢)forj=1, -+, n—2,if
the components y; = y;(t, €)(1=j=n —2) of the solution (y, z) of (4.4) dlﬁer from the
components Y;(¢) of the solution

YL (1), ast=t,,
Y@= { YZ((t)), to=t élf,
of the reduced problem
Y: =Y, Yi(a)=A;-, i=1,---,n-3,
(4.5) n2 =2, Y.2(a)=A,-3,

0=f(t, Yla U, Yn——2’ Z, Z,), Z(a)::An—Z, Z(b)=Bn—2,
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on [a, b] by terms of order ¢. In other words, to terms of order &, we can analyze the
solution of (4.4) by analyzing the solution of the scalar problem

ez"=F(t,z 2", a<t<b,
z(a,e)=An-2, z(b,e)=B,-2,

where F(t, z, 2') = f(t, Yi(t), - -+, Yau-2(2), 2, 2'). When viewed in this light, the stability
conditions on Y., Yg, as well as the crossing condition, are nothing more than the
classical assumptions on the problem (4.6) (cf. [6], [14]), that is,

Fz'[YL(t)]-.Z_k>O on [a, to], Fz'[YR(t)]g_k <0 on [[0, b],

and for all A strictly between ur and ur

(4.6)

(IJ/L_IJ/R)F(tO’ Opn—-2, A)>O'

The precise statement is the following result. For ease of exposition, let us set
R =[a, b]xTx{w: |w=Y" P)=d ()},

where T'={(y1," " -, yn_1): |y; — YY" 2(#)| =6, 1 =j = n — 1} for a small positive constant
8, and d is a smooth positive function such that |up—ur|=d(t) =|uLr—ur|+8 on
[to—6/2,to+8/2]and d(t)=6 on [a, to— 81Ut + 6, b].

THEOREM 4.1. Suppose that the reduced equation (4.2) has smooth, stable solutions
Y = Y.(t) and Y = Yr(t) with the above properties. Suppose also that the function f is
continuous with respect to (t,y1,***, Yn—2, 2, W) and continuously differentiable with
respect to (y1,***, Yn—1, W) in the region R and that the crossing condition (4.3) holds.

Then there exists an 0> 0 such that the problem (4.1) has a solution y =y(t, €)
whenever 0< e = g9. Moreover, for a =t = b we have that

YO e)=Y+0(), i=0,---,n-3,
and
Y2t £)= Y P(0) + wi(t, €) + O(e),

where wi(t, €)= ek |ur — ur| exp [—ki|t —tole '), 0< k1 <k, is the interior layer cor-
rector at t.

Proof. For simplicity let us consider just the case n = 3. Then in order to show the
existence of a solution of (4.1) with the stated properties we must construct smooth
functions u, v, a, B on [a, b]X[0, £¢] such that u=v, a =B, u(a,e)=Ao=v(a, ),
a(a,e)=A1=B(a,¢e), a(b,e)=B;=B(b, ¢), and for ¢t in (a, b]

4.7) u'=z=v' forallzin[e, B],
while for ¢ in (a, b)
(4.8) ea"zf(t,y,a,a') and eB"=f(t,y,B,B")

for all y in [u, v]. To this end, we define for £ > 0 the functions @ and 8 by

Yo () —wite)—eyl (e* "V =1), ast=t,
Yr()—wi(t, e)—eyal (e**7-1), ty=t=b,

alt, s)={

and

B(t, S):’{Y’L (t)+ WI(t, 8)+871l_1(e”t—a)— 1)’ a §t§t0,

Yr(O+wi(t, e)+eyal (e "=1), ty=t=b,
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for appropriate positive constants vyi, y, and I, where |f,|=! in R, and for A =
—Ik7' +O(e)<0aroot of eA>+ kA +1. Having defined « and 3, we choose u and v as
appropriate solutions of the initial value problems

u'=alte), u(a, e)==Ao,

v'=B(te), via,e)=A,
and thereby satisfy the inequalities in (4.7). It is now a straightforward exercise to verify
that o and g satisfy the required algebraic inequalities and the differential inequalities
in (4.8) for ¢ sufficiently small, say 0 <& = ¢ (cf. the argument in [14]). Thus, by virtue
of Theorem 2.1, we conclude that the problem (4.1) (with n=23) has a solution
y =y(t, £) for 0<e =g satisfying on [a, b]

u(t,e)sy(t,e)=v(t, e)
and
a(t,e)=y'(te)=p(t €);

that is, the conclusion of Theorem 4.1 obtains. 0O
A similar argument establishes this result for general n = 3.
In the same vein, we can extend the interior crossing results of [13] to the problem

(4.1) with f independent of y* ", namely the problem
“9) ey =h(ty,y, -, y"?),  a<t<b, nz3,
' yPa,e)=A;, 0sj=n-2, y"2b,e)=B.a.

To this end, suppose that the corresponding reduced equation
(4.10) 0=h(t,Y,Y', -, Y"™), a<t<b,

has solutions Y = Y, (f) and Y = Yg(¢) with the same properties as the solutions of
(4.2), and that the smooth function # satisfies, for example,

hyo-a[Y()]Zm=>0 onla,b]
for

YL(t), a=t=t,

Y(t)z{YR(t), th=t=b,

and a positive constant m (cf. [13]). Then we can use Theorem 2.2 to show that the
problem (4.9) has a smooth solution y = y (¢, €) for each £ >0 sufficiently small which
satisfies on [a, b]

y(l')(t’ 8)= Y(i)(t)+0(€), O=si=n-3,
and
Y2 e)= Y20+ vr(1, ) + O ().

1/2|t—t0|], 0<m,<m, is the interior

Here v;(t, €)= (em1")"?|lur — ur| exp [~(mie ™)
layer corrector at ¢ = t,.

Up to now we have considered interior layer phenomena for the problem (4.1);
however, we can treat boundary layer phenomena just as easily.

For example, let us assume that the solution Y = Y;(¢) of the reduced equation

(4.2) exists on all of [a, b] (and, of course, satisfies Y’ (a) =A;forj=0,---,n-2).
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Consideration of linear problems of this form (cf. [28] or [31]) suggests that if there
exists a positive constant k such that
fy("_l)[YL(t)]ék >0 on [ay b]a

and if f is further restricted, then the problem (4.1) has a solution y = y(t, £) for each
sufficiently small £ > 0 such that

lim, v e)=YP(t), 0=i=n-3, fora=t=b,

while

lim, y“ (1, )= YL (1) fora=t<b,

if Yi"® (b)# B,_>. In other words, the (n —2)nd derivative of the solution exhibits
boundary layer behavior at t = b due to the lower order of the reduced equation.
To make these ideas precise, let us first define the regions 2 and 2., by

D=[a, b]xQAx{z: |z= YT 2@ =di()}x{w: |w=YE V)| =da(1)},
@+:{(t, Y, 'ty Yn-2, 2, W) in@:w- Y(Itl_l)(t)go on [b—-a’ b]}’

and

D_={t,y1," " »Yn-22,W)IND: w— Y& P ()=0o0n[b-8, b}
Here Q={(y1, ", yn2):lyi= Y P@®)|=8,i=1,---,n—2} for a small positive
constant 8, d; is a smooth positive function such that (o =)|B,_,— Y 2 (b)|=d (1) =

o+8on[b—86/2,b]landd,(t)=8onfa, b—56],and d,isasmooth posmve function such
that ¢ ‘o exp[~k(b—t)e 1=do(t)=e ‘o exp[—k(b—1t)e ']+6 on [b—5/2,b] and
d>(t)=6 on[a, b —&]. The functions d; and d; have the properties near b which reflect
the anticipated boundary layer behavior of the (n —2)nd derivative of the solution
there.

The following two results are extensions of a recent result of Goecke [5] on the
third-order problem (4.1). In the first one, we assume that f grows at most linearly as a
function of y" ™.

THEOREM 4.2. Suppose that

(1) reduced equation (4.2) has a solution Y = Y. (t) of class C"[a, b] such that
Yg)(a)=A,' forj=0,--+,n-2;

(2) the function f is continuous with respect to (t, y1,* " *, Yn—2, 2, W) and continu-
ously differentiable with respect to (y1,***, Yn—2, 2, W) in D;

(3) there exists a positive constant k such that f,, =k >0 in D,

(4) for (t, y1,* **, Yn—2, 2) in compact subsets of [a, b]x R

f(tyyla".’yn—Zaza W)=O(|W|) as|w|—>00.

Then there exists an €0>0 such that the problem (4.1) has a solution y =y(t, €)
whenever 0 < e = go. Moreover, for t in [a, b] we have that

Yy e)=YP )+ 0() fori=0,--,n-3,
and
Y2 e)= Y2 () + wr(t, €) + O(e).

Here wr(t,€)=|Bn_2— Y 2 (b) expctlexp [k(t—b)e™"] (for ¢ a known positive
constant) is the boundary layer corrector att = b.



72 F. A. HOWES

The analogous result for a right-hand side f which depends quadratically on y v
is given by the next theorem.

THEOREM 4.3. Suppose that

(1) the reduced equation (4.2) has a solution Y = Y (¢t) of class C™la, b] such that
YP(a)=A,forj=0, -+ ,n=2,and Y¥ 2 (b)<B,_o(Y? ?(b)>B,_);

(2) the function f is continuous with respect to (t, y1,*** , Yn-2, 2, W) and twice
continuously differentiable with respect to (y1,** *, Yu-2, 2, W) in D.(D_);

3) fw=0inD.(D-),

(4) there exists a positive constant k such thatf,, Zk >0 (fow =—k <0)in D (D_);

(5) for (t, y1, "+, yn—2, ) in compact subsets of [a, b]xR" ™"

f& Y, Yooas 2, W)= O(w[>) as |w|->c0.

Then the conclusion of Theorem 4.2 is valid with wg(t, €) replaced by vr(t, €)=
kie In[(b—a) '(b—t+{t—a}exp[—(kie) '|Buoa— Y@ ? (b)|D)] for 0<k,<k, where
vR is the decaying solution of ev" = k10", v(b, €)= —|B,_2— Y2 (b).

Theorems 4.2 and 4.3 are proved by applying the theory of [11] and [15] to the
z-equation of system (4.4) and noting that the components (yi,* - -, y,-2) of the
solutions are O(e)-perturbations of the corresponding derivatives (Yz, - - -, Y¥ ) of
the reduced solution Y;. The details are straightforward and are omitted.

These two results are distinguished by the assumption that the partial derivatives f,,
or f.. have a certain sign along the reduced solution Y; and inside of the boundary layer
at t = b. Suppose however that f is independent of y"~" and that the reduced equation
(4.10) has a solution Y = Y (¢) satisfying Y®a)=A,;fori=0,--+,n—3.1f Y is stable
in the sense that 4,-» >0 in the region 4= 2 N R", then we expect (cf. [13]or [15]) that
the problem (4.9) has a solution y = y(¢, €) for each ¢ >0 sufficiently small such that

lim y©t,e)=Y(0), 0=i=n-3, fora=r=p,

and
lim, y""2(, €)=Y (1) fora<t<b.

The precise statement is the next theorem which contains a more general stability
criterion than a corresponding result of Goecke [5] for a third-order problem. It is
proved by converting the problem to a system and applying results in[13] or [15] to the
second-order problem for z =y,

THEOREM 4.4. Suppose that

(1) the reduced equation (4.10) has a solution Y = Y (t) of class C "™ a, b] such that
Y(i)(a)=Aifori=0, e, n—3;

(2) the function h=h(t y1, ", Ya—2,2) Is continuous with respect to
(t, y1,* * * , Yn—2, 2) and continuously differentiable with respect to (y1,* * * , yn—2, 2) in 9;

(3) there exists a positive constant m such that h,[Y (#)]Zzm >0 fora=t=b;

@) if u=Y""?(a)#A,_s, then

I3
[An—z_l-l«]j ha, Aoy ++, An_ay s) ds >0
"
foru <€A, 0r A, r=E<u; whileif v=Y""?(b)# B,_,, then
n
[Bua=s1[ hb, ¥(0),+, Y*6), ) ds >0

forv<n=B, ,orB,,=n<uv.
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Then there exists an 0> 0 such that the problem (4.9) has a solution y =y(t, )
whenever 0 < e = go. Moreover, for t in [a, b] we have that

YO e)=YP)+0(), i=0,---,n—4,
Yt e)= Y1) + O Pwilt, £)) + O(e > wr(t, £)) + Ole),

and
Y2t e) = Y2 () + O(we(t, £)) + O(wr(t, £)) + O(e),

where wi(t, £) =|A,_o— Y" 2(a)| exp [-(m1e H)*(t—a)] and wr(t, €)=
|Bn—2— Y " 2(b)| exp [—(m1e )b —1)] for 0<mi<m.

The previous theorems suggest that if a problem of the form (4.1) is expressed as
the system (4.4) and if the corresponding reduced problem has a smooth solution
(Y, Z), then one should be able to adapt theorems for perturbed second-order
boundary value problems to this more general context. The idea is that if the (n —2)nd
derivative of the solution y (that is, z) exhibits nonuniform behavior in [a, 5] of the type

described above, then the lower order derivatives y(i)(i =0, -+, n—23)should be close
to the corresponding derivatives Y of the solution of the reduced problem in the sense
that y©(t, ) = Y?(t)+0(1) on [a, b] for i =0, - - -, n —3. Consequently, these vari-

ables in the right-hand side of (4.1) can be replaced (to terms of order o(1)) by the
derivatives of the known reduced solution. One now has an algorithm for constructing
asymptotic approximations to the solutions of many singularly perturbed systems of
higher order.

We discuss next an application of Theorem 3.1 to the problem on (a, b)
Y=z, yae)=A,
ez’ =H(t,y,z), z(a,e)=§& z(b,e)=m.
Here y, z, A, H, &€ and m are in R", and the corresponding reduced problem is
Y =2, Y(a)=A,
0=HtY,Z).

For simplicity, let us assume that H(s, A, 0)=0, that is, we will study
the behavior of solutions of (4.11) relative to the solution (Y,Z)=
(A,0) of (4.12). And let wus define the region X by K=
{(t,y,z):a=t=b,|ly— Al =6, |zl =d(¢)}, where § >0 is a small constant and d >0 is a
smooth function such that |§| = d(¢t)=|&|+ 6 on [a,a +8/2],d(t)=8 on[a+8,b—5],
and [n||=d(t) =|m|+ 8 on [b—8/2, b]. Then the results of [17] lead us to assume, for
example, that the Jacobian matrix J = 0H/dz satisfies

(4.13) z-Jzzm|zf* in¥

for a positive constant m. We expect that under this assumption the full problem (4.11)
has a solution (y, z) = (y(4, €), z(¢, €)) for each £ > 0 sufficiently small such that

(4.11)

4.12)

lir(t)1+ ly(t, e)—A|l=0 fora=t=b,

and

lir(t)l+ z(t,e)=0 fora<t<b.

The precise result is the next theorem whose proof is left to the reader.
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THEOREM 4.5. Suppose that

(1) the reduced problem (4.12) has a solution (Y,Z)= (A, 0);

(2) the function H is continuous with respect to (t,y, z) and continuously differenti-
able with respect to (y, z) in the region X

(3) there exists a positive constant m such that the inequality (4.13) holds.

Then there exists an €0>0 such that the problem (4.11) has a solution (y,z)=
(y(z, €), z(t, €)) whenever 0 < = go. Moreover, for t in [a, b] we have that

ly(t, e)—All=O(e ywi(t, e))+ 0 *wr(t €))
and
IIZ(t, 8)" = O(WL(t, 8)) + O(WR (t, 8)),

where wr(wgr) is as in the conclusion of Theorem 4.4 with the pre-exponential factor
replaced by i€|(ImlD.

Before turning to a discussion of sqme examples in the next section, we make
several remarks.

Remark 4.1. Theorems 4.2 and 4.3 describe the occurrence of boundary layer
behavior at ¢ = b under the assumption that the reduced equation has a stable solution
satisfying the (n — 1) conditions at ¢ = a. However, suppose that the reduced equation
has a smooth solution Y = Yz (¢) on [a, b] such that

(4.14) Y@Q@)=A; fori=0,---,n—-3
and
(4.15) Y% (b)=B,-s,

(n—1)

and that Yk is stable in the sense that for w =1y
fulYr(H]<0 onla,b]
and
fw<O0

in the boundary layer at ¢ = a. Then we can show that the problem (4.1) has a solution
y = y(¢, €) for each £ >0 sufficiently small such that

1i%1+y<“(t,e)=yg)(t), 0<i=n-3, forast=b

and

lim, y" 2 e)=YS P () fora<t=b.

Similarly, the analogue of Theorem 4.4 can be established for a reduced solution
Y = Y (¢) satisfying (4.14) and (4.15) (cf. Example 5.1 below).

Remark 4.2. The results of this section can be veiwed as providing simple
illustrations of what could be called ‘“nonlinear cancellation laws.” Namely, for
higher-order singularly perturbed linear boundary value problems one studies the
asymptotic behavior of solutions relative to the solution of the reduced equation which
satisfies a lesser number of the original boundary conditions. The choice of these
“reduced”” boundary conditions is dictated by rather general cancellation laws (cf. [31],
[28] and [29]). However, a problem of current interest in higher-order nonlinear
singular perturbation theory is the discovery of the appropriate analogues of these
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linear cancellation results. The above theory suggests one possible approach to this
problem.

Remark 4.3. In addition to the boundary layer and interior crossing layer behavior
discussed here, solutions of (4.1) may also exhibit shock layer behavior in the sense that
the (n—2)nd derivative may transfer from one reduced solution to another dis-
continuously in the limit of ¢ =0. The study of such phenomena proceeds as in the
above analysis by applying second-order results on shock layer behavior contained, for
example, in [15] (cf. Example 5.5 below).

Remark 4.4. The boundary conditions for the z-parts of our problems have been
of Dirichlet type. However, there is now a fairly well-developed theory for perturbed
scalar second-order differential equations whose solutions satisfy boundary conditions
of Robin or Neumann type (cf. [16], [18]). In terms of the differential equation (4.1) this
means that we could impose boundary conditions of the form

y(i)(a:8)=Ai: i=0’.'°’n_3’
p1y" P(a,e)—q1y" Va, €)= A,
P2y 2B, £)+ q2y" V(b €) = Bn-s,

for nonnegative constants py, qi such that p, +q. >0, k =1, 2. The interested reader
should have little difficulty applying the results of [16] and [18] to perturbed problems
of higher order.

5. Illustrations of the theory. In this section we present several examples whose
solutions display some of the behavior outlined above.
Example 5.1. Let us consider first the problem
ey"=1-(/V=f("), 0<t<1,
)’(0,8)=A0, Y’(0,8)=A1, Y'(1,€)=Bl,

(E1)

which is uniquely solvable for all € > 0. (Existence follows from Theorem 2.1, while
uniqueness follows from the maximum principle [30].) For various choices of A; and B,
solutions of (E1) exhibit interior and boundary layer behavior of the types described by
Theorems 4.1 and 4.3, respectively.

To see this, we first examine the reduced equation

*) 0=1-(u"?

and find that u = u; (1) = =3t + A1t + Ao and u = 4, (f) = 3t> + At + A, are solutions of
(*) which satisfy the left-hand boundary conditions. Similarly, we find that u = ug(t) =
32+ (B1—Dt+c, and u=idg(t) = 1P+ (B1—1)t+c, are one-parameter families of
solutions of (*) which satisfy the right-hand boundary condition. Since f'(#i.) <0 and
f'(ig) >0, while f'(ur)>0 and f'(ug) <0, we can reject ; and g as candidates for
limiting solutions as & - 0", and thus concentrate on the stable functions u; and ug.
We note that u; is uniquely determined at this stage, while ug still contains the free
constant c¢;.

Let us now attempt to apply Theorem 4.1. We see that u; =ux at the point
to=5(A1—B;+1)and that t, belongs to (0, 1) only if |A; — B;| < 1. Next, we also require
that u;(to) = ur(ty), and in order to achieve this, we choose the constant c¢; as
Ao+i(A1—B+1)% Finally, we note that f(A)=1 —A%>0 for |A]<1. Thus for |[A; —
B,|<1 and ur(t) =32+ (B1—1)t+Ao+3(A1—B1+1)% all of the assumptions of
Theorem 4.1 obtain, and we conclude that the solution y = y(¢, £) of (E1) satisfies as
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y(t,e)>u(t) and y'(t,e)>u'(t) onl0,1],

y"(t, e)>u"(t) on[0, 1]\{to}.

Here u = u(t) is the composite path defined by u(¢) = uz () on [0, to] and u(f) = ug(t) on
[tO’ 1]

Suppose next that A;—B;=1. If A;—B; =1 then by inspection y(¢, &) = u.(¢) is
the solution of (E1). However, if A;—B;>1, then u;(1)= A;—1> B, and we deduce
from Theorem 4.3 since f” <0 that the solution of (E1) satisfies as ¢ >0"

y(t, €)>ur(t) on[0,1]
and

y'(t,e)>ur(t) on[0,1).

Finally, if A;—B;=-1, then we anticipate using the right-hand reduced solution
uR () =32+ (B1—1)t+ A, which now satisfies u%(0) = A,. This is obvious in the case
that A;—B;=—1 since y(f, e) = ux(¢) is the solution of (E1). More generally, if
A;—B;<-1,then uy (0)= B;—1> A, and we deduce from the analogue of Theorem
4.3 (cf. Remark 4.1) that the solution of (E1) satisfies as ¢ > 0"

y(t,e)>ux(t) on[0,1]
and
y'(t,s)-»u?z'(t) on (0, 1].

This example serves to illustrate the important fact that for higher-order singular
perturbation phenomena different members of a family of stable reduced solutions
often must be used to describe the asymptotic behavior of solutions of the full problem
for different choices of the boundary values (cf. Remark 4.2).

Example 5.2. Inthis example we illustrate our remarks on the problem (4.9) which
followed the proof of Theorem 4.1. Consider then the problem

ey"=y' =2lt|=h(ty"), -1<<1,

(E2)
)’(_1,8)=A0, y'(—198)=2a y'(1’5)=2'
As with the previous example, the existence and uniqueness of solutions of (E2) are
guaranteed by Theorem 2.1 and the maximum principle. However, to understand their
asymptotic behavior as € > 0" we must apply the theory of § 4.
Let us begin by noting that

Ao+1-12, -1=¢=0,

“=“(’)={A0+1+t2, 0st=1

is the solution of the reduced equation u'=2|t| which satisfies all three boundary
conditions. Moreover, it is stable in the sense that 4, = 1> 0. From our remarks on (4.9)
we conclude therefore that the solution y = y(t, ¢) of (E2) satisfies as ¢ > 0"

y(t,e)>u(t) and y'(t,e)->u'(t) on[-1,1].
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We note that if y'(—1, £) #2 and/or y'(1, ) # 2, then we can combine our interior
layer theory with the boundary layer theory of Theorem 4.4 to show that
y(t, e)»>u(t) on[-1,1]
but
y'(t,e)>u'(t) on(—1,1).

The latter limit is attained, of course, at t=—-1(t=1) if y'(—1, ) =2(y'(1, &) =2).
Example 5.3. We consider now an illustration of the integral conditions in
Theorem 4.4. The problem is

ey"=y*—(t+1)>=h(s,y"), 0<t<l1,
y(0’£)=A03 y,(0,8)=A13 y’(19€)=B13

and its reduced equation u? = (t+1)? has the two solutions u = u(¢) = Ao+3t>+¢ and
u=1i(t)=Ao—3t>—t satisfying u(0) = &1(0) = Ao. However, since A, (t, u(t)) > 0 while
hy(t, ii(t)) <0, we select u(t) as our candidate for an approximate solution of (E3) on
(0, 1). In order to apply Theorem 4.4 we must determine for what range of A; and B,
this function u can attract the solution of (E3) in the boundary layersat t =0 and ¢t = 1.
First of all, if A, >1=u4'(0), then

(E3)

A1 1 5 2
J h(0,s)ds==A1—A;+=>0
1 3 3

for all such A, while if A;<1 then
! 1, 2
j h(0, ) ds=—(—A1—A1+—)<O
Ay 3 3
for A;>—2. Similarly, if B;>2=u'(1), then
B1 1 1
j h(1,s) ds =—B?—4Bl+—6>0
2 3 3
for all such B, while if B; <2 then
2
1 16
j h(1, s) ds =—(—B%—4Bl+—) <0
B 3 3

for B;> —4. Therefore we deduce from Theorem 4.4 that for A; > —2 and B, > —4 the

problem (E3) has a solution y =y(t, £) for each £ >0 sufficiently small such that as
e->0"

y(t,e)>u(t) on[0,1]
and
y'(t,e)>u'(t) on(0,1).

The latter limit is attained, of course, at t=0 (¢t =1)if A; =1 (B;=2).

Example 5.4. 1t is often necessary to combine the reasoning used in formulating
results like Theorem 4.2 and Theorem 4.4 in order to study certain asymptotic
phenomena. An illustration is afforded by the problem

ey"'=y'—(%—t))’)’"=f(t, Y, y,’ y”)a 0<t<1’

(E4) ,
y(03€)=A03 Y(09€)=A1, y’(1’E)=BI’
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where the data Ao, A; and B; are positive constants. Since f,,=1> 0 we are assured of
the existence and uniqueness of the solution for each € >0.

Let us consider just the solutions u = const. of the reduced equation u’ = (3— t)uu".
If we ask that u(0) = Ao, then u(t)=A,>0, and we must see whether u is stable in any
of our previous senses. First of all,

fy"(ty AO’ Oa 0) = AO(t —%)

is negative (positive) on [0, 3)(G, 1]) and zero at ¢ = 3, and so we might be tempted to
reject it out of hand as an approximate solution. Nevertheless, f,,=1 and so u = A, does
possess the type of stability contained in Theorem 4.4. If u were to approximate the
solution of (E4) on [0, 1] with the exception of boundary layer regions at 0 and 1 (since
A1, B;>0), then we would have to check whether the second derivative term in f could
disturb the boundary layer structure. Fortunately, this term enhances the boundary
layer behavior of y in the sense that f,» <0 near 0 and f,»> 0 near 1 provided only that
y >0. Indeed, by arguing as in the previous section, we can show that the solution
y =y(¢, £) of (E4) satisfies on [0, 1]

y(t, e)=Ao+O0(e)
and
y'(t, €)= O(vL(t, €)) + O(vr(t €)) + O(e).
Here vr(t, €)= A, exp [—ote '] and vr(t, &)= Biexp[-a(1—1)e '] for 0<o <3A,
are the boundary layer correctors at t = 0 and ¢ = 1, respectively. A general result of this
kind can be formulated and proved using the theorems of § 2 together with Theorem 5.7

of [15].
Example 5.5. In order to illustrate Remark 4.3 let us now consider the problem

ey"=y'—y'y", 0<r<«l,
y(0,e)=Ao, y'(0,e)=A1, y'(l,e)=Bx,
for data A, B; such that
B:>A;+1 and —(B;+1)<A;<1-B:.

(ES)

This example can be viewed as a higher-order problem of the type first considered by
Lagerstrom and Cole [2] (cf. also [15]) if we write (ES5) as the system

)"=Z, Y(0,€)=A0,
ez"=z—-2zz', z(0,e)=A;, z(1,e)=B;.

Indeed, for our choice of A; and B we know (cf. [15] or [4]) that the z-problem in (E5’)
has a solution z = z (¢, €) such that

(ES")

i t.e) {t+A1, 0=t<t*,
m z E)=
e>0" " t+B;—1, t*<t=1,

for t*=2(1—-A,—B,), that is, z exhibits shock layer behavior at ¢ =¢*. The function
y = y(t, £) is then seen to satisfy the asymptotic relation

Ao+3t’+Ayr, O0=r=r*,

t, ~
y(te) {A0+%t2+(Bl—1)t+t*(A1—Bl+1), F=r=1,

since y' = z.
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Example 5.6. We consider finally an application of Theorem 4.5 to the system on

0,1)
(Y- (2) -+

(E6) ez~=(Z‘"Z?+y ‘ym) =H(y, 2)
22—23—)’1}’221 T

y(O, €)=A09 Z(O’ €)=§a Z(l, €)="l'.

The corresponding reduced (e = 0) system has the solution (Ao, 0) and we must see if
this function is stable in the sense of relation (4.13). However,

z- H=z1+23 — (21 +23) =|2f*(1 - |l2I*)

since z1+z5=(z3+23)>. Asaresult, Theorem 4.5 allows us to deduce the existence of a
solution (y, z) = (y(¢, €), z(¢, )) of (E6) for each £ > 0 sufficiently small provided ||§]| < 1
and |jn|| < 1. Moreover, for ¢ in [0, 1] we have that

ly(t, €)= Ao = O('?)

and
llz(z, &)l = O(lgll exp [—yte *D+ O(mll exp [—y(1 =) ">+ O(e),

for y = max {1 —[ig*, 1~|mI}.
We note that if we argue as in [17], then we can show that the solution of (E6)
actually exists for ||£| <+2 and |n||<+2. and satisfies as ¢ > 0"

ly(t, €)= Aoll>0 on[o0,1]
and

llz(#, €)] >0 on (0, 1).
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AN ABSTRACT PARABOLIC VOLTERRA
INTEGRODIFFERENTIAL EQUATION*

MELVIN L. HEARD*

Abstract. We consider semilinear integrodifferential equations of the form
t
u'(+A@u(t)= J [a(t s)go(s, u(s)) + ga(t, s, u(s))] ds + fo(t) + f1(t, u(1)),
o

u(0) = uo.

Foreach t = 0, the operator A(¢) ia assumed to be the negative generator of an analytic semigroup in a Banach
space X. Thus, our models are Volterra integrodifferential equations of parabolic type. These types of
equations arise naturally in the study of heat flow in materials with memory. Our main results are the proofs of
local and global existence, uniqueness, continuous dependence and differentiability of solutions.

1. Introduction. We consider the abstract Cauchy problem for the Volterra
integrodifferential equation

W)+ A u ) = j [a(t, $)gols, u(s) + g1(t, 5, u(s))] ds
(1.1)

+fo(t) + f1(t, u(?)), t=0,
1.2) u(0) = uo.

We assume that for each ¢ =0 the operator A(t) is the negative generator of an analytic
semigroup in a Banach space X. Thus we regard (1.1), (1.2) as a Volterra
integrodifferential equation of parabolic type. These equations arise in problems
concerned with heat flow in materials with memory (see [5], [15] and references listed
there).

Our formulation of (1.1), (1.2) is a direct attempt to generalized some results of
G. F. Webb [21], [22] who studied problems similar to (1.1), (1.2) for the case when
A = A(t) does not depend on t. We were also influenced by the work of Friedman and
Shinbrot [10] and W. E. Fitzgibbon [8].

Highly nonlinear versions of (1.1) have been considered by many authors, viz.
Barbu [2], [3], Barbu and Malik [4], Crandall, Londen and Nohel [7], R. C. MacCamy
[13], Rennolet [17] and Vrabie [20]. In [7] a complete existence theory (as well as
boundedness and asymptotic behavior) is developed for the Volterra integrodifferential
equation

t

u’(t)+Bu(t)+I a(t—s)Au(s)ds s F(t), t=0,

0

(1.3)
u (O) = Up.

The operators A and B in (1.3) are taken to be subdifferentials of proper, lower
semicontinuous convex functions on a Hilbert space. It is shown that for an appropriate
initial function u, and forcing term F(¢), (1.3) possesses a global strong solution
provided the kernel a(¢) satisfies some general conditions broad enough to cover two

* Received by the editors December 10, 1979, and in final revised form March 17, 1981.
+ Department of Mathematics, University of Illinois at Chicago Circle, Chicago, Illinois 60680.

81



82 MELVIN L. HEARD

physically important classes:

(ay) a(0)>0, a(¢) is locally absolutely continuous on [0, 0©), a'(¢) is locally of
bounded variation on [0, 0);

(ap) a(0)>0, a € C[0,0)N C*(0, ) and a(¢) is nonnegative, nonincreasing
and convex on [0, ),

In [17] these conditions are generalized to the case of nonconvolution kernels a(t, s).

In our work the assumptions on the kernel are of a different type (see hypothesis
(AS)). We must assume continuity of a(t, s) as a function of (¢, s) plus a Holder
continuity assumption in the first variable. A similar hypothesis is made on fy(¢) (see
(A4)). These assumptions are related to the method of approach we use in the study
of (1.1), (1.2). We treat this problem as a perturbation problem for the linear
equation

(1.4) u'(t)+Au(t)=f(1), t=0,

(1.5) 1(0) = uy.

For basic results on the Cauchy problem (1.4), (1.5) we rely on the operator-theoretic
methods of Sobolevsky [18] and Tanabe [19]. Thus our Holder conditions cannot be
appreciably relaxed. The nonlinear term f;(¢, u) is assumed to be of the same type as in
[22].

In[7] (and also in [17]) the operators A and B are related by means of assumption
(1.7). This essentially says that B dominates A in a certain sense. In our work the same
type of assumption is made relating A(#) to the nonlinear operator go(t, u) (see, for
example, Corollary 2, § 3). The operator gi(t, s, u) in (1.1) should be regarded as a
Lipschitz perturbation of go(t, u). It is displayed separately because it has a different
range than go(t, u), which allows weaker continuity assumptions in the variables (z, s)
(see hypothesis (A6)). It is deliberately included in order to have a broader physical
application for (1.1). Lipschitz perturbations are also allowed in [7] for (1.3). However,
we are able to obtain both existence and uniqueness for problem (1.1), (1.2). Further-
more, by making use of the special nature of (1.1) (i.e., —A(¢) generates an analytic
semigroup) we are able to use compactness arguments to study (1.1) for certain
nonlinear operators go(¢, u) which are neither monotone nor of Lipschitz type.

The paper is organized as follows. In § 2 we present the basic assumptions and
preliminary lemmas. In § 3 we prove existence, uniqueness and continuation theorems
for (1.1), (1.2). The basic assumption in this part is that the nonlinear operator go(?, u)
must satisfy a type of local Lipschitz condition. Section 4 deals with continuous
dependence and differentiability (in time) of solutions of (1.1), (1.2). In § 5, by making
compactness assumptions, we generalize the results obtained in § 3 to allow for greater
nonlinearities in the operator go(t, u). In §6 we briefly indicate how Volterra
integrodifferential equations of the type (1.1), (1.2) arise in heat flow problems. We
then discuss two examples illustrating the theory of §§ 3 and 5. In § 7 the problem of
regularity is considered.

2. Preliminaries. Let X be a Banach space over the complex numbers with norm
|-l Let {A(¢): 0=t=T?} be a family of closed linear operators in X satisfying the
assumptions:

(A1) The domain D(A) of A(¢) is dense in X and does not depend on .

(A2) For each ¢t in [0, T] the resolvent R(A; A(¢)) exists for all Re A =0 and
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there is a constant C >0 such that

||R()¢;A(t))||§mi+l, ReA=0, 0=¢=T.

(A3) There is a constant C >0 and a number o, 0<a <1, such thatif ¢, s, 7
belong to [0, T] then

AN -A@IAT ()= Cle—7]".

We denote by £(X) the Banach algebra of all bounded linear operators on X. Then
— A(s) is the infinitesimal generator of an analytic semigroup {e A =0} in £(X) for
each 0=s=T (see [9]). Moreover, there exist positive constants C and & such that

le”*®l=ce™, t=zo0,

Ce—&t
A(s) e~ == >0
for all 0=s = T. For each u >0 the fractional power A™“(¢) exists and is given by

0

1
A"“(t)=mj‘ e AWHlge 0=t=T.
M) Jo

It is known that A™"(¢) is a one-to-one bounded linear operator on X. We define
positive fractional powers of A(f) by A*(r)=[A“(t)]"'. Then A*(¢) is a closed
operator with dense domain D(A*(¢)) (which may depend on ¢) in X and D(A*(¢)) <
D(A”(¢t)) if u > v. Furthermore, for all real u, v we have

A“(DA()x =A"(H)A* (H)x = A" ™(t)x,

if x e D(A”(¢)), where y =min (u, v, u +v). Put A= A(0) and for each y e D(A"(0))
define |ly|. =|lA*“y|l. Equipped with this norm, D(A*) is a Banach space which we
denote by X,,. For each 0 <u =1 the embedding X, » X is dense and continuous, and
by the closed graph theorem, A(f)A~'(s) belongs to £(X) for all 0=s, t=T. So the
functional y > ||A(#)y|| defines for each ¢ an equivalent norm on D(A) and the mapping
t-> A(t) is uniformly Holder continuous from [0, T] into £(X;, X). We make the
following additional assumptions:
(A4) The function fo(¢) is uniformly Hélder continuous from [0, T]into X with
exponent .
(A5) The function a(t, s) is a continuous complex-valued function on [0, T] %
[0, T] and satisfies a uniform Ho6lder condition with exponent p in the
first place; i.e., there exists a constant ap >0 such that

(2.1) la(t, s)—a(r, s)| = aolt—7|°

forall0=¢,7,s=T.
(A6) Let W be a nonempty open subset of X; and for each ye W let
B(y,r)={zeXi:|ly—z|i=r}. Let 0<u =<1 be a constant and let

(2.2) g0:[0, TIXW > X,
(23) g12[0, T]X[O, T]X W“')X1,
(2.4) £1:[0, TIX W > X,
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be three continuous operators having the property that for each y € W there exist r >0
and positive continuous functions by, b1, ¢ such that B(y; r)< W and

2.5) lIgo(t, y1) = &o(t, y2)I| = bo(®)lly1 — yall1,
(2°6) ”gl(t, S, YI) - gl(ta S, YZ”l = bl(ta S)||y1 - y2”1’
(2.7 If1(t y1) = f1(t, y2)ll = c(@)lly1 — y2lh

for all y,, y,€B(y;r)and 0=t,s=T.

Assumptions (A1), (A2), (A3) imply that the Sobolevsky-Tanabe theory of
parabolic equations in a Banach space is applicable. This means that if A={(s, s):
0=s=t=T} then there is a unique evolution operator {U (%, s): (¢, s) € A} having the
following properties:

1) U(t, s)e £(X) for all (¢, s)e A and U : A—» £(X) is strongly continuous.
(ii) For each x € X we have U(t, s)xe D(A)forall0=s<t=T.
(111) Ui, nU(r,s)=U(t, s)forall0=s=r=t=T.
(iv) U(t,s)e £(X,) for all (¢, s) e A and U: A~ L(X,) is strongly continuous.
) The derivative (0U/dt)(t, s) exists in the strong topology on #(X) and
belongs to £(X) for 0=s <t =T. It s also strongly continuous in (¢, s) for
0=s<t=T and satisfies

%‘t—](t,s)+A(t>U(t,s>=o, S<IST,

U(s,s)=1

Throughout the sequel, unless otherwise stated, the letter C will always denote the
universal constant appearing in [18] (and also in [9, Part II]) which occurs in all of the
various estimates on term such as e “*®, A(s) e 7, A(NA(s), U(t, 5), AU, 5),
etc.

Now consider the nonhomogeneous Cauchy problem

du
dt

Let C*([to, T1; X) denote the space of all X -valued functions /4 (¢) which are uniformly
Holder continuous on [#, T] with exponent B. Define

- sup IHOZROL

to=t,s=T |t——s|B

2.8) +A@)u=h(@), u(to) = uo.

Then C?([t,, T]; X) is a Banach space with respect to the norm

1A/l 8 @eo: 71, ) = tosélng”h(t)" +[hle.
It is well known that if # € C?([to, T]; X) then the function

t
u(t)y=U(, to)u0+J U(t, s)h(s) ds, Lh=t=T,
o
is continuous from [#,, T'] to X, continuously differentiable from [#y, T'] to X and is the
unique solution of (2.8) on ¢, <t = T. Moreover, if uo€ D(A) then u(?) is continuously
differentiable on [¢y, T'] and satisfies (2.8) on to=¢t=T.
We now present some additional preliminary results which will be useful later on.
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LeEmMA 1. ([10, Lemma 1.1)). For each h € C*((to, T1; X) define

(Lh)(t)=J U(t, s)h(s) ds, th=t=T.

to

Then L:C*([to, T1; X) > C([to;T]; X1) is a bounded mapping and

ILAN ¢ o, m1.50 = Cllll c2 20,73,
COROLLARY 1. Define

P(y;h)=U(t,0)y+J‘0 U(t, s)h(s) ds, 0=¢=T.

The P is a continuous linear mapping from X, x C*([0, T1; X) into C([0, T]; X1).
LEMMA 2. Let 0<u =1 and fe C([ty, T]; X,.). Define

t
w(t)=I U(t, s)f(s) ds, to=t=T.
to
Then w e C([to; T); X)) NC'(to, T); X) and w'(t) + A()w () =f (1), to=t=T.
Proof. For u =1 this result is due to Kato [12]. By standard arguments it follows
that w(t)e D(A) and

t

A(t)w(t)=J AU, s)f(s) ds, to=t=T.
to

It is easy to see that it suffices to prove that A (¢)w(¢) is continuous from [¢,, T]to X. Let

to=7<t=T, then

A W) —A(r)w(r) = J' AU, $)f(s) ds + J AUt 5) - A(r)U (7, ))f(s) ds.

to

Let 0<7n <u and choose 0 <& <min (n, @). Let y =1+¢. Then by [18, (1.69)]

I LA© U, 5) = AU YO ds = Cl =) oo 2,

to n—ée
where ||fl|,.co = sup {[f(s)|.: to=s = T}. Similarly

[1a0ve st as=ci. L

Therefore ||A(¢)w () — A(T)w(7)| = C||fll..o(t — 7)°, and this proves continuity. 0
The next result is based on a simple compactness argument and its proof will be
omitted.
LeEMMA 3. Let {E(t,s): 0=s, t = T} be a family of strongly continuous operators in
L(X). Then for each x € X we have

lim E(t, s)x =E(t, so)x

(t,5)>(t0,50)

uniformly for (to, so) in [0, T1x [0, T] and also uniformly for x in compact subsets of X.
The last result that we need is a Gronwall lemma. Its proof can be accomplished by
an argument similar to that of [22, Lemma 2.1] plus the use of Lemma 1.
LEMMA 4. Let 0=t,<t; =T and let R :[ty, t{]> X, be a continuous function. Let
0<u =1 be a constant and W be an open subset of X,. Suppose there are positive
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constants C;, 1 =i =6 and continuous functions
H, : [to, 1] X [to, 1] X W > X,
H;i : [to, t1]X[to, 1] X W > X1,
filto, hl]xX WX,

such that

(2.9) [Ho(, s, y)ll= Cillyll + Ca,

(2.10) [H:(t, s, y)l: = Cillyll + Ca,

(2.11) £z, Yl = Csllylls + Ce,

(2.12) [Ho(t, s, y)— Ho(r, s, Y= |t —7|°(Cillyli + C2)

forallt, 7, s in [to, t1] and y € W. Suppose u :[to, t;]> W is a continuous solution of the
integral equation

u(t)= R(t)+J' Ul,s) js [Ho(s, 7, u(7)) + Hi(s, 7, u(7))] dr ds

to 0

+ J” U(t, s)f(s, u(s)) ds,

0

for to=t=t. Then there are constants C; =0 fori =1, 8,9 such that if 0<n <u and if
v>0 is chosen so that k = C7y " "T'(n) + Csy ' <1 then

el =1 =742 tim R+ Cof e
foralltoy=t=t,. If Co=C4=C¢=0, we can choose Cy=0.

3. Existence, uniqueness and continuation. Our first result concerns the local
problem

u'(t)+Au(t) = J [a(t, s)go(s, u(s))+gi(t, s, u(s))] ds
3.1) fo
+ fo(t) + f1(t, u(z)), t=to,

(3.2) u(to) = uo.

Given uge W we shall say that u(¢) is a strong solution of (3.1), (3.2) on an interval
[to, to+8] if u(t)e W for all ty=t=t,+6, u(t) is continuously differentiable
from [¢o, to+ 8] to X, u(ty) = uo and u(t) satisfies (3.1) on [¢o, to+ 6]

THEOREM 1. Assume (A1)-(A6) hold and let upe W, ty€[0, T) be given. Then
there exists a positive number & = 8 (to, uo) and a unique strong solution u(t) of (3.1), (3.2)
on the interval [ty, to+ 8] which also belongs to C([to, to+81; X1).

Proof. Given uge W, let B = B(ug; r)< W be determined by (A6). Let 0<d =
T — to be a positive number to be specified later and put I = [, to + 8]. For each function
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ve C(I; B) we define

(3.3) (Gov)(t) = j alt, 7)go(r, v(r)) dr,
(3.4) (Gro)(1) = j g1(t, 7, o(r)) dr
fortel Let

oo = 0§sgtp§T|a(t’ S)I, bo= osgltlngbO(t)l’

b= Oésgt%lel(t, s), e = osg‘,‘grlc(t)l'

Then by (2.6)

sup [(Gov)(D)| < a=6C,,,  veCU; B),
where
(3.5) Cao=rboco+ sup_llgo(t, uol.

Assuming p = 8, we have by (2.1), (3.5)
IGov (1) = Gov (s)

= (aclt — "B +|s — tolao) Cy.

le~s|®
It follows that Gov € C*(I; X) and
(3.6) 1Govllce . = [(@o+ aw)d + axd ' P1C,,.

From (2.1), (2.5) we have
sup |Gou () = Gov (t)]| = awbo.8 sup lu(t) = v(D)s,
and
[Gou — Govs = (aewd' ™® +a08)bo o sup e (t) = v ()]s

Therefore the mapping v - Gov is Lipschitz continuous from C(I; B) into C*(I; X)
and

(3.7 Gou — Govllcsa.x) = [(@0 + a0} + @ed ' ™ 1bo.llt — vllcrixy)-

Similarly, from Property (iv), (2.6) and (3.4) we have Giv e C(I; X1) and

(3.8) 1G1vllcaxy=8C,,,
(3.9) |G1u — G1vllcia;xy = 8b1,0llu = vl cirixy,
where

Cov=rbio+ sup_lgi(s s, uolh.
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Thus mapping v - G,v is Lipschitz continuous from C(I; B) into C(I; X).
Now for each ve C(I; B) we define

(®v))=U(, to)u0+J‘ U(t, s{Gov(s) + Gv(s) + fo(s)} ds

(3.10)

t

+I U(t, s)fi(s, v(s)) ds, tel

By Lemmas 1 and 2 it is clear that ® maps C(I; B) into C(I; X;). We show that for 6
sufficiently small, ® maps C(I; B) into itself and is a contraction.

Let 0<mn <, then by (2.7) and [9, (II.14.12), (I1.14.14)], we have for each
veC(;B),
h

t
é
(3.11) j U, )f(s, v(s)) ds| =CC,—,  tel,
to 1 n
where
Cr=rcot oSup_ IF (2, wo)ll-
Now let

5 &7
0(8)=(1+ao+aw)d +awd ? +—,
n

w(t)=U(t, to)u0+I U(t, s)fo(s) ds, tel

Then by Lemma 1, (3.6), (3.8), (3.11) we have
[@o () — uolls = [[w(2) — uoll + Co (8)[Cgy + Ce, + C,]

foralltel,ve C(I; B). Since uge D(A) we have w € C(I'; X1) and w (o) = uyp. So there
is a §; >0 such that

sup || Pv(t)—udh =, ve C(; B).

to=t=to+8;

Furthermore, if u, v € C(I; B) then by (2.7), (3.7), (3.9)
(3.12) ||<I)u - cI)v”C(I; xn= Co(6)(boootbiet Coo)”u - U”C(I; X1)+
Choose 8,>0 so that Ce(8,)(boo+ b1,0+ Cx)<1. Then if § =min (61, 8,) it follows
that @ is a contraction mapping of C(I; B) into itself. Hence there is a unique fixed
point u of ® in C(I; B) and u(¢) is a local strong solution of (3.1), (3.2).

To prove uniqueness, suppose we have two solutions u;(t), u»(¢) of (3.1), (3.2) on
I =[to, to+ 8] which belong to C(I'; X;)NC'(I; X). Let

ti=sup{tel:u,(s)=uy(s)forall t(r=s=t},

and suppose that ¢;<t,+8. Then both wu;(t) and u,(¢) are solutions of the
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integrodifferential equation

u't)+A@u(t)= j La(t, $)gols, u(s))+g1(t, s, u(s))1ds +folt) +fi(t, u(t)),
" H=t=to+d,

u(tl) = U1,

where u;, = u1(t1) = uo(t,) and

Folt) = j "L, $)gols, ur(s)) +g1(t, 5, ur(s))] ds +fold).

0

Since u € W, there is a closed ball B, = B(u;; r1) = W such that (2.5), (2.6), (2.7) hold.
For each v e C([#y, to+8]; B1) define

(@0)(1) = U, 1)us +j U, $)fs(s, v(s) ds

t1

n j U,){[ Tats, Dgolr, o)+ guts, 7, o] dr +fils)) ds,
HEt=t+ S.

Then by previous arguments there exists §; >0 such that ®; maps C([#1, t; + 81]; B1)
into itself and is a contraction. But by continuity we have u;(¢) € B1 and u»(¢) € B for all
H=t=t+86,if 8, is sufficiently small. Thus u;(¢) and u,(¢) are both fixed points of ®;
and we get uy(t) =u,(t) for t;=t=t,+68;. This contradicts the definition of #; and
proves uniqueness. [

We now discuss noncontinuable solutions of (1.1), (1.2). It is expected that an a
priori estimate in the X;-norm should produce a global solution defined on [0, T']. We
show that this is in fact the case under slightly stronger assumptions on go, g1 and fi:

(A6) Let W, u, go, g1 and f; be given by (2.2), (2.3), (2.4). For each closed
bounded set B = W there are positive continuous functions bo, b1 and ¢
such that (2.5), (2.6), (2.7) hold for all y,, y,e Band 0=¢,s=T.

THEOREM 2. Assume (A1)—(AS5) and (A6) hold. Let 1i(t) be the solution of (1.1),

(1.2) on a maximal interval of existence [0, d) where d < T. Then for each closed bounded
set B < W with nonempty interior Int B, there is a sequence {t,} such thatt, >d ™ asn > ©
and t(t,)g Int B foralln=1.

Proof. We argue by contradiction and suppose #i(f) € Int B for all 0=¢<d. We

shall produce a positive number 8, 0 <8 =T —d, such that for any f, in [0, d) the
integrodifferential equation

(3.13) u’(t)+A(t)u(t)=J [a(t, 5)go(s, u(s))+gu(t, s, u(s))ds +fo(t) + f1(t, u()),

(314) u(to) = IZ(),

where @y = ii (o) and

Folt) = j0° [at, $)gols, @(s))+ g1(t, 5, ()] ds +folt)

has a solution u(t) on [fo, toc+8]. By our uniqueness result, for ¢, sufficiently close



90 MELVIN L. HEARD

to d, u(t) represents a continuation of #(f) to the right of d. This contradicts the
definition of d.

First we choose an arbitrary point ¢, € [0, d) and keep it fixed. Then we define
M, =sup {llgo(t, y)| : 0=t =T, ye B},
M, =sup{llg.(t s, y)1:0=s,t=T,ye B},
My, =sup{lf(t, y)l. : 0=¢t=T, ye B},

and let I =[to, to+ 8], where 8 is some positive number less than or equal to T —d which
is to be determined later (depending only on B). For each v € C(I'; B) define Gov, G1v
by (3.3), (3.4) and ®v by (3.10) with uo, fo replaced by io, fo, respectively. Then from
(3.12) it is clear that we can choose § >0, depending only on B, such that ® is a
contraction mapping of C(I; B) into C(I; X;).

For v e C(I; B) we have

(@)~ = UL, to>ao—ao+[; U, )fols) ds
o] [t it 0 )
[ o[ s )
+I Ut $)Gov(s) ds + j U(t, $)Gyo(s) ds
I

U(t, s)f1(s, v(s)) ds

Consider Js, Js and J7. From (3.6), (3.8), (3.11) we have
sl = Cl(ao+ aw)d + acd '~ "]Mgo,
Wl = C8°M,,,  |Hlh= CMfl —71—
Similarly for J, we have
|[Tall, = CTMS,.

Consider J,. Following Sobolevsky [18, p. 32] we have

(t—10)°

A ()2l = Clfols C“fo(t)” +E(tt to)fo(t),

where E(t,s)=1 —e**®_ The function fo(t) has compact range in X and E(t, s) is
strongly continuous for 0=s, t =T (see [9, Lemma I1.4.4]). So by Lemma 3

lim E(t, 1 —to)fo(r) =0,
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uniformly in #. Thus ||J,]l; > 0 as ¢ > to, uniformly in #, and a similar argument works for
J. For the remaining term J; we use the integral equation to write

Ji=[U(t, 0)=U(to, 0)]uo

+ LO (U@t s)—Ulto, s)] {J: a(s, 7)go(r, (7)) dr} ds
+L° [U(t, s)=Ulto, 5)] {L g1(s, 7, (7)) dr} ds
+ LO [U(t, 5) = Ulto, $)Ifs(s, ii(s)) dis

+ j (U, )= Ulto, 5)lfols) ds,

where uo = i (0). By Property (iv) and Lemmas 1, 2 and 3 each term above goes to zero
in the X;-norm as ¢ - o uniformly in .
Therefore given € >0 we can choose § >0, independent of ¢, such that

(Do) (t) - dol <&, th=t=ty+5, veC(;B).

Since i, € Int B, we can choose & > 0 such that the ball B, ={y € X;: ||y — o1 <&} is
contained in B. Then ®: C(I; B)»> C(I; B.) < C(I; B) and by the contraction mapping
principle there is a unique solution u(¢) of (3.13), (3.14) on [to, toc+5). U

COROLLARY 2. Assume (A1)-(AS) hold and let (A6)' hold with W = X,. Suppose
there are positive constants C;, 1 =i =6, such that

(3.15) lgo(z, = Cillyl + Cs,
lig1(2, s, Yl = Cillylls + Ca,
(3.16) 112, Y = Csllylli + Cs

forall 0=s,t=Tandy e X,. Then for each uo€ X, there exists a unique global solution
u(t) of (1.1), (1.2) on [0, T1].

Proof. By Theorem 2, it suffices to show that each solution of (1.1), (1.2) is a priori
bounded in the X;-norm. From Theorem 1 with 7, =0 we have

u(t)=R(t)+ L Ul s) J’O La(s, T)go(T, u(7)) + gi(s, 7, u(7))l dr ds

+ j Ut, $)f(s, uls)) ds,
0

where

t

Rt)=U(, O)uo+J U(t, s)fols) ds.
0
Let Ho(t, s, y)=al(t, s)go(s, y) and Hy(¢, s, y) = gi1(¢, 5, y). Then Hy and H; satisfy (2.9),
(2.10), (2.11). So by Lemma 4 we obtain the desired bound. 0

4. Continuous dependence and differentiability of solutions. We begin our dis-
cussion of continuous dependence by considering a sequence of integrodifferential
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equations

W)+ At () = j [ (t, $)goun (s, (s))+gun(t, s, u(s))]ds

(4.1)
+fon(O)+fraltu@®), 120,

(4.2) u(0) = uo, .

We assume that (A1)-(A6) hold and let u(¢) denote the solution of (1.1), (1.2). We
suppose u(¢) is defined on some closed interval [0, d](d = T') and we seek conditions on
(4.1), (4.2) which guarantee that for n sufficiently large, its solutions will also exist on
[0, d] and converge to u(t) as n -> 0. We shall assume that each a, (¢, s) satisfies (A5)
with constants ay and p independent of n. Similarly, we assume that each go ., g1., and
f1,. satisfies (A6) with the constant r and the functions bo(t), b1(t, s), c(¢) independent of
n. We assume that f, , € C?([0, T]; X) for all n =1 and we shall use the notation

[a(-, D))= ésgpg—la(t’ rt)—_sT"(s, )

We note that, by Theorem 1, for each uo ,, € W, there is a unique solution u,(¢) of (4.1),
4.2).
THEOREM 3. In addition to the above assumptions, suppose that:

(i) lim sup |a.(t,r)—a(t )| =0;

n->0 0=t,7=T

(ii) lim sup [a.(:,7)—a(-,7)],=0;

n->0 0=7=T

(iii) lir{.lo llgo.n (2, y) — go(t, t)| = 0, uniformly on bounded subsets of [0, T]x W

(iv) lilgllgl,n(t, s, ¥)—g1(t, s, y)lli = 0, uniformly on bounded subsets of [0, T]x
[0, T]x W;

v lim | fo.n = follceo, 71.0) = 05

(vi) 1i1£10||f1,,,(t, y)—f1(t y)ll. =0, uniformly on bounded subsets of [0, T1x W,

(vii) lim ||uo,, — tolls = 0.
n->00

Then there is an integer N = 1 such that for each n = N the solution u,(t) of (4.1), (4.2) is
defined on [0, d] and

i, SR, I )= u(®lh =0,

lim sup_ ller (£) = u'(2)]| = 0.

n->0 0=t=

Since the argument used to prove Theorem 3 is fairly standard, we omit the proof.
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We now turn to the question of differentiability of solutions of the Cauchy problem
t
(4.3) u'()+A@u() = J la(t, $)go(s, u(s))+g1(t, s, u(s)]lds +fo(t),
0

(4.4) u(0) = uo,
We always assume (A1)-(A6) hold and we let u(t) be the solution of (4.3), (4.4) on an
interval [0, d] (d = T), which belongs to C'([0, d]; X)N C([0, d]; X1). Define

t

ho(t) = j alt, $)gols, u(s)) ds +folt), 0=t=d,

t

h1(t)=j g1(t, s, u(s)) ds, 0=t=d.

0

In § 3 we showed that hoe C?([0, d]; X), h1 € C([0, d]; X,) and
4.5) u(t)= U, 0)u0+J' U, $)ho(s)+ hi(s)]ds, 0=t=d.
0

We make the following additional assumptions:
(C1) The mapping ¢ > A(¢) is strongly continuously differentiable from [0, T']
to £(X1, X) and we let

d
zl—tA(t)y =AYy,  yeX.

We assume that AP (1) A7(0) is uniformly bounded for 0=¢=T and
AP -AVSIATO=Cle—s]*, 0=st=T

(fo) The function fo(t) has a derivative fo(¢#) which is uniformly Holder
continuous on [0, T'] with exponent B8.

(ay) The function a(t, s) is uniformly Holder continuous along the diagonal of
[0, T]x[0, T] with exponent p:

la(t, ) —a(s, s)| = aolt —s|°, 0ss,t=sT.

Furthermore, the partial derivative (da/dt)(t, s) is continuous on [0, T]x[0, T] and
uniformly Holder continuous on [0, T'] in the first place with exponent p:

da

da
aﬂnﬂ—gﬂﬁs)§a$—ﬂﬂ 0=t,7,s=T.

(g0) For each compact set K = W there are positive consiants $o, v, u = 1 such
that

ligo(t, y1) — 8ols, y2)I = Lollt —s|* +|y1— yalli]

for all y;, y,e K and 0=s,t=T.
(g1) The function (8/8¢t) gi1(t, s, y):[0, T]x[0, T]x W > X is continuous.
LEMMA 5. Let 0<w <3 min (a, B). Then for each € >0, u(t) is uniformly Hélder
continuous in the X1-norm on [e, d] with exponent w. That is, there exists a constant
C(g)>0 such that

(4.6) lu() —u(s)i=Cle)|t—s|, e=ts=d.
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Using Lemma 5 and the well-known differentiability result [9, Thm. I1.8.1] we
have the following theorem.

THEOREM 4. Let the assumption (A1)-(A6) hold and let u(t) be given by (4.5).
Suppose that (C,), (fo), (a1), (go) and (g1) are satisfied. Then u(t) is twice strongly
continuously differentiable in the X-norm on the interval (0,d] and satisfies the
integrodifferential equation

u"(t)+ AU () + AP @Ou(?)

@.7) - L (2, 518005, us)+ 2 gt s, u(s))] ds

+a(t’ t)gO(ty u(t))+g1(t$ ty u(t))+f6(t)’ O< téd-

If, in addition, u'(0)e D(A) then u(¢) belongs to C*([0, d]; X)N C'([0, d]; X1) and
satisfies (4.7) on [0, d].

5. Generalizations. In this section we consider the abstract Cauchy problem
(1.1), (1.2) for more general nonlinear operators go(t, u). We assume that

(5.1) AN0) is completely continuous on X,

It follows (see [9, pp. 169-170]) that A™“(¢) is completely continuous on X for all
0<w=1, 0=t=T. We denote by X,(¢) the domain D(A"(¢)) with norm ||x||, =
|A“(#)x||. Then the embeddings X; - X, (t)->X are compact for all 0<u <1. We
assume there is a Banach space E and a number w € (0, 1) such that

(5.2) X,(t)» E isacontinuous embedding

for all 0=t =T with embedding contant independent of .
Let W be a nonempty open subset of X; and assume there is a continuous function

q: [0, TIXEXW->X

which satisfies
B1) For each ye€ W there are a constant »>0 and a positive continuous
functional b, defined on [0, T'] X E, which is bounded on bounded subsets
of [0, T]XE, such that the closed ball B(y;r)={zeXi:|ly—z[|i=r}
belongs to W and

lg(t, x, y1) —q(t, x, y2)l| = bo(t, x) ly1—yalls

forall0=¢t=T, x€E and yy, y,€B(y; r).
(B2) For each compact set K<[0, T]x W the mapping x—>q(t x,y) is
continuous from E to X uniformly for (¢, y) in K.
B3) For each y e W the mapping (¢, x) > q(¢, x, y) is bounded on bounded
subsets of [0, T] X E.
We now define

(5.3) got,y)=q(t,y,y) forO=t=T, yeW.

Our first result concerns local existence for solutions of the abstract Cauchy problem
(3.1), (3.2). The main ideas for the proof are taken from Sobolevsky[18] and Fitzgibbon
[8]. Since the proof is essentially the same as for Theorem 6, the details will be omitted.

THEOREM 5. Assume (A1)-(AS), (B1), (B2), (B3) hold and let g(t, y) be defined
by (5.3). Let f1, g1 be defined as in (A6). Then given uge W and to€[0, T) there is a
8 =8(uo, to) >0 and a function u(t) belonging to C([to, to+6]; X1)N C'([to, to+81; X)
and satisfying (3.1), (3.2) on [to, to+8].



PARABOLIC VOLTERRA INTEGRODIFFERENTIAL EQUATION 95

We now consider global solutions of (1.1), (1.2) in the present situation, where g is
defined by (5.3). First, we strengthen our assumptions in the nonlinear operator g.
(B1) q is continuous from [0, T]x E X X; to X and for each bounded set
B < X there is a positive continuous functional b, defined on [0, T]X E,
which is bounded on bounded subsets of [0, T] X E, such that

”q(t’ X, )’1) _q(t’ X, )’2)"§ bO(t, x)”y2_ Y1”1
forall0=¢t=T, xe€E and y;, y,€B.

THEOREM 6. Assume (A1)-(AS5), (B1), (B2) with W = X1, are true. Let f; and g1
satisfy the hypotheses of Corollary 2. Assume also that there are constants Co>0, C1>0
such that

(5.4) lg e x, )= Cilxlle +llyll) + Co

forall (t, x, y)in [0, T]1X E X X. Let g be defined by (5.3). Then foreach uo € X thereisa
global solution u(t) of (1.1), (1.2) on [0, T].

Proof. Let upe X;. Then by Theorem 5 there exists a local solution u(¢) of (1.1),
(1.2). Let ¢, be a point where u(t,) is defined and let I =[¢o, to+6]. Let 0<n <1 -,
where o is determined from (5.2). In what follows, we use the notation C;(i =0) to
denote universal positive constants which are independent of #,. For fixed M >0 let S
be the class of all functions v : I » X which satisfy

lo@—v@=Mlt—1|", oSt 7=t0+80,  v(t))=A"(to)ulto).
By (5.3) and (5.4) there is a positive constant C, such that
(5.5) lgo(t, Y= Callyli+Cos (2, y)€[0, TIX X,
So by Lemma 4 there is C3>0, C4> 0 such that

(5.6) lu@®lh=Cs
and
(5.7 lA@u@)|=C,

as long as u(t) exists. By interpolation we have

A (to)u (to)|| = Cs,
so that
(5.8) lo@l=Cs, A ()0 ()= Cy

foralltel,ves.
Now consider the integrodifferential equation

w'(t)+A()w(t) = j La(t, s)go(s, w(s)) +g1(t, s, w(s))] ds

to

(5.9

+ho(2) + he(t) + f1(t, w(2)), =1,
(5.10) w(to) = u(to),
where

t,

(5.11) holt) = j alt, )gols, u(s)) ds +folt),
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(5.12) ha(t) = LO gr(t, s, u(s)) ds.

We shall show that there is a positive constant § >0, independent of f,, such that if
So=min (8, T —to) then (5.9), (5.10) has a solution on [¢y, to+ o). By stepping off
intervals of length 8y, we construct a global solution of (1.1), (1.2).

For each v € S, define

gv(t, y)=q(t,A_w(t0)U(t), )’), (ty Y)GIXXl-
Let B = X; be any bounded set. Then by (B1)' we have

llgo (2, y1) = 8o (t, y2)| = bo(t, A (to)v (1))ly1— yallx

forallteI,ve S and y;, y, € B. By (5.8) there is a constant b, > 0 (independent of v and
to) such that

sup bo(t, A (to)v(t)) = boo < 00.

Therefore,

llgo (2 y1) — 8o (& y2)| = beollys — yallu
foralltel, yi, y.€ B and v € S. Similarly by (5.4) there is Cg >0 such that

(5013) "gv(ty Y)”§ Cllly“1+ CS, (ta Y)EI XXI-

Applying Corollary 2, it follows that for each v € S there exists a unique global solution
w(t) of the integrodifferential equation

w' () +A@Ow() = I [a(t, 5)gu(s, w(s))+g1(t, s, w(s))] ds + ho(t)

+hi(t) + f1(t, w(2)), tel,
w(to) = u(to).
By Lemma 4, there is Co =0 such that
(5.14) Iweli=(1-x)"{2 sup [Ro(s)ll1 + Co} €7, tel,

where

Ro(t) = U(t, to)u(to) +j UG, $)lhols) + ha(s)] ds.

fo

Now from (3.15), (5.5), (5.6), (5.11), (5.12), (5.14) and Lemma 1 we have

(5.15) lw(®l: = Cio, tel
Hence from (3.16), (5.13), (5.15) it follows that

(5.16) lg.(t, w|=Cr1,  tel
and

(5.17) it wlu=Cra,  tel,

with Cy,, C1, independent of both v and ¢,.
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Define a mapping 6 on S by

(Bv)(t)=A"(t)w(t), tel,
where v and w are related by means of the integral equation

(5.18) w(t)=U(, to)u(to)+J U(t, )[¥V,(w)(s)+fi(s, w(s))] ds

to

with

W, (w)(t)= j [a(t, 5)8.(s, w(s))+gi(t, s, w(s))] ds + ho(t) + hy(t)

0

for t € I. From (3.15), (5.6), (5.16) there is Ci3 > 0 such that
(5.19) [T.(w)OI=Crs, tel, veS.

We wish to show that v € S if § is sufficiently small. It is clear that 6v € C(I'; X). So let
to=t=t+At=ty+6 and set Ao=A(ty). Then from (5.18)

Gu(t+ A1) —0v(t)=Ac[U (t+ At, to) — U(t, to)Ju(to)

t+At
LAY {j U+ At, $),(w)(s) + fi(s, w(s))] ds

- [ UG w006 + 165, wis) ds)

fo
=J1+J2.
By [9, Lemma I1.14.4], (5.17), (5.19)

ill= c@an'~c,
and
I2ll= € (A1)~ (llog At|+1)(C12+ C13).

Choose 0<¢e9<1—w —n and define § to be the minimum of 1 and the expression

M 1/gg
C[Cs+(Cr2+ C13) 05<1§1<31 sl (llog Sl +1)] ’

Then 6 does not depend on ¢, and
l6v(t+ At)— Ov(t)]|= M (A", tel, ves.

Since 6v(to) = Agu(ty), it follows that v e S for all v e S.

We consider S as a closed, bounded, convex subset of the Banach space C(I; X).
Then 6 maps S into itself and we next show that 6 is continuous. Choose a sequence {v,,}
in S such that v, > v in C(I; X) and let

v, (t) = Agw,(2).

Then from (5.18)

W ()= w(t) = [ U(t, )W, (wn)(s)— W (w)(s)] ds

to

+j U(t, $)f(s, wa(s))—fils, wis))] ds,

0
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Applying Lemma 4 (with C, = C, = Cs = 0) we obtain constants « and vy, independent
of n, such that

”Wn (t) - W(t)”1 = (1 - K)_l{z ,Osgl_l,,.pét ”Rn (S)”l} e‘y(t—to),

where

t s
R0 =] U) [ als, g5, wr) —g(r, wir)] dr ds.
to to

We now show that R,, » 0 in C(I; X;) as n > 0. By Lemma 1, it suffices to show that

t

tim [ a(t, 78, (5, w(r)) ~ (s, ()] dr =0

in the space C*(I'; X). But this follows easily from (B2). Hence w, »w in C(I; X;) so
that 6v,, - 6v in C(I; X). This proves continuity if 4. Standard arguments may be used
to show that @ is also compact. Thus by the Schauder fixed point theorem there is an
element v € S such that 6v = v. Consequently v(t) = A (to)w(¢) on I and w(¢) satisfies

t

W)+ AOw(e) =j [a(t, $)q(s, w(s), w(s))+gi(t, s, w(s)] ds

to

+ho()+hi()+fi(t, w(®),  tel,

with w (o) = u(to). If we set u(t) = w(t), we obtain the desired solution of (3.1), (3.2). O

6. Applications. We first give a very brief description as to how equations of the
type (1.1), (1.2) can arise in applications to problems in heat flow. A thorough account
of these types of problems is given in [15]. Consider a rigid heat conductor in which heat
flows in only one direction. Let u(¢, x), €(¢, x), q(¢, x) and h (¢, x) denote the tempera-
ture, internal energy, heat flux and heat supply, respectively, where ¢ denotes time and x
denotes the position in the body. The energy balance equation is

(6'1) E;(t, x)=_‘Ix(t, x)+h(t’ x)'

The classical linear theory for heat flow in a homogeneous isotropic material is obtained
from (6.1) by assuming that the internal energy depends linearly on the temperature

(6.2) e(t,x)=¢eo+boult, x), bo>0,
and the heat flux is related to the temperature by Fourier’s law:
(6'3) Q(f, x)=—(:0ux(t, x), C0>0.

However, in materials of fading memory type (Coleman and Mizel [6]) the classical
theory of heat flow is inadequate. In these types of materials assumptions (6.2), (6.3) are
replaced by more general relations which assume that the internal energy and heat flux
are functionals (rather than functions) of the temperature and the gradient of the
temperature, respectively. In the linear theory (Nunziato [16]) the functionals (¢, x)
and q(t, x) are taken, respectively, as

(6.4) s(t,x)=so+b0u(t,x)+J' b(t—s)u(s, x) ds, t=0,
0

t

(6.5) qt, x)= ~c0ux(t,x)+j a(t—s)u.(s, x) ds, t=0,

0
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where we are assuming, without loss of generality, that the history of the temperature is
prescribed as zero for ¢t =0. The functions a, b are usually assumed to be decaying
exponentials with positive coefficients. The energy balance (6.1) applied to (6.4), (6.5)
leads to the integrodifferential equation

6.6) bou,(t, x) — coli(t, x) = L [a(t—8)uu(s, x)=b'(t—s)u(s, x)]ds

+h(t,x)—bO)ul(t, x).

ExAMPLE 1. We consider a generalized semilinear version of (6.6). Let R =
(=00, +00) and consider the following pure initial-value problem

e (K (1, %)ty = j [alt, 5)(o (s, X)ux(s, x))x + (5, $)u(s, x)] ds
6.7)
+h(t, x)+f(u(t, x)), t=0, xeR,

(6.8) u(0, x) = uo(x), x€R.

We assume that all of the functions k, a, o, p, v, h and f are real-valued. In what follows,
the letter C will be used to denote a positive constant depending only on T. We assume
that k is a positive continuous function having a continuous first partial derivative k, on
0=1t<00, x € R and satisfying

(i) 0<ko=k(t x)<ko,

(ii) Ky (2, x)| = k1,
(i) |k(t, x)—k(r,x)|=Clt—7|*
(iv) |k, (t, x)— ko (7, x)|=C|t—7|*

forall0=t,7=T, x € R, where ko, ko, k1 are constants depending only on T.
We assume that p is continuous with a continuous first partial derivative p, on
0=t<o0,xeR and

(6.10) o, x)|=C, |, x)|=C, 0=t=T, xeR.
We assume that the nonlinear functions o, f satisfy (see [7, Example 2)), f(0) =0 and
(6.11) f,oeCl(=00,+0), [f(s)|=M, |o'(s)|=M, seR
and for each r >0 there is a constant ¢, >0 such that
o' —o' )| =clt—s|, |t|=r, |s|=r,
(6.12)
I -fl=clt—sl, |tl=r, |s|=r

We assume that a and y are continuous on [0, 0©0) X [0, ) and that a satisfies hypothesis
(AS) for each T >0.

Let ¢y >0 be a fixed constant. The change of variables u > e~
an equivalent problem

C

o'y converts (6.7) into

t

u,— (k(t, X)uy)x +cou = I [a(t, s)(a(p(s, x)ux(s, x)))x +¥(t, s)u(s, x)] ds

0
(6.13) +h(t,x)+f(tu(t,x)), =0, xeR,

with a(t,s), p(ts) y(ts), h(t,x) in (6.7) replaced by e “‘a(t,s), e p(t x),
e "y (1, 5), e “h(t, x), respectively, and f(t, y) =e “°'f(e“"y). It is clear that the
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basic assumptions on a, p, y, h are unchanged. From now on we discuss the pure
initial-value problem (6.13), (6.8).
Let X = L*(—00, +0), the complex Hilbert space with inner product defined by

+00

(u, v) =J u(x) vix) dx
and corresponding norm |u|=+(u, u). Let H*(~00, + ) denote the usual (Hilbert)
Sobolev space space with norm defined by

leel* = |ul® + | Dul* +|D?ul?,

where D denotes differentiation with respect to x. For each t =0, we define a linear
operator A(¢) in X by

0

Au(x)= o (k(t, x)Du(x))+cou(x) a.e.x€eR,

where

ueD(A)=D(A(t)) = H*(—, +©).
Define operators g, f1 on [0, 00) X D(A) by
go(t, u)(x) = 5)—(— o(p(t,x) Re Du(x)) ae.xeR,

filt, u)(x)=e 'f(e Re u(x)) a.e.xeR.
We define g; on [0, 00) X[0, ©0) X D(A) by
(6.14) g1(t, s, u)(x)=vy(t, s) Re u(x), x€R.

Finally, we define fo(¢)(x) = h(¢, x) and assume that f, satisfies hypothesis (A4) for each
T>0. We now consider the Cauchy problem (1.1), (1.2) as an integrodifferential
equation in L*(—00, 00).

It is standard that {A (¢): 0 = t < o0} satisfies hypotheses (A1), (A2), (A3) for every
t>0. Consider the nonlinear operator go. Using (6.10), (6.11) we see that

+00

j lgo(t, w)* dx = C(IDu|*+|D*u?), O0=t=T.

So go maps [0, ©0) X D(A) into X and has sublinear growth. By the Sobolev embedding
theorem there exists a continuous injection H %(—00, 4+ 0) > C} (— 00, +00), the Banach
space of bounded continuous functions on (—0c0, +00) having a bounded continuous
first derivative. So if B = D(A) is a bounded set then there is a positive number 7 such
that

lullcico+ay=r forallueB.

From (6.12) it then follows that
J |go(t, u)—go(t, V)P dx =Cllu—v|’, w,veB, 0=t=T,
where C depends only on T and B. Similar type estimates show that

go(tn, Un)~> go(t, u) strongly in L*(—00, +00)
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ast, > t, u, - u. Thus we conclude that g, satisfies (A6)' with W = D(A). Using the same
type of argument we can show that the operator f; will satisfy (A6)' with u =3 and
Xi/2=D(A"?(0)) = H'(—, +00). Itis also clear that g, satisfies (A6)' and that both f,
and g; have sublinear growth. Therefore by Corollary 2, for each uoe H>(— 0, +00),
the Cauchy problem (1.1), (1.2) has a unique global strong solution u(¢) on [0, c0) which
belongs to C([0, 00); H*(—00, +00)) N C*([0, 00); L*(— 00, +0)). If the initial function
uo(x) is real-valued then by (1.1) the imaginary part Im u (¢, x) is zero and we obtain a
strong solution of (6.13), (6.8).

Example 2. As an application of the results of § 5 we consider the following
nonlinear initial-boundary value problem:

u—(k(t, x)uy)x = L La(t, s)(o (s, x, u(s, x), ux(s, x))x +y(t, s)u(s, x)]ds + h(t, x)

(6.15) +F(u(t, x), ux(t, x)), t>0, 0<x<l,

(6.16) u(t,0=u(1)=0, t>0,
(6.17) u(0, x) = uo(x), 0<x<l.

As in the first example, the functions k, a, o, v, h and f are real-valued. We assume
k (¢, x) satisfies the usual hypotheses on 0=t <0, 0=x =1 (compare (6.9)) and a(t, s)
satisfies (A5) for each T >0. Suppose that y(t, s) is continuous on [0, c0) X[0, ).
Assume that the nonlinear function o (¢, x, u, v) is continuous from [0, c©) X [0, 1] X R X
R to R and has continuous first partial derivatives with respect to x, u and v. Also,
assume there is a constant ¢; >0 and positive continuous functions c;(¢, x) such that

|2 (t, x, u, v)| = s1(|lu|+|ov]) +ca(t, x),
]a-i(t’ X, U, U)‘§C,'(t, x), l=3,4
for all (¢, x, u, v) in [0, 00) X[0, 1]X R X R, where o; denotes the first partial derivative

with respect to the ith variable. We assume that the nonlinear function f(x, v) is C' on
R X R and satisfies

(6.18) f(0,v)=0 forallveR,
(6.19) Vf is bounded and locally Lipschitz continuous.

We let X = L*(0, 1) and H?(0, 1) denote the usual (complex) Hilbert and Sobolev
spaces with norm | - | and || - |, respectively. For each ¢ =0 we define A(¢) in X by

A(t)= —;‘% (k(t, x)Du(x)) ae. 0=x=1,

with domain
D(A)={ueH*0,1):u(0)=u(1)=0}.

Then the family {A(¢): 0= ¢ < oo} satisfies (A1), (A2), (A3) on each bounded interval
[0, T']. Property (5.1) is a consequence of the Sobolev embedding theorem.

By Nirenberg [14], there are positive constants M and «, 0<« <3, such that
H?(0,1)> C"[0, 1]is a continuous embedding, where C"*“[0, 1] denotes the space of
functions having uniformly Holder continuous first derivative with exponent «, and
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furthermore
leall et = Mlul*[ul' ™%, we H*(0, 1),

where a = (k +3)/2. We choose k <w <3, then for each ¢ =0 the operator A~ “(¢) is a
continuous (compact) mapping from X into C"“[0, 1] (see [1, Proposition 4.1]). By a
result of Kato [11] the space X,, = X,,(¢#) doesnotdependon t. Soif welet E=C 10,1]
then (5.2) is satisfied.

Now define q(¢, ¢, ) on [0, 0] X E X X; by

q(t, @, ¥)(x) = o2(t, x, Re ¢(x), Re Do(x))
+03(t, x, Re ¢(x), Re Dp(x)) Re Dys(x)
+a4(t, x, Re (x), Re Dg(x)) Re D*¢(x)
for a.e. 0=x =1. Then q is a continuous mapping from [0, c0) X E X X; to X and

la(t, ¢, ¥1)—q(t, @, )| =b (1, @)1 — walls,

where
4
b(t, @)= sup, g‘,z i (¢, x, Re @(x), Re De(x)).

It follows that g satisfies (B1)', (B2) (with W = X) and (5.4).
We define the operator f; on X, by

fi(u)(x)=f(Re u(x),Re Du(x)), 0O0=x=1.

Using assumptions (6.18), (6.19) it follows that f;:X, > H3(0, )=D(AY?(0)) is
well-defined, Lipschitz continuous on bounded subsets of X; and has sublinear growth.
So if we define go:[0, 0) X X; > X by

golt, ¥)(x) = q(t, ¥(x), Y(x)) = % o(t, x, Re ¢(x), Re Dis(x)),

and g; by (6.14) then from Theorem 6, for each uoe D(A), there is a global strong
solution u(#) of (1.1), (1.2) on [0, 00) which belongs to C([0, ); H*(0, 1)) N C ([0, ©);
L*(0, 1)). If the initial function uo(x) is real, we then obtain a global strong solution of
(6.15), (6.16), (6.17).

7. Remarks on regularity. In this section we discuss the regularity of solutions of
(6.13), (6.8) in the special case f(¢, u(t, x)) = c1u(t, x), where c; is a constant. We show
that if the functions uo(x), k(¢, x), p(¢, x), o(s), a(t, s), ¥(¢, s) and h(t, x) are sufficiently
smooth, then (6.13), (6.8) has a classical solution.

We shall always assume that the hypotheses made in § 6 regarding (6.13) hold. In
particular, we assume that (6.9), (6.10), (6.11) are true. We make the following
additional hypotheses:

(H1) The partial derivatives k,(¢, x), k. (¢, x), k. (2, x) exist and are continuous

on [0, ©) X R. Also, for each T >0, there is a constant C = C(T) > 0 such
that

(i) s%p|k,(t,x)|§C, 0=t=T;

(ii) s%plk,x(t,x)léC, 0st=T;



PARABOLIC VOLTERRA INTEGRODIFFERENTIAL EQUATION 103

(iii) s%plkxx(t,x)léC, 0=t=T,;
(iv) Slllzplk,(t,x)—k,(s,x)léClt—sl“, 0=s5,t=T,;

(v) s%pIk,x(t,x)~k,x(s,x)|§C|t—s|°‘, P=st=T.

(H2) The function a (¢, s) satisfies hypothesis (a;) of § 4 for each T > 0.

(H3)  The function o belongs to C*(—00, +00).

(H4) There is a constant § € (0, 1] such that for each T >0 thereis C = C(T) >
0 such that

sup o (6, x)=p (s, 0)| = Cle—s[’,

sup o, (8, x) = px(s, X)| = Cle =’

forall0=¢s=T.

(HS) The function fo(¢) defined by fo(#)(x) = h(t, x) satisfies hypothesis (fo) of
§ 4 for each T >0. Furthermore, foe C([0, 0); H'(—00, +00)).

(H6) The partial derivative (3y/a¢) (¢, s) is continuous on [0, 00) %[0, 00).

By taking the positive constant ¢, sufficiently large we may assume without loss of
generality that ¢; = 0. By the results of § 6, given a real-valued initial-function uo€e
H?*(—00, +00), we have a unique global strong solution u(¢) of (6.13), (6.8) (with
£(t, u(t, x))=0) which belongs to C ([0, 00); H*(— 00, +00)) N C*([0, 00); L*(— 00, + 00)).
We make the following additional hypotheses.

H7) fo(0) — A(0)up belongs to D(A).

Under the hypotheses (H1)-(H7) the assumptions of Theorem 4 are satisfied.
Hence u(¢) belongs to C'([0, ©0); H*(—00, +00))N C*([0, 00); L*(—00, +0)). Using
the Sobolev embedding theorem we have the following result.

LEMMA 6. After redefinition on a set of measure zero the functions u(t, x), u,(t, x),
u(t, x), un(t, x) are all classical derivatives and are continuous on [0, ©) X R.

Now consider the distributional derivative u,.(t, x) of u(t, x). It is a measurable
function of (1, x) and satisfies a local L> condition of the type

ty +00
J j lue (8, X)> dx dt <00,  0=to<t;<00.
1 00

o -
Furthermore, from equation (6.13)

t

(6 Ds 6, 00+ [ (s, 51705, )05, 20)p 5 XVt s, ) s
(7.1) =u,(t, x)+coult, x)—k.(t, x)u.(t, x)—h(t, x)
- j [a(t, )0 (o (5, X (5, XD (5, )it (5, %)+ ¥, 8)ua(s, )] .
Let

K(,s, x)=

; (tl {at, )0 (o(s, X)iua (s, X))o (5, )+ (6, (s, x)}
LX)
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and let F(¢, x) denote the right-hand side of (7.1) divided by k(¢, x). Then u,,(t,x) isa
solution of the Volterra integral equation

t
uxx(t,x)+J‘ K(t, s, x)un(s,x)ds=F(t,x) ae.t=0, xeR.
0

Since K and F are continuous, it follows that u,,(¢, x) can be redefined on a set of
measure zero so as to be a continuous function on [0, )X R. It then follows that
u,,(t, x) is the classical second partial derivative of u(¢, x) with respect to x. Thus u (¢, x)
is a classical solution of (6.13), (6.8).

We remark that a slightly better regularity result is true, namely, u(t, x)e
Hi.. (— 0, +00). This is proven by showing that for any bounded interval [a, ] and any
€0>0, T >0 there is a constant C = C(a, b, T, £o) >0 such that

d
I lube(t, x)|? dx = C?

forall0=¢t=T,a=c<d=b,0<|h|<eo. Here the notation u, denotes the difference
quotient

uﬁx(t,x)=%[uxx(t,x+h)—uxx(t, 0l

The last inequality is obtained by estimating pointwise the function ¢ - ub (t,x) as a
solution of an appropriate Volterra integral equation.
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tions which improved and broadened the results in the final manuscript.
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GENERAL SOLUTION OF THE PRICE-DIVIDEND
INTEGRAL EQUATION*

N. A. DERZKOY AND S. P. SETHI#

Abstract. This paper reports some new closed-form formulas of financial valuation for a deterministic
firm with general financing policies and a time-dependent discount rate. A model of the firm is described
which includes the price-dividend-balance integral equation whose solution yields the time path of share
price, number of shares, and the value of the firm. The solution technique depends on deriving an equivalent
system of differential equations. A broad class of firms for which the solution formulas are valid is
characterized.

Introduction. In this paper we study the valuation of a firm described by a
deterministic model in which the discount rate or the rate of return required by the
stockholders of the firm is assumed to be time-dependent and exogenously given.
Special versions of this model are available in Gordon [2] and Miller and Modigliani [3].
For our purposes the firm is defined by two functions on [0, 00); D(t) gives the rate at
which dividends are paid, and E(¢) gives the rate at which external equity capital is
raised. The rate of dividend per share is given by D(¢) divided by the number of shares
outstanding. External capital is raised by selling the firm’s stock at the current market
price. This process increases the number of outstanding shares when E(¢)>0. When
E(¢)<0, the firm is buying back its own stock, thereby reducing the number of
outstanding shares.

Therefore, the essential piece of information for the valuation problem is the price
of one share which in our ideal world is assumed to be the discounted present value of
future dividend payments to that share [2]. An alternate approach is indicated at the
end of this paper.

Within this context, the governing equations of the model are developed and solved
under fairly minimal assumptions on D and E and a variable discount rate k(¢).

1. Preliminary remarks. Traditionally a firm is defined in terms of the total rate of
earnings X (t), the dividend rate D(¢) and the rate of external equity funding E(¢). It is
normally assumed that D(¢) = X (¢), and 0= E(¢) for all #. A nonnegative function r(¢)
giving the rate of return on the firm’s capital is also introduced.

The governing differential equation for X (¢) is then

X'(t)=r()[X()+E(t)-D(1)],
X(0)=X, given.

(1.1)

This section concludes by showing that once Xy, D and E are given, it is possible to
find X (¢) and r(¢), satisfying all the usual assumptions.

THEOREM 1.1. Let D(t) and E(t) be nonnegative Borel measurable functions on
[0, ) and let X, be positive. Then there exist nonnegative functions r(t) and X (t) on
[0, ) such that

1. r(¢) is locally integrable and positive,

2. X (¢) is absolutely continuous, positive, and X (0) = X,

3. (1.1) is satisfied a.e.

* Received by the editors November 4, 1980 and in final form March 23, 1981.
+ Department of Mathematics, University of Toronto, Toronto, Canada M5S 1A1.
+ Faculty of Management Studies, University of Toronto, Toronto, Canada, M5S 1V4.
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Proof. We rearrange (1.1) as follows:

(1.2) X—-rX=r(E—-D).

(1.2) is a first order linear differential equation for X and has a formal solution

(13) X(1)=exp ( Lt r(r) dr) { Lt (E(s)=D(s)) d[—exp ( - jos r(r) dr)] +X0} .

We let ¢ (s) = —exp (—[; 7(7) dr), and note that ¢ is:

1. negative with ¢(0) =1,
(1.4) 2. increasing,
3. absolutely continuous.

Furthermore, for any function ¢ satisfying the above requirements there exists a

corresponding r.
The term within { } on the right side of (1.3) can be written in terms of ¢ as

(1.5) j (E(s)—D(s)) db (s) + Xo.

It is clear that by controlling the rate of increase of ¢ on the sets where E(-)—D(-) is
negative or very large we can arrange that E(-)—D(-) is integrable with respect to
d¢ () and that (1.5) remains positive. This completes the proof.

We return now to D and E as starting points for a model.

2. Definition of the present model. We begin with the discount rate. Let k(¢) be an
instantaneous discount rate such that the discounted value of M, at time ¢, to the
present time ¢, is

)
M, =M, exp (—j k(s) ds).
t
It is convenient to think of the exponential multiplier as a ‘“‘present value” operator
pv (t1, t2). The present value operator has the useful property

(2.1) pv (t1, t3) = pv (t1, t2) PV (£2, t3).

The minimal assumptions needed to write the basic equations of the model are:
(A1) E, D, k are real-valued locally integrable functions on [0, c0),
(A2) D, k are nonnegative on [0, 00).

A firm shall be the pair (D, E).

To write down the basic equations of the model we require a financial theory: the
price of a single share is the discounted present value of future dividends which that
share earns. Thus, if P(#) denotes price and N(¢) denotes the number of shares
outstanding at time ¢,

_ ®pv(t, 7)D(7)dr
2.2) P(1) —[ e
_ "E(s)
2.3) N(t)—N0+J0 P6) ds.

Of course, the value of the firm V(¢) at time ¢ can be defined as V (¢) = N (¢)P(t). Note
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that Ny is the number of shares at time =0 and effectively establishes share
denomination.

We seek a solution P(t), N(¢) in the class of positive measurable functions on [0, c0)
for which the integrands of (2.2) and (2.3) are Lebesgue integrable. The equations then
imply that P and N must be absolutely continuous. It turns out that the calculations are
greatly facilitated if we work with the present value variables

P (1) =pv (0, HP(1),
(2.4) 2(1)=pv (0, )D (),

E(t)=pv(0,)E(t).
If we multiply (2.2) by pv (0, t), we obtain

pv (0, 0P = 20 pjvv((i )T)Dm dr

Also (2.3) can be written

t
_ pv (0, s)E(s)
NO=Not [ B &
Using the variables of (2.4), these equations become
(T 2()

2.5) g’(t)-Jt N

L E(s)
2.6 = I —=ds;
(2.6) N(t)=No+ \ g’(s)ds’

a solution pair (2, N) consists of a pair of positive and absolutely continuous functions
on [0, c0), for which the integrals in (2.5) and (2.6) are Lebesgue and the equations are
satisfied.

Differentiation of (2.5) and (2.6) yields

@7 0= -0,
=20
(2.8) N'(1)= ?0)
t-a.e. Note that (2.7), which can also be stated as
D(1)

P'(1)= k(t)P(t)_J_V_(B’

is the well-known arbitrage equation of Miller and Modigliani [3].

3. Solution of the (D, E) model. The natural class of functions in which to seek
solutions to (2.7) and (2.8) is larger than the natural solution class pertaining to (2.4) and
(2.5). To define it we need only require that there be a nonempty interval [0, T'] on
which # and N are positive and absolutely continuous. We shall call these blocked
solutions.

The initial value problem at ¢t =0 for system (2.7), (2.8) possesses a solution on
some nonempty interval [0, T'] for each set of positive initial values 2 (0), No. However,
we shall see shortly that under fairly lenient assumptions on & and &, for each N, there
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is a unique 2(0) which yields a positive solution on [0, ). This initial price 2 (0)
coincides with the accepted value derived using finance arguments [3], [2],

1 (oo}
3.1) H0=—J (D(s)—&(s)) ds.
NO 0
We clarify the connection between (2.5), (2.6) and (2.7), (2.8) in the following.
THEOREM 3.1. 2(t), N(t), 0=t <0 are positive solutions of (2.5, 2.6) if and only if
they are positive solutions of (2.7, 2.8) and

(3.2) N(O) =N09

(3.3) }Lrg P)=0,
2()

(3'4) N(‘)GLI(Oa CD),
&}_ loc

(3.5) P L0,

Proof. (=>). Properties (3.2)—(3.5) are consequences of our assumption that the
integrals in (2.5), (2.6) are Lebesgue. In addition it follows that 2 and N are absolutely
continuous and can be differentiated to yield (2.7), (2.8).

(&<). Assumptions (3.2)—(3.5) enable us to integrate (2.7), (2.8) to obtain

T
Q’(t)—g’(T)=I }%Z; dr
and
_ " &(r)
N(t)—N0+J‘0 70 dr,

which after taking limr. yields (2.5), (2.6). This completes the proof.
To solve the differential system we proceed as follows. From (2.7), (2.8) we obtain

(3.6) EW)—Dt)=N@®P'()+N'(t1)P(t) = % (NP@)).
Integration from 0 to ¢ and application of the initial conditions yields
3.7) NOP (1) = NoP (0) —L (@ (s) - E(s)) ds.

We now use (3.7) together with (2.7) to obtain

P'(t) _ —-D(t)
P(t)  NoP(0)- o (D(7)—&(7)) dr

which has the solution

~ ‘ -D(r) dr
(3.8) P(1)=2(0) exp I No2(0) =13 (@ ()~ &(s)) ds’

Similarly, using (3.7) together with (2.8) yields

_ ¢ &(r)dr
5.9 NO=Noeww || 5 T &
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Furthermore, it is clear from formulas (3.8), (3.9) that, if Ny and 2(0) are positive,
the initial value problem has the unique solution given by the formulas on some interval
[0, T], T >0. It is also evident that positive solutions cannot exist beyond any point T'
for which

T
NoP(0)= [ (@(5)-8(5)) ds.
0
Such points T will always exist if

T

SuPTJ'O (D(s)— E(s)) ds = y1 = 0.

We shall therefore assume that y; < c0. This being the case, consider the choice of 2 (0).
If No?(0)>1v,, it follows from (3.8) that to satisfy lim,.. P(t)=0, we need
[;° P (7) dr = 00, that is, an infinite present value of dividend payments. It follows also
that supr IOT &(s) ds = 0. Thus, we have an explosive scenario in which stock is being
sold just to pay dividends on shares outstanding, which is not satisfactory from the
financial point of view. Considerations of this kind motivate the assumptions of the
following section.

4. Further assumptions. Let us assume, in addition to (A1), (A2), that

P(-)—&(+)e L1(0, ),

and
(A3) 0<Iw(9(s)—f§(s)) ds Vr=0.
The effect of (A3) is to fix a value of #(0) in (4.1) for which
No(0)— LT (@(s)—E(s) ds >0V,
and for which the expression on the left approaches 0 as 7 - 00. In the remainder of this

section we shall let

0

1
4.1) 9’(0)=F0 L (D(s)—&(s)) ds.
Then, (3.8), (3.9) become
4.2) P(1)=P(0) exp L = @Ii(f)gﬁ» -
_ ! &(r)dr
(4.3) N(t)=Nypexp L I:O D)—€(s) ds’

We note that these closed-form solutions have been obtained in this general setting for
the first time.

Our final assumption requires that N (¢) does not approach 0, that is,
t &(r)dr
[T (@)~ 8(s)) ds

(A4) v =inf J'
t Jo
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Under (A4), we are able to obtain the present value V(¢) pv (0, ¢) of the firm from (3.7),
which now becomes

(4.4) V(e)pv (0, ) =N ()P (1) = I (D(s)—&(s)) ds,
t
and also conclude that lim;.. Z(¢) =0.

At this point we have completed the proof of the key theorem.

THEOREM 4.1. If (D, E) is a firm satisfying (A1)-(A4), then for an initial number
of shares Ny, (4.2), (4.3) is the unique positive solution existing on [0, ©) to the basic
equations (2.2), (2.3) governing share price and number of shares at time t.

We note that formula (4.4) is well known, if not mathematically rigorously derived,
in the finance literature [2]. It states that the value of the firm at time ¢ is the present
value of the total dividends accruing to the stockholders of record at time ¢. The integral
of the first term in the integrand represents the total present value of dividends issued by
the firm in the interval (¢, ). A portion of this dividend is obviously going to stocks
issued in the interval (¢, ©0). However, this portion in an efficient market under certainty,
i.e., where no arbitrage possibilities exist, must equal the integral of the second term in
the integrand of (4.4).

Clearly, the residual represented by (4.4), which came to the stockholder of record
t, can now be interpreted as the present value of the firm at time ¢

We also note that the steps of the foregoing analysis are reversible in the sense that
we could have started out with (4.4) as the formula for the value of the firm and derive
the price-dividend balance equation (2.2) and obtain the share price formula (4.2) with
P(0) as in (4.1).

Finally, it should be mentioned that the (D, E) model of a firm is meaningful under
weaker assumptions than (A1)-(A4). It is possible, for example, to define very general
solution classes to (2.4)-(2.6) by allowing the blocked solutions to extend to +00 with
value 0 and adopting the convention that 1/0=0c0 and 1/c0=0 in the integral
equations. The financially meaningful solution is then defined as the supremum of a
solution class. Such an approach has the advantage of producing a financially acceptable
solution for certain examples excluded by assumptions (A1)-(A4). Furthermore, it is
also possible to extend the model for the case when (D, E) is an arbitrary stochastic
process.
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NONZERO SOLUTIONS OF NONLINEAR INTEGRAL EQUATIONS
MODELING INFECTIOUS DISEASE*

LYNN R. WILLIAMSt AND RICHARD W. LEGGETT#

Abstract. Sufficient conditions to insure the existence of periodic solutions to the nonlinear integral
equation, x(f) = j‘:_, f(s, x(s)) ds, are given in terms of simple product and product integral inequalities. The
equation can be interpreted as a model for the spread of infectious diseases (e.g., gonorrhea or any of the
rhinovirus viruses) if x(¢) is the proportion of infectives at time ¢ and f(t, x(¢)) is the proportion of new
infectives per unit time.

1. Summary of results. The nonlinear integral equation
t
(1.1) x(t)=_[ f(s, x(s)) ds
t—7

can be interpreted as a model for the spread of a number of infectious diseases with
periodic contact rate that varies due to certain seasonal factors. This model was
formulated and discussed at some length by Cooke and Kaplan in [2]. Briefly, x(¢)
represents the proportion of infectives (the number of individuals in the population who
are infectious divided by the size of the population) at time ¢, f(¢, x(¢)) is the proportion
of new infectives per unit time (f(¢, 0) = 0), and the positive constant 7 is the length of
time an individual remains infectious. Cooke and Kaplan consider functions which
generalize f(t, x) = a(t)x(1 —x), where a(¢) is the effective contact rate. Equation (1.1)
represents an S-I-S model, that is, it is assumed that the population is divided into
susceptibles S and infectives I and that the disease is not lethal and confers no
immunity. Furthermore, there is assumed to be no latent period between being exposed
and becoming infectious.

Assuming that f is a continuous, bounded, nonnegative function which is w-
periodic in ¢ for some w >0, Cooke and Kaplan show that (1.1) has a nontrivial
w-periodic solution provided

1
a=inf a(t)>-,
teR T

where a(?) is the uniform limit of f(¢, x)/x as x decreases to zero. This result can be
interpreted physically as implying that, for the type of disease modeled by (1.1), the
infection can remain endemic to the population and the number of infectives can
oscillate periodically provided the contact rate a(t), the average of effective contacts
with other individuals per infective per time period, exceeds 1/7. Thus the result is a
type of threshold theorem, since it asserts that the infection attains a “‘periodic steady
state” in the population provided ar remains above the threshold level of 1.
Nussbaum [6] considered (1.1) in terms of the linear operator L, defined by

t

(1.2) L.x(t) =I

t—

a(s)x(s)ds
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and established the existence of a number 7, such that the spectral radius r(L,) satisfies

<1l forr<r,
r(L;,)<{=1 forr=r,,
>1 for 7> 7,.

The number 7, represents a threshold in the sense that if 7> 7, then (1.1) has a
nontrivial periodic solution, but if 7 = 7o, then, for most functions of interest, (1.1) has
no nontrivial periodic solution. Smith [7] obtained similar results and established the
existence of a number 7°> 7, such that if 7o<7<7°, then (1.1) has a unique positive
periodic solution. Smith also showed that if 7o <7, <7, < TO, then the solution at 7 is
smaller than the solution at 7,. Crude estimates are given in [6] and [7] which show that
(1.1) has a positive periodic solution provided

inf J a(s)ds>1.

O=t=ow

Nussbaum [6] also gives estimates on r(L,) in terms of approximating operators with
finite dimensional range; however, these results may be difficult to apply and are
numerically implementable only for special contact rates a(s).

We establish the existence of positive w-periodic solutions to (1.1) in terms of a
simple product or product integral. The results are easily implemented and only require
that one have basic information about upper and lower bounds of the contact rate on
certain subintervals of [0, w]. We obtain periodic solutions without requiring that the
average contact rate exceed a threshold level on each time interval of length equal to the
duration of infection. Even though the average contact rate is small during some time
intervals, the disease may remain endemic to the population provided the contact rate is
sufficiently large during the remaining intervals. Although we do not specifically
consider the operator L., our results do have implications for r(L,) and may be viewed
as giving a computable, sufficient condition to ensure that r(L,)>1.

We assume throughout that 7 and w are positive constants and make the following
assumptions on f and a:

H1. The function f(¢, x) is continuous from (—00, c0) X [0, c©) into [0, 00).

H2. For each teRand x =0, f(¢, x) = f(t + w, x) and f(z,0)=0.

H3. The function a(¢) is the uniform limit as x approaches zero of f(¢, x)/x and
a(t) is bounded away from zero.

H4. There exists R >0 such that f(¢, x) = R/t for all (¢, x) € [0, w]%X [0, R].

Assumptions H1, H2, and H3 are precisely as in [2] and [6]. Instead of H4, Cooke
and Kaplan [2] require f to be bounded above and Nussbaum [6] requires
lim,.o (f( x)/x)=0.

In our first result, we use the function

X -
e —1— e(x y)‘r+
P(x,y)= Xy x—y
e —1—xr ifx=y.

ifx#y,

If M,and M, represent minimal contact rates on consecutive intervals of length 7, then
P(M;, M) provides a measure of the carryover of infectives from one interval to the
next.

THEOREM 1. Assume that f and a satisfy H1-H4. Suppose w = Nt + v, for some
integer N =0 and some y =0, and let b, c € [0, w] satisfy b +y = c. For each integer j, set
di=b—(j—1)7,and let M; = inf {a(¢): d; =t =d;_,}. Then (1.1) has a positive w-periodic



114 LYNN R. WILLIAMS AND RICHARD W. LEGGETT

solution provided

s+
1) j a(t)dt>1, bss=c,
(ii) Myat>1,
N-1
i) (=)o = B T PV, M) > 1.

With N =0 in Theorem 1, conditions (i), (ii) and (iii) can be reduced to the
requirement that

I a(t)dt>1, O=s=w

(cf. Nussbaum [6, Lemma 77).

Example 1. In studying the incidence of chickenpox, mumps and measles in New
York City and Baltimore for a thirty-five year period, London and Yorke [5] concluded
that the contact rate for each disease is 1.7 to 2 times higher in the winter months (when
school is in session) than in the summer months. Although these diseases are not S-I-S
diseases, the large variance in contact rate may be exhibited by other diseases.
Motivated by the work of London and Yorke, we let w =365, 7 =15, and assume that
a(t)=1.4/15 on [0, 260] and that a(t)=.7/15 on [260, 365]. Choosing b =0 andc =5
gives

M;=1.4/15,

M;=.7/15, 2=j=8,
and

M;=1.4/15, 9=j=25.

Thus, M,s7>1, and

23
(1 —e‘Mw)(Mﬂesz—M—‘eMz*+Aﬁ) [T P(Mj.r, M)=1.1214>1.
M, M,/ =2
Also, for b=s=c, [{ "a(t)dt=1.4>1. The existence of a nonzero solution to (1.1)
follows from Theorem 1 provided f and a satisfy H1-H4, even though a(¢)<1/7 onan
interval of length 7.
Theorem 1 can be improved by replacing conditions (ii) and (iii) with an integral
condition; however, the integral condition is typically not as easily verified as
condition (iii).

THEOREM 2. Assume that f and a satisfy H1-H4, and that N, vy, b, c,d1,* * + , dn
and My, - -+, My are as in the statement of Theorem 1. Then (1.1) has a positive
w-periodic solution provided

s+7T
@) j a(t)dt>1, b=s=c,
(i1) Myi(c+r—8)+gn(s—w)>1, C=Es=c+r,

where g1(s) = M(s —d,) and forj=1

q; d,
o) = | GOMyr &M g

dj+l

gi()M,q e™im1 740 gy —J

s+
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Although verification of condition (ii) of Theorem 2 is not as easily done as
condition (iii) of Theorem 1, the determination of gn(s) is straightforward. At each
stage the integrands involve only expressions of the form c, ct, c e™, or cte™, for
constants ¢ and M. The next example illustrates the dramatic improvement that can
occur with this extra computational effort.

Example 2. Consider the case described by the conditions w =40, 7=10,a(¢t)=.2
on[0,10],a(¢)=.10n[20,40]anda(¢)=.0750n[10, 20]. We take N =4, Since Mn 417
must be larger than 1, we must choose b =¢c =0. Then M;=.2, M,=M;=.1 and
M, =.075. Conditions (i) and (ii) of Theorem 1 (or Theorem 2) are satisfied, but the
product in condition (iii) of Theorem 1 is

(1—e " 7%)(2e=2e+2)P(.1,.1)P(.075,.1)=.3437.

Thus, the existence of a positive solution to (1.1) does not follow from Theorem 1.
However,

g1(s)=.2(s +10),
g2(s) = .2(s +20),
g3(s) =.2(s +30),

and
ga(s —40)=3 e (-1 +e %)+ 2s.

Then .2(10—s)+g4(s —40) =2+3 ¢’ (=1 +¢7%), and its minimum value on [0, 10]
occurs when s = 10. This minimum is 5 —% e > =1.2553. Thus, if f and a satisfy H1-H4,
the existence of a nonzero solution to (1.1) follows from Theorem 2.

2. Proofs of theorems. The proofs employ the compression of the cone theorem
of Krasnosel’skii [3] for completely continuous operators on ordered Banach spaces.
Let E be a real Banach space. A closed, convex set K < E is called a ( positive) cone if
the following conditions are satisfied:

(1) if x€ K, then Ax e K for A =0;

(ii) if x e K and —x € K, then x =0.

A cone K in E induces a partial ordering = in E by

x=y ifandonlyif y—-xek.

(We will write x £ y if y — x ¢ K.) A Banach space E with a partial ordering = induced by
a cone K is called an ordered Banach space. By a completely continuous map we mean a
continuous function which takes bounded sets into relatively compact sets. We consider
completely continuous maps which take some subset K., 0 <c¢ =00, of a cone K back
into K, where K. ={x eK: ||x||=c},0<c <, and Koo =K.

The following theorem is essentially due to Krasnosel’skii [3, p. 137] (see also [1]
and [4]).

THEOREM 3 (compression of a cone). Let A: K - K be a completely continuous
operator. If r and R are real numbers, 0 <r <R, such that

(1) AxZxifxeK,and x #0,

(ii) for each € >0, (1+¢&)xZ Ax if xeK and ||x|=R, then A has at least one
nonzero fixed point in K.
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Proof of Theorem 1. Let E be the sup-normed Banach space of continuous
real-valued functions on R which are w-periodic, and let K be the cone of nonnegative
functions in E. Define the operator A: K - K by

2.1 Ax(t)= Jt f(s, x(s)) ds.

It is easy to see, using the Arzela—Ascoli theorem, that A is completely continuous. The
proof of Theorem 1 involves showing that under the given assumptions, the operator A
defined in (2.1) satisfies the conditions of Theorem 3. It follows from assumption H4
that A maps Ky into K, so that A satisfies condition (ii) of Theorem 3. It remains to be
shown that A satisfies condition (i) of Theorem 3 for some r > 0.

Let k be a real number such that 0<k <1,

s+
kJ a(t)dt>1, b=s=c,
kMy.1, 7>1, and

~ M M N-1
(l—e kMNT)(leTekMZT—ATIekM2T+M’1'> H P(kM+1’kM)>1'
2 2/ j=2

It follows from assumption H3 that there exists a real number r, 0 <r <R, such that
f(t, s)=ka(t)s, 0=s=r. Suppose x€K,, x #0 and Ax =x. We will show that this
assumption leads to a contradiction. It will then follow that A satisfies the conditions of
Theorem 3 and has a nonzero fixed point in K.

Since Ax =1x,

L”T als)x(s) ds = j a(s)Ax(s) ds
- LCH a(s)(J':_T £(t, x(8)) dt) ds

> Lm a(s) (I_ ka(H)x(2) dt) ds.

By changing the order of integration, it follows that

J:M a(s)x(s)ds= J‘:_T a(t)x(t) (J‘btﬂ ka(s) ds) dt
2.2) + LC ateye(o)( j " kats) ds) di

+

+ICC+Ta(t)x(t)( j )

ka(s) ds) dr.
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We now transform the integral over [ — 7, b]in (2.2) to an integral over [c, ¢ + 7] from
which the product in condition (iii) is derived.

Suppose g is any bounded, nonnegative, integrable function, / is a real number, and
M =inf{a(t): |—7=t=1}. Then

! !
Jl_ a(t)x(t)g(t) dtgjl_ a(t)Ax(t)g(t) dt

ol

=] a(t)g(t) (J:t_ff(s, x(s)) ds> dt

ol t

. a(rg(t) (L_T ka(s)x(s) ds) dt

v

=" a(s)x(s)(jl  ka(g() dt) ds
J' a(s)x(s) J' ka(Hg(t) dt)

(
gJ'l 2Ta(s)x(s)(J'l . kMg(t) dt) ds

+j_ a(s)x(s)(J kMg (£) dt)

From this result, it follows that

Il’_ a(s)x(s) (I’ kMg (t) dt) ds

l

gj'l: a(s)x (s)(J:T kM(L kMg (1) dtl) dt2> ds

i

of

With repeated application to the integral over [/ — 7, /], it follows that

a(s)x(s) (Il kM( I l kMg (1) dt1> dt2> ds.

!
J’_ a(s)x(s)g(s) ds

! l

= a(s)x(s)(J.iH kMg (t)) dt; + E (kM)"J‘S_HJ‘ s J‘t2 g(t) dty - - dt]‘) ds.

1-27 -7 j=2 -7 J¢4

-
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Forj=2,

s+7 al 1
_[ J'J‘ g(t) dty - - - dy
5] o
I I g(tl) I I te J dtj_l e dtz d11 dti
I-7 t t

el el

L ) J (tl) 2);'2d11 dt;

EC() ,(EI T a [ eo(] ) a

T

(z—1+7)'l : =1+ (t=s—-7)""
L, —1)! d”.L,g(t)( G-n! (-1 )d’

_( (’_’”)]1 BN Gl et ) L
_L,g (-1 dt—LTg(t) TR
Thus,
1
J:_ a(s)x(s)g(s) ds
I—T 1 1
= S (kny U
z[ awxo(]_e0 T wmy T
I 5 jt=s—1)"
_L”g(t)igl(kM) T d,>ds_
Hence,
! s .
j a(s)x(s)g(s)dszj a(s)x(s)(J‘ g (kM M1+ gy
(2‘3) I=r =27 -7

1
—I g()kM e ™M ~s77 dt) ds,

s+T

and by replacing fi.. g(OkMe™M*™"" 4t with the larger
L Lg(kM ™"~ 4y it follows that

!

a(s)x(s)g(s) ds
l—7

24) e ,
%I a(s)x(s)(J g(NkM & M~ (1 — gkMU=s727) dz) ds
-2 I-7
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Application of inequality (2.4) to the integral on [b —7, b] in (2.2) yields

s+T

Lb_fa(s)x(s)(J.b

d

;J " a(s)x(s)(kMiy(s +7—b)) ds
d>

ka(t) dt) ds

d,

dz
= j a(s)x(s)(f le(t—dz)kMze"Mz("dz)(l—ekMz(df”)dt) ds
ds do

= M M
_ 1 — e*Malds=s) ( M7 e Mo 201 kMo 4 1>.
L3 a(s)x(s)(1—e )ds\ kMiTe Mze M,

Also, for any j,

d]
_[ a(s)x(s)(1 — e ™ 4n179) g
d

i+1

d

d]+1 (]
zj a(s)x(s)(f (1= M0 My g "M
d d

i+2 i+1

(11— Mindiam9)y dt) ds
d;

;j T a(s)x(s)(1— e Mm@y g P(kMj.1, kM;).
d,

Using the w-periodicity of a and x gives

dN
J' a(s)x(s)(1— e ™Mnnn=9y dg

dn+1

= I o a(s)x(s)(1—e Mnc=9) gg

c+T
=J a(s_w)X(s_w)(l-—ekMN(C—S))ds

= Jc ' a(s)x(s)(1—e ™M~y gg,

Therefore,

b s+T

L_T a(s)x(s) (L ka(t) dt) ds

c+T M M
éJ' a(s)x(s)((l_ekMN(C_S))(leTekMz‘r"“MlekM21+ﬁ1)
c 2 2

1

119

N-1
] P(kM;., kM)) ds.
j=2
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Since a(t) = Mn+1 on [c, ¢ + 7], it follows from (2.2) that

r Ta(s)x(s) ds
b

= LC a(s)x(s)(J;HT ka(t) dt) ds

(2.5) P
+ J a(s)x(s) (kMN+1(c Fr—s)+(1— e Mne9)

P My, Mo\
-(le'rekM2 —ATLekM2 M:) j];[ P(kMH, kM))

By assumption, | ka(f) dt>1 for b =s =c. Also, the function

M_l kM21' )
we o T jl;[ P(kM;.1, kM;)

KMy o(c +7—s)+ (1 — e M) (lefe"Mf -
has only one critical value, and since that value is a maximum, the function attains its
minimum on [¢, ¢ + 7] at one of the endpoints of the interval. When s = ¢, we obtain
kMy 17 and when s = ¢ + 7, the value is

. M
(1-e "M~*)(kM17e"M2*—A7:e’°M2’ MZ) .[1 P(kM;.1, kM;).
=2

Both these values are greater than 1. This leads to a contradiction in (2.5) unless
§5 " a(s)x(s)ds =0. If [, " a(s)x(s) ds—O it follows that x=0 on [b, c +7]. Then
0=x(b)=Ax(b)= ]b f(s, x(5)) ds>jb .ka(s)x(s)ds, so that x=0 on [b—17,b). A
continuation of this argument leads to the conclusion that x is the zero function, which
contradicts the original assumption. Hence, A satisfies the conditions of Theorem 3 and
has a nonzero fixed point in K. U

Proof of Theorem 2. Using an argument analogous to that in the proof of Theorem
1 with inequality (2.3) substituted for (2.4), one obtains a nonzero solution to (1.1)
provided

IA

s+7
J a(t)det>1, b=s=c,

and

c+T
(2.6) I a(t)dt+gn(s—w)>1, C=Es=c+r,

where gy is defined in the statement of Theorem 2. The desired conclusion then follows
from the inequality

c+T
j a(t)dt =My, 1(c+7—5), cCSs=c+r. 0

In Theorems 1 and 2, a(¢) is required to exceed 1/7 for some values of ¢ If
f(t, x)<a(t)x for x>0 (as is the case for the function f(¢, x)=a(t)x(1—x)), this
condition is, in fact, necessary, for if a (¢) = 1/ for each ¢, it is easy to see that (1.1) has
only the zero solution.
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Theorems 1 and 2 give conditions which insure that the spectral radius of L, is
larger than one; however, better estimates of the spectral radius can be obtained by a
slight change in the proofs. Suppose x is a nonzero periodic function, A >0, and
)tx(t)=L,x(t)=L'_,a(s)x(s) ds. By repeating the argument in Theorem 1 for the
operator (1/A)L, instead of the operator A, one obtains a contradiction if

s+T
0 f ta(dr>1,  bssse
. 1
(ii) XMN+IT> 1,

_ M~ M M M;
G (] — e~ MnT/A ( 17 Myen My 1) P( i+l ,) 1
(i) (=e 0% M,° ]H A

Hence, if A * is any number for which (i), (i) and (iii) above hold, then r(L,)>A*.

Upper estimates for r(L,) can be obtained by replacing the minimum of a(¢) on
each interval with the corresponding maximum and using the inequalities in Theorem 2.
Specifically, suppose U; =sup {a(t): d;=t=d;_,} and A * satisfies

s+T
(iv) L X—;a(t) dt<1, b=s=c,
and
1
) FUN+1(C+T—S)+gN(S—w)<1, C=Es=c+T,
where gi(s)=(1/A*)M;(s —d>), and for j =1,

“ 1 1
gei®=[ 035U ex0 (55 Upna(t=dyon)

i+

df 1 1
—J- g,(t) = Ui exp( Uin(t—s —r)) dt.

+7

Then r(L,)<A*.
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UNIQUE AND MULTIPLE SOLUTIONS OF A FAMILY OF
DIFFERENTIAL EQUATIONS MODELING CHEMICAL REACTIONS*

LYNN R. WILLIAMSt AND RICHARD W. LEGGETT#

Abstract. Uniqueness and multiplicity of solutions are studied for the boundary value problem
Bx"(t)—x'(t) +pf(x(t)) =0, 0=t=1, B>0, p>0,
Bx'(0)-x(0)=0, x'(1)=0,
which arises in chemical reactor theory. The ‘‘reaction rate” f is given by
fx)=(q—-x)exp[-k/(1+x)], k>0, g>0.

Uniqueness is shown for (1) sufficiently small p, (2) certain regions of p and sufficiently small g8, (3) large
p and sufficiently large 8 and (4) fixed 8 and sufficiently large p. Regions of points (8, p, q, k) are identified
where there are at least three solutions. The combination of these results gives an improved picture of the
behavior of the number of solutions as p and B vary.

1. Introduction. The boundary value problem
(1.1) Bx"(t)—x'()+pf(x(1))=0, 0=r=1, B>0, p>0,
1.2) Bx'(0)—x(0)=0, x'(1)=0

arises in chemical reactor theory and describes steady-state reactor concentration and
reaction temperature along a one-dimensional adiabatic dispersed-plug flow tubular
reactor. The function f is the Arrhenius reaction rate given by

(1.3) f(xy=(q—x)exp[—k/(1+x)], k>0, g>0.

It is known from experimental results that reactions modeled by (1.1)-(1.3) may
exhibit either unique or multiple steady states, depending on the constants B, p, q
and k. Cohen [4] has shown that the bvp (1.1)-(1.3) has a unique solution whenever
k =4 +4/q. The existence of at least three solutions to (1.1)—(1.3) in the case k >4 +4/q
has been suggested for some values of p and 8 by heuristic arguments [4], numerical
methods [3], and results of Amann [1], and has been demonstrated rigorous:y by
Leggett and Williams [5], [7] for an interval of values of p and numbers 8 greater
than some ,.

The purpose of this paper is to expand upon known results concerning the number
of solutions of (1.1)—(1.3). In particular, we extend the uniqueness result of Cohen
to the case k >4+4/q by showing uniqueness for (1) sufficiently small p, (2) certain
regions of p and sufficiently small 8, (3) large p and sufficiently large 8, and (4) fixed
B and sufficiently large p. Additionally, we describe a method (based on results in [5]
for abstract ordered Banach spaces) for identifying regions of points (B, p, q, k) where
(1.1)-(1.3) has at least three solutions. The combination of these results gives an
improved picture of the behavior of the number of solutions of (1.1)-(1.3) as p and
B vary. This is illustrated for the special case g = 1.1, k = 10.

* Received by the editors October 1, 1980.
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We have attempted to make this article as complete and self-contained as was
practical. In particular, a proof of Cohen’s uniqueness result is presented, and a proof
of a suitably modified version of the abstract result [5] needed for the multiple solutions
results is included.

Other uniqueness conditions for the same general type of chemical reaction
problem considered here are given in [6]. However, the heat generation function
considered in [6] is slightly different from the function f considered here, and the
methods of [6] are different from ours.

2. Uniqueness, It follows from the strong maximum principle (see also [5]) that
every solution to (1.1)-(1.3) satisfies 0=x(¢)=q, 0=t =1. Furthermore the solutions
to (1.1)—(1.3) are precisely the fixed points of the completely continuous operator A
defined on C([0, 1]) by

1
2.1) Ax(t)=J G(t, s)pf(x(s)) ds,
0
where
=s)/B, 0=r=s=1
G(t’s)_{l, 0=ss<t=1

Since G(¢, s) is an increasing function of ¢ for fixed s, it follows that any solution to
(1.1)-(1.3) is strictly increasing. Further, Cohen [4] established the existence of
minimal and maximal solutions to (1.1)—(1.3). The uniqueness result of Cohen follows
readily from this result and the following lemma.

LEMMA 2.1. If u and v are solutions to (1.1)-(1.3), a and b are real numbers such
thata=u(t)=v(@)=b, 0=t =1, and f(x)/x decreases on (a, b), then u=v.

Proof. Assume u#v. Then f(u(s))=(f(v(s))/v(s))u(s), 0=s=1, with strict
inequality holding for some s. Let r =ming=,=1 u(s)/v(s) and choose ty so that
rv(to) = u(ty). Then

(o) = u j (t0, $)PF(u(5)) ds
u(s )
j Glto, pf(w(s) 5 d
er. G (to, s)pf(v(s)) ds
0
=rv (to).
This contradiction proves Lemma 2.1. O

THEOREM 2.2. (Cohen). If k =4+4/q, then (1.1)-(1.3) has exactly one solution
for each value of p and B.

Proof. If k =4+4/q, then f(x)/x decreases on (0, ). 0O
The cases of interest occur, therefore, when k>4 +4/q. Then f(x)/x decreases
in (0, r1], where

(22) =

1 _ _ _ _ 1/2
k424 (kq—2q—(kq(kq—4q—4))"'"),
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increases in [ry, r»], where

1
2.3 = -2q+ —4q-4))"?
(2.3) ra k12 (kq —2q + (kq(kq —4q—4))"'""),
and decreases in [r,, ©). Also, f has a maximum at
(2.4) ro=3((4k + k*+4kq)"*=2—k),

f increases in [0, 7o), f decreases in [ro, 00), and 1, <r, <ro.

Placing restrictions on p and B forces solutions to (1.1)-(1.3) to lie in intervals
where f(x)/x decreases. Thus, using Lemma 2.1, we extend the uniqueness result of
Cohen to the case k >4+4/q. The following lemma will be used to obtain some of
these uniqueness results.

LEMMA 2.3. Suppose p and B are fixed and x is a solution to (1.1)-(1.3) such
that either x (1) = ro or pf(ro) = ro (ro is given in (2.4)). Then pf(x(1))> x(1).

Proof. Assume pf(x(1))=x(1). If x(1)=ro, then pf(x(t))<pf(x(1))=x(1),
0=t<1. On the other hand, if x(1)>ro and pf(ro) =ro, then pf(x(t))=pf(ro)=
ro<x(1), 0=t=1. Thus, in either case, x(1)=[, pf(x(1)) dt<[, x(1)dt=x(1), a
contradiction. 0

From this result, the uniqueness of the solution for small p follows easily.

THEOREM 2.4. If k>4+4/q and p =r,/f(r2), then there is only one solution to
(1.1)-(1.3) for each B >0 (r, is defined in (2.3)).

Proof. If p =r,/f(r,), then pf(ro) <ro since f(x)/x decreases in [r,, c©). Thus, if x
is any solution to (1.1)—(1.3), pf(x(1)) > x(1) by Lemma 2.3. The maximum of f(y)/y
on [ry, 00) occurs when y =r, and pf(r) =r,. It follows that x(1) <r,. Therefore, by
Lemma 2.1, there is only one solution, since f(x)/x decreases in (0,7;]. 0O

The next theorem shows that for fixed p, p >r1/f(r1), there is a unique solution
for all large B.

THEOREM 2.5. Suppose k>4+4/q, Bo is the solution to the equation

ri ra

f(r) f(raePoy

and

Bo(1~e™""Po)f(r)
Then. the boundary value problem (1.1)-(1.3) has a unique solution provided

Po

. " -1/B r
1- =—
(i) f(r1)<p<po and B(l—e ") o)
or
(i) po=p and B(l—e—”ﬁ)f(rze”");%'

Note. The expression B(1 —e P is an increasing function of B on (0, ) with
range (0, 1). Thus if condition (i) is satisfied for B4, it is satisfied for B = B,. The same
is true for condition (ii), although this fact is certainly not as obvious. Suppose condition
(ii) holds for B; and p and suppose B = B;. Since ri/f(r1)>r2/f(r2), it follows that
f(r2)>f(rz ¢'/Po). Thus if B1=Bo, then

B(l—e™%) frse"P)ZBi(1=e /P ))f(rs e¥'P).
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On the other hand, if 8; > B, then 8 > B, and

ry r r < r
Pf(r2 ) " pfra ™) pf(r) - pof(r)

=Bo(1—e P)=p(1—e""?).

Thus, in either case, condition (ii) holds for S.

Proof of Theorem 2.5. We will show that if condition (i) or condition (ii) holds
and x is a solution to (1.1)-(1.3), then x(0)=r,. The theorem will then follow from
Lemma 2.1, since f(x)/x decreases on [r,, o).

Suppose p and B satisfy condition (i). Then

I

By >_ 1 >
Bll-e )= pf(r)) Pofrl)

so that B8 =B and f(r, e'?) =f(r, e'/Po). Therefore,

= Bo(1—e""Po),

B(l—e )f(r,e"?) = f’( S fire'’)

r 1/8 r
=1/ < (r e );—
P e[ p

Now suppose p and 8 satisfy condition (ii). If 8 = B, then

~1/B8y = ~1/Byy _ _n
Bll-e JZ2Boll—e )= Pof(’l) Pf(rl)

and if B8 <o, then

r2 - r _ r
pf(rae'’®) " pf(rae'®)  pf(ri)

Hence, if p and B satisfy either condition (i) or condition (ii), then

Bl-eF)z

By > 4 2
pll=e )‘ma"{pﬂro’ pf(rze””)}'

Assume x is a solution to (1.1)—(1.3) and x(0) <r,. Then,

1 1
x(l)=L pf(x(s) ds=e'’*? L e Ppf(x(s)) ds =e"Px(0)<e'Pr,

and
! 1
x(0)= L e "®pf(x(s)) ds > [min {pf(x(t))}L e~"/B ds
= min {pf(x(0)), pf(x(D))}B(1—e"/?).

Thus, if f(x(0))=f(x(1)), then

_ ey Pfx(0)
¢ )= x(0)

_pf(ry)

r

x(0)> pf(x(0))B(1 B(1—e "?)x(0)

B(1—e *)x(0)z x(0),
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a contradiction. However, if f(x (1)) < f(x(0)), then x(1)>r, and
x(0)>pf(x(1)B(1—e V8 zpfe/Pr)B(1—e " P)z 1y,

also a contradiction. Thus x(0) = r, and the desired conclusion follows.

The next result establishes the existence of only one solution for fixed 8 provided
p is sufficiently large.

THEOREM 2.6. Suppose k >4+4/q and B, is the solution to the equation

_ -k
qe " =(q—rze'®) exP(l+r2e1/B‘)'
Then (1.1)-(1.3) has a unique solution, provided

(i) B=Biandpz e,
or

(i) B<Bi1and p=p;e*/B.
Proof. Suppose x is a solution to (1.1)—(1.3) and x(0) <r,. Then

1 1

x(l)=j0 pf(x(s)) ds<e1/3j:) e"/Ppf(x(s)) ds =e'Px(0)=e""r.

If condition (i) is satisfied, then B =B, so that f(x(1))=f(r; e'/?)=f(0). Clearly,
f(x(0))=£(0) so that

1
x(1)= j pf(x(s)) ds > p min {f(x(0)), f(x(1))}

=pf(0))=pge *zgq,

a contradiction. If condition (ii) is satisfied, let t =8/8:. Then 0<¢<1 and
1

x(1)= j pf(x(s)) ds > j pf(x(s)) ds

Z tp min {f(x(0)), f(x (1))}
But

t 1
x(¢) =j pf(x(s)) ds+J' eV Bpf(x(s)) ds
0 t

1
<I e Ppf(x(s)) ds =e"Px(0)=e""Pix(0)<e'Pir.
0

Thus, f(x(t))>f(ePir)=f(0). Also, f(x(0)=f(0), so that x(1)>pf(0)=
(B/B1)rq ek =g, another contradiction. Therefore we must have x(0)=r,, and the
desired conclusion follows from Lemma 2.1. 0
The final uniqueness result gives uniqueness for small 8 when p <r,/f(r1).
THEOREM 2.7. Ifk <4+4/q, p<ri/f(r1), B(1—e *®)<ri/pf(ro) and

g= ri—pf(r1)
= pf(ro) + pf(r)[=1+1n (f(r1)/f(ro)]’

then (1.1)-(1.3) has exactly one solution.
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Proof. Suppose x is a solution to (1.1)-(1.3). Then
1

1
X(0)=I e "Pf(x(s)) ds < pf(ro) L e P ds

0

=pf(r)B(1—e"*)=r.

If we show x (1) =r; as well, then the result will follow from Lemma 2.1.
Suppose there exists ¢ € (0, 1] such that x(¢) = r;. Then

t 1
r= J' pf(x(s)) ds +J. e Ppf(x(s)) ds
0 t

1
<wpf(r) +pf(ro) | 7% ds
= pf (r) + pf(r))B(1— e V"#)=g(1).

Now g'(¢) = pf(r1) — pf(ro) e # so that the maximum value of g occurs when

_ f(r1)
t=1+p8 lnf(ro)
and
M _ f(r) _f (r1)
g1+81n f(ro)) ~(1+81n f(ro)) pr(r)+ pfro( 1 f(ro))
= pfr0)+ (o) W5 ) - )
=pf(r)+ri—pf(r)=ry,
a contradiction. Thus, x(¢) <r, for each ¢. O

3.1. Multiple solutions. Our basic multiple solutions result is a special case of a
theorem concerning completely continuous operators on ordered Banach spaces [5,
Thm. 3.4]. However, for the sake of completeness, a short sketch of the basic ideas
in the proof will be given.

THEOREM 3.1. Suppose k <4+4/q and ry/f(r2) <p =r1/f(r1). Choose a € (ry, 2]
and let b be the number in (ro, q) such that f(a)=f(b). If there exists v (0, 1] such
that B satisfies the inequality

(3.1) 3(1—e-v/6);max{ (1-y 1@ b—a},

a
pf@ T f@y Y pfro)

then (1.1)-(1.3) has at least three solutions.

Proof. For x € C([0, 1)), let a(x) =min;_,=,=1x(¢), and consider the sets of con-
tinuous functions on [0, 1] defined by

Ui={x:0=x(t)<r;,0=t=1},

U,={x:0=x(t) =pf(ro),0=¢t=1,a(x)>a}

and

U={x:0=x()=pf(ro),0=t=1}.
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The operator Aox(t) given by

1

Aox(r) = j G, s)pfolx(s)) ds,

0

where

f(x), x=q,
0o , xX=q

folr)={

is a completely continuous map which leaves U and U, invariant and has the same
set of fixed points as A defined in (2.1) (see [5, Example 2.2]). Further, A, has no
fixed points on the boundary of U; in U, so that the fixed point index i(Ao, -, U) is
defined for U, and U, and i(Ao, U1, U)=i(Ay, U, U)=1. (See [2] for properties of
the fixed point index.)

If x is an increasing function such that 0=x(¢f)=b, t€[0, 1] and a(x) = a, then

a(Aox)=Aox(1—v)
1

1-y
[ pnxnds e[ e oppe(s) ds

1

>(1 -y)pf(0)+pf<a>f 1Y=9/8 g

1-y

=(1-y)pf(0)+pfa)B(1-e"*)za.
Also, if x € U and Aox(1) > b, then

a(Aox)=Aex(1—7y)
1

1-y
[ pnxnds+ [ e ppe(s) ds
1

1
= [ et as=[ a=e T ppeisn ds
1

= Ak (D=pfr0) [ (1= ds

-

>b—pf(ro)(y—B(l—e ") za.

It follows from the above that A, has no fixed points in the boundary of U, in
U. For if Aox =x and x(1)=b, then, since x is increasing, we have a(A¢x)>a. On
the other hand, if Agx =x and x(1)>b then Aox(1)>b and a(Aox)>a. Thus, the
fixed point index i(Ay, U,, U) is also defined. Let xo be an increasing element of U,
with xo(1) = b and define h: [0, 1]1x U, > U by

hit,x)=(1—1t)Aox + txo.

Then h is continuous with compact range. Suppose h(t, x) =x for some x € dU,. If
Aox(1)>bthena(Aox)>a,sothata(x)=a((1—1t)Aox +txo) > (1—t)a +ta = a. Also,
if Agx(1)=b, then

x(1)=1—-1)Aox(1)+1xo(1) = b,

and since x is increasing, a(A¢x)>a,and a(x) = a ((1 —#)Aox + txo) > a. Thus, i (h(s, - ),
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U,, U) is defined for each ¢ and is independent of ¢. Therefore
i(AO, U2’ U)= i(h(l, : ), UZ, U) = 1-

By the additivity properties of the fixed point index, it follows that
i(A, U\(U;U U,), U)=-1. Therefore the index is nonzero on U;, U, and
U\(U.U U,) and it follows that A, (and hence A) has a fixed point in each of these
sets. ad

3.2. Determination of the smallest B satisfying (3.1). The expression 8(1— e VP )
defines an increasing function of 8 with limit y at +00. Hence, if (3.1) holds for 8 = B
and v, then it holds for all 8 = 8,. If a/pf(a)=1, then

f(O) Cy)=vy
pf(a ( ) f (a) ’
so that (3.1) will not hold for any B. Let a, be the number in (r1, r,] such that

a,/pf(a,) =1, choose a € (a,, r.], and let b €[ro, q] be such that f(a)=f(b). We will
determine the smallest value 8(a, p) of 8 satisfying (3.1) for some y € (0, 1].

Let
a b a
=Pl = Ty
3 _—alIn(f(0)/f(a))
Peh@O=""0=0
and

a _ﬂm+b—a) f(a)
pf(a) f(a) pf(ro) f(a)—f(O)
and note that I'>0. We shall divide our discussion into cases described in terms of

Py, P,, and I'. However, some preliminary discussion is required.
Inequality (3.1) will be satisfied if and only if both the inequalities

fO) _a

r=r(a)=(

' -v/B -
3.1) B(l—e )+ (11— )m*‘%:()
and
(3.1)" B(l—eF)— y+b

pf(r 0

are satisfied. For y =T, (3.1) reduces to (3.1)' and for y =T, (3.1) reduces to (3.1)",
since y =T if and only if

a4y @, b-a
pf(a) @)= pfro)

Furthermore, it is easy to verify that I'=1 if and only if p = P,,.

Note that, for fixed B, the left side of (3.1)" is a decreasing function of y and is
positive for y sufficiently close to zero. In particular, smaller values of vy yield smaller
values of B satisfying (3.1)".

For fixed B, the left side of (3.1) has its maximum value when y=
—B 1In (f(0)/f(a)), increases in (0,—B In(f(0)/f(a))) and decreases for y=
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=B In (f(0)/f(a)). For vy =—B In (f(0)/f(a)), (3.1) reduces to
1), f0) FON , pfO)-a
B i ™ i) * o

and the left side of this inequality is an increasing function of 8 which is positive if
and only if

v

0,

a —pf(0)
p(f(@~£©0)+£(0) 1n

Bé —Bo(a’ P)-

fio)

Thus Bo(a, p) is the smallest number for which (3.1)' holds for some number y;
however, the required vy is —Bo(a, p) In (f(0)/f(a)), which may be greater than 1. In
fact, —Bo(a, p) In (f(0)/f(a))=1 if and only if p = P;.

We are now prepared for our case-by-case discussion.

Case 1. p =P, and p = P;. These inequalities imply that

f0) _
fla)~

Since y =T for all y € (0, 1], (3.1) reduces to (3.1)' and B(a, p) = Bo(a, p).

Case 2. p=P, and p <P;. In this case —Bo(a, p) In (f(0)/f(a))>1 and 1=T.
Again y =T for each y € (0, 1], so that (3.1) reduces to (3.1)". Since Bo(a, p) does not
satisfy (3.1)’ for any +ye(0,1], it follows that B(a,p)>pBo(a,p) and that
—B(a, p) In (f(0)/f(a))>1. Therefore if (3.1)' holds for 8 = B(a, p) and some y € (0, 1],
it must hold for y = 1. Then B(a, p) must be the solution to the equation

—Bo(a,p)In=—==1 and 1=T.

—1/B(a, p)
B(a p)(1—e ™) -l

Case 3. p=P;, and p=P;. These inequalities imply that both I' and
—Bo(a, p) In (f(0)/f(a)) are less than 1. We will subdivide this case in terms of these
two numbers.

Case 3a. I'=—Bo(a, p) In (f(0)/f(a)). For y€(0,T], (3.1) reduces to (3.1)" and
(3.1)' is not satisfied for B <Bo(a, p). If B =Bola, p), —B In (f(0)/f(a)) =T, so that the
smallest value of B satisfying (3.1)' for some y € (0, I'] is the solution to

fO©__a _
fla) pf(a)

If yel[T, 1], then (3.1) reduces to (3.1)” and the smallest value of B satisfying (3.1)"
for some y € [T, 1] is the solution to

Bl—e By +(1-T)—

_-T/By b—a=
B(l—e ) F+pf(r0) 0.
But, since
1—e 78y 4(1— fO) a N b-a
Bl=e =D oy oy B T Gy

B(a, p) is the solution to

_ _-T/B(a.,p) @—L
Bla,p)(1—e S
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Case 3b. I'>—Bo(a, p) In (f(0)/f(a)). With y=—Bo(a,p)In(f(0)/f(a)), (3.1)
reduces to (3.1)', and (3.1)' is satisfied with 8 = Bo(a, p). Since Bo(a, p) is the smallest
value of B satisfying (3.1)' for any v, it follows that 8(a, p) = Bo(a, p).

Case4. p=P, and p<P;. These inequalities imply I'=1 and
—Bola, p) In (f(0)/f(a))>1.1If y€(0,T7], then (3.1)' is the pertinent inequality and best

results are obtained when y =T If y [T, 1], then (3.1)" is the pertinent inequality
and again best results are obtained when y =T". Thus B(a, p) is the solution to

fO _a

_ -T/B(a.p) n/\Y_ _a _
B(a,p)(1—e )+ F)f(a) -

4. An example. Consider the case ¢ =1.1 and k = 10. Then

ro=0.78233, f(ro)=0.0011623,
r1=0.15550, f(r1)=0.0001647,
r.=0.63729, f(r2)=0.0010299,
r ra
=944.199, =618.797,
f(r1) f(r2)

and f(0) = 0.00004994.
By Theorem 2.4 there is only one solution if 0<p=618.797 and 8 >0. From
Theorem 2.7, it follows that the solution is unique provided

230.11
p<944.119 and B§¥—0.243737.

Using Theorem 2.5 with 8¢ =2.22 and po,=1172.669 establishes a unique solution if

044.119<p=1172.669 and B(1—¢ V/¢)z244119

or if

“1) 1172.669=<p and B(1-e " B)f(0.63729e1/6)2"0‘6172_9.

Finally, it follows from Theorem 2.6 with 8, =1.85034 that there is only one solution
when
B=1.85034 and p=z=e'

or

4.2) B<1.85034 and p gil()’/_ﬂS6_.5_'

The boundaries of the regions described by (4.1) and (4.2) intersect when p = 22,082
and B =1.8459.

For multiple solutions, observe that the minimum value of a/f(a)+ (b —a)/f(ro)
for aelry, r,] is 846.99 and occurs when a=r,. Also the minimum value of
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—(a In (f(0)/f(a)))/(f(a)—f(0)) for a €[ry, r.]is 1616.9. Therefore if p =r,/f(r1), then
p = Pi(a) for each a €(ry, r,]. Now if 618.797 <p =846.99, it follows from Case 2
that B(a, p) is the solution to

a
o

and that B, =inf, <.<,,B(a, p) = B(r2, p). If 846.99 <p =944.119, let a, be the number
in [ap, r2] such that

Bla,p)(1—e V/B@P)—

a, bi—a
+1 1

fa)  fro) U

For a = a,, it follows that p = Py(a) and, from Case 2, that 8(a, p) is the solution to

_-1Bapy__ % _
B(a,p)(1—e ) ) 0.

On the other hand, if a > a; then p > Py(a) and it follows from Case 4 that 8(a, p)
is the solution to

fO_ _a _
fla) pf(a)
Clearly B(a,p)=pB(ai, p) for a =a,. Also with this choice of constants, B(a, p)=
B(ai, p) if a =a,. Thus, B, =B(a1, p). The following table gives the value of B, for
selected points p € (618.797, 944.119].

p 620 650 700 750 800 847 900 944

B, 258 10.08 3.97 2.52 1.86 1.49 1.262 1.132

The combination of these results gives the following graphic description of the
number of solutions when g = 1.1 and k = 10.

B(a, p)(l _e—r‘(a)/B(a, p)) + (1 —-F(a))

ORNL-DWG 81-8982

UNIQUE MULTIPLE
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jo
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ON THE ESTIMATION OF FUNCTIONS OF SEVERAL VARIABLES
FROM AGGREGATED DATA*

NIRA DYNt AND GRACE WAHBAf

Abstract. This work was motivated by the problem of obtaining a smooth density function over a
geographical region from data aggregated over irregular subregions. Minimization of a family of roughness
criteria given ‘‘volume” data leads to smooth multivariate functions—Laplacian histosplines, having a
certain order of the iterated Laplacian of constant value in each of the subregions and satisfying natural
boundary conditions on the boundary of the region. For inexact data, e.g., in case of estimating an underlying
density given counts of events by subregions, Laplacian smoothing histosplines are constructed, analogous
to smoothing splines in the univariate case, and a method for choosing the smoothing parameter is presented.

For both cases of exact and inexact data, modified roughness criteria, independent of the region, are
discussed, and results known for point-evaluation data are extended to the case of aggregated data.

1. Introduction. The work in this paper is motivated by the following problem:
incidence rates of certain types of cancer are known to vary geographically; for
example, persons living in areas with higher exposure to sunshine are more likely to
get skin cancer than those in more northerly regions. Data on population density and
disease occurrence is typically collected by bureaucratic subdivision. It is desired, from
this aggregate data, to obtain an estimate p(x;, x2) of the probability p(xi, x,) that a
person living at (x;, x) will contract the disease in a given year. Contour map
representations of p can then be used to visually look for geographic patterns in p,
and for apparent correlations with other geographically varying variables.

For concreteness, we consider data reported by state. Let () represent the
contiguous 48 states of the U.S., and (); the ith state. If u(x;, x,) is the population
density at point (xi, x») (we pretend this is well defined), then the expected number
of cases of our subject disease in state i is u;;

i =j p(x1, x2)u(x1, x2) dxy dx,.

The population s; = [q, u(x1, x2) dx1 dx, of state i is assumed to be known exactly. The
population of further subdivisions, e.g., countries, can also be assumed to be known
exactly. In a particular year, the number Z; of cases actually occurring in {); is reported.
If p is very small, then Z; may be modelled as a Poisson random variable with mean
wi. From this data it is desired to estimate p(xi, x2), (x1, x2) € 1. We will do this by
first estimating u(xi, x») using only the population data {s;}, and then estimating
g(x1, x2)=p(x1, x2)u(x1, x2) using the disease count data {Z;}. The estimate of p is
then the quotient of these two estimates. For notational convenience we suppose that
population data is aggregated at the same level (i.e., state) as the disease count data.

It is possible to obtain heuristically reasonable estimates of u and g by assuming
that they are “smooth” in some sense, namely by minimizing certain measures of
roughness. The roughness measures we will consider in most detail are defined by

(1.1) Jl(u>=j (W2, +u,) dxy dxs
(9}

* Received by the editors July 12, 1979. This research was sponsored by the U.S. Army under contracts
DAAG29-75-C-0024 and DAAG29-77-G-0207.

+ Mathematics Research Center, University of Wisconsin-Madison, visitirig from the Department of
Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel.

1 Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin 53706.
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or
1.2) J(u)= J (U3, +2ul\, +ul,y,) dxy dx,.
Q

We will also briefly consider the more general measures
2

(1.3) J,,,(u)=J' §(ﬂ)(_‘9m"_) dxidxs, m=1,2,3,-- .

aizo\i/\dx] ox5 "

First we consider the problem of estimating u. With the roughness measures (1.1)
and (1.2) our estimate 7 (x;, x,) of u(x1, x,) will be the solution to one of the following
problems.

Problems 1-1/1-2. Find u € X (an appropriate space of functions on (1) to minimize
Ji(u)/J>(u) subject to the volume-matching constraints

1.4) J‘ Iu(x,y)dxdy=s,~, i=1,2,---,N,
Q;
where va=1 Q,‘ =,

We obtain a characterization of the solution to a general problem of which
Problems I-1 and I-2 are special cases.

Problem 1-A. Let Q be a smooth bounded subset of R, Euclidean d-space. Find
u € H™(Q) to minimize J(u) = A(u, u), where

A, v)= Y I a.sD*uD"v dx,
leel,|Bl=m JQ

subject to

J' ¢:(x)u(x) dx =s; i=1,2,--+,N.
a

Here H™(Q)) is the Sobolev space of functions with mixed partial derivatives up to
orderminLy(Q),x = (x1, X2, **, Xa),@ = (a1, -+, @), B=(B1," ", Ba)sla| =Ti-1 @,
Yo=Y Bi=m, D"u=("u/ox5" - - - dx54); a.p are functions of x satisfying
certain conditions specified in § 2, and the {¢;} are linearly independent functions in
L,(Q).

The characterization of the solution to Problem I-A is given in § 2. Certain further
details are carried out in § 3 for the special cases of Problems I-1 and I-2. A simple
example of Problem I-1, with concentric circles as subdomains, is worked out explicitly
in § 4.

Numerical algorithms for computing the solutions to Problems I-1 and I-2 will
appear in a separate paper.

The solutions to Problems I-1, I-2 and I-A are not required to be nonnegative,
although it is known, of course, that u(xi, x) and g(x;, x,) are nonnegative. In this
paper, we sidestep the philosophical, theoretical and computational problems of
imposing nonnegativity on the solution and hope to address this problem separately.
The results of Lions and Stampacchia [12] will be relevant.

We know of very little literature specifically on the volume matching problem
(although it is, of course, only a special case of the well-studied problem of estimating
a function given the values of some linear functionals (see Golomb and Weinberger
[9], Kimeldorf and Wahba [11]). Boneva, Kendall and Stefanov [2] discuss a special
case in one dimension. Schoenberg and de Boor [16] discuss a volume matching
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problem in two dimensions where the roughness measure has a tensor product structure
and () is a rectangle with the ),’s a rectangular subdivision. Our interest in this problem
was sparked by a paper of Tobler [18]. He proposed to solve the volume matching
problem by minimizing J1(u)=fa | (u3, +uZ,) dx; dx, subject to volume matching
conditions, positivity constraints, and certain boundary conditions, and suggested a
numerical algorithm for doing this. Some of the results here are alluded to in our
comments to his paper (Dyn, Wahba and Wong [8]).

Our results show that the solution to Problem I-A and the special cases I-1 and
I-2 satisfies a certain elliptic boundary value problem with Neumann boundary con-
ditions. Numerical implementation of these boundary value problems can be avoided
if one is willing to modify the roughness criteria. Let X be a suitable space of functions
on R? (to be defined), and define J,, on X by

. m am 2
fm(u)=j > (m)(—,%) dxy dx,.
R2%2i=0\1 0x1 0x2

Problem I-m. Find u € X to minimize J,.(#) subject to

J udx =s; i=1,2,--+,N.
Q

If & is the solution to this problem, we will have Jo(@) =T, () = T, (1), with inequalities
holding in general. This approach of using J.(u) as a roughness criterion has been
extensively used for estimating surfaces given evaluation data by Duchon [6], [7],
Meinguet [13], Paihua and Utreras [15] and Wahba [19]. Using these available results,
we derive in § 7 an explicit expression for the solution of Problem I-m and a readily
computable approximate solution. The results generalize easily to d dimensions.

We now proceed to the problem of estimating g. Since the data Z; are only
estimates of the u; we only want g to satisfy volume-matching conditions approxi-
mately. As in the case of smoothing splines (see [5] and references therein), we are
led to another problem.

Problem 1I-m. Find g € X to minimize

2

igl wi(Zi - J-nilg(x, y) dx dy) M (),

with J,,(u) defined by (1.3). Here the {w;} should be equal to 1/variance Z, The
parameter A represents a trade-off between the roughness of g and the infidelity of
g to the data. The variance of Z; is u;, which is, of course, unknown. In practice, the
w; would have to be chosen iteratively. One could set w; = 1/Z; initially, since Z; is
an estimate of w; The resulting estimate of g is then used to get {w;} for a second
estimate, etc.

In § 5 we characterize the solution to Problem II-m for J,,, given by (1.3) and for
given wy, - - -, wn. In § 6 we indicate how A may be chosen to approximately minimize
the predictive mean square error. In § 7 we give an explicit representation for the
solution to Problem II-m with J,, replaced by .7,,, (Problem ﬁ—m). More significantly,
we give explicit formulae for approximate solutions to Problem [1-m which are suitable
for numerical computation. In this context we also derive formulae for computing an
optimal A based on the results of § 6.

Hopefully, these results will provide the first step towards efficient methods for
converting aggregate data to density maps.
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2. Smooth surfaces on bounded domains matching integral data. Consider a
bounded domain Q of R? with T its boundary, and a bilinear form

2.1 Alw,v)= Y J Aop(x)D*uDP, a.p € L7(Q)
lallBl=m JQ
where x = (x1,* * *, Xq), @ = (ay, * * *, aq), || =Y a,a;a nonnegative integer, D“ =

0*/oxT) + - - (0"¢/dxq*) (and similar notation for 8). With this definition, A(u, v) is
continuous on H™(Q) x H™(Q), where H™ () is the Hilbert space

H™(@)={ulD*ueL’(Q),le|=m},  |ulimeo= ¥ ID*ulzo.

|kl=m

By assuming that
(2.2) Y awa(yaya>Co ¥y

leel|Bl=m

forall y =(yi, - - -, yx) and k = % {a||a| = m}, we have that [A (u, u)]"/* is a seminorm

on H™(Q) with a null space Q (the space of all polynomials of total degree less than
m, which is of dimension M = (""371).

In this section we prove the existence and uniqueness of the solution to Problem
I-A. For given si, ' *, sn, find u € H™({)) minimizing A (u, u) among all functions in
H™(Q) satisfying the integral data

2.3) j ubi=s, i=1,--,N,
0

where ¢1, - - -, ¢~ are N linearly independent functions in L* Q).

In particular, we characterize the solution of Problem I-A as a solution of a
certain boundary value problem.

We prove two lemmas.

LeMMA 2.1. In the subspace Hy of H™(Q) given by

(2.4) H0={u|u eH'”(Q),J Du =0, |a|<m},
Q

VA(u, u) is an equivalent norm to ||{ullgmq).
Proof. By (2.1) there exists C; >0 such that

(2.5) A, )= Clllulfm@,  ueH™Q).
Iterating the Poincaré inequality [14],

(2.6) L W= c{'az L (Duy* + Hﬂ u]2}, ue H\(Q),

=1
we obtain, for any 0=k <m,

Q(D“u)2§c2{ » L(D“u)2+ » [Lpau]z}, ue H™(Q),

lal=m k=la|<m

2.7 l IZ=

k

Thus, by (2.4) and (2.2),

o C
2.8) lulfim=Cs X j (DS 2AWww,  ueHAQ.
Q (4]

a|=m

Let Q =span{qi, ', qm}. We assume that N > M and that the N linear func-
tionals in (2.3) are linearly independent over Q. Without loss of generality we can
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assume that the matrix
M
(2.9) [j qi¢N—M+j]
[9) i,j=1
is of rank M. Therefore, there exists a basis {§1, : * * , gar} of Q with the property
(2.10) [[aonn=8s ii=1 M
Q
LeEMMA 2.2. In the subspace H, of H™(Q), given by
(2.11) H(Q)= [ulu eH™(Q), I up;=0,i=N-M+1, - ,N},
Q
VA(u, u) is an equivalent norm to ||ul| g ).

Proof. For any u € H,(Q}) there exists g€ Q such that uy,=u—q e Hy(Q}), and,
therefore,

M
u=uo+ ) iJ UoPN M +ic
i a

Since, for any ¢ € L,(Q0),

(2.12) Uﬂ ud| = glzlulmes  ue H™Q),

we get, in view of Lemma 2.1,

M
el e = ol erm ey + '21 IGill e llén -m+ill L2l ol )

i=

=CWA(uo, uo)= CoVA(u, u).

This together with (2.5) completes the proof of the lemma. 0O
Let u € H™(Q) satisfy (2.3). Then

M
(2.13) i=u-—y Sn—m+idi € Hy,
i=1
~ M -~ -~
(2.14) J ug;=s;— 21 sN—M+iJ‘ qip; =§, j=1,-+,N-M,
[} i= o)

and A(4, 4) = A(u, u). Therefore, Problem I-A is equivalent to Problem (I-A)’.
Problem (I-A): Find & € H, minimizing A (u, u) among all functions of H; satisfy-
ing (2.14), or equivalently satisfying

(2.15) I ab;=5, j=1,---,N—M,
Q
with
- M
(2.16) b =o;— ;1 Qi ON-M+is {a;;} arbitrary.

In particular, it is possible by assumption (2.9) to choose {a;;} such that

(2.17) Iq$f=o, j=1,---,N-M, qeQ.
Q
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By Lemma 2.2, the linear functionals

(2.18) L,(u)=J' uby =1, ,N-M
Q
are bounded in H; with respect to the norm [A (i, u)]"/?. Invoking the Riesz representa-
tion theorem, we conclude the existence of & e Hy, j=1,- -+, N —M, satisfying
(2.19) A(u, g,.)=J ud, allueH,
Q
and due to (2.17)
(2.20) A@&)=[ adi=0, allgeQ
Q
Since ¢1, - -+, ¢ are linearly independent so are &, - -, énv—ar, and the solution to
Problem (I-A)' is known to be the unique function in the span of {&, - -, énv—nm}

satisfying (2.16), (see [9]). The solution to Problem I-A is related to this solution
according to (2.13). The following theorem summarizes the above findings.

THEOREM 2.1. There exists a unique solution to Problem 1-A. The solution is of
the form

. N-M M .
(2.21) u= 21 ciéit+ Y Sn—m+idi
i= i=1
where &1, ¢, én—m are the unique functions in H, determined by (2.19), and
C1, " *, CN—M are the solution of the nonsingular linear system

N-M . M .
(2.22) Zl CGA(&, &) =5 =35 —IZI sN—M+lJ qidj, ji=1,--- ,N-M.
i= = Q

An immediate consequence of Theorem 2.1, (2.19) and (2.20) is
COROLLARY 2.1. The solution i of Problem I-A is uniquely determined by the
variational characterization

N
(2.23) A@o)=] (T vb)o  veH@)
Q \i=1
and the matching conditions
(224) J‘ u¢,'=s,', i=1,' . ',N.
0
In (2.23), vy, * *, vy~ are constants, which in particular satisfy
N
(2.25) L (,; wbi)q =0, qeQ

In case () is a smooth domain, the solution #i of Problem I-A can be further
characterized in terms of a boundary value problem. Since each ¢, 1=i=N—-M,
satisfies (2.19) and (2.20), namely

Ay, &)= L uq§,~ forallue H™(Q),

we conclude from Aubin [1, Corollary 2-2, pp. 219-220] that ¢&; is the unique solution
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in H; to the boundary value problem

(2.26) A&=4; inQ,

(2.27) 6iti=0 form=j=2m-—1onl.
In (2.26) A is the differential operator of order 2m given by

(2.28) Au= %  (-1)*'DP(a.s(x)Dw),

lal,|Bl=m
and in (2.27) 6 = (82m-1, * =+, Om) is a differential operator of order =m mapping
(2.29) H™(Q, A)={uluec H™(Q), Auc L*(Q)}

into [/ 2m—1 H™7"*(T), such that the generalized Green formula holds
1

m—1 af

(2.30) Al )= (Auyo+ J' C—
Q i=0 Jaq on
(9/9n is the operator of normal derivative to the boundary I).

The characterization (2.26), (2.27) of ¢ € H,, together with Theorem 2.1, yields
the following.

THEOREM 2.2. The solution to Problem 1-A, for a smooth domain Q is uniquely
determined as the solution to the boundary value problem

N
(2.31) Aﬁ = Z 'Yi¢i in Q,
i=1
(2.32) 8 =0, m=j=2m-1 onT,
which satisfies the matching conditions (2.24). In (2.31) v1, - -, y~ are N constants

satisfying (2.25).

3. Laplacian histosplines—The volume-matching surfaces. In this section we
specialize to the concrete problem of finding a smooth surface u = u(x;, x,) having
prescribed volumes over specified subdomains in R>. We characterize the volume-
matching surface as a function with the even order differential form A" =
[(8/8x1)*+ (3/9x2)*]™ of constant value in each of the subdomains. These surfaces are
therefore strikingly analogous to even degree one-dimensional splines and are regar-
ded as functions with a certain even order derivative of constant value in each
subinterval. Following a suggestion of Professor Iso Schoenberg, we term these surfaces
“Laplacian histosplines” in analogy to the univariate histosplines of Boneva, Kendall
and Stefanov [2], which are the even degree univariate splines solving the “area
matching’ problem.

We consider in detail the following two problems. Let {) be a smooth bounded
domain in R? subdivided into N disjoint domains Qq, -+, Qx, Q= U N, Q..

Problem 1-1. Find u € H'(Q) minimizing

(3.1) [ @t +ut) dr an,
Q
among all functions in H Q) satisfying

3.2) j u=s; i=1,---,N.
Q

i
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Problem 1-2. Find u € H*(Q)) minimizing
(3.3) j (U2 +2u2, +Uy,) dxy dx,
Q

among all functions in H>(Q) satisfying (3.2).

From a practical point of view these two problems are the most interesting, since
computation of solutions of similar problems with higher order forms (2.1) becomes
too complicated, with the increased complexity of the operators A and 8§ in Theorem
2.2.

Using Theorem 2.2 for the special setting of Problem I-1 together with the
classical Green formula [3],

a
(3.4) I uxlvx1+uxzvx2=J (—-Au)v+j X,
Q Q ran

we obtain:
THEOREM 3.1. The solution to Problem 1-1 is uniquely determined by the
conditions:

N 1 inQ;
Afl = o - { b
“ i§1 Yixa, X = 1o elsewhere,

N
Z Yi J‘ 1 = 09
=1 Ja,
aA
o 0 onT,
on

J 12=S,', i=1,“’,N.
Q

To get a similar result for Problem I-2, we first derive a more general Green
formula for the bilinear form corresponding to the seminorm (3.3). By a repeated use
of (3.4), we get

9 ]
(3'5) J' Uy Ux, + Zuxlxzvx1x2+ Uz xoUnpxy = '[ (Azu)v —j (“‘AM)U +j V_}i ' VU,
Q Q r \dn r on

since on I', Vu - Vo = (0u/dn)(dv/dn) + (du/dt)(dv/d7), where 9/t is the tangential
derivative to I', the last term in (3.5) becomes

d u 9 *u v *u v u
6o [vMoy=[lil, [ Tun_[TL B[4,
r on ron“on Jroron or Jron~ dn ot dn

Comparing (3.5) and (3.6) with the generalized Green formula (2.30), we conclude
that, for the seminorm (3.3), A and & of Theorem 2.2 are

2

) 3%\ 9
(3.7) A=A% 8 = (83, 62), 52=£§, 53=—(A+£§)£.

Thus, by Theorem 2.2:
THEOREM 3.2. The solution @i to Problem 1-2 is uniquely determined by the
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conditions:

N
A’i= Y yixa, inQ,

N
ZYlI q=09 q=1,x1,x2’
Q

A 32 aA
=0, (—2+A)—”-=0 onT
orT on

J' 12=S,', i=1,“',N.
Q;

Remark. It can be shown by Theorem 2.2 and repeated applications of the
classical Green formula that, for the higher order roughness criterion

(3.8) ]m(u)=J ﬁ("’)(am—”.)zdxldxz, m=3,

0i=1\i/\dxioxs "

the solution to the volume-matching problem satisfies
N
(3.9) ED"A"u=3 yxq, inQ,
i=1
with the appropriate boundary conditions,
(3.10) Su=0 onT, m=s=j=2m-1.

4. A simple example of an explicit Laplacian histospline. Consider N subdomains
in R 2,

4.1) Qi ={(x1, 2)|Ri-1 <Vx1+x3<RJ}, i=1,-+,N,

with Ro=0 and Q= UN,Q, In the following we derive the explicit form of the
solution to the volume matching problem, I-1.

By the radial symmetry of the problem, u = u(r) with r =vVx1+x3, and in view
of Theorem 3.1, —Aéi=v;inQ;,i=1, -+, N. Since [3]

AO=2 21 ()

r
(4.2) ﬁ=—§r2+c,~logr+b,~ in Q,, i=1,--+,N.

The coefficients vy;, ¢, b, i=1,---, N satisfy the following conditions implied by
Theorem 3.1 and the continuity of & and dii/dr:

(4.3) a8 =0=---Ry+7—  (boundary condition),
N N

@8 T w®-Ri)=0, (I ] 1-0),
i=1 i=1 Q

R? - di
(4.5) Ci—Civ1=(¥i— ¥i+1) DX i=1,--+,N-1 (contlnulty of d—l:>’
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2

R;
(4.6) bi—biy1=(yi— 'Yi+1)T_ (ci—ci+1) log R;,
i=1,---,N—-1 (continuity of ),
Yi 4 R?[ 1] R?_l[ 1]}
A) Ry —Riq)tey— i i-17 %
4.7) 16(R Ri 1) c{2 log R 3 > log R;—4 3
R} -Rii_ s
+b,~———1=L, i=1,---,N (volume matching).
2 2

The total number of linear equations (4.3)-(4.7) is 3, as is the total number of known
coefficients. If R, >0, there is an additional boundary condition to be satisfied;
dii v1Ro | ¢4
dr r=Ro 2 Ro
Claim. If Ry>0, (4.8) is linearly dependent on (4.3)-(4.5). If Ry =0, then (4.3)-
(4.5) imply ¢, =0.

(4.8) if Ro>0.

Proof. Summing (4.5)fori=1,---,N—1 we get
N-1 R} 1N 1 1
ci—en=Y (yi—vyir1)—=== % %R} —Ri1)+=y1R5—=y~RY
i=1 2 25 2 2

which, in view of (4.4) and (4.3), can be written as
ci—cn =3(v1R5—ywRN) =3v1R3—cn.

Therefore, ¢ =3y1R$, proving the claim. 0

By integrating rii(r), one can transform this volume matching problem into an
interpolation problem (similar equivalence exists between area-matching splines and
interpolating splines in the one-dimensional case [16]). Thus, defining

4.9) U(r>=L pulp) do,  u()=—U'(P),

we have to construct an ‘“‘interpolating spline” of the form
4.10)0 Um=A; +Bri+crt+Di? log r, R,_,=r=R, i=1,---,N,

satisfying

1 i
(4'11) U(r) € CZ(Roa RN): U(Rl) = 2_ Z si’ i = 13 vty N

mj=1
It is easy to check that the functions 1, ot log r constitute an extended Chebyshev
system on any interval of the form (0, Ry). Thus U(r), considered as a function of r,

is a Chebyshev spline. (For the notion and construction of Chebyshev splines see,
e.g., [10, Chapter 10].)

5. Laplacian histosplines for inexact data. In this section we consider the problem
of finding a smooth function ¢ given inexact volume data. Similar analysis can be
done in the more general setting of § 2.

Problem 11-m: For a given set of data Z,, - -+, Zy, find § € H™(Q), minimizing

(5.1) ,gl Wi”ng g —Z,] 2+/\Jm (8),
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where J,,,(g) is defined in (3.8); Q, Q4, -, Qn are as in § 2, and A, wq, -+, wy are
fixed positive constants.

In the notation of § 2 any g € H™({2) can be represented as g = g, + g + g3 Where
g1€ Q, goespan{£y, - - -, év—n) and g3 satisfies

(5.2) J gs=0, i=1,--",N
Q;

By (5.2), gz€ H; is orthogonal to &3, - -+, év—a With respect to the inner-product in
H, corresponding to the norm vJ,,(+). Therefore gz does not affect the first term in

(5.1), while J,,(g1+ g2+ g3) = Jm(g2) +J..(g3) and necessarily the solution to Problem
II-m is of the form

N-M M .
(5.3) g=81+t82= Y c&i+ 21 digi.
i=1 i=
Since for the volume data, ¢, : - -, dn in § 2 are of the form

¢i=Xﬂi, i=1a""N’
then by (2.16), (2.17) and (2.26),
1 in Q,’,
(5.4) —D™A"E =450 inQy, j#i, j=1,--+,N—-M,
’Y,',‘ inQ]‘, j=N—M+1,"',N
with y;; satisfying

N

(5.5) Y yiiI 41+J‘ 4;=0, I=1,---,M, i=1,--- ,N-M.
Q o

j=N-M+1 ;

In view of (5.4), (5.5) and (2.27), the solution g to Problem II-m, given by (5.3),
satisfies the boundary value problem

N
(5.6) (-D"A"g =¥ yixa, inQ,
i=1
5.7) 88=0 on T, m=j=2m-1,
with vy, - - -, yn~ being N constants restricted by
N
(5.8) Z%’J q=0, I=1,---, M.
i=1 Q
In (5.7), the boundary operators 8,,, * * * , 82,1 are as in the remark in § 3.
The following theorem relates the values of the constants y;, -+, yn in (5.6) to
the “smoothed data”, namely to the values
(5.9) z‘,.=j g i=1,---,N.
Q;

THEOREM 5.1. The solution g of Problem 11-m satisfies (5.6) with
(5.10) 7i=%(zi—ZAi), i=1,---,N.

Proof. The coefficients in (5.3) satisfy the necessary conditions for minimizing
(5.1), namely the vanishing of the partial derivatives of (5.1) with respect to
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€1, ,cn-m and dy, -+ -, dp. In terms of the bilinear form A,,(-,-) corresponding
to J..(+), these conditions become

(5.11) z[w,-(z‘.-—zi)jﬂig,»+AAm<gf,ei>cf]=o, j=1,---,N-M,

i=1

N
(5.12) S owZ-z)[ 4=0, =1 .M
1 Q;

i=N-M+

In deriving (5.11), we recalled that

(5.13) j &=0, i=N-M+1,---,N, j=1,---,N—-M.
Q;

Let K be the (N —M) X (N — M) matrix, with entries

(5.14) Ki=An&)=| &=[ & ii=1, N-M,
Q; Q;

Let T be the (N — M) X M matrix with entries

T}i=J‘ ‘i]’a i=1a“'9N_M j=1"“’M’

Q;
and let
W=diag{W1,"',wN—M}9 W=diag{wN—M+1"'.’wN}’
c=(c1, ", en-Mm), Z= (Z1,- - v Zn-m)s 2= (Zn-m+1> " ZN),

Z= (21, e ’ZN—M)I’ .f = (ZN—M+1, Y ZN),-
With this notation, (5.11) and (5.12) become
(5.15) KW(z—-2)—AKc =0,
(5.16) z—(=-WIT'W(z-3%).
Since K, as defined in (5.14), is symmetric positive definite, (5.15) implies

1

(5.17) C=XW(Z—ZA),
while, by (5.3), (5.4) and (5.6),
(518) ci=(—1)'"Am§=‘yi il’l Qi, i=1,' . ',N—M.

Therefore, (5.10) holds for i =1, - -, N—M, and (5.8) becomes
1 A
(5.19) (yN-m+i " 5 YN)'==T'(y1," "+, Yw-m)=-Tc= —')“'TIW(Z —-2).

Comparing (5.19) with (5.16) we conclude that (5.10) holds fori=N-M+1,---,N
as well.
A direct consequence of Theorem 5.1, the representation (5.3) of g and (5.4), is:
COROLLARY 5.1. The solution of Problem II-m is of the form
N-M

1 A M o
(5.20) §=}“ ) Wi(Zi—Zi)ﬁi"‘z:l Zn-m+iGi

i=1



146 NIRA DYN AND GRACE WAHBA

and satisfies the integro differential equation

m ma 1 N A
(5.21) (-mamg =1 ¥ xam|z-[ 4]
A i1 o3

with boundary conditions
(5.22) 88=0, m=j=2m-—1.

Equations (5.21), (5.22) indicate an alternative direct way for the computation
of g, avoiding the computation of the functions &3, * *, én-m

We conclude this section by deriving explicitly the relation between the vector
of given data Z =(Z,, - - -, Zn)' and the vector of smoothed data Z =(Z,,- -+, Zy)'.

From (5.20) we get 2 =(1/A)KW(z —2)+ T# and, after substituting for £ from
(5.16),

_ 1
(5.23) F=Tz+TW 'T'W(z —2)+XKW(Z -2).
With B=I +(1/AM)KW+TW 'T'W)™", (5.23) and (5.16) become
(5.24) z2—£2=B(z-Tz), z-%=-W 'T'WB(z-Tz).
Combining the last two expressions, we conclude that
(5.25) Z=ANZ
with

B - BT

(5.26) I_A(“_(-W‘IT'WB W”’T'WBT)‘

6. The problem of choosing A. We give a procedure for choosing A in Problem
II. In this section we suppose (inaccurately!) that the {w;} in the definition of Problem
II are given positive constants. In the problem presented in the introduction we want
w; = 1/variance Z;=1/u, Since the w; are being estimated, the w; can be chosen
iteratively by one of several obvious ad hoc procedures. In what follows, the w; are
assumed fixed and given. It is likely that w; =1 will give reasonable answers in most
cases when the u; are all of the same order of magnitude.

A good criteria for choosing A is the minimization of R(A), defined by

2

©61) RW=E % ofw-] &),

where E is expected value, g, is the solution to Problem II and the 6; are given positive
weights. Since the u; are not known, we cannot minimize R(A). However, an unbiased
estimate R(A) of R(A) is available by generalizing an observation in Craven and
Wahba [5]. Let A(A) be the N X N matrix satisfying

N
A
8

Ja,

AMz=1|]. ¢

o
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Such a matrix is given explicitly in (5.25), (5.26).
Then (6.1) becomes
R(\)=E|Dy*(u—AMZ)I,

where Dy =diag{6;, -, 0~} and w= (1, +, un)'. Defining e =(e1, -+, en) by
Z = u +¢€, we have

EID§?*(u—AMZ)F =EIDy* [T - A —-AN)e]P
=DY*I - AMW)ul’+Tr DLAQX)ZA'(L),

where = = diag {var Z;, var Z,, - - - , var Zy}=diag {u1, w2, " * *, un}- A
Let 2 =diag{Z;, -+, Zn}. We claim that an unbiased estimate R(A) of R(A) is
given by
62 R\ =D*I-AM)Z|P-Tr D> (I - AM)EUT - A))D?
' +TrDY2AMSAM)DY2

In fact, (6.2) simplifies to

N A

(6.3) R\ =|D¥*UI-AM)ZIP+ T 6:.Z:—2 Tr DI — A(M)).
i=1

To confirm our claim, observe that

EID?I-AM)ZIP =|D&* (I - AM)ul

6.4

6.4 +Tr D> (I-AMW)EI -AW))DY?,
and

(6.5) E$=3.

Substituting (6.4) into (6.2) and using’\ (6.5), we obtain ER(A)=R(A). Thus, it is
reasonable to choose A by minimizing R(A).

7. Laplacian histosplines for a modified smoothness criterion. Problems in coding
a numerical algorithm for computing # and g related to solving the Neumann boundary
value problem in an irregular domain can be avoided by modifying the smoothing
criterion somewhat.

Whether or not this modified smoothing criterion gives results equally pleasing as
the smoothing criterion previously used, and whether the computing time required is
comparable or not remain to be seen. However, the coding of an algorithm for the
modified criterion appears to be relatively straightforward and is similar to already
existing codes for the case of point evaluation data [13], [15], [19].

The results below are modest generalizations of results given by Duchon [6], [7],
and later discussed by Meinguet [13] and Wahba [19].

We let d = 2; however, the generalization to arbitrary d dimensions is immediate
from the known results whenever 2m —d > 0. Let X be a suitable’ space of functions
on R? for which

o J], )

is well defined and finite.

' X is the Beppo-Levi space of all the Schwartz distributions for which all the partial derivatives in
the distributional sense of total order m are square integrable in R* [13].
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We modify Problems I-m and II-m to the following:
Problem I-m. Find u € X to minimize J,,(u) subject to

J‘ u(xl’ x2) dxl dX2=Si, i=1’ 2,.- .,N‘
Q;
Problem T1-m. Find g € X to minimize

N 2 .
) Wi[Zi_J' g(x1, x2) dx; dxz] +MJ(8).
i=1 Q;

Usually, we will only be interested in the restriction of u or g to Q. If 4 is the
solution to Problem I-m, clearly J,, (i) = J,, (&) = J» (&), and equality will be obtained
iff & can be extended to all of R” in such a way that the extension Z is in X and satisfies

) (m)(Lé)z =0 for (x1, x2) € Q.

=0 ] ax’1 6x5"_'

Generally this is not possible, but is always possible in the case of one-dimensional
histosplines. Moreover such an extension is also possible for domains with radial
symmetry, as in the example of § 4, which is, essentially, a univariate problem in r.
Indeed, by defining & (r) =ii(r), 0=r=R,, i(r)=i(R,), R, =r, with i, the solution
in § 4, we get J(i1) = J(&i), where both ﬁ~and 7 match the same volume data.

The solution to Problems I-m and II-m can be given explicitly; we do this later.
However a representation of a computable approximate solution for m =2 can be
obtained quickly from the known results, and we proceed to do this. Let x = (x4, x»),
and let {#}/-1 be a fine regular mesh of points in ), t, = (x!, x5), such that

j u(xy, xz)dxidxo=a; Y u(t),ucsH"(Q),
o)

te);

where a; = |Q);|/n;, || being the area of (); and n; the number of mesh points in Q.

We now consi~der .
Problem 1-m-{t;}. Find u € X to minimize J,,,(u), subject to

a; Z u(t1)=si, i=1,2,"',N.
He;
Problem T1-m-{t,}. Find g € X to minimize
N 2 .
Z W,‘I:Z,' —a; z g(t[)] +AJm(g)
i=1 neqy
THEOREM 7.1. Suppose the N X M matrix T with
(72) T'iv =ai Z qv(tk)
tkeﬂ,

is of rank M. Then the solutions to problems 1-m-{t;} and T1-m-{t,} are unique and have
representations

u(x)= ,I_Zvl cemi(x)+ Aé d.q,(x),
(7.3) i »
g (x)= ,gl cm;(x)+ gl d.q,(x),
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where

ni(x)=a; ¥ Eu.(x—t),

neQ;
En(x)=6u,|x""?loglx|,  6n.=0"""'wl(m-1)1}",
|x] =\/xf+x2§,

and {q,(x)}1" span the space of polynomials of total degree less than m. The coefficients

c=(c1," +,cn) and d =(dy, - - -, du)' satisfy the following equations:
Problem 1-m-{t;}

(7.4) Kc+Td=s,

(7.5) T'c=0,

where K is the N X N matrix with ijth entry

Kij=aiaj z Em(tk, tl), i,j=1y"'9M S=(Sl,"',SN),.
teQ);
neQ;

Problem 11-m-{t,}:

(7.6) (K+AW He+Td =z,
(7.7) T'c=0,

where W =diag {wy, -, wn},and Z = (21, + -, Zn)'.

Proof. The special case n;=a;=w;=1, i=1,2,-+--,N is just the problem of
interpolating or smoothing evaluation data, and in this case the result has been given
explicitly in [6], [7], [13], [19]. The extension to the case of general n;, a; and w; is
straightforward from these results and is omitted.

Observe that the solution to Problem I-m-{;} can be obtained by solving (7.6)
and (7.7) for the solution of Problem IT-m-{#;}, with A =0 and Z replaced by s. We
now put (7.6) and (7.7) in a form suitable for the computation of ¢, d and Ié()t). Let
R be any N X (N — M) matrix satisfying R'T = 0. Since T'c = 0, there exists a unique
N — M vector b, say, with ¢ = Rb. Left multiplying (7.6) by R’ and substituting ¢ = Rb
gives

(7.8) R'(K+AW HRb=R'Z.

We next assert that R'KR is strictly positive definite. To prove this we use the following
result [6]:

Suppose ¢4, * - -, t, donot fall on a straight line. Let f = (fi, - - -, f») be any nonzero
vector satisfying

Zfiqu(ti)=0, 1/=1,2’...,M;
i=1

thenY.?j—1 (fifiEm(t; —;))>0. We need to show that if r = (r1, - - -, ry) satisfies T'r =0,
then 7' Kr > 0. Let F be the n X N matrix with jkth entry ay if ¢; € O, and 0 otherwise,
let E be the n xn matrix with jkth entry E,,(; — ), and let T be the n X M matrix
with jvth entry q,(¢;). Then K=F'EF and T =F'T. Suppose T'r =0. Then, if f = F'r,
we have T'f=T'r =0 and so 0< f'Ef = /'F'EFr = r'Kr.
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In case A =0 or A is a given positive constant, b is obtained from (7.8), ¢ = Rb
and d is obtained from (7.6) as the solution of the system

(7.9) (T'T)Yd=T(Z - (K+AW )c).

We proceed to the case where we choose A according to § 6. To compute R(A)
we first obtain an expression for A(A). The appropriate definition of A(A) is

ar Y g
ey
a; ¥ gt
Hne,
AN)Z =
an Y &)
HheQn

Using the fact that a; )., cq, (n,(#/)) = Kj;, one obtains, from (7.3),
(7.10) A(M\)Z =Kc+Td.
Combining (7.6) and (7.10), we get

I-AQ)NZ =K +AW e +Td—(Kc+Td)=AW .

Since, by (7.8) and the definition of b, c = Rb=R(R'(K +AW )R)'R'Z, we finally
obtain

(7.11) I-A\A) =AW 'R[R'(K+AW )R] 'R".

R can always be chosen so that R'W 'R=Iy_n giving I—-AQ\)=
AW T'R(B+AI)"'R', where B=R'KR is a symmetric positive definite matrix. Now,

let UDgU' be the eigenvalue decomposition of B with Dg =diag {by, - * -, by—a}; then
(7.12) I-AQ)=AW 'RUDg+AI)'U'R".
Recalling the expression (6.3) for Ié()t ),
N
(7.13) RM)=[D5*I-AM)ZIP+ ¥ 6.Z;—2Tr{De3(I - AW},
i=1
and substituting (7. 12), we obtain
L
7.14 ; — 4 Z; -2\
(7.14) ii=1 ]b+)tb+)t i‘=2,10 2 ,Zlb+)t
where

v =(1)1, Tty vN—M)/= U,R,Z’

H={hy)=UR'W ' D;W 'RU = U'R’ dlag{01 ---,:—’J}RU,
w1 N

L= {ll]} UR 2D9W—1RU U R dla {Zlol . ZNON}RU

w1 ’ wa
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In the special case Dy = W, the matrix H is I since R'W™ R =1, and then (7.14)
simplifies to

. N-M  ,? li
(7.15) R(\)=\2 ,Zl o +)‘)2+Z wiZ;—2A ,Zl A

With the expression for Ié()«) in (7.14) (or (7.15)), repeated computations of ﬁ(A)
for different values of A are straightforward, once the matrix H, the vector v and the
diagonal of the matrix L are computed. Hence the value of A minimizing R()\) can
be computed by standard minimization methods.

We remark here without proof that the arguments in [13] can be used here to
prove that the solutions to Problems I-m and II-m have representations of the form

N M
T i)+ X dig.(x),

where

(7.16) )= [ Bl dnde,  1=(0,1)
Q;

and the {gq,} are as before. The vectors ¢ and d satisfy equations of the form (7.4)
and (7.5) with K; and T}, given by

K= L L E..(x, t), T;, = Li q.(x).

Since E,, is the fundamental solution of the iterated Laplacian (see [4] § V; [17]p. 47),
A"gi(x)=1,x €, A" Yi(x) =0, x£ Q,.

Therefore the solutions # and g to Problems I-m and II-m satisfy A™ =0, A" =0
outside Q) and A™#, A™¢ are constant on each (.

Note added in proof. Further results on the volume matching problem may be found
in [20], [21]. Contour maps for some Wisconsin cancer mortality rates by county using
the solution to problem I-2 may be found in [22].
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SYMMETRIZATION WITH EQUAL DIRICHLET INTEGRALS*
MARIE-THERESE KOHLER-JOBINY

Abstract. Using a symmetrization method first introduced in [7] and developed further in [8], [9], we
give, in particular, isoperimetric bounds for the functionals
Vol|® dx]®
ot {[IDI vzla x] } asl
fpv**dx

sharper than those given in Crooke [Applicable Anal., 3 (1974), pp. 345-378], [Colloq. Math., 38 (1978), pp.
263-267], Crooke and Sperb [SIAM J. Math. Anal., 9 (1978), pp. 671-681].

v(x)

1. Introduction

1.1. Let D be a bounded domain of R", with a piecewise analytic boundary 9D.
By 4(D) we mean the space of all real-valued functions v(x), vanishing on 4D,
continuous on D and piecewise continuously differentiable in D, for which the Dirichlet
integral [p|Vo|® dx is finite.Vo is the gradient of v(x), namely

ov dv v
R ’ x=(x1’x2a"'axN)'

Vv = <_’ ’ * * b
dxq 00X oxXN

Let @ be a positive number. We then define the decreasing domain functional

M}
_“D v 2 dx '

We point out that in the case @ =1, the solution of the variational problem above is
given by the first eigenvalue of the Laplace operator, and in the case « =1/2 and D
simply connected and plane, the variational problem (1) is actually the torsion problem
[11].
In [3] Crooke, using the Schwarz symmetrization [1], [2], got the following result.
THEOREM 1. Let D be a three-dimensional bounded domain and let D denote the
sphere of R® having the same volume as D. Then

%2, D)=c*(2, D).

_In a second paper [4], the same author computed c?(2, D): If R is the radius
of D, then

) (e, D)= inf {

v(x)e€(D)

87 - z5[y'(z0)I
R b

where zo denotes the first positive zero of the Emden-Fowler initial value problem [6].

2) c*2, D)=

"+— '+ =O, = s =
yi oy ty y=y(z) 7

3)
y(0)=1, y'(0)=0.

As indicated in [4], the same method enables us to compute isoperimetric bounds for
the variational problem (1). [5] deals with the case N =2.

* Received by the editors December 2, 1980, and in revised form April 7, 1981. This work was
supported by the Swiss National Foundation of Science.

t Department of Mathematics, Stanford University, Stanford, California 94305. Current address:
Planchettes 14, CH-2900 Porrentruy, Switzerland.
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1.2. The Euler-Lagrange equation corresponding to (1) is

c*(a, D)
ToVUP dxT " ¥

It follows from PohoZaev’s results [10] that:

e If N =2, the variational problem (1) has a positive solution U(x), which belongs
to C3(D)N C°(D) and satisfies (4) for every positive a.

e If N =3, the same statement holds, provided that @« <1+2/(N —2).

e Furthermore, if N =3 and a =1+ 2/(N —2), the eigenvalue problem (4) possesses
no weak solution in a starlike domain.

From now on we have to assume that (4) has a solution. This means that we assume

that o satisfies

(4) AU + 22=1-0 in D.

(Ha) a<l+

it N=
N—2 if N=3.

The solution of the problem (1) then satisfies (4) and thus belongs to C*(D)N C’(D).
Using the same method as Crooke [3], [4] and Crooke and Sperb [5], we get the
following statement.
THEOREM 2. Let D be the N-ball of RY, with radius R having the same measure
as D. Then, if a satisfies (Ha), we have

awN

a—1
2a ’ 2a—2 5 —[N+a(2—N)]
) S . . ‘R ,
N+a(2—N)] 20"+ [y'(zo)]

5) e, D)z (e, D) =[

where z is the first positive zero of the initial value problem

N - 201 d
//+ /+ a =0, — , P
Y=y y y=y(z) 7
(6) ,
)’(0)=1, y (0)=0a

and wy is the (N —1)-measure of the unit N-ball.

The proof is exactly the same as those given in[3], [4], [5]; and therefore we will not
repeat it here.

In the case N =3, the problem (6) is the Emden—Fowler initial value problem.
The values of z, and y'(z) are listed in [6] for some a. This enables us to give the
following numerical results:

¢*(a, D)R*™

R

1.892342
9.869582
19.91524
34.20395
64.29614
102.3737
148.8229
193.2528
212.6305

(M

BENOBI0 N AN A = =
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1.3. An auxiliary boundary value problem. We now consider the functionals

(8) Plv]=—[p|Vo|*dx+2[pv(x)dx, v(x)e%(D),
) P(D)= max_P[v].
v(x)e€(D)

It is well known that the maximum above is given by the function u(x) solving the
boundary value problem

(10) Au=-1 inD, u=0 onaD;

and that

(11) P(D)=J u(x)dx=J |Vul? dx.
D D

We point out that P(D) =1/ ¢*(, D), and that both corresponding extremal prob-
lems (1) (for the choice a =3) and (9) are equivalent. In the particular case where
N =2 and D is simply connected, P(D) is actually the torsional rigidity of the plane
domain D. Because of this, we call P(D) the torsional rigidity of D, even if N=3
and/or D is not simply connected.

By the Schwarz symmetrization, we get P(D) = P(D), where D denotes the N-ball
of RY, with radius R, having the same measure as D. This is the generalization of the
Saint-Venant and Pdlya theorem [11]. (For further information on this theorem or
on the Schwarz symmetrization see [11], [2].)

Now let D* be the N-ball of RY, with radius R*, having the same torsional
rigidity as D. Thus, by definition,

(12) P(D*)=P(D).

Since P(D) is an increasing domain functional, we have R*=R. The goal of this
paper is to show the statement below. The latter sharpens Theorem 1 and Theorem
2.

THEOREM 3. Let D* be the N-ball of RY having the same torsional rigidity as D.
If a > and if further, a satisfies (Ha), we have

c*(a, D)= c*(a, D¥).

We note that by definition (12), ¢*G, D)= c*(3, D*). The next two sections deal with
the proof of the foregoing theorem.

2. Symmetrization with constant Dirichlet integrals _

2.1. Let t(x) be any positive function of class C*(D)N C D), taking the value
zero on the boundary aD. To it corresponds a lower bound P(D; t(x)) of P(D) given
by the maximum principle

13 . =
(13) P(D;t(x))= max  P[v],
v(x)=e(t(x))
where ¢(7) denotes a real-valued function of the real variable f. According to [7], [9],
we call P(D; t(x)) the “modified torsional rigidity of D with respect to the function ¢(x)”’.
Throughout this paper we will use the following notation:

(14) D; = {x e D|t(x)>1},
(15) Ii={xeDlt(x)=1},
(16)

fmax = Max t(x),
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a7 ahy= | dx,
D;
(18) yi)= [ vl ds.
s
Because of the regularity of #(x), we have
da ds
(19) i L W

Using 7 as an independent variable, the functional (8) can be written as

<p(z)( —%) di.

ax @ Imax
df o

2
v(7) d?+2J

Plo( =
0
We now get the following statement about the functional P(D; t(x)).
LEMMA 1. The function ®(f), defined by

~_ [ al®
(20) *0=) _ %

solves the maximum problem (13). Furthermore,

fmax g 2(;)

y(f)

P(D, t(x)) = L dt = L B(r(x)) dx

(21)
=J VO(t(x)P dx.
D

Proof. Because the proof stands already in [7], [9] we only give an outline of it.
An integration by parts leads to

tmax 2
P[d><t(x)>]—P[<p(t<x>)]=jo 229w ar,

which is never negative and takes the value zero if and only if ®(f) = ¢ (7).
Applying the foregoing lemma to the partial domain D;, (14), we get

tmax 2
. P = PD 0= = [ ay((g

According to (13) and (21), p(7) is the “modified torsional rigidity of the domain D;
with respect to the function ¢(x)—¢"’. The case where D; is not connected is not
excluded in (22).

COROLLARY 1. Let wy be the (N —1)-measure of the unit N-ball. Then, we have

[a @]~/
(N+2)- NNV 3N

dé.

p(=

and equality holds if and only if D is a N-ball and the level sets T'; are concentric spheres.
Proof. Applying the Schwarz inequality to (18) and (19), we get

ol -292[] o]
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We now use the geometric isoperimetric inequality

i

The inequalities above lead to

2
ds] ;NZ(N—-D/N . wIZV/N . [a (i)]2(N_1)/N.

i

y(H)ZNENV/N L G2UN g (i)f‘”““/”( —@)—1
= )
We now use the latter and (22) to finish the proof of the corollary.

We point out that in the case N =2 and D simply connected, the corollary implies
that for the particular choice #(x)=u(x) (Where u(x) solves the boundary value
problem (10)),

J, %

D
<—'
PD)= 3

This is exactly the statement of the Saint-Venant and Pélya theorem [11], [2].
By means of ¢(x), (22) defines a function p(¢(x)) in D; and, by (20) and (17),

2

23
(23) L Vp(e(x))] ds = a(7).

2.2. Choice of the comparison domain. We compare D with the N-ball of R",
D*(t(x)), defined by

(24) P(D*(t(x))) = P(D; t(x)).

On the left side of the definition (24) stands the torsional rigidity of the comparison
domain, whereas on its right side stands the ‘““modified torsional rigidity of the domain
D with respect to the function #(x).”” Clearly, to each function #(x) corresponds such
a ball, and since P(D; t(x))= P(D), the radius of any of those balls is never greater
than R*, the radius of the N-ball D* defined by P(D*)= P(D), (12).

Now let v(x) be a nonnegative function of 4(D) such that v(x) = @(¢(x)), ¢(f)
being a piecewise continuously differentiable function of the positive variable 7. Our
goal is to construct a function v*(x), defined in D*(¢(x)), belonging to €(D*(t(x)))
and such that

I |Vo*|* dx = j |Vol* dx.
D*(t(x)) D

For this purpose, we define a one-to-one correspondence between the level sets I';
of #(x), and the concentric spheres of D*(¢(x)). In the latter, we use the spherical
coordinate r = |x| = (X}, |xi|*)/%. Let p*(¥) be the torsional rigidity of the concentric
N-ball with radius 7, (9). Then

(25) feoF ifandonlyif p(f)=p*(F).
The quantities p(f) and p*(F) stand as ‘“‘common measure”’ between the domains D

and D*(¢(x)). Since p(f) is decreasing in #, p(0) = P(D; t(x)), p(tmax) = 0, the function
v(x) = ¢(t(x)) can be regarded as a function of the variable p. Without ambiguity, we
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now write

e(P)=@(t(x))]iy=r ifp)=p.

In the same way we write a(p) for the measure of the partial domain D; such that
p(F)=p. From now on, we denote with an asterisk * all the quantities related to the
comparison domain D*(¢(x)). For example a*(p*) is the measure of the N-ball of
radius 7 such that p*(F) = p*.

In analogy to (22), we define

(22%) p*(x)|1x125=p*(F).

DEeFINITION. The function v*(x) = ¢*(p*(x)), where ¢*(p*) satisfies
(26) a*(p*)de* =a(p) de forp*=p,
(27) @*(P(D*(¢(x))))=0

is the ‘“‘symmetrization of v(x) with equal Dirichlet integrals.”
This symmetrization possesses the following properties:

LEMMA 2.

(A) v*(x)=0 in D*(t(x)), v*¥*(x)=0 on a(D*(t(x))).
(B) e*(p*)ze(p) forp*=p.

©

J IVo*|* dx =J |Vol? dx.
D*(t(x)) D

Proof. The first statement is an immediate consequence of (26) and (27). Since
the “modified torsional rigidity” is an increasing domain functional, Corollary 1 leads
to the inequality a*( p*) = a(p) for p* = p. The latter and (26), (27) prove the statement
(B). The last one follows from (23),

2

) P(D;t(x)) d )
Vo dx=J‘ —| a“(p) dp,
[ lvorax=[ " |5 < ds
and from the same argument for v*(x),
P(D*(t(x)) *
d
[ wopac=] |25 Pra*(5)F dp*.
D*(t(x)) 0 14

We point out that this symmetrization conserves not only the global Dirichlet integral,
but also the Dirichlet integrals in corresponding partial domains (25).

We list another important property of ‘‘symmetrization with equal Dirichlet
integrals.”

LEMMA 3. Let f(v) be any positive, increasing function of the positive variable v.

Let further F(v) = [;_o f(£) d¢. Then

J F(v(x)) dx éI F(v*(x)) dx.
D

D*(1(x))
Proof. The left integral can be written as

i

P(D;t(x))
j Flo(p) 55 dp
0 D
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After an integration by parts, we get

0

L F(o(x)) dx = jm w fle@)(- gg)a<ﬁ> dp.

But, by Lemma 2(B), ¢(p) = ¢ *( p*) for p = p*, and since f(¢) is increasing, f(¢(p)) =
fle*(p*)) for p = p*. Furthermore, by the definition of v*(x) (26), (27), we have
P(D3t(x))

L F(o(x)) dx éjo Flo*(5) (- %::)a*(ﬁ*) dp*.

But P(D; t(x)) = P(D*(¢(x))), and thus, after an integration by parts,

P(D*(t(x)))

LF(U(x)) dx éj

0

Flo*(5%) (%) dp*.

The latter is actually [px) F(v*(x)) dx. This finishes the proof of Lemma 3.
It is also clear that by its very definition v*(x) belongs to €(D*(¢(x))).
This symmetrization method was first introduced in [7] and developed further in

(8], [9]).

3. Applications of Lemma 3
3.1. Proof of Theorem 3. Let U(x) be the solution of the Euler-Lagrange
equation (4). Then

_UolVUP dx]*

2
c (aa D)— ID U2adx

Let D*(U(x)) be the N-ball of RY such that P(D*(U (x))) = P(D; U(x)), (24). Let
further U*(x) be the ‘“‘symmetrization of U(x) with equal Dirichlet integrals” (26),
(27). Then according to Lemma 2

j VUP dx =j VU dx.
D

D*(U (x))

Furthermore, since a >3, we can apply Lemma 3. We get

I U** dx éJ‘ [U*]** dx.
D D*(U(x))

From the three last relations, we have

. Up*wunVU* dx1*

2
4 (ayD = a *
) Ip*wen [U*T* dx
The latter leads to
2 o
e, D)ze, D* W)=, int(DprweaVeldT)
v(x)e €(D*(U (x))) ID*(U(x))U dx

Since ¢*(a, D) is a decreasing domain functional and since D* 2 D*(U(x)), we con-
clude that

c*(a, D)=c*(a, D¥) fora >3.
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3.2. Generalization of Theorem 3. We consider the following extremal problem.

Given are a bounded domain D of RY with a piecewise analytic boundary oD, a
positive number C, and a positive, increasing function f(v) for v =0. We define
F(v)=[{-0 f(£&) d&, and we look for

(28) sup ” F(v) dx} = M(D, C).
v(x)e€(D) D
v(x)=0
{plVu[2dx=C
(Notice that we do not exclude the case where M (D, C) = c.) If there exists a maximal

sequence u,(x) such that each u,(x) belongs to C*(D)N C°(D), then
(29) M(D, C)=M(D*, C),

where D* denotes, as before, the N-ball of RY having the same torsional rigidity as D.

The proof is easy. To each u,(x) corresponds a N-ball D*(u,(x)) defined by
P(D*(u,(x)))=P(D; u,(x)). According to Lemma 3, if u, *(x) is the “symmetrization
of u,(x) with equal Dirichlet integrals”, then

J. F(u,,)dxéJ' F(u¥) dx.
D D*(un(x))
Since M (D, C) is an increasing domain functional (for fixed C), we conclude that

M(D, C)= lim I F(u,) dx =M (D*, C).
n-»00 D

3.3. Remark. We can extend the results of the present paper to some more
general problems. Indeed, let now D be a plane, simply c_onnected, bounded domain,
and let p(x) be a positive function of class C*(D)N C°(D) satisfying

AlInp+2Kp=0 inD

for some constant K. Using an idea due to Bandle [1], [2], we get isoperimetric bounds
for the functional

UD|VUI2 dx]a} 1

a >3
v(x)e (D) { {pv*%p dx ’

corresponding to those of this paper. The method follows exactly as that described
in [8], [9].

Acknowledgment. I am thankful to Professor J. Hersch for suggesting Lemma
3 to me, and to Professor L. E. Payne for introducing me to some of the problems
discussed in the present paper.
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AN EXPLICIT FORMULA FOR f(«/) AND THE GENERATING
FUNCTIONS OF THE GENERALIZED LUCAS POLYNOMIALS*

MASSIMO BRUSCHIt anp PAOLO EMILIO RICCIf

Abstract. From " =Y, _, Fin1(I1, ", I)s4"™%, where o is a rxr matrix and I, - - -, I, are the
invariants of &/ (elementary symmetric functions of the eigenvalues), we first derive a formula for f(«f).
Then we obtain the generating functions for the F, , and thence for the generalized Lucas polynomials
F,,nz-1.

Introduction. Consider the expression (see [19], [4])

r

(l) A" = kgl Fk,n—l(Ila T, Ir)dr_k’
where n is an integer, & an rXr matrix and I, -, I, are the invariants of &
(elementary symmetric functions of the eigenvalues). From (i) we first derive the
following formula for f(&f) (f(A) a holomorphic function of the complex variable A):

i S fWxise Gyt
i fen=3 5= T

h=0
Note that (ii) implies Sylvester’s matrix interpolation formula and does not in
general require the knowledge of the Jordan canonical form of /. Recently formulae
for e only have been given [1], [16], [12].
Furthermore we determine the generating functions of the Fy ,, k=1, -, r, and
therefore of the generalized Lucas polynomials (in  variables)

L% (C1EL

Z;=o (—1)’Z]I,~ '
Various papers have been devoted to the study of the above polynomials (see [21])
and to the extension of the algebraic theory of the Lucas numerical functions (see,

e.g., [13], [22]).

1. Formulae on the powers of a matrix. Consider the r X r (r =2) complex matrix
& and let

d)\]ﬂh, Io=1.

Z_:O Finir-1y, -, L)z"

n

(1.1) AN =PF-st|= ¥ (-DIA, Lo=1

i=0

be its characteristic polynomial. It is known (see [4]) that for every positive integer
n we have

(1.2) A =Y Fpi(lr,- -+, L)
k=1

Furthermore, if & is a nonsingular matrix (1.2) holds also for » a negative integer.

The functions Fy ,(I1,-*+, L), k=1,---,r, n =Z—1 are defined by the recurrence
relations

(1'3) Fk,n(Ila“'yIr)= Z (~l)i+lIiFk,n—i9 k=1""ar9 n=r—1
i=1

* Received by the editors October 19, 1979, and in final revised form March 2, 1981.
+ Istituto di Matematica Applicata, Universita degli Studi di Roma, Rome, Italy.
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and the initial conditions
(1.4) F, ii1n—ay, 1) =8 kh=1,-:
If I, # 0, the functions F (I3, - - -, I,) for n <—1 are defined instead by

I, I, 1)

'..’_’_—’ k=1,...” <—1’
A A7 non

(18 Fionlliy =+ 1) = Frott s
and again satisfy (1.3).

The functions F, ,(I1,--,I,), n=~-1, are called in the literature generalized
Lucas polynomials (see [2], [21]). The above results have been extended (see [4]) to
a matrix whose minimal polynom<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>