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ANALOGIES FROM COMPLEX ANALYSIS AND HEAT CONDUCTION
FOR WAVE PROPAGATION*

EDWARD G. DUNNEt AND DALE H. MUGLERt

Abstract. D. V. Widder [Arch. Rational Mech. Anal., 21 (1966), pp. 108-119] showed that solutions of
the heat equation share many of the properties of solutions of Laplace’s equation, i.e., of analytic functions. In
this paper, we show that those analogues extend to solutions of the wave equation. They include represen-
tation of a solution as a convolution transform or in a series of polynomials, and extend Widder’s list of
properties to include the wave equation with remarkable similarity.

1. Introduction. The theory of analytic functions is so closely connected with
Laplace’s equation that it has been likened to the theory of properties of solutions of
that partial differential equation. In 1975, D. V. Widder [8] connected that theory with
the theory of heat conduction by refining a set of analogues (which he had listed earlier
in [7]) between analytic functions and solutions of the heat equation. That book is the
primary source for this paper, in which we extend those analogies to include solutions of
the third classical "differential equation of physics"--the wave equation.

The wave equation in one space variable,

u(x,t)= u(x,t)
3X 2 -is the form considered in this paper. As a hyperbolic differential equation, it falls into a

different class from the equations considered by D. V. Widder, yet we shall show that
the analogies may be extended to the solutions of this equation in a fairly natural way.
We will refer to the entire class of solutions by means of the following definition.

DEFINITION. Let S be an arbitrary region of the (x, t)-plane. Then

(1) u(x, t) W ins <-+ Uxx(X, t)= utt(x, t) inS.

We shall use Widder’s symbolism as much as possible, to make it easier to
recognize analogies. For example, the topic in the second section is the representation
of solutions in terms of a series of polynomials, and all the polynomials used will be
connected with the letter v. The analogue of the source solution defined in 3 will
similarly be referred to as k(x, t). The Appell transformation and the resulting
associated functions used in the inverse expansion described in 4, will again be
connected with the letter w. The connection between those associated functions and the
distributions labeled with an to will be fully explained at the end of 5, where the topic
of generating functions leads to a natural question of how the two forms are related.
Any part of each analogy may be found in the final summary section which lists the table
used by D. V. Widder along with an extra column for the set of analogues for the wave
equation.

There are a variety of transformations which map solutions to solutions in class W.
We list a few here that are used in what follows.

1) Integration with respect to a parameter,

b

(x,t,y)eW fora_-<y-<b + | u(x,t,y) dyW.U
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2) Finite convolution,

u(x,t) W --> J0 u(x,t-y)g(y)dy6 W ifu(x,O)=-Oandu,(x,O)=-O.

Both 1) and 2) follow from Leibniz’s rule.

3) Component multiplication,

u(x, t)=(x +t)+b(x-t) W, v(x, t)=a(x +t)+13(x-t) W

-> w(x, t) a(x + t)&(x + t) + (x t)(x t) W,

which can be verified by direct evaluation of the derivatives of w(x, t).

2. Series expansion in wave polynomials. It is a classical result that any analytic
function f(x) is expressible as a power series of the monomials x with coefficients
related to the derivatives of the function. Widder has shown that solutions of the heat
equation can be expressed in terms of a set of polynomials vn (x, t) generated by the
exponential solution of the heat equation, e xz/tz2. We seek to extend the analogy to
solutions of the wave equation.

We begin by considering the polynomials generated by the exponential solutions to
the wave equation

e (x+t) and e (x-t),
where a is an arbitrary complex parameter. If, instead, we consider the parameter as a
complex variable z and expand about the point z 0

(2) e (x+t)z E (x + t)n-,

we generate a set of polynomials vn(x, t) (x + t) n. Similarly, expansion of e (-t)z yields
a second set of polynomials 0n (x, t) (x t) n. Note that Sn (x, t) vn (x, t). We refer to
this whole class of polynomials as wave polynomials.

To see that these polynomials are solutions of the wave equation, we differentiate
directly. The first partials with respect to x,

vn (x, t) n (x + t)n-1 nvn-(x, t) and
Ox Ox

exhibit the same pattern as do the first partials for the monomials and the heat
polynomials. Further derivatives are

t 192 t2

Ot
vn nvn- and

0X 2 Vn n(n 1)Vn-2 " Vn.

The second set of polynomials differs only in that (O/Ot)n -nn-x. It is easily shown
that they too are solutions of the wave equation.

The most important analogy that can be made using wave polynomials concerns
their use in series expansions of functions in class W. Such solutions may be rather
arbitrary functions, and need not have the differentiability properties possessed by a
series of wave polynomials. Thus the representable functions necessarily form a
subclass of the entire set of solutions.

We next demonstrate that fairly arbitrary functions can be used to construct
solutions of the wave equation. We first transform the equation

(3) Ux(X, t)= u(x, t) into ln(s, rt)= 0,
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by the standard change of variables =x+t and ?=x-t with f(:,r/)=
u((: + ,/)/2, (:-r/)/2). Solving the transformed equation yields

n(:, n) ()+(n)

where b and O are arbitrary functions of and r/respectively. Then

(4) u(x, t) (x + t) + 6(x t).

The functions ,fi and need only be twice differentiable, so that u (x, t) will be a solution
to the wave equation.

In order to make a polynomial series expansion we restrict our class of solutions.
The additional hypothesis that will be necessary here is a property of all solutions of the
heat and Laplace equations, where solutions are actually analytic.

DEFINITION. Let T be a region of the (x, t)-plane which contains an open segment
of the x-axis including (0, 0). We say u(x, t) W in T if:

(1) u(x, t)e W in T;
(2) f(x)=u(x,O) and g(X)--Ut(x,O) are analytic for [x[<m, where m=

max {Ix + t]: (x, t)e T}.
THEOREM 1. Let T T(p) {(x, t): Ix + tl < p, >_- 0}. Then

u (x, t) e W in T if and only if
(5) u(x, t)==o{a,v,(x, t)+b,e,(x, t)} for (x, t)e T.

Proof. If u(x, t) W, we use the analysis above to say that

u(x, t) &(x +t)+b(x-t).

These two functions can be expressed in terms of u and ut at 0. We get

u(x, O)=f(x)=&(x)+f(x), ut(x, O)=g(x)=qb’(x)-$’(x).

The second condition implies that

b(x)- $(x) g(:) d: + K,

so that

1 1Io 1 1 llo 1
(6) b(x)=jC(x)+ g() d+-K and 4,(x)=-[(x)-- g() d--K.
Using these representations for and g in (4) gives the d’Alembert formula

1 1 Ix
/

(7) u (x, t) {’(x + t) +’(x t)} + g(’) d’.

The orms for and 0 in (6) show that if and g are analytic in a neighborhood of the
origin, then so are and 0. Expanding (v) in a Maclaurin series for the variable
v x + and 0() for g x gives

u(x, t)= 2 a.v" + 2 b..
=0 =0

Each series exists since and are analytic. Writing these series in terms of x and
proves the sufficiency.

Since the series converges uniformly in the indicated region, the necessity is a result
of the wave polynomials all being in W.
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Now that we have shown existence of a series expansion in wave polynomials for a
function u (x, t) in class W, we give an explicit formula for the coefficients in terms of
the derivatives of u(x, t). First, we consider the d’Alembert formula (7) for the wave
equation with Cauchy data u(x, 0) =f(x) and ut(x, 0)=g(x). From (4) we can write
u(x, t) as (x + t) + O(x t). Examination of (6) and (7) gives for and 4’

1 1 Io+t(x + t) f(x + t)+ g($) d (v),

(8)

O(x t) - f(x t)-- g() dl d/().

Since both f and g are analytic about the origin, we know that and also have series
expansions"

Then, by direct evaluation of the derivatives from (6), we see that

1 1
’(vl=-{u(v, O)+u,(v, o)}, "(v)={u(v, O)+ut(v, o1} and so on,

’() Ux(O, o)- u,(e, o)},
1

o"(e) {Uxx(, o)- u,, (e, o)}
Z

and so on.

Hence, we can express (v) and () as

(9)

It then follows directly that u (x, t) has the series expansion

(10) u(x, t)= u (0, O)+ Y a.v. +
n=l n=l

where

a.
2. n

u (0, O) + ._ u (0, O)
Ox Ot

b. 2. n!
u(O, O)

Ox"- Ot
u(O, O)

n>_l.

One should note that a, b, for all n >- 1 if and only if g(x) ut(x, 0) is identically zero.
The region of convergence for the wave polynomial series is determined by the

strips of convergence for (x + t) and O(x t). The expansion for the first converges for

Ix + tl < o, where
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with a, as defined above. Similarly, O(x- t) converges in Ix- tl < 02 with

a--=
P2

The region of convergence for the series expansion of u (x, t) is the intersection of these
two strips. Also, since there is only physical significance for >_-0, only the upper
half-plane is usually considered. That leaves

T(Ol, O.) Ix + tl < o Ix tl <o 0

for the region of convergence. Graphically the region is as shown in Fig. 1.

., --P2 --Pl

If is not restricted to nonnegative values, the region is a rectangle. If ut(x, 0) is
identically zero, or if pl 02, then the region is a triangle in the upper half-plane (see
Fig. 2),

-0

FIG. 2.

Note that the boundaries x +t =cl and x--t-’c2 are characteristics of the wave
equation (1).

Example. It is instructive to work through an example which will demonstrate
some of the properties given above. Start with Cauchy data u(x, 0) 2 sin x, ut(x, O)
6x 2. By the d’Alembert formula (7), when we separate the solution into its two parts, we
are left with

(A) b(v) sin v + v 3 and 0() sin t5 + t53.
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We may differentiate directly and use formulas (A) as well as u (0, 0)= 0 to find a 1,
a3 5/3!, and a2n/l (- 1)n/(2n + 1)! for n > 1. Evaluating for the other coefficients
yields a series representation for the solution as

5 (-)"
u(x, t) v(x, t) +- v3(x, t) + E (2n + 11n=2

v2n+(x,t)

7 (-1)"
+ ,(x, t)-7 (x, t)+ y ,+(x, t).

.=2 (2n + 1-)!

This representation may also be found by expanding b and in Maclaurin series and
rearranging terms. The formulas for the region of convergence confirm that the
representation is valid for all => 0.

3. The source solution. For the heat and wave equations, the source solutions as
used below model various properties of the singular function f(x) 1/x, especially with
respect to their use in convolution integrals. Widder [8, p. 31] has given some
"essential" properties of the "source" solution k(x, t) of the heat equation. They are:

(A) k(x,t)>O,t>O; (B) limt_ok(x,t)=O,xO;
(C) limt_,o+ k(0, t)= ; (D) _+ k(x, t) dx 1, t> 0;
(E) lim,_,o+ _+ k(x, t) dx 1, 6 > O.

The solution he defines for the heat equation as a source is k(x, t) (1/44t)e -x2/4t if
t>0, and 0 if t-<0.

The physical interpretation of such a solution of the heat equation is as an impulse
of heat energy (of magnitude one) applied to an infinite bar at time t=0. The
temperature at (x, t) (0, 0) is instantaneously infinite, but dissipates as time goes by.
The total amount of heat in the bar remains 1.

An analogous "source" for the wave equation would represent an instantaneous
point displacement at the origin of the infinite string. Rather than diffusing, however,
the displacement is propagated along the string in both directions.

One of the important applications of the source solution of the heat equation is its
use as the kernel in the Poisson transform. That is, in a convolution integral with the
boundary values of a heat function, it produces the values of that function for positive t.
An analogous "source" for the wave equation would initially need to be such that its
convolution with a rather arbitrary function would be defined, since the boundary
values of a solution to the wave equation need only be in C2. Thus we would not expect
a source for the wave equation to be as nice a function as the one for the heat equation.

To construct a source solution of the wave equation, we will employ the Dirac delta
"function" 6(x), which is actually a distribution. We will discuss later how it may be
considered as a limit of a sequence of wave functions. Recall that it may be thought of as
a function which is identically zero except at the origin, where it is infinite in such a way
that _, 6(x) dx 1. We define

1
(1 1) k(x, t) - [6(x + t) + 6(x t)]

as the wave source solution. This models the physical situation that half the displace-
ment travels down the positive x-axis and half down the negative x-axis, both with
speed of propagation equal to one. For example, at time 1, x + and x are zero at

1 and + 1, respectively.
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As defined above, k(x, t) satisfies all the requirements for a source, although it
must be interpreted as a distribution or measure. Concerning Widder’s properties
(A)-(E) listed earlier, the first condition must be modified slightly to be (A) k (x, t) => 0,
> 0. But properties (B) and (C) follow from the definition of the delta function, and

properties (D) and (E) follow from the theory of distributions.
The use of the source as a kernel in a convolution representation integral can be

immediately recognized for this k (x, t), although we shall shortly expand and justify this
representation using another approach. The property of the delta function that is used is
that

(xo- x)(x) f(xo).dx

Thus, for a rather arbitrary function f(x),

k(x,t)*f(x)= k(x-y,t)f(y)dy=- [8(x-y+t)+8(x-y-t)]f(y)dy

1
[/(x + t) + [(x tt],

which is known to be the general form of a wave function when ut(x, 0) 0.
To expand the use of k (x, t) to a representation integral for the general solution of

the wave equation, we begin with a rather classical method called the method of
descent". The general form of the solution to the wave equation in two space variables is
[4, p. 205]

u(t,x,x)= ot._ 4t-_
()

where R is + N . Consider the second integral alone, and suppose that g depends
only on its first argument. The integral then becomes

2r
g(x "k- 1)

Let z=:2 and y=x+l. The limits -t<:l<t become x-t<y<x+t, and the
integral becomes

1 i,+t { [,/t-(,-x)2 dz }dy.(13)
2r _, g(Y)

a_,/t-_(-s-_p Jt2- (y x)2- z

Define

(14)

1 I "/t’x: dz

K (x, t) .7"i" J_/t22X .fit2 X
"2

Z

0

for Ix I< t,

for Ixl>t.
Then the integral (13) may be written as a convolution integral, Jx- g(y)K(y-
x,t)dy, where g(y)= u,(y, 0). Since -t<y-x<t, andK(y-x,t)=Ofor y outside
of this domain, the above integral may be seen as a convolution integral over the real



8 EDWARD G. DUNNE AND DALE H. MUGLER

line,

I_ g(y)K(y-x, t) dy.

Since the first integral may be rewritten in exactly the same way, it follows from
(12) that

(15) u(x, tl - f(y)K(y -x, t) dy + g(y)K(y -x, t) dy.

The definition of K (x, t) in (14) is as an improper integral, which may be evaluated to
show that in actuality K (x, t) is 1 for Ix I< t, but is 0 otherwise. This evaluation may be
used to write K(x, t) in terms of the Heaviside function Y(x), which is defined by

1 if x_--<0,
Y(x)=

0 ifx>0.

The resulting expression for K(x, t) is

(16)
1

K (x, t) -2 Y(x + t) Y(x t)].

As a derivative distribution, it is well known that Y’(x)= t(x). Note now that the
derivative of the first integral in (15) is with respect to t, and that if we differentiate (16)
we obtain

O--K(x, t)=
c 1 1
--[Y(x + t)- Y(x -t)]= [t(x + t)+ 6(x -t)]= k(x, t).

Ot

The representation for u(x, t) now obtained from (15) is a convolution form of the
d’Alembert formula (7),

(17) u(x, t)=f(x).k(x, t)+ g(x).K(x, t).

As before, the functions f and g are initial values of the wave function u(x, t), as
f(x) u(x, 0) and g(x)= ut(x, 0).

In contrast to the Poisson transform for the heat equation, this representation is a
sum of two terms. This should not be surprising, since solutions of the heat equation are
unique given only the functional values on the boundary, while solutions of the wave
equation also require the values of the derivative at 0 for uniqueness.

Finally, we return to the definition of k (x, t) as a distribution. Using the property of
the delta function that _oo f(x) (x) dx f(O), 3(x) may be identified with the sequences
of C functions {f. (x)} such that

lim I_ f(x)f, (x) dx f(O).

The sequence {x/-/(2 rr) e -nx2} which is frequently identified as such a sequence is also
connected with Widder’s heat source solution. Although not a sequence, that heat
source function is such that, for fixed x, the limit as --> 0 is nearly identical to that of the
above sequence as n

We note that the wave source (11) may be identified with a different such sequence,
each function of which is itself a C wave function. One example is the sequence of
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functions kn (x, t), where

1 / n n }kn (x, t)
1 + n2(x + t)2

+
1 + n2(x t)2

It may easily be checked that each k (x, t) is a solution of the wave equation and that this
sequence may be identified with 1/216(x + t) + 6(x t)] k(x, t).

4. The Appeli transformation and associated expansions. A function f(x) which is
analytic in Ix I< p can be transformed into a function analytic in Ix I> p by the inversion
operator

For the solution of the heat equation, Widder has shown that the analogous operation is
the Appell transformation, Ap (u (x, t)) k (x, t) u (x/t, 1/t), where k (x, t) is the
source solution. If u (x, t) is a solution of the heat equation in the half-plane -< < 0,
then Ap (u(x, t)) is a solution in the half-plane 0 < <.

Our analogous transform for solutions of the wave equation maps solutions from
the triangle Ix + < p, > 0 to the infinite wedges Ix +/- t[ > p, > 0. We define the Appell
transformation for functions of class W by

Ap(u(x,t)) Ap((x+t)+O(x t)) -& x+t
It is readily checked that Ap (u (x, t)) e W, since it is the sum of adequately differentiable
functions of x + and x- t. Furthermore, &(x + t) valid for Ix + tl < p is mapped to
1/(x + t)(1/(x + t)) valid for Ix + tl>p in the same way as the inversion operator for
analytic functions. Similarly for the region of validity for O, Ix- tl <p is moved to

Ix tl > p. Thus, Ap (u (x, t)) is valid in the intersection of these two regions, Ix + tl >
p lX tl > o lx +/- tl > t T-I(p).

When applied to the wave polynomials, the Appell transformation generates a set
of associated functions which can be used in series expansions valid outside the region of
convergence for a series of wave polynomials. It is immediate that

1
(18) w.(x, t)= Ap (v.(x, t))=

(x +t)"+

and . (x, t)= Ap (7. (x, t))=
(X t)n+l"

As before, we note #n (x, t)= wn (x, -t). We expect an associated expansion to have a
general form

u(x, t)= E c,w,(x, t)+ d,,(x, t).
=0 =0

We next give a criterion for u(x, t) to have an associated expansion.
THEOREM 2.

(19) u(x, t)= c.w.(x, t)+ d.C.(x, t)
=0 =0

in x + > pl (’]x > p2
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if and only if

(20) u(x, t) Io e-(+0(Y) + e-(-A (y) dy,

where 0(y) e{1, 0} and 1(y){1, 0}.
Pro@ It is easily verified that

1 __I -(x+t)yn(21) W(X, t)
(X + t)+ n

e dy,

with a similar formula for , (x, t). Also, since 0(y) and h (y) are analytic, we assume
that they have Maclaurin expansions

Cn dn

where c DO(O) and d DI (0). We then proceed as follows:

() u(x,
=0 =0

if and only if

(, t) Z c e-(+)y dy + Z d e-(-) y dy
=0 0

if and only if

u (x, t) e_( oy dy+ e y dy.
u=0

We justify the interchange of operations by the growth restrictions on O(y) and h (y).
We proceed by considering the series for c and for d separately. The interchange of
operations

(3) e

is valid if

Now, for suciency we assume 0(y) {1, p}, so that

That is, the integral in (23) is dominated by

Mo e-(+t)y e (o’+)lyl dy, [y]=y, 0<y<

for some M. The integral converges for x + > Pl + g, hence the first half of (19) holds for
x + > p. Similarly, the second half holds for x > pa. We have, then, that equation
(19) holds for x + >
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For necessity we again work in two parts. We express u (x, t) 4 (x + t) + O(x t).
We assume that b(x + t)= c,wn(x, t) converges for x + t>pl. When this is so, we
know that

(24) lim

Since

n
lim

4)1/nn-, e (n e

the inequality (24) yields

lim
n Ic < -< 01

--.e (n e-" 2--n)/"=0
lim nlc
-*e.(n!)/"-

by Stirling’s formula for n !. An entire function f(z) a,z has growth {1, p} if and
only if lim, n lal/ eo. Hence, the series

C

has growth {1, 01}. But, we have defined series (25) to be 0(y). Therefore, 0(y) {1, 01}.
Applying the same arguments for A(y)=Y, (d,/n!)y" we see that A(y)e{1, 02}. Thus,
the theorem is proved.

Alternatively, the associated functions can be related to the derivatives of the source
solution. The analogy from analytic functions is that inverse monomials can be
expressed in terms of derivatives of the singular function by

(26) w.(x) (- 1)" (l/x).
n!

Also, the associated functions for the heat equation are related to the derivatives of the
source solution by

(27) w.(x, t)= (- 2)" Ox---7 k(x, t),

as Widder has shown [8, p. 168]. We find that we may express associated functions in
terms of the source solution for the wave equation. However, to do so involves
derivatives of the Dirac 6-function, which is actually a distribution. As these derivatives
will also be distributions, we cannot expect them to coincide with the associated
functions from the Appell transformation, but they are related in another way, as will be
shown later.

The expression for the associated functions in terms of the source solution
originates from the biorthogonality property for the vn and w,. It is seen that, for
analytic functions and for solutions of the heat equation respectively, we have

2rri
v.,(z)w.(z) dz

n !2"
v., (x, t)w. (x, t) dx
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where 6,,,n is the Kronecker delta. A natural choice for on (x, t) as an associated function
for the wave equation is

(28) wn(x,t)=(-1)
nD8(x+t)

(x,t)=(-1)
D8(x-t)

n! n!

Following Lighthill [5, pp. 16-21] and Arsac [1, p. 80], we see that D8(x) is defined by
the convolution integral

(29) ck(x)D"8(x) dx (- 1)n8(x)ck(")(x) dx.

Hence, for the biorthogonality property we get

v,(x, t)to, (x, t) dx

(30a)

f (x + t)
D8(x + t)

n!
(- 1) dx

O, m > n,

1, m =n,

O, rn < n,

since the derivative is identically zero,

since the integral of the -function over
the real axis is defined to be 1,
since the integral is zero
by convolution with (x- (-t)).

The same arguments hold for the biorthogonality of Tm (X, t) and o3 (x, t) so that

(30b) ,,, (x, t). (x, t) dx

$. Generating functions. For analytic functions, the "singular function" provides
a generating function for two series involving the monomials and the inverse mono-
mials. For example, the series involving only the inverse monomials has the form

r
f(x r)

1
E w, (x)r" E .+1.

X --/" n=O n=OX

Widder has shown that the heat polynomials and the associated functions are generated
by the source solution in much the same way (see 6, Table 1, no. 8).

In the case of the wave equation, our source solution is a distribution which does
not easily generate a series of ordinary functions. However, we shall now exhibit a wave
function which is actually a close analogue of the generating function used by Widder,
and show that it generates series involving the wave polynomials and associated
functions in an analogous way. At the start, we note that by associated functions in this
case we mean the functions such as wn(x, t)=(x +t)-("/1) and not the distributions
to,(x, t). We will shortly return to these two forms and relate each distribution to its
respective function via the source solution.

For the wave equation, we use the function

Wo(x, t)= Wo(X, t)+ ffo(X, t)
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as a generating function. This is analogous to the generating function used by Widder,
since the source solution k(x, t) for the heat equation actually equals Wo(X, t). In our
case, the series involving the associated functions has the form

Wo(x- r, t)= E w (x, t)r + Y ff (x, t)r,
=0 =0

which is valid in the region Irl < Ix +/- tl. The second series which also involves the wave
polynomials has the form

Wo(y-x,s-t)= Y v,(x,t)w,(y,s)+ ,(x,t)ff,(y,s),
=0 =0

convergent for Ix + t[ < lY + s[, Ix t] < [y sl.
We now wish to relate the two separate forms of the associated functions. One is

derived from the Appell transform

1 1
(a) w, (x, t) , (x, t)

(x + t)" +’ (x t)" + x,

and was used in 4 to provide a series expansion of a function in W. The other is
analogous to derivatives of the source solution

(- 1)"D"6(x + t) (- 1)"D"6(x t)
(b) to,, (x, t) 05. (x, t)

n! n!

and was used in the previous section for the biorthogonality property.
First note that the monomials and the heat polynomials are given by v.(x)=

1/z z" and v.(x, t) k(x, t). x", respectively. The wave polynomials also satisfy this
kind of relation, in the form v. (x, t) + 7. (x, t) 2k (x, t) x". In our case, k (x, t) may be
convoluted with any (not necessarily C) function so that the associated functions may
also be represented in this form"

1 1
w.(x, t)

(x + t)"+a=
6(x + t).

x

But 1Ix"+ (- 1)"In !D"(1/x) so that

w.(x, t) 6(x + t).{ (- 1)" D"(xl-) }n!

However, such distributions satisfy D" (u v) (D"u) v u (D"v) [6, p. 166], so that

w.(x, t)= {(-1)D"6(x + t)} 1
n! x

But this connects the two forms (a) and (b):

1
w, (x, t) oo, (x, t) *-.

X

The arguments follow identically for aS, (x, t).
In particular, the Wo(x, t) function used as generating function above is related to

the source solution directly by

1
Wo(x, t)= 2k (x, t)*-.

X
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TABLE

Analytic [unctions Solutions o[ the heat equation Solutions of the equation

1. Singular function Source solution

[(x)
-x2/(4t)

k(x, t)

Source solution

k(x, t) [6(x t) 6(x t)],

where is the Dirac delta

Appell transformation

Ap[u(x, t)] 4) +

Wo(X, t)b(xt)+ fro(X, t)(x-t),
with and tk in (2)

v.(x) =x"

2. Inversion

3. Monomials

4. Inverse monomials

w,,(x)= l[x"]= 1----

5. ReStricted analyticity, ]’ A

Irf(z_.)f(x dz,

[’, restricted circle of the complex z-plane

7. Biorthogonality

zri Iv v,.(z )w,.(z ),dz ,5,..,.

w.(x)r", Irl<lxl

8. Generating function

1_____ v.(x)w.(t), Ixl<ltl
t-x -,=0

9. Maclaurin expansion

[(x)= . a.v,,(x)

10. Inverse expansion

[(x)= b,,w,,(x)

11. Criterion for polynomial expansion
In largest interval Ix[ p, where [A

12. Criterion for inverse expansion
A. Valid for [xl>p if

f=l[g],geA for [xl<
1

B. Valid for if

f(x) [oo e-X’da(r) dr, (1, p)
Jo

Appell transformation

Ap[u(x,t)]=k(x, t)u(-i,

Heat polynomials

[n/2]

v.(x,t)=n! Y
(n-2k)! k!

Associated functions

w,, (x, t) Ap Iv,, (x, t)]

k(x, t)v,,(x,

Huygens property, H

u(x,t)=I;ook(x-y,t-s)u(y,s)dy, s<t

Biorthogonality

ni-2" vm(x, -t)w.(x,t)dx=6m.

Generating function

k(x-r, t)=
Wn (X, t)r

2"n

k(x -y, t+s)=
Vn(X, t) Wn(y, $)

2"n!

Polynomial expansion

u(x, t) a,,v.(x, t)

Associated expansion

u(x, t)= b.w,,(x, t)

Criterion for polynomial expansion
In widest strip It[ where H

Criterion for associated expansion
A. Valid for if

Ap[g], n for Itl <_1
B. Valid for if

u(x, t fo (r) dr, e{2, tr}

Wave polynomials

v. (x, t) (x + t)" and 7,, (x, t) (x t)"

Associated functions

(a) w.(x, t) + t.n+l=)Ap [v.(x, t)]

and

and

.(x, t)
(x t)

Ap [7. (x, t)]

(b) w,,(x, t)=(-. "D"8(x + t)
n

(- 1)"
o5. (x. t) D"8 (x t)

Poisson transform, W

u(x, t)= k(x, t)*u(x, O)+ K(x, t)*u,(x, 0),

with K(x, t) in (14).

Biorthogonality

v,n(x, t)t%(x, t) dx

6,... .,(x, t).(x, t) dx

Generating function

Wo(X -r, t) Z w.(x, t)r" Y .(x,

Wo(y-x,s-t)= , v.(x,t)w.(y,s)

Y. 6.(x, t),,(y, s),

where Wo(x, t)= k(x, t)* 1/x.

Polynomial expansion

u(x, t)= Y. {a.v.(x, t)+b.O.(x, t)}

Associated expansion

u(x, t)= {c.w.(x, t)+dff.(x, t)}

Criterion for polynomial expansion
In largest region T(O) where W

Criterion for associated expansion
A. Valid in T-l(p) if

u=Ap[g], g W in T()
B. Valid for +t>p, -t>p2 if

u(x, t)= I? (+t)O(y) dy f? ’ h(y) dy,

with {1, p} and {1, 02}.
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6. Summary. In order to provide a convenient summary of the analogies that have
been listed in the previous sections, we conclude with Table 1. The first two columns and
the form of the table are drawn directly from [8, p. 196]. The corresponding analogies
for the wave equation in each case are given in the third column.

Since the numbering of the analogies was kept in accordance with that in [8], it is
easy to see that one analogy (no. 6) was omitted from Table 1. That particular analogy
involves operational calculus, and the precise analogue for the wave equation does not
appear to have a convenient form. However, the symbolic form does provide a nice
analogue of the Poisson transform.

The integral representation of a solution of the heat equation as the Poisson
transform can be written [8, p. 155] as

u (x, t) e’2u (x, 0).

The corresponding analogue for the wave equation is a form of the d’Alembert formula
(7), and is

(31) u(x, t)-cosh (tD)u(x, 0) +sinh (tD)D-lut(x, 0).

The symbolic use of et as etf(x)=f(x 4-t) is used to see that the first term is indeed
1/2[u(x 4- t, O)+ u(x- t, 0)]. If

D-lut(x, O)= ut(s, O) d,

the second term can be seen to match that in (7) in a similar manner.
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A NONLINEAR EVOLUTION PROBLEM ARISING
IN THE PHYSICS OF IONIZED GASES*

D. HILHORSTt

Abstract. We consider a Coulomb gas in a special experimental situation: the pre-breakdown gas
discharge between two electrodes. The equation for the negative charge density can be formulated as a
nonlinear parabolic equation degenerate at the origin. We prove the existence and uniqueness of the
solution as well as the asymptotic stability of its unique steady state. Also some results are given about
the rate of convergence.

1. Introduction. In this paper we study the nonlinear evolution problem

ut eXUxx + (g(x)- U)Ux on D (0, oo) x (0, T),

P u (0, t) 0 for [0, T],

u (x, O) O(x) for x (0, oo),

where e is a positive constant, g is a given function which satisfies the hypothesis
Hg g C2([0, eo)); g(0) 0; g’(x) > 0 and g"(x) < 0 for all x _-> 0 and the initial function

0 satisfies the hypothesis H,:
(i) 0 is continuous, with piecewise continuous derivative on [0, oo);
(ii) 0(0) 0 and 0(oo) K (0, g(eo));
(iii) there exists a constant M,>-g’(O) such that O<-O’(x)<-M, at all points x

where O’ is defined.
In 2 we briefly describe how the problem arises in physics and give the derivation

of the equations.
In 3 we present maximum principles for certain linear and nonlinear problems

related to P; the uniqueness of the solution of P follows directly from those principles.
In 4 we prove that P has a classical solution which satisfies furthermore the

condition

(.) u(oo, t) K for

The methods used here are inspired by those of van Duyn [7-1, [8] and Gilding and
Peletier [13]. We also consider the limit case e $0 and prove that u tends to the
generalized solution of the corresponding hyperbolic problem.

We then investigate the behavior of u as oo and prove that it converges towards
the unique solution of the problem Po defined as follows

exdP" + (g(x)-)dP’ O,
Po

(0) 0, (oo) Ao=: min (max (g(oe)- e, 0), K).

Qualitative properties of have been extensively studied by Diekmann, Hilhorst and
Peletier [6]. Here we analyze its stability. In 5, following a method of Aronson and
Weinberger [2] based on the knowledge about lower and upper solutions for the
steady state problem Po, we prove that is asymptotically stable.

In 6 we investigate the rate of convergence of u towards its steady state. The
function turns out to be exponentially stable when the function g grows fast enough
to infinity as x- oo; the proof, based on constructing upper and lower solutions for
the function u-, follows the same lines as that of Fife and Peletier [10]. We also

* Received by the editors December 23, 1980.
t Stichting Mathematisch Centrum, Kruislaan 413, 1098 SJ Amsterdam, the Netherlands.
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consider the case when g increases less fast and show that provided e < g(oo)-K and
converges algebraicfilly fast to K as x oe the function u- decays algebraically

fast; this is done by obtaining first that property for a weighted integral of u-
according to a method of II’in and Oleinik [14] and van Duyn and Peletier [9]. Finally
we consider the corresponding hyperbolic problem and obtain a similar result of
algebraic convergence.

2. Physical derivation of the equations. The physical context of the present
problem has been described in some detail by Diekmann, Hilhorst and Peletier [6].
Here we shall summarize it again and explain how one can obtain the time evolution
problem P.

One considers an ionized gas between two electrodes in which the ions and
electrons are present with densities hi(r) and he(r, t) respectively, where r= (Xl, x2,

x3). The ions are heavy and slow and the density ni(r) may therefore be regarded as
fixed. The electrons are highly mobile. The problem is then to find he(r, t) for given
ni(r) and in particular to find out whether given an initial electron distribution, the
electrons stabilize and if so to evaluate the time needed for such a stabilization.

A special situation of practical interest is a so-called pre-breakdown discharge
which spreads out in filamentary form (cf. Marode [17] and Marode, Bastien and
Bakker [18]). In this situation there is cylindrical symmetry about the x3-axis and the
particle densities depend on r (x +x)1/2 only. We thus have effectively a two-
dimensional Coulomb gas with circular symmetry. The starting equations are

(i) Coulomb’s law for the electric field E,

(2.1)
l O-- rE -Ca(ne n),
rOr

where C, is a fixed constant;
(ii) a constitutive equation for the electric current/’,

One(2.2) j nelF + kT,
Or

in which the first term represents Ohm’s law and the second term is due to thermal
diffusion,/x being the mobility, k Boltzmann’s constant and T the temperature; and

(iii) the continuity equation for the electron density,

One 1 c3
(2.3) r].

Ot r Or

If we set

and

u(x, t)= | he(r, t)r dr
Jo

g(x) Io ni(r)r dr,

we obtain, after redefining the constants, the equation

(2.4) ut eXUx, + (g(x)-u)u,,,
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where e 2kT/(IxCa), and the boundary condition

(2.5) u(0, t) 0.

Furthermore one makes the hypothesis that the total charge is positive and fixed, that
is

(hi(r)- ne(r, t))r dr N > O,

from which we deduce the boundary condition at infinity;

(2.6) u(o, t)= K := g()- N.

Clearly K (0, g(c)).
Equations (2.4) and (2.5) together with the initial condition

(2.7) u (x, O) O(x)

constitute the mathematical formulation of the problem which we propose to study
in this paper. Furthermore the condition (2.6) will turn out to be satisfied at all finite
times and also, for low enough values of the small parameter e, at the time o.
This latter property expresses the fact that all the electrons stay attached to the ions
at low enough temperature; we shall also see that if the temperature rises above a
critical value then some of the electrons escape to infinity, and if it rises even further
above a second critical value then all the electrons escape to infinity.

3. Maximum principles for some degenerate parabolic operators-uniqueness
theorem. In this section we prove maximum principles for some linear and nonlinear
operators which have a degeneracy at the origin; these principles hold for functions
u C2’1 (D)ffl C(5), where C2’1 (D) is the set of continuous functions on D with two
continuous x-derivatives and one continuous t-derivative. It will follow easily from
those maximum principles that P can have at most one solution u
such that ux is bounded in D.

We begin by defining a linear operator L as follows

(3.1) Lu eXUxx + b(x, t)u + c(x, t)u ut,

where the functions b and c are continuous on D and such that the quantities b/(1 + x)
and c are bounded on 3. First we consider the bounded domain DR := (0, R) (0, T),
where R is a positive constant. In the same way as for a uniformly parabolic operator
one can prove the following maximum principle which holds in fact for a much wider
class of degenerate parabolic operators (see, for example, Ippolito [15] or Cosner [4])

THEOREM 3.1. Suppose c <- O. Let u C2’1(DR) C(1R) satisfyLu >- 0 on (0, R) x
(0, T]. Then if u has a positive maximum in ln, that maximum is attained on ((0, R) x
{0}) t_l ({0, R } x [0, T]).

Next, following a method due to Aronson and Weinberger [2], we derive a
comparison theorem for a class of nonlinear evolution problems.

THEOREM 3.2. Let u and v C2’(DR) C(IR) and suppose that either u or v is
bounded on DR. Let u and v satisfy

and let

Lv VVx >= Lu uu, on (0, R) x (0, T],

O <= v <- u <- K on (O,R)x{O}and{O,R}x[O,T].
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Then v <-_ u in (0, R) (0, T].
Proof. Let

where

w=(v-u)e-t,

a max_ (c(x, t)-Ux(X, t))
(x,t)D

(in the case where ux is bounded). Then w satisfies

eXWxx + (b (x, t) v wx + (c (x, t) Ux a w wt >- 0

and

w -_< 0 on (0, R) {0} and {0, R } [0, T].

Thus we deduce from Theorem 3.1 that

w<-0 in(0, R)(0, T],

which completes the proof of Theorem 3.2.
Now let us consider the unbounded domain D. To begin with we present a

Phragm6n-Lindel6f principle which is a special case of a theorem due to Cosner [4].
THEOREM 3.3. Suppose that b/ (1 + x) and c are continuous and bounded in D. Let

U E C2’1(D) ("1C(/) satisfy Lu >= 0 on (0, ) (0, T] and the growth condition

(3.2) lim inf e-B[ max u(, t)] _-< 0
O’ O <= T

for some positive constant B. If u<=O for t=O and on {0}[0,.T] then u<-O in
(0, c) (0, T].

Making use of Theorem 3.3 one can prove a comparison theorem on the
unbounded domain D.

THEOREM 3.4. Let u and v C2"(D) (3 C(1) be such that either u and v or u and
vx are bounded on D and that

[u(x, t)[, Iv(x, t)l <- C e Blx

for some positive constants C and B and uniformly in [0, T]. Suppose that

Lv -VVx >= Lu uu on (0, ) (0, T]

and that

O<-_v<-u<-K on (0, c) {0} and {0} [0, T].

Then v <= u in (0, ) (0, T].
Finally let us come to the question of uniqueness of the solution of problem P.
DEFINITION. We shall say that u is a classical solution of problem P if it is such

that (i) u C2,a (D) (3 C(/),. (ii) u and u are bounded in 5, (iii) u satisfies the equation
in D, (iv) u satisfies the initial and boundary conditions.

THEOREM 3.5. Problem P can have at most one solution.
Proof. Apply Theorem 3.4.twice to deduce that if u and v are two such solutions

then their difference w u v satisfies w _-> 0 and w -<_ 0 and thus w 0. [3

4. Existence and regularity of the solution. In order to be able to prove the
existence of a solution of the nonlinear degenerate parabolic problem P, we consider
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certain related nonlinear uniformly parabolic problems on bounded domains and
observe that they have a unique solution; we then deduce that P has a generalized
solution, in a certain sense. It finally turns out that this solution is in fact a classical
solution of P and thus the unique solution of P and that it also satisfies condition (.).
Finally we consider its limiting behavior as e $ 0.

4.1. Existence. Let us first introduce some notation. Let D, := (0, n) x (0, T). We
denote by C2/([0, hi) the space of functions v which are twice differentiable and
such that v" is H61der continuous on [0, n] with exponent a. We also use the spaces
,(D,), C:z/,(D,) and C2/(D,), defined in Friedman [11, pp. 62, 63].

Consider the problem

ut e(x + 1/n)Uxx +(g(x)-U)Ux

P. u (0, t) O, u (n, t) K,

u (x, 0) 4,, (x),

with n >= g-l(K) and where . is such that

in

t[0, T],

x(O,n),

(i) 4’. C([0, oe]);
(ii) 0. satisfies
(iii) (0) 0 and 0. (x) K for x

In what follows we shall denote by H, properties (i) (iii). The following theorem holds:
THEOREM 4.1. There exists a unique solution u, e C2+.(D,) of P,for any a e (0, 1);

furthermore u, satisfies the inequalities

0 -< u, (x, t) -<_ min (M,.x, K),(4.1)

(4.2) O <= unx(x, t) <-_M,.,

lor all (x, t) D,.
Proof. The existence and uniqueness of u. e Cz+2(D,) is a consequence of

Theorem 5.2 of Ladyenskaja [16, pp. 564-565]. The inequalities in (4.1) can be
deduced by means of a comparison theorem analogous to Theorem 3.2. From the
linear theory (Friedman [11, p. 72]) we deduce that the function w := u,x e C2+(Dn);
thus w C2’1 (D.) f3 C(/.). Furthermore w satisfies

wt e(x + 1/n)wx, +(g(x)-u. + e)wx +(g’(x)-w)w,

(4.3) 0<= w(O, t) <- M,., 0 <- w(n, t) <- M,.,
w(x,O)=6’,(x).

The bounds on the function w(n,t) follow from the fact that the function
max (0, M,. (x-n) +K) is a lower solution of the boundary value problem

e x +- +(g(x)-b)4’=0, &(0)=0, 4(n)=g

and consequently a lower bound for u,. Clearly the set

{w C([0, n]) such that 0_-< w(x)<-M,.}
is invariant with respect to the problem (4.3), and thus the inequalities (4.2) are
satisfied.

Next we deduce, from Theorem 4.1, the existence of solution of P. We begin by
approximating the initial function 0 by a sequence of smooth functions
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LEMMA 4.2. Let the function 4’ satisfy H,. Then there exists a sequence {4’n} which
satisfies the properties Hn given at the. beginning of this section with Mo. Mo ]’or all
n, such that 4’ 4’ as n oo, uniformly on [0,

Proof. Let no>-g-l(K) be such that for all n>-no the point xl, defined by
Mo(Xln-1/n)=O(Xln) is such that 1In <xn<=n-2 and the point Xz, defined by
xzn n 2 + (K O(n 2))/Mo satisfies n 2 < x2, < n 1. Also define

(x), x <x=<n-2,

Mo(x n + 2) + O(n 2), n 2 < x <= X2n,
.K, X2n < X < +1213.

Note that, for all x,

]g/* (x p(x )[ <-_ max (-M, K (n 2))
Next introduce the function

(x
C exp ,-1 if Ix I< 1

where the constant C is such that In O dx 1, and let

Finally define

$.(x) In p.(x Y)4’,* (Y) dy, xe[O, hi,

with 6,=min(1/n, xl,-l/n,n-2-xn, x2,-n+2, n-l-x2,)/lO. We now show
that , has the desired properties. Firstly O, C([0, n ]). The uniform convergence of
{,} to 4 follows from the continuity of ,*, uniformly in n and in x and the uniform
convergence of the* to as n --> oo. Finally properties (ii) and (iii) of H, can be deduced
for n from the fact that also satisfies them.

Next we prove the following theorem.
THFOREM 4.3. P has a unique classical solution. Furthermore this solution also

satisfies condition (.):

(*) lim u(x, t) K for each (0, T].

Proof. We rewrite the parabolic equation of problem Pn as

(4.4) ut e(x + 1/n)uxx +c(x, t)ux,
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where

c(x, t)= g(x)- u,(x, t).

From Theorem 4.1 we know that for all (x’, t), (x", t) Dn and for all n ->_ no

(4.5) lun (x’, t) u (x", t)l-<- Molx’- x"l.
Now fix I_->no; (4.4) and (4.5) enable us to apply a theorem of Gilding [12] about
the H51der continuity of solutions of parabolic equations, and we obtain

[un (x, t’)- u, (x, t")[ <- fit’- t"[/

for all n -> I and for all (x, t’), (x, t") 5t, with It’- t"[ =< 1. Here the constant. C depends
on I but not on n. The set {u,(x, t)},=z is bounded and equicontinuous in D, and thus
there exists a continuous function ut(x, t) and a convergent subsequence {u, (x, t)}
with n _-> I such that u, (x, t) ut(x, t) as n - oo, uniformly on Dr. Then, by a diagonal
process, it follows that there exists a function u(x, t) defined on D and a convergent
subsequence, denoted by {ui(x, t)} such that ui(x, t) u(x, t) as i oo, pointwise on D.
Since this convergence is uniform on any bounded subset of D, the limit function u is
continuous on D.

It remains to show that u is a solution of P; to that purpose we shall proceed in
two steps" firstly we show that u is a generalized solution of P in a certain sense and
then we conclude that it is in fact a classical solution. We shall say that u is a generalized
solution of P if it has the following properties"

(i) u is continuous and uniformly bounded in D;
(ii) u(0, t) 0 for all [0, T];
(iii) u has a bounded generalized derivative with respect to x in D;
(iv) u satisfies the identity

(4.6) II[uct-e(xux-u)cx-(g-u/2)u4x-ug’]dxdt+Io d/(x)dd’(x,O)dx=O
D

for all b C1(/) which vanish for x O, large x and T.
Let us check that u satisfies those properties.

(i) We already know that u is continuous on D and furthermore, since u (x, t)
limj_, uj(x, t), we have that 0<= u <-K.

(ii) This property follows from a similar boundary condition in P,.
(iii) Let b be an admissible test function and let L >= no be such that supp b c DL.

Since lu; l is uniformly bounded with respect to ]>-L for all (x, t)eDL, it follows that
there exists a subsequence {(u.k)x} and a bounded function p La(DD such that

(uik)x--p inL2(DD as fl-c.

Now let sr Co (/). Then

(4.7) ((u.), () (p, r) as/ oo,

where (., denotes the inner product in L2(Dc). But since ui -. u as jk o0, uniformly
on D., we have

(4.8) (ui,&)(u,&) as fl oo.

Hence, combining (4.7) and (4.8), we find that p is the generalized derivative of u.
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(iv) Since ujk is a classical solution of Pn it follows that

(4.9)
DL

L

+ | 6i (x)49 (x, O) dx O.
.o

The sequences {u.} and {ui} converge to u and U 2, respectively, strongly in L2(DL)
as ]k - oo. Furthermore since (u.)x is uniformly bounded we have

I I 1__ (u)4 dx dt --, 0
j

DL

as fk ’

Thus letting jk oe we obtain (4.6). Because b has been chosen arbitrarily, we may
conclude that u is indeed a generalized solution of P.

It remains to show that u is a classical solution of P. One can do it by using a
classical bootstrap argument (see, for example, Gilding and Peletier [13]) to show
that for whatever rt, L > 0 there exists a(r/, L) (0, 1) such that

(4.10) u C+((r/, L) (r/, T)),

where a and Ilullc=+ may be estimated independently of T. In particular,

u C2’I(D) fq C(I).
Since furthermore u and ux are uniformly bounded u is a classical solution of
problem P and by Theorem 3.5 it is the unique solution of P.

Finally let us analyze the behavior of u for large x; since we have 0-< u-<K
and ux >_-0, u(oo, t)= limx_ u(x, t) is well defined for all [0, T] and such that
0_-< u(c, t)<-K. Next we show that u(oe, t)=-K by constructing a time dependent
lower solution for P. Consider the problem

ut eXUxx + (K-u )u,,

(4.11) U(Xo, t)=0, Xo>=g-(K),
u(x, o)= 6(x).

Since Ux >- 0 we have that

eXUxx +(g(x)-U)Ux-Ut exU,,x +(K-u)u,,-ut+(g(x)-K)u,

>-_ exu,, + (K U )Ux ut for all x ->_ g-(K).

Thus a lower solution t of (4.11) with t->0 is also a lower solution of P on
[Xo, oe) x [0, T]. We search such functions tk which satisfy furthermore

tk (00, t) K k for all e [0, T] and with k e (0, K).

Writing

t3 K- t,

reduces this to finding an upper solution 3k Of

Vt F-,XVxx nt-

v (xo, t) K, v (oo, t) O.
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Next we look for such a function t3k, also requiring that

Setting

X
r/ t+l’

one can easily derive that fk should be an upper solution for the boundary value
problem

erlf" + (f + rl)f’ O,

f(xo)=K, f() 0.

Let Xo > max (e, g-l(K)), and take

1--Xo/e

One can check that indeed fk is an upper solution for problem 7r and consequently
that tTk(x, t)=K--k(X/(t + 1)) is a lower solution for problem P on the sector {t_->
0, x >-_Xo(t+ 1)} provided that Xo is large enough. Since k can be chosen arbitrarily
in (0, K) it follows that u (, t) K for all <. [3

4.2. The limiting behavior as e 0. In this section we study the limiting behavior
of the solution u of P as e 0. To begin with, we consider the following hyperbolic
problem:

H
ut=(g(x)-U)Ux inD,

u(x, 0) ,(x) for all x e (0, ),

and make some heuristic considerations about the solution t7 of problem H; they are
due to Wilders [23]. One possible configuration of g and is drawn in Fig. 1; the
corresponding characteristics are represented in Fig. 2. Their equations are

(g(x)-O(x(O))).
dt

Along those characteristics a is constant, i.e., t7 =6(x(0)). Also, since 4,(0)=0 it

follows that the line x 0 is the characteristic passing through the point (0, 0) and

g

FIG. 1
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Fo. 2

consequently that t7 automatically satisfies a boundary condition of the form t (0, t)=
0. Next we deduce from the fact that is nondecreasing that two characteristics do
not intersect. Suppose that there exist two characteristics issuing from the points x a
and x b(a < b) on the initial line, intersecting each other at the point (x, t) (x*, t*).
Then if they would intersect transversally we would have -(g(x*)-O(a))>
-(g(x*)-O(b)) and hence O(a)> tO(b), which is impossible. Now if the characteristics
would be tangent to each other at the point (x*, t*) we would have -(g(x*)-O(a))=
-(g(x*)-O(b)) and consequently O(a)=O(b); both characteristics would then be
described by the same differential equation dx/dt=-(g(x)-O(a)), which, by the
standard uniqueness theorem for ordinary differential equations, implies a b. Finally
we conclude that since the initial condition is continuous and nondecreasing, no
shock wave can occur and ti(., t) is continuous at all times.

In [19] Oleinik proved existence and uniqueness of the generalized solution of
Cauchy problems and boundary value problems related to problem H but since the
boundary line x =0 is a characteristic for H (which is reflected in the relation
g(0)-t7(0, 0)=0), problem H does not satisfy all the assumptions made in [19].
This leads us to give here a proof of the existence of a solution of problem H, by
showing that the solution u of problem P tends to a limit as e0; the uniqueness is
a consequence of [19]. Following [19, Lemmas 18 and 19], we say that ti is a
generalized solution of H if it satisfies

(i) ti is bounded and measurable in D;

(ii)
t7 (x, t) ti (x2, t)

-<_ M, for all points (x, t), (x2, t) D;
Xl --X2

(iii) t7 satisfies the identity

(4.12) II [akt-(g-)ack- ag’C’] dx dt +I $(x)ck(x, O) dx O

D

for all b e C1(E3) which vanish for large x and T.
Next we shall prove the following theorem.
THEOREM 4.4. The solution u(x, t) of P tends uniformly on all compact sub-

domains of D to a limit a as e $ O, where is the unique generalized solution of H.
The function ft is furthermore continuous, nondecreasing in x at all times [0, T]
and satisfies the boundary conditions (0, t) 0 and (oo, t) K.



26 D. HILHORST

Before proving Theorem 4.4, let us introduce a class of upper and lower solutions
for problem P which depend neither on e nor on time. They will turn out to be very
useful both to prove that a(oo, t)- K in Theorem 4.4 and to study the asymptotic
behavior of u as oo in the next sections. Next we define

and

s+(x) := min (M,x, K)

where the constants A [0, K], u > 0 and Xl >0 are chosen in the following manner:
(a) If e < g(eo), we choose xl > 0 so that g(xl) > e, then A > 0 so that A < g(xl) e

and finally u > 0 so that

(4.13) -1v<=e (g(xl)-h)-l.

(b) If e _-> g(oo), we set h O, which amounts to setting s----O.
It is easily seen that s- satisfies the inequality

g:x (s-)" + (g s-)(s-)’ >= 0 for all x s [0, oo)\{Xl}, (0, E).

Thus if e < g(oo), given any < Ao min (g(oo)- e, K), one can find ;1 and t; satisfying
(4.13) and such that s-(., ;, 1, t3)--<4,. Applying the comparison Theorem 3.4 we
deduce that s-(’, ,.1, t3)=<u (and thus that Ao-< u(oo, t) for all t-<oo). Similarly one
can check that u =< s +.

Proofof Theorem 4.4. The uniqueness of the solution of problem H can be proven
along the same lines as in the proof of [19, Thin. 1, Lemma 21]. Next we show its
existence. Fix I-> 1. Since u and u, are bounded uniformly in e we deduce from
Gilding [12] that u is equicontinuous on Dt; thus, there exists a subsequence
{u.}=tof u and a function tT e C(LS), such that u. 5 as e $ 0 uniformly in LS and
such that for all A <K, one can find xl and v satisfying (4.13) and s-(., A, xl, v)_<-
tt(’, t)<=s+(’). Then by a diagonal process, it follows that there exists a bounded
continuous function t7 and a converging subsequence denoted by {u} such that u a
as e $ 0,pointwise OnD and uniformlyon all compact subsets ofD. Since 0 _-< (u,), <_- M,,
5 is nondecreasing in the x-direction and satisfies (ii); u, (0)= 0 implies the same
property for iT. The boundary condition 5(00, t)= K follows from the inequalities
S-(" I, X1, P) ffl(" t) <- s+( for all h <K.

It remains to show that t is a generalized solution of H. Let b C1(/) vanish
for large x and t- T, and let L _>-1 be such that $ vanishes in the neighborhood of
x -L and for x > L. Because the functions u are classical solutions of P, we have

I I [uc, ek (XUx U)4x (g -)UC, g c] dx dt

D
L

+ Jo 0(x)b (x, O) dx O.

Now letting ek+0 we deduce that 5 satisfies (4.12); because b has been chosen
arbitrarily we conclude that t7 is indeed the generalized solution of H and that {u}
converges to fi as e $0.
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5. Asymptotic stability of the steady state. Adapting a method due to Aronson
and Weinberger [2] we investigate the stability of the solution of problem P0. To
that purpose we consider the solution u of the corresponding evolution problem P;
since its dependence on plays a central role in what follows, we denote this solution
by u (x, t, ). We show that for all the functions b satisfying the hypothesis H6 given
in the introduction we have that

u(x,t,O)(x) as t.

To begin with we prove two auxiliary lemmas.
LEMMA 5.1. (i) Let e < g(o) and , .1, satisfy

u(x, t, s-(. ,, 1, )) is nondecreasing in time and such that

(5.1) lim u(x, t, s-(. , .1, )) dpx(x),

(4.13). The function

where i is the unique solution of

(5.2)
exO" + (g(x)-)qb’ O,

(0) O, () .
/)(ii) The function u (x, t, s is nonincreasingin time. Furthermore

+)(5.3) lim u(x, t, s

Proof. First note that it follows from the proofs in 4 that problem P with initial
value s-(x, , 1, ) has a unique classical solution u(x, t, s-(., , 1, 3)) with u(, t)

for all t-<o. Applying repeatedly Theorem 3.4, one can show that
u(x, t, s-(. ,, 1, P)) is nondecreasing in time and that u(x, t, s/) is nonincreasing in
time; it also follows from Theorem 3.4 that

and that

u(x, t, s-(., , 2, )) _-< Cx(x),

u (x, t, s +) _-> (x).

Now for each x, u(x, t, s-(., , .1, )) is nondecreasing in and bounded from above.
Therefore it has a limit -- (x) as t--> c and one can use standard arguments (see for
example Aronson and Weinberger [2]) to show that --s C2+ ((0, ))f3 C([0, )) and
satisfies the differential equation in (5.2) and the boundary conditions --(0)= 0 and
--(c) . Finally since x is the unique solution of problem (5.2) we have that -- 4, x.

4-
Similarly one can show that u(x,t,s /) converges to a function - s
C24- ((0, ))f’) C([0, c)) which satisfies the steady state equation, the boundary condi-
tion -+(0) 0 and the condition () <= -4-() <- K. The fact that -+() () follows
from [6, Lemma 5.1]. Consequently -4- .

LEMMA 5.2. CX is an increasing and continuous function of . More precisely if
>- 2 we have

Proof. Let m Cx Cx. It satisfies the differential equation

exm" + (g 4,x)rn’ ’X2m 0
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and the boundary conditions m (0)= 0 and m (oo)= 1-2 0. Suppose that m attains
a negative minimum at a certain point : (0, oo); then m(:) < 0, m’() 0 and m"(:) ->0
which is in contradiction with em"()=c’x2()m(). Thus m->0. In the same way
one can show that m cannot attain a positive maximum, which implies m <= 1-2.

Finally we are in a position to prove the following theorem.
THEOREM 5.3. Let rb(x) be the solution of problem P0. Suppose g/ satisfies the

hypothesis H, then for each x >-_ 0

lim u(x, t, 4)= (P(x).
t--*

If e <- g(c)-K the convergence is uniform on [0, c); if e > g(o)-K it is uniform on
all compact intervals of [0, c).

Proof. Since the functions u and Ux are bounded uniformly in t, we apply the
Arzela-Ascoli theorem and a diagonal process to deduce that there exists a function
z C([0, )) and a sequence {u(t,)} with u(t,) u(., tn, O) such that u(t,) as t, ,
uniformly on all compact subsets of [0, ). Let e <g(c); then for each <ho
min(g(o)-e,K) one can find and 21 satisfying (4.13) and such that
s-(., , , ) _-< O. Applyiag Theorem 3.4 we obtain

(5.4) u(x, t, s-(" , a, P)) < u(x, t, ) < u(x, t, +).

Letting c in (5.4) and applying Lemma 5.1 we obtain

bx _-< z _-< (I) for all < ho.

Next we deduce from Lemma 5.2 that

(I)-’<ho- for all<ho
and thus, that -= (I). If e => g(), then the inequalities

0<= u(x, t, )<- u(x, t, s +)

imply

0<__.r=<= 0.

Thus also in this case we have that (I). Finally we conclude that as , u (., t, )
converges to , uniformly on all compact intervals of [0, c). This convergence result
can be made slightly stronger in the case that e <_-g(o)-K" since then ()=K and
since u is nondecreasing in x one can apply Diekmann [5, Lemma 2.4] to deduce
that the convergence is uniform on [0, o). [-]

6. Rate of convergence of the solution towards the steady state. In this section
we analyze the rate of convergence of the solution u of P towards its steady state .
The results which we are able to derive depend strongly on the behavior of g as x co.
If g tends to infinity fast enough, we can prove exponential convergence with a certain
weighted norm. In the more general case, when e < g(oo)-K we find that the solution
converges algebraically fast towards its steady state on all finite x-intervals. No results
are available in the case e => g(oo)-K, which coincides with the physical situation
when some (or all the) electrons escape to infinity.

We write

u(x, t, O) O(x) + v(x, t).
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Then v satisfies the problem

Vt EXVxx "at" (g ())Vx (tV VVx,

(6.1) v(0, t) 0,

v(x, o) a/(x)-(x).

Now let us make the change of function

v(x, t)= exp (-Io g(sr)-*(sr) d() (x, t).

Problem (6.1) becomes

6t ex6xx -q(x)6 + h(x, , x),

(6.2) (0, t)= O,

t(x, O)= exp (Io g(()-*(sr)d()(b(x)-Cb(x))2e(

where

and

g’(x)+’(x) g(x)-(x)
q(x) (g(x)-(x))Z+

4ex 2 2x

h(x, , ,)=-exp (-Io g(sr)- (sr)
2e"

In particular, there exists M > 0 such that

[h(x, , )1-< M(II71[2 + II xllZ),

where tho notation [l" indicates the sup-norm.

g(x)-(x) )2ex

O<X

In what follows we shall distinguish two cases: (i) the case when liminf
_

q(x)=
6>0: this is so if g(x)>-Cox/ for all x >-x2 for some positive constants Co and x2;

(ii) the case when liminf_ q(x)= O.

6.1. Case when g tends to infinity at least as fast as x/ for x --> . The theorem
we give next is very similar in its form and in its proof to a theorem of Fife and
Peletier [10].

THEOREM 6.1. Suppose that there exist constants x2, Co >-_ 0 such that

(6.3) g(x)>=Co4 forallx>--x2.

Then them exist positive constants 8, Ix, C such that if

exp (/o" g()-a’()2esr

then

exp (fo" g(’)-a’(’)d()(u(, t, )-,)[I-<_Ce2esr
where the notation I1" indicates the sup-norm.
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Proof. To begin with we note that with the hypothesis of Theorem 6.1 we have
that v(oe, t)= 0 (since e < g(c)-K) or equivalently

lim exp (-Io g(sr) cI)(sr) d()(x,t)=O.x--, 2er
Next let us consider the boundary value problem

exw"-(q(x)+,)w -0(cI)’(Y) +,) min ((x), (x/Y)-v()),w(O)=O,(6.4)

where

O(x) exp (Io g(()-(() d()(x).2e(

The right-hand side of the differential equation in (6.4) has been chosen in a special
manner so that one can exhibit upper and lower solutions for a problem closely related
to (6.4); more precisely we shall prove in the appendix that this problem has at least
one solution w e C2([0, oe)) with w,w’ and w" bounded such that

0< w(x)_-< min ((x), +(Y))

for all constants uo > 1 provided that the constants 0 e (0, 1), Y > 0 and h < 0 satisfy
certain conditions. We adjust 0 such that Ilwll / IIw’ll <- 1.

We are now in a position to prove Theorem 6.1. Let

z(x, t)=(w(x)+y) e -"t,
in which/3, 3’ and/x are positive constants still to be determined, and let

J/lz eXZx,, -q(x)z + h(x, z, z,,)-zt.

(i) The function q is positive for x near zero and, because of condition (6.3),
also for large x; thus there exists qo>0 and st1, rz(0, oe) such that qo
min {q (x)" x e [0, rl] LJ [r2, oe)} is positive; therefore

e[/[Z<e-tt((, +/x)w + 3,(-qo + ix) +M/3(1 _. 3")2).
Choose

0 < < min (-,, qo);

assume that 3’ is known (we shall specify it later), and choose

,(qo-)
M(I+ 3")2"

Then z <_-0 for all x [0, sr] LI [sr2, oo) and -> 0,
(ii) Let rx __<x <=-2; since w(x)>0 on (0, oe), and since w is continuous we have

Therefore

m min {w (x)" rx <_ x -< ’2} > 0.

d/lz<-_Se-"’((, +l,)m + 3’(-q + t) +M/3(1 + 3’)2),
where is an arbitrary constant such that

< rain {q(x)" x [0, )}.
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Hence

Therefore if we choose

we have

ddz <- t e -’ ((, + p,)m + y(-q + qo)).

-q + qo

z <_- 0 for ’1 ----< X -< "2 and => 0.

Thus for the above choice of/3, y and tz the function z is an upper solution of the
equation z7 0. Let

sup t7 (x, 0) -<_ 6,

where 3 =/33,. Then

g(x, O)<= z(x, 0) for all x s [0, oo),

and hence by Theorem 3.4

g(x, t) <= z(x, t) for all x [0, oo), => 0.

In a similar manner one can show that if

inf t7 (x, 0) -> -6
[o,o)

then

(x, t) >= -z(x, t) for all x [0, oo), _-> 0.

Hence if I1(’, 0)11-<- then I1(’, t)ll--< c e-’ where we define

C =/(1+ V) (1+ l/y)&

6.2. Algebraic decay rate in the case that e <g(oo)-K. Provided that e <
g(oo)-K and that the initial function 4’ converges algebraically fast to K as x
we prove that the solution u of P converges algebraically fast to the steady state
solution for all finite values of x. To that purpose we show that a certain weighted
space integral of the function lu-1/9, for some integer p-> 1, decays algebraically in
time; a similar proof, with exponent p 1, has been given, for example, by van Duyn
and Peletier [9].

THEOREM 6.2. Provided that e < g(oo)-K and that >-s-(., K, Y,a, ) for some, satisfying (4.13) with h K, we have that

(6.5)
fo (g’(x)+(p 1)’(x))lu(x, t, g’)- (x)l/9 dx

for all > 0 and p 1 /] + 1.
Proof. Since Iv(x, t)l _-< (s+(x) s-(x, K, 1, ,7)) it follows that ’ (v(x, t))/9 dx is

/9--1defined for all t_-> 0. If p _-> 2 let us multiply the differential equation in (6.1) by v
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and integrate with respect to x; we obtain

dx [eXVxV"-] e -e(p- 1) XI.)P-2(Vx)2 dx
dt p o

+ g, (g’+’(p-1))--dx-
o p p p+lJo

Since v tends to zero at least as fast as x- as x , the equation above can be written
in the simpler form

dx exvxv p- e(p- 1) xvP-Z(v)2 dx
dt p o

(6.6)
(g’+’(p-1))--dx.

P

Now let us define the functions v 4" and v- as the solutions of (6.1) with initial values
v4"(x, O)= s4"(x)-IJ(x) and v-(x, O)= s-(x, K, 21, )-(x), respectively. By Theorem
3.4 we know that v 4" =>0 and v-<-0. Furthermore, it follows from Lemma 5.1 that
v is nonincreasing in time and v nondecreasing. Of course both v and v satisfy
(6.6) and in order to simplify this expression we use the following lemma which we
shall prove later.

LEMMA 6.3. Let e < g(o)-K. Then lim_,, x’(x) O. If furthermore >=
s-(., K, 21, ) for some 1, satisfying (4.13) with h =K (we suppose furthermore
that > 1 if e <(g(c)-K)/2) and g/ C1,([x3, c)) for some a, x3>O, then
limx_, xu (x, t) 0 for all (0, o).

From Lemma 6.3 and formula (6.6) we deduce that v + satisfies

dt p P

If p 1, similar calculations yield

dt
v+dx g’v dx.

Since 0 < g’(x) < g’(0) and 0 < ’(x) < ’(0), we have for all p -> 1

(V+(X, t)) dx >=
g’(O) + (p 1)’(0)

(g’(x) + (p 1)’(x))(v+(x, t)) dx,

and thus

fo (g’(x) + (p 1)’(x))(v+(x, t)) dx

=<(g’(0)+(p-1)’(0))I0 (v+(x, O))P dx

-(g’(O)+(p-1)*’(O)) Io dr fo (g’(x)+(P-1)dp’(x))(v+(x’ r))’ dx"

In what follows we apply the following lemma that we shall prove later.
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LEMMA 6.4. Let y C([0, oo)) with y’ L1((0, oo)) and y’ <-0 such that

(6.7) O<-_y(t)-N-M y(r) dr

or some constants N >-_ O, M > O. Then

N
(6.8) y(t) N7.
Since the function io (g’(x)+ (p- 1)’(x))(v/(x, t)) dx is continuous and nonincreas-
ing (because v / is nonincreasing), we deduce from Lemma 6.4 that

Similarly one can show that

Formula (6.5) is then deduced from the fact that

Iv(x, t)[" _-< max ((v+(x, t)) p, (-v-(x, t)) p) <- (v+(x, t)) + (-v-(x, t)) p

Proof ofLemma 6.3. We first show that limx_,oo xrb’(x) 0. Since

exrb’(x) edO(x)- (g(()- (r))’(-) d( <- eK,

we have

0_-< x’(x)_-< K.

Furthermore

(x’)’ x"+qY=
g--e

’_-< 0 for x large enough.

Since the function xqY is bounded and decreasing for large x, we deduce that there
exists E e [0, K] such that

lim xdP’(x) E,
X-O0

which implies

(x) E In x + C as x +oo.

Since

lim (x) K,

we deduce that E 0.
Next we show that limx_.o xux =0 by making use of Bernstein’s argument, in a

similar way as in Aronson [1] and Peletier and Serrin [21].
Let

R,, x (0, T], n > 3x3
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and let

(r)
Nr(4-r)

where N =supg.u-inf.u. The function increases from 0 to N as r increases
from 0 to 1. Note that &’(r)= 2N(2-r)/3>O and O"(r)=-2N/3<0 and define a
new function w such that

u inf u + (w).

Then w satisfies the differential equation

"(w) )w=eXWxx+eX,(w (Wx +(g-(w)-infu)wx.

Set p w and differentiate the last equation with respect to x; we get

pt exp)cc + epx + e--T P2 + 2ex- ppx + ex
qb’]

p3

+ (g 4, -inf U)px + (g’- ’P)P,

and thus - p2
exppxx ex -) p + e --’7 c p3

(6.9)
+ 2ex p2px + (g qb inf u + e )PPx + g,p2.

Let R* (3n/4, 5n/4) (0, T], and let sr= 1-4(x-n)Z/n Set z ,2p2
(i) If z attains its maximum value at the lower boundary of R, we have

supz<_-z(2, 0) where 27[,3-n].
I..Z, /., _1

Hence,

sup
q*

Since r>__ 3/4 in (3n/4, 5n/4) and since u ’(W)Wx we find

’ 8M<4 sups;sup]uxl=inf
(ii) If z attains its maximum value at an interior point (aT, F) of R. we have at

that point

Zx 2((’p2 + 2(2ppx O,
(6.10)

eXZxx Zt <= O.

The last inequality can be cast in the more explicit form

2 2srz(1/2(p))t exppxx) >--- ex((’2p: + ((,,pZ + 4(’ppx + (Px).



A NONLINEAR EVOLUTION PROBLEM 35

Using (6.9), (6.10) and the inequality
2 2 214((’pp,,I <= p,, + 4r’Zp

we obtain

+ (.2g’--+ 38’’2 8’’"--
X

g 4 infa,, u + e ..,)p2.X

Since (b"/&’)’_-< -1/4, this implies

2’2p4 _< lp2 + ’21 p ,
where the (i’S are positive and depend only on N and n. Since

’2[ P 3 < ,ap4 + c622 2p
it follows that

Therefore

z(x, t)<_-max (z(x, t)) <- Cgl +-7=-- g3.

4/2
max Iw] -<.
a.. 3

Finally Ux 4’(w)wx and &’ <-4N/3 imply that

max lull 16NCg/z/9.

Note that N<=sup.(K-s-(x,K,1,)) (which behaves as x
is furthermore such that P > 1 if e < (g()-K)/2.
Thus

(6.11) max [ux[ _-< 16c8/2 sup
(K- s-(x, K, ,1, ))..., . 9

where 7 > 0)

If e < (g(oo)-K)/2 c3 is bounded uniformly in n, and we deduce that xu tends to
zero as x-eo. If on the other hand (g(oo)-K)/2 <=e < g(oo)-K, then we only have
that 7 > 0 in (6.11) and sup&(K s-(x, K, 1, 7)) tends to zero as x + oo. However g3/2

tends to zero as 1Ix when x + oo, which also yields the result. [3

Proof ofLemma 6.4. Integrating by parts we get

[ y(r) dr ty(t)- [ ry’(r) dr >= ty(t).
a0 ao

Also we deduce from (6.7) that

N
y (r) dr <--M’

and thus (6.8) follows.
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Next we deduce from Theorem 6.2 that there is also pointwise convergence.
More precisely we prove the following theorem.

THF.ORFM 6.5. Provided that e < g(oo)-K and that >-_s-(., K, 21, ) for some
21, satisfying (4.13) with A K, we have that

(6.12) II(g’(" + (p -1)’(. ))l/P(u( t, d/)-dP)ll<= 1]C0 for all t>0,

and p 1 / 7] + 1, where

x[O,az)
(6.13)

1/2Io ((s+-Cb)’ + (*- s-)’) dx]
In particular, if e < (g(oo)-K)/2 and 7 > 1, then p 1 and formulas (6.12) and (6.13)
simplify as follows

(6.14)

where

C
Ilg’(’)(u(’, t, 4,)-)1[_-< for all t>O,

4t

C =[2((g’(O))+K
1/2

I ,,(x l/Io[0,)

Proof. To prove Theorem 6.5 we need the following auxiliary lemma.
LEMMA 6.6. Let ck be defined ]’or 0 <= x < oo and satisfy the conditions

(i) (x) >-_ 0 and (0) 0;
(ii) b is Lipschitz continuous with constant l;

(iii) I(x) dx <=2.

Then

sup 1 (x)l -<- x/.
0<_--x<

We omit here the demonstration of this lemma since the main ideas of the proof are
given in the proof of Peletier [20, Lemma 3].

Now let us apply Lemma 6.6 to the function (g’+(p-1)’)[u-lP; it is non-
negative, equal to zero at the origin and its derivative is continuous by parts and
bounded by

sup
E xe[O,)

at all points where it is defined. Finally the bound on its integral is given in Theorem
6.2. Inequality (6.12) follows.

6.3. Asymptotic behavior ot the solution ot the hyperbolic problem H as t .
Tno 6.7. Let satiffy Hz and be such that 6 s-(., K, , ) for some

>0, > 1 satiffying (4.13) with h =K and define (x) min (g(x),K). Then

C
IIg’(’)(a(’, t, 4,) )11-< --7= /’or all t>O,

Vt



A NONLINEAR EVOLUTION PROBLEM 37

where C is the constant defined in Theorem 6.5.
Proof. Let e (0, (g(o)-K)/2)$O in inequality (6.14), note that the constant C

does not depend in e, and use the fact that converges to uniformly on [0, o) as
e $ 0 (see [6]).

Appendix. In what follows we shall prove the following theorem"
THEOREM A1. Suppose that there exist constants x2, Co > 0 such that the condition

(6.3) is satisfied. There exist 0 (0, 1), > 0 and A < 0 such that the Cauchy-Dirichlet
problem (6.4) has at least one solution w C2([0, oo)) with w, w’, w" bounded and

0< w(x)-<_min ((x), (x/)-c()) for all x (0, oo).

Proof. Let n >= 1, and consider the boundary value problem

(A1) 1)w,,e x +- -(q,(x)+A)w =-0(’(YI+A) min (,(x), (x/)-,()),

(A2)

where

w(0) 0,

and

,(x) =exp (Io g(sr)-(sr)
sr)2e(’+ 1/n)

d d(x),

(g(x)-(x))2 g’(x)+’(x) g(x)-ap(x)
q,(x)=

4e(x+l/n)
+

2 -2(x+l/n)’

Vo > 1 is arbitrary and where the constants 0 (0, 1), > 0 and h (-’(), 0) satisfy
some additional conditions which will be given later. Obviously zero is a lower solution
for the differential equation in (A1). We shall now construct an upper solution. Firstly
we deduce from the asymptotic behavior of g that there exists 1 => 1 and qo > 0 such
that qn (x) ->_ 2qo for x >_- gt 1. Also if h > max (-qo, -’(gt)) and 0 < (qo + h )/(’(gt) + h ),
then the function (x/gt)-",(gt) is an upper solution of the differential equation (A1)
for x _>- gt := max (gtl, 2euo(Uo + 1)/qo). Next we note that n is an upper solution of
(A1) on [0, gt] and thus that min (n(x), (x/gt)-, (gt)) is an upper solution of (A1)
on [0, c). Finally we conclude that there exists at least one solution w, C2([0, e))
of (A1), (A2) [3, Thm. 1.7.1], such that

0-< w, (x -<_ min ,(x), ,(Y)

which, since ,, <-, implies that

(A3) 0 _-< wn (x) N min (x), ()

Furthermore, the inequalities (A3) and

(A4)
g’ +’Iq. (x)[ _-< (g )2
/-

4ex 2

yield, together with (A1),

for all x [0, oo),
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where C > 0 is independent of n. Now let us integrate (A1); we get

(x)= w’w (0)

(A5) ’ (q,(()+Z)w,,(()-O(’(Y)+Z)min (,(’), (UY)-n(Y))d"
+ 3o e((+l/n),

and again using.(A3) and (A4) we obtain

Iw’.(x)l-<-c for all x [0, ].

Using the Arzela-Ascoli theorem and a diagonal process, we deduce that there exist
a function w C1([0, c)) and a subsequence {wnk} of {w,} such that wnk - w as nk o
uniformly in C1([0, )) on all compact subsets of [0, c). Also setting n nk in (A5)
and letting nk , we deduce that w satisfies the differential equation

(A6) exw"-(q(x)+Z)w -0(’(Y) +Z) min ((x), (x/Y)-(Y))
and the boundary condition

w(0) 0.

It follows from (A6) that w C2((0, c)), and since

lim w"(x)=[(’(O)+A)w’(O)-O(’()+A)’(O)]/e,

we deduce that in fact w C2([0, o)). Finally the strict inequality w > 0 is proven by
means of a maximum principle argument. 71
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BOUNDED POSITIVE SOLUTIONS OF SEMILINEAR SCHRODINGER
EQUATIONS*

C. A. SWANSON

Abstract. The Schr6dinger equation (1) Au+f(x, u)=0 is considered in an exterior domain l) in
R n, n ->2, where f is H61der continuous and nonnegative and f(x, u)/u is majorized above and below by
nonnegative functions g(Ixl, u) which are monotone in u for u >0, [x[ =>0. Conditions on f are found which
are necessary and sufficient for (1) to have a uniformly positive bounded solution in ll R 2, and correspond-
ing results in I’ c R", n -> 3. Such theorems constitute the only characterizations discovered to date of
partial differential equations possessing positive solutions with specified behavior at

1. Introduction. Positive solutions u(x) of the semilinear Schr6dinger equation

(1) Lu =-- Au +f(x, u) O, x f

will be considered in exterior domains l) of n-dimensional Euclidean space R n, n _-> 2,
where f is H61der continuous and nonnegative, and f(x, u)/u is monotone in u for
u > 0; detailed hypotheses are listed in 2. Our main objective is to extend the known
characterization of the existence, of a bounded positive solution of the ordinary
differential equation

(2)
du
dx + Ug(x, u O

to R", where g(x, u) is either nondecreasing in u (superlinear case) or nonincreasing
in u (sublinear case) for each x =>0. Equation (2) was first studied in the case
ug(x, u)=p(x)u , 3,>0, when (2) is usually called the Emden-Fowler equation. The
historical origin dates back to Lane [15], Emden [9] and Fowler [10], [11]. Excellent
summaries of the applications to gas dynamics, fluid dynamics, astrophysics, relativistic
mechanics, particle physics and chemistry have been given by Bellman [4], Conti,
Graffi and Sansonne [8], Wong [24], with many additional references contained therein.

The one-dimensional theorem below, in the form given by Cottman and Wong
[7], will be extended to n dimensions. Earlier similar results were proved by Atkinson
[3], Belohoree [5], [6], Izyumova [13], Moore and Nehari [16] and Nehari [18].

THEOREM 1.1. Let f(x, u)= ug(x, u) be continuous and nonnegative for 0 < x <, 0< u <, and suppose that g(x, u) is either nonincreasing or nondecreasing in u
for each x. Then (2) has a bounded positive solution in some interval (Xo, oo), Xo > 0 if
and only if

(3) J xg(x, c) dx <oo

]’or some c > O.
A positive solution u (x) of (1) in D, R 2 is always uniformly positive (see Lemma

4.2), but is not necessarily bounded; for example, the radial equation

Au + r-2(log r)-3U 3 0, r --Ixl > 1

has the unbounded positive solution u(x)=1/2(logr)1/2, r>r0>= 1. It is therefore a
natural question to ask for conditions analogous to (3) which are necessary and

* Received by the editors June 27, 1980, and in revised form March 17, 1981. This work was supported
in part by the Natural Sciences and Engineering Research Council Canada under grant A3105.

t University of British Columbia, Vancouver, Canada V6T 1Y4.
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sufficient for (1) to have a bounded positive solution in an exterior domain of R 2.
The conclusions are given in 3 and 4, also containing corresponding results in R ",
n >_- 3. Our principal results, contained in Theorems 3.1, 4.3, and 4.4, are summarized
in Theorem 1.2.

MAIN THEOREM 1.2. Suppose that the function f in (1) satisfies the positivity,
monotony and regularity conditions (A), (B), (C) and (D) listed in 2, in an exterior
domain fl c R n. If n 2, condition (6) is sufficient and condition (12) is necessary for
the existence of a bounded uniformly positive solution u(x) of equation (1) in fl. If
n >- 3, condition (8) is sufficient and (16) is necessary for (1) to have a positive solution
u (x) with Ix ]"-2u (x) bounded in

In the case of Emden-Fowler type equations (21), this theorem generates
necessary and sufficient conditions (22), (23) for the existence of a bounded positive
solution in l) (see Theorem 4.5). These are the only known characterizations, as far
as we are aware, of partial differential equations possessing a positive solution with
specified behavior at infinity.

2. Preliminaries. Points in Euclidean n-space R" are denoted by x=
(Xl, x2,’’’, x,) and the Euclidean norm of x is written Ix[. The notation below will
be used throughout:

Sa={xR "" Ixl=a}, a>O,

The measure on Sr and $1 will be denoted by s and to, respectively: ds r"-1 dw.
For a bounded domain M = R", let C(A), C+"(r) denote the usual H61der

spaces, 0 < a < 1, n 1, 2, [14], [20].
An exterior domain fl in R", n >_- 2 has the property that G = fl for some positive

number a. For convenience, a function g" [0,) (0, )--> [0, ) is called monotone
in the second variable when g(r, u) is either nondecreasing in u for each fixed r or
nonincreasing in u for each fixed r. The Schr6dinger equation (1) is to be considered
in an exterior domain fl under assumptions selected from the list below.

Assumptions.
(A) [ C" (M x J) for some a in 0 < a < 1, for every bounded domainM = fl and

for every bounded positive interval J.
(B))(x, u)->_ 0 for all x II and for all u >-0.
(C) l(x,u)>=ug([xl, u) for all xII, u->0, where g(r,u) is continuous and

nonnegative for 0 <_- r < oo, 0 < u < oo and monotone in u for each r.

(D) f(x, u)<-ug2(lxl, u) for all x eIl, u->0, where g2 C(f) for all bounded
intervals I [0, b ], J [a, b ], 0 < a < b, 0 < a < 1, and gz(r, u) is monotone in u for
each r >_- 0.

For example, all the assumptions (A)-(D) hold in the Emden-Fowler prototype
f(x, u)=p(x)u v, 3" >0, where p is nonnegative in [I and p C"(M) for every bounded
domain M f. In this case, we can take

g(r, u) [min p(x)]u "/-

g2(r, u)= [a__x p(x)]u’-l.

Then each g(r, u), 1, 2 is increasing in u if 3’ > 1 (superlinear case) and decreasing
in u if 0 < 3’ < 1 (sublinear case). The existence theorem below was proved recently
by E. S. Noussair and the author [21, p. 125].
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THEOREM 2.1. Let L, f and a be as above, and let a be a positive number such
that Ga c f. Under assumptions (A) and (B), if there exist positive solutions v, w of
Lv <-O, Lw >-O, respectively in Ga, v, w Ce+ (1I) for every bounded subdomain
M Ga such that w (x) <-_ v (x) throughout Ga Sa, then (1) has at least one solution
u satisfying w(x)<-_u(x)<-v(x) throughout G USa, u Ce+(f4) for every bounded

Versions of this theorem for bounded domains had been given much earlier by
Nagumo [17], Amann [2] and others.

In particular, let v be the function defined in Ga by v(x)= ((r), r Ixl >- a, where
sr is assumed to be a positive solution in the space Ce/[a, b] for all b > a of the
ordinary differential equation

(4) d-- r + r ((r)g.(r, ((r)) O.

COROllARY 2.2. Suppose that (4) has a positive solution C+[a, b] or some
a > 0 and or all b > a such that ((r) Kr-, where K is some positive constant. Then,
under assumptions (A), (B) and (D), (1) has a positive solution u (x) satisfying
glxl-" u(x) ff(Ixl) for all x G U S, n e 2.

In fact, computation shows that

rn-aLv=_r rn-1 +

<---- r"- + -(r)ge(r, ((r)),
dr

and hence Lv <-0 for all x Ga by (4). Since w(x)= Kr2-, r= Ixl satisfies Lw >-0,
Corollary 2.2 follows from Theorem 2.1.

3. Sufficient conditions for bounded positive solutions. If n =2, Liouville’s
change of variable r e s, h(s) sr(e s) transforms (4) into the canonical form

h"(s)+eeSh(s)g2(e, h(s)) 0.

By Theorem 1.1, (5) has a bounded positive solution h(s) in some interval (So, m) if
and only if

s c) <eeSga(eS ds

for some c > 0, which is equivalent to

(6) r log r g2(r, c) dr < c

for some c > 0. Furthermore, standard regularity theory [14] shows that h Ce+[So, s]
for all s > So if g2 Ca, as in assumption (D). If (6) holds, then a bounded positive
solution h(s) of (5) in (So, ) satisfies h"(s) < 0 by (5), from which h’(s) > 0 throughout
(So, o) by a standard obvious argument. Consequently, there exist positive constants
Kx and K2 such that Kl<--h(s)= r(r)_<K2 for all r in [a, ), where a =exp So, and
r e C2+[a, b] for all b > a. By Corollary 2.2, condition (6) is then sufficient for (1) to
have a positive solution u (x) in Ga R e satisfying K1 -<_ u (x) -< K2 for some constants
K and K2, 0 < Kx < K2.
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If n => 3, the change of variables

r (s)= (txs)’, h(s) s(fl(s)),

where/z (n- 2)-1, transforms (4) into

(7) h,,(s)+s_4[(s)]_ah.(s)g:((s) h(s)) =0.

Theorem 1.1 shows that (7) has a bounded positive solution h(s) in some interval
(So, c) if and only if

for some c > 0, which is equivalent to

J rg2(r, cr2-n) dr <, n >= 3(8)

for some c > 0. If (8) is satisfied, then, by exactly the same argument given above in
the case n 2, there exists a solution ’(r) of (4) such that Klr2- <= (r)<=K2r2- for

all r->_ a, where a, K1 and K2 are positive constants. Corollary 2.2 therefore shows
that (8) is sufficient for (1) to have a positive solution u(x) satisfying Kr2- <= u(x)<=
K2r2- for all x Ga USa, n -> 3, 0 < K1 < K2. This establishes the theorem below.

THEOREM 3.1. Under assumptions (A), (B) and (D), (1) has a bounded positive
solution u (x) in an exterior domain Ga c R n, for some a > O, with Ix 1n-2u (x) uniformly
positive and bounded if (6), (8) hold for n 2, n >= 3, respectively.

4. Necessary conditions for bounded positive solutions. The spherical mean of
a function u:RnR over the sphere Sr of radius r is defined by

(9) U(r)=
1 Is 1 Iss(S)

u(x) cls u(x) do.

A proof of the lemma below is given in [19, p. 70].
LEMMA 4.1. If assumption (C) holds, then the spherical mean U(r) of a positive-

valued solution u (x) of (1) in Ga satisfies the ordinary differential inequality

(10)
dr

r >-- oi) u(x)g(r, u(x)) do),

fora<r<oo.
The next lemma is a special case of a result in [22, p. 917]; see also [1, p. 935],

[23 p. 147].
LEMMA 4.2. Every positive solution of the differential inequality Au <-_ 0 in Ga kl Sa

satisfies the inequality
n--2

(11) l,l(X) e
Ixl

THEOREM 4.3. Under assumptions (A), (B), (C), a necessary condition for (1) to

have a bounded positive solution in an exterior domain Gb R, b > O, is

(12) | r log rg(r, c) dr

for some positive number c.
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Proof. If u (x) is positive in Ga 13 Sa, a > b, Lemma 4.2 shows that u (x) is uniformly
positive for Ix[ -> a, n 2, and hence, there are positive constants K1 and K2 such that
K1 <- u(x)<=K2 for all [x[>=a. In the superlinear case, i.e., gl(r, u) nondecreasing in u,
Lemma 4.1 then yields the inequality

(13)
dr

r >-_Klrgl(r, K1), r >-a.

In the sublinear case, i.e., g(r, u) nonincreasing in u, (13) is replaced by

dr
r >-_Krg(r, K2), r>--a.

In both cases there exists a positive number c such that

(14)
dr

r >-Krg(r, c), r>-a.

Multiplication by log r and integration by parts over (a, r) gives

(15) -rlogrU’(r)+alogaU’(a)+U(r)-U(a)>-K tlogtg(t,c) dt.

However, since V(r)= rU’(r) is nonincreasing by (10), it follows that U’(r)> 0 for all
r > a in fact, il V(R) < 0 for some R > a, then

U(r)- U(R)= [" V(t)
dt <- V(R) log ---,

contradicting the positivity of U(r) for all r > a. Since U(r) is bounded, (15) implies
the conclusion (12) of Theorem 4.3.

THEOREM 4.4. Under assumptions (A), (B), (C), a necessary condition for (1) to
have a positive solution u (x) with ]x[n-2u(x) bounded in an exterior domain Gb c R ,
n _->3, b >0, is

(16) J rgl(r, cr2-) dr < c,

for some positive number c.

Proof. By Lemma 4.2, there exist positive constants K1 and K2 such that

(17)

for all Ixl>-_a, where a > b. Then similarly to (14), assumption (C), (10) and (17) show
that

(18)
dr

r >-_Kargl(r, cr2-n), r>-a,

where c K or c K2 according as g(r, u) is nondecreasing or nonincreasing in u,
respectively. The change of variables

r (s) (txs)", h(s) sU((s)),

where/x =(n-2)-1, transforms (18) into

(9) -h"(s) >-Ks-[#(s)]ng((s), c[t(s)]-"),
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n -> 3. We mulitiply (19) by s and integrate by parts over (A, s) to obtain

(20)

-sh’(s)+Ah’(A)+h(s)-h(A)>-_K1 s-2[(s)]ng((s),c[(s)]2-n)ds

Ko rgx(r, cr-") dr,

where a =/3(A), r =/3(s) and Ko is another positive constant. A standard argument
similar to that used in the proof of Theorem 4.3 shows that sh’(s) is bounded if h(s)
is positive and h"(s)< 0. However, h(s)= (n-2)r"-2U(r) is positive and bounded by
hypothesis, and therefore (20) implies (16). This completes the proof of Theorem 4.4.

In the case that (1) is the Emden-Fowler equation

(21) Au+p(x)uV=O, y>0,

where p (x) is nonnegative in fl and p C (M) for every bounded domain M c 12, we
define

P(r) min p(x),
Ixl=r

P2(r) max p(x).

Then assumptions (C) and (D) hold, where

gt(r, u) e(r)u- gz(r, u) e(r)u-Conditions (6), (8), (12), (16) of Theorems 3.1, 4.3 and 4.4 reduce to, respectively

(22) I r log r P(r) dr < o, n 2,

(23) I rP2(r) dr < c, o" n 1 y(n 2), n _-> 3,

(24) I r log rP(r) dr < o, n 2,

(25) I rP(r) dr < c, n >- 3.

Necessary and sufficient conditions for (21) to have a positive solution u(x) with
Ix[n-2u(x) bounded in exterior domain are obtained under the additional hypothesis

Pz(r)
(26) lim sup <.

r- P(r)

THEOREM 4.5. If (26) and the hypotheses accompanying (21) are fulfilled, a
necessary and sufficient condition for (21) to have a positive solution u(x) with ]xl"-Zu(x)
bounded in an exterior domain Gb in R for some b > 0 is (22) in the case n 2, or
(23) in the case n >= 3.

Proof. The sufficiency of (22), (23) is the content of Theorem 3.1. By assumption
(26), (24) implies (22), and (25) implies (23). Hence, Theorems 4.3 and 4.4 establish
the necessity of (22) and (23), respectively.

5. Concluding remarks. In the superlinear case 3/> 1, conditions (22) and (23)
also characterize nonoscillatory equations (21), i.e., equations (21) for which there
exist positive solutions in some exterior domain [20, pp. 1001-1002]. This is not true
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in the sublinear case 0 < y < 1; in fact it was shown recently by E. S. Noussair and
the author [21, p. 132] that nonoscillatory sublinear equations (21) are characterized
by the condition

(27) rPa(r) dr < c, n >- 3.

Siace o-= 1 +(n-2)(1-,/)> 1 in the sublinear case, condition (23) is not necessary
for nonoscillation of (21). An analogue of (27) is not known if n 2, but a sufficient
condition for nonoscillation of (21) is [21, p. 130], [23, p. 152],

(28) J r(log r)’P(r) dr < oe, n 2.

The necessary condition [22, p. 920], [23, p. 152]

rPz(r) < c, ndr 2

can easily be improved, but it is not clear at this writing that (28) is necessary for
nonoscillation (sublinear case).

Recently Gidas, Ni and Nirenberg [12] have given sufficient conditions for certain
positive solutions of the autonomous equation Au +f(u)=0 in R to be radially
symmetric about a point. An explicit solution is demonstrated in the case f(u)= u ,
y (n + 2)/(n -2), n ->3. However, since f(u) is independent of x in [12], the problem
studied here does not arise; for example, in the case of (21) with p (x) identically equal
to 1, condition (22) is never satisfied and (23) is satisfied if and only if 3’ > n/(n-2).
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A NONLINEAR-BOUNDARY VALUE PROBLEM SUGGESTED
BY THE LAPLACE* EQUATION FOR AN ELASTIC AND

AXISYMMETRIC MEMBRANE

ANNE-MARIE LEFEVEREt

Abstract. This paper concerns the existence of solutions for a nonlinear boundary value problem
related to the Laplace equation

1 f d O’
A0q-

19(1 /19,2)1/2---., whereAO--xx (l+O,z)l/
and equations AO+F(O/ 00)=g +F(19o), related to the precedent one. These results are obtained by a
regularization and the use of Galerkin and monotonicity methods. Maximal, minimal and periodic solutions
are also studied.

1. Introduction. The starting point of this paper concerns the equilibrium shape
of an elastic and axisymmetric membrane, governed by the Laplace equation

d 0’ 1 f
dx (1 + 0’2) 1/2 + 0(1 + 0’2) 1/2 ’subject to appropriate boundary conditions. Here, O’x O(x) is the equation of the

meridian, f is the jump of pressure and T is the surface tension. Such an equation
arises in problems of crystal growth, for instance in Czochralski growth [10] and in
floating zone melting [12]. In the present paper, we mainly study the existence and
uniqueness of solutions 0 for the following problem, related with the first one

1 1
AO+ g, 0<x<L,

0 0o

0(o) 0(z;) 0o> o,
where AO -(d/dx)O’/(1 + 0’2) 1/2, and g belongs to Lq(]0, LD, q > 1. For our study,
there is no extra difficulty in considering a more general case, replacing 1/0-1/0o
by F(O)-F(Oo), where F is a continuous decreasing and positive function on ]0, oo[.

Let u 0 0o. We obtain the problem called P(Oo, L, g),

Au +F(u + 0o)= g + F(Oo),

u(O) u(Z;) o.
However, the problem P(00, L, g) in its variational formulation is not coercive on

W"p (I)) for p > 1. (It is coercive on W’1 (fl), but W’1 (iq) is not a reflexive Banach
space.) Therefore, we introduce the operator Ap such that

d

where 1 < p < and p -> q’, and we replace A by A A + e Ap, e > 0. We note that
A is coercive on Wao

The regularized problem, which we call P (00, L, g), will be treated by a Galerkin
method (applicable to the Laplace equation) and by a monotonicity method.

* Received by the editors February 8, 1980 and in final revised form March 25, 1981.
5" Universit6 de Pau, Facult6 des Sciences Exactes, Dept. de Math6matiques, Avenue Philippon, 64000

Pau, France.
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In the two cases, upper and lower solutions are used. However the existence of
such functions is not sufficient to guarantee the existence of solutions for P(Oo, L, g).
They must satisfy additional conditions which allow to get estimates, independent of
e, on the derivatives of the approximate solutions, and then to pass to the limit when
E -’> 0.

The organization of the paper is as follows.
Section 2" Notations and basic lemmas.
Section 3" Positive solutions by a Galerkin method.
Section 4" Maximal and minimal solutions.
In the two following sections one is interested in the case F(u)= 1/u.
Section 5" Some comments on the existence of upper and lower solutions.

Conditions on the data L, 00, g, insuring the existence of upper and lower solutions
which satisfy the hypotheses of the existence theorems for P(Oo, L, g), are investigated.

Section 6: Periodic solutions for AO + 1!0 f. This section is an application of
the results of 4.

2. Notations and basic lemmas. C (lq) is the vector space of C functions with
compact support in l). We use classical notation and results concerning Sobolev spaces.
Let l)= ]0, L[. For p _-> 1, W"’P(fl) denotes the Sobolev space of functions u LP(fl)
such that the distributional derivatives dku/dx k Lt’(fl), 1 <-_ k <= m.

If p=2, we write W"2(fl)=H"(fl). We recall that W’’(fl)={ulu WI’P(fl),
u(O)=u(L)=O} and by the Poincar6 inequality I[Ullwg.pn)=(a[u’[Pdx) lip is an
equivalent norm to on W’ (fl). For > p => 1 the space W-a’"’, 1/p + 1/p’=
1, denotes the dual of Wo’ (fl).

Note that, since n 1, we have by the Sobolev embedding theorem

Wm’p (’) cm-l’l/P’(fi) (with continuous embedding).

For any pair of functions u, v in L (fl), such that u <_- v a.e. in fl, we define the convex
set

[u, v]={zlz eLP(fl), u <=z <-_v a.e. in

We now point out our definition of upper and lower solutions.
DEFINITION 2.1. A function w W’P(I)), p > 1, is called a lower solution of

P(Oo, L, g) if Aw sL"’(I), w +00>0 and if

(2.2)
Aw +F(w + 0o) <- g + F(Oo)

w(O) =< O, w(L)<-O.

a.e. in fl,

An upper solution is defined by reversing the above inequality signs. Observe
that this definition does not imply that w s C(). Now we give some lemmas which
will be used in the next sections.

LEMMA 2.1.
(i) Let V W’ (), 1 < p < oo and let f V’. Then there is a unique u V such

thatAu f.
(ii) Iffurther,f L(), whereq >- p’, then u W2"(),Au, L(fl), Au L(fl).
Proof.
(i) This follows directly from [9, Thm 1.2, Chap. II].
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Indeed A, which maps V into V’, is bounded. More precisely,

[IAv IIv, <-- e I[v[IV + L/p’,

(2.3) (Av, v)

A is hemicontinuous, and since the application h’X-+elXI’-2X+X/(I+X)/2 is
strictly monotone on R, A is strictly monotone.

(ii) Since h(u’)eLP’(O) and Au eLq(O), we have h(u’)e wl’q(O) and h(u’)e
C(). Since h -1 exists, we write u’ h-[h(u’)], h- is uniformly Lipschitzian on
any bounded set of . Now using Stampacchia’s results [15], we get u’ e W’(O).
Therefore u W2’q() and so by (2.1) u e C(). Next, again from the results of
[15], it follows that u’/(l+u’2)/2eW’q(). Thus AuLO() and pu=
Au Au L ().

Remark 2.1 If fLP() and f0, then Apu 0 and Au0 a.e. in .
The two following remarks follow from Stampacchia’s results [15].
Remark 2.2. For a function u W2’O(fl), q 1, Au -u"/(1 + u’2)3/.
Remark 2.3. If u WX’() and Au L(O), q 1, then u W2’"(fl).
Lemma 2.2 is a consequence of the weak maximum principle.
LEMMA 2.2. Let 1 < p <. Let u, v W’() satisfy Au, Av L’(),

(2.4) Av-Au 0 a.e. in fl,

v(0) u(0), v() u().

Then v u (we have the same result ifA is replaced by A).
Proofi Since v-u Wa’P(), (v- u)- W*(O) (cf. [15]) and

-d/dx(v-u) if v-u<0d
(v u)- a.e in ft.

dx 0 if v u 0

Multiplying (2.4) by (v- u)- W’P (), and integrating over , we get

_
(h(v’(x))- h(u’(x)))(v’(x)- u’(x)) dx O,

where - {x / v (x) u (x) < 0}.
Hence, on -, u-v is constant (locally) and this constant is necessarily 0.
The following lemma will supply a priori bounds on the derivatives of the

approximate solutions.
LEMMA 2.3. Let >p > 1, and let u, v W"() be such that Aou L’(),

ApU 0 a.e. in (resp. Apu 0) and

(2.5) 0 u v (resp. v u 0).

Then lu’l.) I’1,
Proofi Multiplication of (2.5) by Apu, integration by parts and the H61der

inequality yield

Then, using the Young inequality, we get

1 p-1
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Lemma 2.3 follows. (This result remains valid for p .)
For each function z L"(II) such that z + Oo>-_a >0, let Bez be the solution

(existence and uniqueness are provided by Lemma 2.1) of the nonlinear boundary
value problem

(2.6) Aeye =g+F(Oo)-F(z +00) a.e. in, y(O)=ye(L)=O.

The mapping Be will be used to define the sequences converging to the minimal
and maximal solutions of P(Oo, L, g).

LZMMA 2.4. Let zi be in L (1) and z + Oo >= c > O, 1, 2. If ye Bez, 1, 2
and zx <= Z2 a.e. in 12, then y xe <- yze.

Proof. We have

Aeyae-Aeyze=-F(Oo+za)+F(Oo+z2), yie(O)=yie(L)=O, i= 1,2.

Since F is decreasing and z -< z2,

Aeyae -Aey2e <=0, yie (0)= yie(L) =0, 1, 2.

Therefore by Lemma 2.2, Y ae -< Y2e.

3. Positive solutions by a Galerkin method. Consider the problem

(3.1) An + F(lu + 0o) g + F(Oo),

(3.2) u (0) u (L) 0.

Any positive solution of (3.1), (3.2) is solution of P(Oo, L, g) and conversely. Let
gL"(), where q > 1. Let p =>q’ and oo>p > 1. We study problem (3.1), (3.2) as the
limit of the regularized problem P’e(Oo, L, g)

(3.3) e Apue + aue +F(lu + 0o) g + F(0o),

(3.4) ue (0) ue (L) 0.

Now, suppose that ue is a smooth solution of (3.3), (3.4), then ue is a solution of the
following variational problem.

Problem. Find ue e W’ () such that

e [u’lp-2u’v’dx+ (l_--)a/2dx+ F([ul+Oo)vdx

In (g + F(Oo))V dx Vv e Wao’p

Conversely, by a standard argument, a solution of this problem satisfies (3.3) in the
distribution sense in fl and so is a weak solution.

In the sequel we shall solve P’e(Oo, L, g) in its weak form.
THEOREM 3.1. Let gGLq(), where q>l, and g>-O. Then P’e(Oo, L,g) has a

positive solution ue WXo’ (f) f’) W2’q ().
Proof. We use the Galerkin method. Let {wi}, a sequence of functions in W’p (f)

such that for each m, wa, w2, , Wm are linearly independent, and the linear combina-
tions of the wi are dense in W’ (f).

Next we seek ue, such that

Uem-- 2 imWi,
i=1

(3.5) (Aeue,,, wi)+(F(lUeml+Oo), wi)=(g+F(Oo), wi), l <=i<=m.
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The existence of u,,, follows from a fixed point theorem [9, Lemma 4.3 chap I)];
further, there is a constant C1, independent of m, such that for an "approximating
solution" u,, there holds

C(3.6)
E

It follows that the sequence u, is bounded in W’" (ft). Therefore, by (2.3)

(3.7) IIau.,ll-,-’.--< Ca.
By (3.6), (3.7) and by the compact embedding theorem of WI’P(f) into LP(O),

there exists a subsequence (still denoted Um) such that as m c

(3.8) u,, u, weakly in Wo1’ (f), strongly in L(I)) and a.e. in f,

(3.9) Au,, X weakly in W-l’’(f).
(Indeed, here, since n 1, (3.6) implies that u, is equicontinuous and there exists a
subsequence which converges uniformly to u,.)

Passing to the limit m o is now a standard matter. Let be fixed and m > i.
Letting m - m in (3.5) and using (3.8), (3.9) and the Lebesgue dominated convergence
theorem we get

(,, Wi) (g +g(Oo))-(g(lu[ + 0o), we) Vi.

The finite linear combinations of the w are dense in W’ (f) so that

(3.10) (X, v)=(g+F(Oo))-(F([u]+Oo), v) Vv W’’(l).

It remains to show that X Au. This follows essentially from the monotonicity and
hemicontinuity of A, (cf. [9, chap. II]). Then by restriction of (3.10) to functions v
in c (ft), we find that

(3.11) Au g +F(Oo)-F(lu[+Oo)

in the distributional sense in ft. Since g Lq(f,) and F(lul + 0o) Lq(f), equality (3.11)
holds a.e. in ft. Au Lq([) and by our assumptions on g and F

(3.12) Au >-0 a.e. in f.

Then Lemma 2.2 yields u => 0.
Remark. We can give another proof of Theorem 3.1 by proving that u-

Au +F(lul + 00) is a pseudomonotone operator.
Now we study the behavior of u, when e 0. The a priori estimates for P’ (0o, L, g)

do not allow the passage to the limit when e- 0. Under stronger assumptions than
in Theorem 3.1, we establish the existence of a positive solution for P(Oo, L, g).

THZORZM 3.2. Let g Lq (I)), q > 1, g >-_ O. Suppose there exists v Wo’p (1), where
o >p > 1 and p >- q’, such that Av LP’(f) and

(3.13) Av >- g +F(Oo) a.e. in f.

Then P(Oo, L, g) has a positive solution u Wo’ (1)).
Proof. It follows from Theorem 3.1 that P’(Oo, L, g) has a positive solution u

such that Au Lq(f), AuLq(I). By (3.12) and Remark 2.

(3.14) Aou =>0 a.e. in ft.
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By (3.11) and (3.14), we have

(3.15) Au <- g +F(Oo)-F(lul + 0o).

(3.13) and (3.15) yield

Av -Au >-F(lul / Oo) >-_ O.

Thus, by Lemma 2.2, v >_-u. On the other hand, since u >-0,/Xou Lq(-) and

Aou >--0, we can apply Lemma 2.3 so that

(3.16)

It follows from (3.16) that the u solution of P’(Oo, L, g) is bounded uniformly
in Wo’p (II) and that le(Apu, Y)I is bounded by ely’lL,(alv’l "/p’ Vy Wo’’(f)

There exists a subsequen(e (still denoted u) such that u onveres to u weakly
in Vo’p (F), uniformly on , and Au onveres weakly star to X in W’(). Passin
to the limit in the variational formulation, as previously, we et

(Au, y)+F([u[+Oo, y)=(g+F(Oo), y) Vy Wo’(D,);
u e Wox’o (12) and u ->0. Then u is a solution of P(Oo, L, g).

Remark. v being a particular upper solution of P(Oo, L, g), we shall see that the
previous result is contained in Theorem 4.1.

So this method can appear to be less interesting than the following one in 4.
However it applies, under slight modifications, to a fairly general problem involving
the Laplace equation. Thus, we get the following.

THEOREM 3.3. Let g L2([),), g >--O. Suppose there is v H(II) f’)H2() such that
Av >_-g + 1/00 a.e. in II. Then the problem

1 1
Au +

(u + 00)(1 + u’2)1/2 g +--00’ u(0) u(L) 0

has a positive solution u H2(II).
We must use an additional a priori estimate on u,, (obtained with a special basis

for the Galerkin method) and on u and the rest of the proof is similar to the given
one.

4. Maximal and minimal solutions. The construction of solutions by monotonicity
methods has been used by many authors, but for problems involving a second order
uniformly elliptic operator (cf. [1], [4], [5], [6], [13]). Further, here, under suitable
assumptions, we can also obtain properties of monotonicity for the derivatives of the
iterates, which provides upper bounds for them.

We first give an existence theorem for g positive or negative on II.
THEOREM 4.1. Suppose that
(i) g Lq (’), q > 1, g >--_ 0 (resp. g <_-0).

(ii) There exists an upper solution v (resp. a lower solution w) of P(Oo, L, g) such
that v (resp. w) belongs to W" ([I), where p > 1 and p >- q’, and v >-_ 0 (w <-_ 0).

Then P(Oo, L, g) has a minimal solution Umin and a maximal solution Umax which
belong to W’ (II) t-I [0, v] (resp. W" (II) f’l [w, 0]). That is, if z is any solution of
P(Oo, L, g) such that 0 <- z <-_ v (w <- z <- 0) then Umin --<-- Z __--< Um,x.

Proof. We treat the case g->0. For g _-<0 the proof is identical with obvious
reversals of inequalities. Using the mapping B defined by (2.6), we introduce the
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sequences u, and v, by means of

where Uo =0,

where Vo v.

Let us show that ux _-> Uo and vex ---Vo. We have

Av>-_g+F(Oo)-F(v+Oo)=Avx a.e. in l).

From hypotheses (i), (ii), we get Avx>=O. This yields Apva>=O, and therefore
Av >=Av. Then by Lemma 2.2, it follows that v _-> v and since Au >-- O, u >= O.

Now suppose v, _-< v,-1. Then by Lemma 2.4 v,,/ =Bv,, <-_Bv,_a v,,. So
by induction the sequence v,, e being fixed, is monotone decreasing. Similarly u,,
e being fixed, defines a monotone increasing sequence. Further, since Uo -< Vo,
u, _-< v, by the same arguments. Then

(4.1) 0 -< b/el " lgen_ < Uen < < Yen < Yen-1 < < U.

Thus, by Lemma 2.3, the derivatives of the iterates verify here

Hence,

Furthermore we have, for all n and for e _>- , > 0,

(4.4) v,, <_- v,,,,, u,, =< u,,,.

In fact, Vo Vo. Suppose u,-l_-< u,_a, then Au,,-A,.u,.,, <-_0. Since Au,, >-_0,
Apu, _--> 0. Therefore Au, >-A,.u,,. So (4.4) follows from Lemma 2.2.

Now, n being fixed, let e 0. The sequence v,,, is uniformly bounded and
equicontinuous because of (4.1), (4.3). Since it is monotone by (4.4), the full sequence
v, (not merely a subsequence) converges uniformly on II by the Ascoli-Arzela
theorem, and by (4.3) it converges weakly in W’p (II). Let v, lim_.o v,. v, e W’ (f)
and, by the same arguments as in 3, v, satisfies

Av, g +F(Oo)-F(v,,_ + 0o) a.e. in l,

v. (o) v. (L) O.

From (4.1) we deduce that the sequence V is still monotone. In the same way the
full sequence v, converges to Umax, where Umaxfi Wol’P("), and is a solution of
P(Oo, L, g). (Similarly u, lim_.o u,, converges to Umin t W"p () and is a solution of
P(Oo, L, g)).

Now, let z be a solution of P(Oo, L, g) in Woa’p (Ft) such that

Uo=O<z < l) VO.

An induction yields u, -< z <- vn. Hence, u,.-< z -< Umax. Observe that we cannot
establish z _-< v,, for all e > 0 and all n.

If we suppose only g Lq(l)), where q > 1, an existence theorem can be proved
under appropriate conditions on the upper and lower solutions.
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THEOREM 4.2. Let g e Lq (f), where q > 1. Let v and w be upper and lower solutions
of P(Oo, L, g) in WI’p (), where > p > 1 and p >- q’, such that

(4.5) ApV, Apw L"(Iq), Aw =< 0, Apv _--> 0 a.e. in fl.

(4.6) max(llaAwdxl, IaAvdx) <-k <l.

Then P(0o, L, g) has a maximal solution and a minimal solution in W" (I])N
[w,v].

Proof. As in Theorem 4.1, we define two sequences ue, and re, by u, Bun-
and v, Bevy,-1, where Uo w and Vo v. Using (4.5), we see that v and w are
upper and lower solutions in C1() for P (0o, L, g), for any e > 0, and that w =< 0 -<_ v.
Then by induction

(4.7) W Ue Uen Uen ’Yen IAen--1 IAe V

In this case the a priori bounds on the derivatives of the iterates do not result of
monotonicity properties for these last.

Since u Bu,,_x, ue, CI() by Lemma 2.1. Then there exists An f such
that u’,(A,)=0. Integrating (2.6) over Ix, ,n] (with ue and u,-i replacing y, and
z) we get

(x) I"Uen(4.8) eu’. (x)[ u ’. (x)[P-2+(l+u,Z(x))/2=. (g+F(Oo)-F(u.-+Oo))dt.

By the hypotheses on F, (4.7) and Definition 2.1

(4.9)
Aw <- g +F(Oo)-F(w + 0o) <- g +F(Oo)-F(un+ + 0o)

<- g +F(Oo)-F(v + 0o) <=Av.

Then from (4.6), (4.8), (4.9), we finally get

k
(4.10) lu’ (x)[ <

(1 -k2) 1/2"

Because of (4.10) ue. and v.. are uniformly bounded in Wo’ (11). Let e 0. By
the classical method of the diagonal, we construct a sequence u.. From the sequence
u., we can extract a subsequence ul, which converges uniformly to u. From the
sequence u,z, we extract a subsequence u2,2 converging to u2. By repeating this
method, the sequence u..,. extracted from u_,, converges uniformly to un. un
Wo’ (1) and verifies

Au, g +F(Oo)-F(un-x + 0o).

(Since A is strictly monotone, any converging subsequence extracted from u._,n
converges to the same function u,.) Similarly we construct a sequence v. These two
sequences are still monotone. Letting n o, they converge uniformly to Umin and
Umax which belong to W’ (lq) and are solutions of P(Oo, L, g). By Remark 2.3, this
yields Umin, Umax cl(fi).

As in Theorem 4.1, if z is a solution of P(Oo, L, g) such that w _-<z _-< v, then
Umin Z Umax.

Under somewhat restrictive assumptions we give a second method of monotone
sequences. In the present scheme our hypotheses are as follows

(4.11) geL2(12), g->0(resp, g_-<0), g(x)=g(L-x) a.e. in12.
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(4.12)
There is an upper solution v (a lower solution w) of P(Oo, L, g)
such that v e H2(f), v =>0 (resp. w <-0) and v(x)= v(L-x)
(w(x)=w(L-x)).

For each function z e cl(fi)f’l[0, v] (Cl(l)f-l[w, 0]), define the image y of the
mapping T to be the solution of the Dirichlet problem

-y"= (g + F(Oo)-F(z + 0o))(1 + Z’2)3/2 a.e. in

We first establish
LEMMA 4.1. Suppose geL2(fI), g>-O and g(x)=g(L-x). Let

[0, v], and letyi= Tzi, i= 1, 2. ff zl(x)<-z2(x), Izi(x)l<-Izi(x)l and zi(x)=zi(L-x),
x eft, then yl(x)<=y2(x), lyi(x)l_-< ly&(x)[ and yi(x)=y(L-x) forx eft. (Forg<-_O the
inequalities relative to the derivatives are reversed.)

Proof. Let & yl- Y2. By our assumptions on g, y and y , 1, 2. b satisfies

(4.13) -b" <_- 0 a.e. in fl, b(0) b(L) 0.

Therefore, Yl <--Y2. Since g(x)=g(L-x) and zi(x)--zi(L-x), it is easily seen that
y(x)=yi(L-x) (which yields y’i(x)=-y’i(L-x)). Thus by integrating (4.13) over
Ix,L and since -y;.’ =>0, we get ly ly&(x l. Now we state the following result.

THEOREM 4.3. Let (4.11) and (4.12) be satisfied. Let un and vn defined by
un Tun-a, vn Tvn-a where Uo 0 (resp. Uo w) and Vo v (resp. Vo 0). Then the
sequences un and vn converge uniformly and monotonically to Umin and Umax, which
belong to H2(II) [0, v] (resp. H2(II) f’l [w, 0]) and are solutions of P(Oo, L, g), giving

Un /’/min Umax Un I) UO.

Further,

(4.15) I;I < lull <’’’ < [u’l <,,, < lUmin[ < max[<"’’ <IV........ ,l_<_...<=lvil_<_v01.

(The inequalities o1’ (4.15) are reversed ]’or g <-_ 0.)
Proof. It is easily seen that the pair of functions vl, Vo satisfies the hypotheses of

Lemma 4.1 (Vl, Vo replacing Zl, z2), as well as uo, Ul and Uo, Vo. We have (4.14),
(4.15) by an induction argument using Lemma 4.1. Since the sequences un and u’
are uniformly bounded, the sequence un is equicontinuous and -u’,’

2 )3/2(g +FOo-F(u.-i + 0o))(1 + u.-1 is bounded in L2(I’). Hence the sequence un is
also equicontinuous. An application of the Ascoli-Arzela theorem shows that the full
sequence u. converges uniformly on II to Umi and that the full sequence of the
derivatives converges uniformly on II to Umin.

Next we examine the integral equation which is equivalent to u TUn-l,

t2u,(x) G(x,t)(g+F(Oo)-F(u,_l(t)+Oo))(l+u,_a(t))3:- dt,

where G is the Green’s function of the Laplace operator relative to the boundary
conditions u,(0)= u,(L)=0. Letting nm and applying the Lebesgue dominated
convergence theorem, we see that Umin lim u, is solution of P(Oo, L, g). As previously,
we prove by induction that Umin and Umax are minimal and maximal solutions of
P(Oo, L, g) in [Uo, Vo].
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This monotonicity method can be adapted to the Laplace equation. In the
definition of the mapping T, F(z + 0o) is obviously replaced by 1/(z + 0o)(1 + z’2)1/2
and Lemma 4.1 remains valid for g _-> 0 or g -<- 1/0o. We get

THEOREM 4.4. Let gL2(fl) be such that g>-O (resp. g<=-l/Oo) and g(x)=
g(L-x) a.e. in I. Suppose there is v H2(fl), v _-> 0 (resp. v _-< 0) such that

Av+

Then the problem

1 1
(v + 0o)(1 + v’2)/

>- g+ (resp. inequality reversed).

1 1
Au +

(u + 0o)(1 + u’2) 1/2 g -I---00, u(0) u(L) 0

has a minimal solution and a maximal solution in H2(I)) 71 [0, v (resp. H2(l’) I"l [/9, 0]).
We conclude this section with a uniqueness result.
TI4EOIEM 4.5. Let the hypotheses (4.5), (4.6) hoM. Suppose that the derivative

F exists and is bounded for u [w, v ]. Assume furthermore
(4.16) L <= (2/M)X/(1 k2)3/4, whereM sup IF’(t + 0o)1.

w<=t<_v

Then there exists a unique solution of P(Oo, L, g) in [w, v](3 Ca(-I).
Proof. Theorem 4.2 insures the existence of at least a solution. Let u and u2 be

two solutions of P(Oo, L, g) in [w, v]f3 C(). Thus,

(4.17) Aul-Au2+F(ul+Oo)-F(uz+Oo)=O.

By similar arguments to those of Theorem 4.2, we see that

k
(4.18) [u (x)l <--

(1-k)/, 1, 2.

We multiply (4.17) by z ul- u2, and integrate over

(4.19)
(l + u)i/-(l + u)/: dx (F(u.+ Oo)-F(ul + Oo))z dx.

We use the mean theorem and (4.18) to bound from below the left-hand side of
(4.19). Then, by the Poincar inequality, we get

=2 zdx.

Hence, we conclude that under the condition (4.16), z 0 in

5. Some comments on the existence of upper and lower solutions. The previous
results show the importance of finding upper and lower solutions for P(Oo, L, g). The
purpose of this section is to show that, under conditions on the data L, 00, g, there
exists such functions.

A first result is contained in
THEOREM 5.1. Suppose g Lq(f), q > 1, satisfies Ig < l. Then there

exists an upper solution v >= O, in Wo" (fl), lor P(Oo, L, g).
Proof. Let G =(g +F(0o))/ and let v Wo’P (fl) f’l WZ’q(fl) be the solution of

e Apv +Ave G a.e. in fl, v, (0) v (L) 0

(where p =>q’ and c >p > 1). Since IGI<,)< a, it follows that < c, Then
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there exists a subsequence, still denoted v, which converges to v Wo’ (12) such that
Av G. Thus, it is easily seen that v is an upper solution for P(Oo, L, g) and since
G -> 0, v -> 0 by Lemma 2.2.

Now we study more precisely the case F(u) 1/u and we suppose that g L(f).
Let g and 0o be given, we can show that, provided L is sufficiently small, there exist
upper and lower solutions of P(Oo, L, g) in a simple family naturally related to the
problem: the family of functions z associated to arcs of circle and verifying z(0)=
z(L) 0.

Let [-r/2, r/2]. We note z, the one of the above functions such that
z(0) tgO. Thus, Az+ 2 sin /L, z6 W’ (), where p <2 if /2, otherwise

z C(fi).
Suppose supn g > 0. By using Definition 2.1 and an upper bound of z, we find

that z, & ]0, /2] is an upper solution if L satisfies

 -cos (supg+, OoJ +2(Oosupg-l+cos)L-4OosinO.,
Suppose inf, g < 0. In the same way, z6, [-/2, 0[ verifies (2.2) if L satisfies

(5.2) 1-cos&
ifg+ +2(Ooifg-l+cos&)L-4Oosin&O.sn 00/

For z,, [-/2, 0[, to be a lower solution we add the condition

(5.3) rain z, >-00.

Relations (5.1), (5.2), (5.3) yield the following results z,; ]0, /2] is an upper
solution of P(0o, L, g) if

(5.4) L h(Oo, , sup g),

where

hi(a, b,/x)
4a sin

a/x +cos 1 + ((a/z + 1-cos q)2+4(1-cos

z, e [-r/2, O[ is a lower solution of P(Oo, L, g) if

(5.5) L -<_ h2(0o, &, inflf g),
where

h2(a, &,
4a sin

)2 /2"cos b 1 ((a/ + 1 cos o / 4(1 cos q))

Under the condition (5.4) or (5.5), Theorem 4.1 applies. When g has not a
constant sign, we have the following analogous result.

THEOREM 5.2. Let g L(II). Then there exists a mapping k:R/x R+ N/ such
that, for L < k(Oo, Igl,.n), the hypotheses of Theorem 4.2 are satisfied.

Proof. Consider in the family z6, e [0, zr/2] an upper solution z and in the
family z6, e[-Tr/2, 0] a lower solution zo of P(Oo, L, g) which verify (4.6). This

yields the condition

’(o) (L)Za Z
(l+z(1 + z(O)2)/: (L))/2 2 sin a < 1.
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Then a < r/6 and similarly we find/3 >-r/6.
Now by (5.4) and (5.5), we conclude that the condition

(5.6) L < max [ max hl(Oo, ok, sup g), max h2(0o, b, innf g)][0,-rr/6] f b [-,r/6,0]

insures the existence of upper and lower solutions of P(00, L, g) which satisfy the
hypotheses of Theorem 4.2, and thus the existence of a solution. Since h is a decreasing
function of sup g (for b -> 0) and h2 an increasing function of inf g (for b _-< 0), we
can replace (5.6) by the sufficient condition

L < max max ha(Oo, 4, [gl)), max h2(00,
b [0,,n’/6] b [-’rr/6,0]

Theorem 5.2 follows and we note that k is a decreasing function of

6. Periodic solutions for Au + 1/u = ]’. In this section we study the existence of
periodic solutions for

1
(6.1) Au+-=f,

u

i.e., solutions which satisfy the periodic boundary conditions

(6.2) u(0) u(L), u’(O) u’(L).

We first give a nonexistence result.
THEOREM 6.1. Letf L(12) satisfy IflLl <= 1 and [(x) dx =0. Then the prob-

lem (6.1), (6.2) has no solution in W2’a().
Proof. Let us assume the existence of such a solution for problem (6.1), (6.2);

then Au L () and 1 / u LX().
We multiply (6.1) by u and integrate by parts over to find

io(6.3)
(1 + u’Z) a/z dx +L [u dx f(x) u’(t) dt dx.

It follows easily from (6.3) that

But this contradicts our assumption and Theorem 6.1 is therefore established.
We now give conditions under which the unique solvability of problems P(Oo, L, g)
implies the existence of a periodic solution for (6.1). Our assumptions are as follows.

(i) f L(O), f> 0 a.e. in . We set

1 1
A

supnf
g

infnf
(ii) There exists an upper solution v of P(g, L, f- 1/g) satisfying (4.5).

(iii) There exists a lower solution w of P(A, L, f- l/A) satisfying (4.5).
(iv) v and w verify the hypotheses (4.6) and (4.16) (with A replacing 0o).
Remark. If problem (6.1), (6.2) associated to f has a solution u, then problem

(6.1), (6.2) associated to -f admits -u as solution.
THEOREM 6.2. Under the assumptions (i)-(iv) stated above, problem (6.1), (6.2)

has a solution y C() such that A y(0) g.

Proof. For all 0o [A, g], we observe that v and w are respectively upper and,.
lower solutions for P(Oo, L, f- 1/00), and it follows from the 4 that P(Oo, L, f- 1/0o)
has a unique solution Uoo in C() [w, v] such that lUo(X)[k/(1-k2)/2.
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Therefore, u o is uniformly bounded. Then, by an application of the Ascoli-Arzela
theorem, u 0o’ (x) is a continuous function in O0, on [A,/x ], for all x [0, L].

Thus, the function U defined on [A,/] by U(Oo)= Uoo(O)-Uoo(L) is a continuous
function on [A, tz ].

On the other hand, P(/, L,/-1//x) has a unique solution in [w, v]. It follows
from Theorem 4.1 and (i) that this solution u, is in fact in [0, v ]. We also have u,="< 0
a.e. in I), which implies that U(/x)->0. Similarly, the solution ux of P(A, L, f-l/A)

> 0 a.e in f, we have U(A) < 0.is in [w, 0]. Since u x
The intermediate value theorem for continuous functions now implies that there

exists c, A <= a <= , such that U(c)= 0.
Let us be the solution of P(c,L,1-I/) in [w, v] and let y u +c, then y is a

solution of (6.1), (6.2).
Remark. Using 5 and making some computations, we find that for L-<0.7A,

the hypotheses of Theorem 6.2 are satisfied.
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DIFFERENTIAL INEQUALITIES OF HIGHER ORDER AND THE
ASYMPTOTIC SOLUTION OF NONLINEAR BOUNDARY

VALUE PROBLEMS*

F. A. HOWESt

Abstract. Two differential inequality results of Nagumo on initial and boundary value problems for systems
[Proc. Phys. Math. Soc. Japan, 19 (1937), pp. 861-866; 21 (1939), pp. 529-534] are combined to yield
existence and comparison results on certain boundary value problems for nth order scalar nonlinear
differential equations and their system analogues. This theory is then applied to several classes of singularly
perturbed boundary value problems of higher order. Many examples are discussed in order to motivate the
theory and indicate avenues of further study.

1. Introduction. We consider here some differential inequality theorems for
boundary value problems involving systems which, in particular, simplify considerably
several recent results for scalar boundary value problems of higher order. At the same
time, we use these results to extend the theory of certain singularly perturbed nonlinear
second-order boundary value problems to higher-order differential equations. Our
treatment of such phenomena is motivated, on the one hand, by the simplicity and
directness of our approach. On the other hand, there does not appear to be any general
theory whatsoever for higher-order perturbed nonlinear boundary value problems.
This paper constitutes, then, a first attempt to develop such a theory along the lines of
the author’s previous work [11], [15].

Before discussing the most general results, we study a third-order problem in order
to illustrate our ideas in the simplest setting.

2. The scalar problem. The third-order scalar boundary value problem

(2.1)
y’" f(t, y, y’, y"), a <t<b,

y(a)=Ao, y’(a)=A, y’(b)=B1

and various generalizations have been studied by several authors using the method of
comparison functions (cf., for example, [23], [21], [19] and the references contained
therein). The basic idea is to employ the solutions of certain differential inequalities, in
conjunction with a growth estimate on [ as a function of y", to obtain a priori bounds on
solutions of (2.1), and to then apply a fixed point or continuation argument. An
important consequence of this approach is that in the course of proving the existence of
a solution of the boundary value problem, one obtains simultaneously an estimate of
this solution in terms of the solutions of the differential inequalities.

Suppose now that we rewrite the boundary value problem (2.1) as a system
consisting of a first-order initial value problem and a second-order boundary value
problem, namely

(2.2)
y’=z, y(a) =Ao,

z"=f(t,y,z,z’), z(a)=A1, z(b)=B.
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This suggests that it might be profitable to examine existence and comparison results for
the more general system on (a, b)

y’= g(t, y, z), y(a) A0,

z"=f(t,y,z,z’), z(a)=A1, z(b)=B.

Indeed, earlier results of Nagumo [26], [27] imply that if there exist two pairs of
comparison functions (u, v) and (a, fl) satisfying the appropriate inequalities, then the
boundary value problem (2.3) has a solution (y, z) (y(t), z(t)) with u(t) <- y(t) -<_ v(t)
and a(t)<-z(t)<=fl(t)on[a, b] provided that f(t, y, z, w)= O(Iwl2) as Iwl-, uniformly
for y in [u, v] (={x: u(t)<-x <= v(t)}). The functions u and v are required to satisfy the
inequalities

(2.4) u<-v, u(a)<-Ao<=v(a),

and for in (a, b]

(2.5) u’(t) <- g(t, u(t), z), v’(t) >-- g(t, v(t), z)

for any z in [a,/3]. Similarly, the functions a and / are required to satisfy the
corresponding second-order inequalities

(2.6) a <-, a(a)<-Ax <-(a), a(b)<-_B <-/(b),

and for in (a, b)

(2.7) a"(t) >-f(t, y, a(t), a’(t)), "(t) <= f(t, y, (t),’’(t))
for any y in [u, v]. The Precise result is contained in the following theorem.

THEOREM 2.1. Suppose that
(1) the function g g(t, y, z) is continuous in the domain @ [a, b] [u, v] [a,/3]

and the function f f(t, y, z, w) is continuous in the domain
(2) the comparison]unctions u, v(a, ) are ofclass C(X)[a, b](C(2)[a, b]) and satisfy

the inequalities (2.4), (2.5) ((2.6), (2.7));
(3) (Nagumo condition for (t, y, z) in 9,

f(t, y, z, w)-O(Iwl as Iwloo.
Then the boundary value problem (2.3) has a solution (y, z)= (y(t), z(t)) of class

C(1)[a, b C(2)[a, b] such that

u(t)<= y(t)<-_v(t) and a(t)<-z(t)<-(t)

]:or a <=t<-b.
Proof. The existence of the functions (u, v) and (a,/3) together with the assump-

tion of the Nagumo condition allow us to find bounds for y, z and z’ and apply
Schauder’s fixed point theorem as in [9, Chap. 12, Pt. 2], [7] and [22]. The details are
straightforward and are omitted.

Before turning to the general nth order scalar problem, we make two remarks.
First of all, the differentiability assumptions on the functions (u, v) and (a,/3) can

be weakened in the following sense (cf. [-3] and [20]). The functions u and v need only be
piecewise continuously differentiable on (a, b] provided that u’(v’) is replaced by
U (Av/) at a point of nondifferentiability. (Here w/(w_) denotes the right-hand
(left-hand) derivative.) Similarly, the functions a and/3 need only be piecewise twice

and /_</3’_ at a point ofcontinuously differentiable provided that a’_-<a/
nondifferentiability and that a"(/") is replaced by a"(/) at such a point.
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Secondly, we note that Theorem 2.1 applies to the special case (2.1) if we assume,
in addition to the Nagumo condition, the existence of functions u and v of class
C(3)[a, b] such that

__, u(a)<-Ao <-v(a),

u’(a)<-Al <-v’(a), u’(b)<-B <-_v’(b),

and for in (a, b)

u"’(t) >-_ f(t, y, u’(t), u"(t)), v"’(t) <-- f(t, y, v’(t), v"(t))

for any y in [u, v]. Indeed, we can apply this theorem to the system (2.2) (with
c u’, fl v’) and deduce the existence of a solution (y (t), y’(t)) of (2.2) which satisfies
u(t) <- y(t) _-< v(t) and u’(t) <- y’(t) _-< v’(t) for a _-< _<- b.

Consider now the general nth order scalar boundary value problem

y(n) f(t, y, y’, y("-)), a < < b,
(2.8)

y(J(a)=Aj, O<=j<=n-2, y("-2)(b)=Bn-2.
One advantage of our approach is that it is just as easy to treat (2.8) as it was to treat
(2.1) since Nagumo’s lemma [27] applies equally well to systems.

We begin by rewriting (2.8) as an (n- 2)nd-order initial value problem together
with a second-order boundary value problem, namely

Yi Yi+I, yi(a)=Ai_a, i= 1,... ,n-3,

(2.9) y’n-2 Z, yn-z(a An-3,

z" =f(t, yl," Y,-a, z, z’), z(a) A,-2, z(b) B,-2.

This leads us to consider an existence and comparison result for the more general
system on (a, b)

(2.10)
y’ g(t, y, z), y(a) A,

z"= f(t, y, z, z’), z(a)=sc, z(b) rt,

where y, g, A are in Rm. The same two results of Nagumo [26], [27] suggest that if there
exist functions u u(t), v v(t) in R’ and scalar functions a,/3 which satisfy inequalities
analogous to (2.4), (2.5) and (2.6), (2.7), respectively, then the problem (2.10) has a
solution (y,z)=(y(t),z(t)) with u(t)<-_y(t)<-v(t) and a(t)<-z(t)<-fl(t) for a<-_t<-b

provided that f satisfies a Nagumo condition uniformly in y in [u, v]. (Here the
inequality _-< for vectors is to be interpreted as stating that the corresponding scalar
inequality holds for respective components of the vectors and [u,v]=
{w in Rm: u(t)_--< W_<- V(t)}.) Indeed, as regards u and v we need only require that

(2.4’) u _-< v, u(a) _-< A -<_ v(a),

and for in (a, b] and 1,..., m

’(t) < f(t),z =g, z(2.5’) u g(t, ), v’ (t) > (t, ,(t),

for any z in [a,/3 ], where

fii-" (Yl, Yi-1, bli, Yi+I, Ym)

and

vi (y, Yi-1, Vi, Vi+I, y,
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for y. in [uj, vj](j i); cf. [27]. Then we have the following result for (2.10) which is
proved by mimicking arguments in [7], [22] and [9, Chap. 12, Pt. 2].

THEOREM 2.2 Suppose that
(1) the function g g(t, y, z) is continuous in the domain @ [a, b [u, v] [a,/3

and the function f f t, y, z, w) is continuous in the domain @1 R1;
(2) the comparison functions (u, v)((a,/3)) are of class C(l[a, b](C(2[a, b]) and

satisfy the inequalities (2.4’), (2.5’) ((2.6), (2.7) with y replaced by y and [u, v] replaced by
[u, v]);

(3) (Nagumo condition) for (t, y, z) in @1,

f(t, y, z, w)= O(Iwl as Iwl c.

Then the boundary value problem (2.10) has a solution (y, z) (y(t), z(t)) of class
C(l)[a, b] C(Z)[a, b] such that

u(t)-<_y(t) <- v(t) and a(t) <= z(t) <= B(t)

for a <-t<-b.
We note that less differentiability can be required of the comparison functions

u, v, a and /3 (cf. our earlier remark). Also, if the function g is quasi-monotone
nondecreasing with respect to y for each fixed in [a, b and each fixed z in [a,/3 ], then
the differential inequalities in (2.5’) can be replaced by the simpler ones

u’(t)<=g(t,u(t),z), v’(t)>-g(t,v(t),z);

cf. for example [3, Chap. 1]. As a result of this observation, we can apply Theorem 2.2 to
study the scalar problem (2.8) since in the equivalent system (2.9) the corresponding
function g is simply (y2, y3,’"", Z) which is certainly quasi-monotone nondecreasing
for each fixed z. In fact, we need only assume that the function f f(t, y, z, z’) satisfies a
Nagumo condition and that there exist functions u and v of class C(n[a, b] such that

u(k<--V (k, u(k(a)<=Ak <=V(k(a) k =0,"’’ ,n-2,

and for in (a, b)

u ("-(b) <- Bn-2 <- v ("-Z)(b),

u(")(t)>--f(t, y, u("-2)(t), u("-l)(t)),
v(")(t)<--f(t, y, v("-2)(t),

for any y= (Yl,"’", Yn-2) with yt in [u (I-1, v(/-1)](1 =<l<n= -2). Then we can apply
Theorem 2.2 to the problem (2.9) (with u= (u, u’,..., u("-3)), v= (v, v’, , v(n-3)),
a u (n-2) and/3 v ("-2)) and deduce the existence of a solution y y(t) of (2.8) which
is of class C(n)[a, b] and which satisfies for k 0,. , n -2,

U(k)(t)<--y(g)(t)<--__v(k)(t) on [a, b].

Before discussing a more general problem in the next section we remark that this
result for (2.8) is due to Kelley [21] who gave a rather complicated proof. In addition,
we note that it is sometimes necessary to weaken the restriction imposed by the Nagumo
condition (cf. Theorem 4.1 below). This condition assures us that a bound on z’ implies
a bound on z", and so Theorem 2.2 (and Theorem 2.1 as well) are valid if we simply
make this assumption which is called a generalized Nagumo condition (cf. 10] or [21 ]).
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3. The general problem. We consider now the following boundary value problem
on (a, b):

y’= g(t, y, z), y(a) A,
(3.1)

z"= h(t, y, z, z’), z(a)=[2, z(b)=l,

where y, g, A belong to R and z, h, [2, h to R. The results of 2 suggest that in order to
study this problem we can simply combine earlier theory on the properties of invariant
regions for initial value problems and boundary value problems for systems of differen-
tial equations.

Let us consider first the initial value problem in " for a < t-< b

(3.2) y’= G(t, y), y(a) A.

Suppose that there exist M real-valued functions ri ri(t, y) of class C(([a, b] ")
such that for 1,...,M

c3ri(3.3) ri := -+ [gradr ri]" G(t, y)-<_0

when ri 0. (Here gradw denotes the gradient taken with respect to the components of
w, while, denotes the usual Euclidean inner product.) Then it is known (cf. [1] or [8])
that if the function G is continuous in the region

fl={(t,y)in[a,b]xR": ri(t,y)<-O,i 1,... ,M}

and if the initial pair (a, A) belongs to fl, the problem (3.2) has a solution y y(t) of class
C(a[a, b] such that

ri(t,y(t))<=O on[a,bl fori=l,...,M.

In other words, fl is an invariant region for (3.2) since trajectories which originate there
remain there on la, b].

Consider next the boundary value problem in Rn for a < < b:

(3.4) z"= H(t, z, z’), z(a) [2, z(b) n.

It turns out that the existence of functions similar to the ri also allows us to deduce an
existence and estimation result for solutions of (3.4) provided the right-hand side
satisfies a growth condition with respect to z’. In this vector case we say that H
(H1, , Hn) satisfies a Nagumo condition if one of the following two situations obtains
(cf. [22]):

(1) for j 1,. ., n there exist positive, nondecreasing continuous functions qi on
(0, oo) such that

I s/oj(s) ds oo

and

z, w)l <_- w l)
for (t, z) in compact subsets of [a, b]xR" and all w in R";

(2) there exists a positive, nondecreasing continuous function o on (0, c) such that
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and

IIn(t, ,, w)ll--< (llwll)
for (t, z) in compact subsefs of [a, b R and all w in Rn. (Here II, is the usual Euclidean
norm.)

Suppose now that there exist N real-valued functions Pl pl(t, Z) of class C2

([a, b] ) such that for 1,. , N
(3.5) p’ := -ff-+ 2 gradz---j +[o’z’]. +[grad,.p/]. H(t,z,z’)_->0

when pl 0 and p’l 0. (Here is the Hessian of/91 with respect to z and p pl/t +
[grad,./91]" z’.) And let us define the region

{(t, z) in [a, b ": pl(t, Z) -< 0, 1," N}.

Then it is known (cf. [22]) that if the function H H(t, z, w) is continuous and satisfies a
Nagumo condition in the domain n, and if the initial and terminal pairs
(a, ), (b, 1) belong to and can be joined by a smooth path in , the problem (3.4) has a
solution z z(t) of class C(2)[a, b such that

p(t,z(t))_-<O on[a,b] forl-1,...,N.

Put succinctly, is an invariant region for this boundary value problem.
We are now ready to study the problem (3.1). As a preliminary, we say that

condition (3.3’) holds if there exist M functions ri ri(t, y) of class C)(YI) which satisfy
condition (3.3), with G(t, y) replaced by g(t, y, z), for all (t, z) in ; while we say that
condition (3.5’) holds if there exist N functions Ol Ol(t Z) of class C<2(’) which satisfy
condition (3.5), with H(t, z, z’) replaced by h(t, y, z, z’), for all (t, y) in fl. In other words,
we require (3.3) to hold uniformly with respect to z in and (3.5) to hold uniformly with
respect to y in fI. This uniformity allows us to prove the following result by arguing as in
[7]. For ease of exposition, we define the domain

{(t, y,z)in [a, b] "+n: ri(t, y)_-<0, i= 1,... ,M; pl(t, z)<--0, 1= 1,... ,N}.

THEOREM 3.1. Suppose that
(1) the function g g(t, y, z) is continuous in T and the function h h(t, y, z, w) is

continuous in ;
(2) conditions (3.3’) and (3.5’) hold;
(3) the function h satisfies a Nagumo condition uniformly with respect to y in fl.
Then the boundary value problem (3.1) has a solution (y, z)= (y(t), z(t)) of class

C(1)[a, bl C(2[a, b] such that on [a, b]

ri(t, y(t)) <_- 0

and

fori 1,... ,M

pl(t, z(t)) <-_ 0 ]:or 1,. ., N.

We note that the comparison functions ri and Pl afford a variety of ways of
describing solutions of (3.1). For example, if M=N= 1 and if r(t, y)= ]]yl]- yl(t) and
p(t, z)-- IIz]l- ,,(t) satisfy the appropriate inequalities, then we obtain bounds on the
norm of the solution of the form [ly(t)ll <_- yl(t) and [Iz(t)ll_-< ,=(t). On the other hand, for
M 2m and N 2n, let us define

ri(t, y) Yi-vi(t), re+re(t, y) -Yi "+" ui(t),
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for 1,...., m, and

t(t, z) z t(), o+,(t,z)=-z+(),

for 1,. , n. If these functions satisfy the proper inequalities, then we obtain the
two-sided bounds (el. 2)

ui(t) <- yi(t) <_- vi(t) and al(t) <- z(t) <- (t)

on the solution (y, z).
Some applications of the theory of this section and the previous one to singular

perturbation problems are given in the next section. We close with several remarks.
Remark 3.1. An existence result for the problem (3.1) was proved by Hartman

[7]; however, he did not give estimates for the solution of the generality afforded by our
bounding functions r and Pl,

Remark 3.2. Under certain assumptions a result similar to Theorem 3.1 holds if
the Dirichlet boundary conditions for z are replaced by Robin boundary conditions of
the form

etz(a)-Oz’(a), P2z(b)+O2z’(b)

prescribed (of. [10], [21] and [24]). Here Pi, Oi(i 1,2) are nonnegative definite
(n n)-matriees.

Remark 3.3. The arbitrariness of the dimensions m and n in the formulation of the
problem (3.1) allows us, in particular, to treat a number of boundary value problems for
scalar differential equations. As an illustration, consider the fifth-order equation
y(5) =f(t, y, y’,’’’, y(4)) on (a, b). If the boundary conditions are that
y(a), y’(a), y"(a), y"’(a), y’"(b) are prescribed, then we would set z y’" and apply
Theorem 3.1 with m 3 and n 1. On the other hand, if the boundary conditions are
that y(a), y’(a), y’(b), y’"(a), y’"(b) are prescribed, then we would set zl y’, z2= y"’
and apply Theorem 3.1 with m 1 and n 2.

4. Singular perturbation problems of higher order. We consider now some appli-
cations of the above theory to several classes of singularly perturbed boundary value
problems of order three and higher. The general plan calls for us to first regard the given
problem as the combination of a singularly perturbed second-order problem and an
unperturbed initial value problem. Then we apply previous theory (cf., for example, [4],
[11], [15], [28], [31]) to the perturbed part and evaluate the contribution of the
unperturbed variables with the aid of our differential inequality results.

To fix these ideas, let us consider first a result for an nth-order scalar equation
which is related to an earlier theorem of Levinson [25] for a third-order equation. The
problem is

(4.1)
eYn f(t’ y’y’’’’’’yn-a)’ a < < b, n >-- 3,

yJ)(a,e)=Aj, O<=j<=n-2, y"-2(b,e)=B,_2,
where e is a small positive parameter. Following [25] (of. also [6], [14]), let us assume
that the corresponding reduced (e 0) equation

(4.2) 0 f(t, Y, Y’,.. , Y<"-), a < < b,

has a solution Y YL(t) of class C")[a, tL] such that

Y)(a)=Aj for]=0,"’,n-2,
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and a solution Y YR (t) of class C(n)[tR, b] such that

y-2) (b) B,-2,

with a <- tR < tL <= b. In addition, let us assume that at a point to in (tR, tL)

Y (to) Y (to)(=o’i) for ] 0," ", n 2,

and that

/z yn-l (to) y-l (to)= e.

Then, if the functions Y, Ye are stable in the sense that

fy,.-[ Y(t)] k > 0 on [a, to]
and

lye---[Y (t)] -k < 0 on [to, b

for [X(t)]= (t, X(t),X’(t),... ,X"-a)(t)) and some positive constant k, and if the
crossing condition

(4.3) (u Df(to, o, ," ’, ,-, ) > 0

holds for all strictly between L and R, we anticipate that the full problem (4.1) has a
solution y y(t, e) of class C")[a, b] for each e >0 sufficiently small. Moreover, this
solution should satisfy

lim y(i)(t, e) Y(i)(t) on [a, b]
e0

for ]= 0,..., n-2, and

f Y"-x) (t), a -< < to,
-olim-+ y("-a)(t, e) .[ Y-) (t), to < <- b,

where Y(t)= YL(t) on [a, to] and Y(t)= YR(t) on [to, b].
In order to verify this we rewrite (4.1) as the system

y yi+a, yi(a, e)=Ai-l, 1,..., n-3,

(4.4) y ’-2 z, y,-2(a, e) A,,-3,

ez"=f(t, yl," ", y,-2, z,z’), z(a,e)=A,_2, z(b,e)=Bn-2,

and apply Theorem 2.2 (with assumption (3) replaced by the generalized Nagumo
condition) in conjunction with our previous scalar theory [14]. The idea is that the
asymptotic behavior of the solution of (4.1) as e 0+ is really determined by the
behavior of the solution of the last problem in (4.4) with y Y. (t) for ] 1, , n 2, if
the components y y(t, e)(1 <=]-<n-2) of the solution (y, z) of (4.4) differ from the
components Y.(t) of the solution

g(t),
Y(t)

YR(t),

of the reduced problem

Y Y,+, Y(a) A,_I,

(4.5) Yn-2 =g,
0 f(t, Y,..., Y,-2, Z, Z’),

1, .., n-3,

Yn_E(a)=An_3,

Z(a) An-2, Z(b) Bn-2,
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on [a, b] by terms of order e. In other words, to terms of order e, we can analyze the
solution of (4.4) by analyzing the solution of the scalar problem

ez"=F(t,z,z’), a<t<b,
(4.6)

z(a,e)=An-2, z(b,e)=Bn-2,

where F(t, z, z’) f(t, Ya(t), , Yn-2(t), z, z’). When viewed in this light, the stability
conditions on YL, Yn, as well as the crossing condition, are nothing more than the
classical assumptions on the problem (4.6) (cf. [6], [14]), that is,

Fz,[YL(t)]>-k>O on[a, to], Fz,[YR(t)]<--k<O on[to, b],

and for all A strictly between/xL and/XR

(.I,L- txR)F(to, O’n-2, i > O.

The precise statement is the following result. For ease of exposition, let us set

Yt =[a,b]xFx{w: Iw- Y("-a)(t)l<=d(t)},
where F {(yl, ’, y,-a): lYj- Y(J-a)(t)l <= 6, 1 <=j <= n 1} for a small positive constant
6, and d is a smooth positive function such that IZL--l<--__d(t)<--IzL--ml/ on
[to-6/2, to+6/2] and d(t)<-6 on [a, to-6]U[to+& b].

THEOREM 4.1. Suppose that the reduced equation (4.2) has smooth, stable solutions
Y YL(t) and Y Yn(t) with the above properties. Suppose also that the function f is
continuous with respect to (t, ya,’", y,-2, z, w) and continuously differentiable with
respect to (ya," , y,-a, w) in the region Yt and that the crossing condition (4.3) holds.

Then there exists an e0>0 such that the problem (4.1) has a solution y y(t, e)
whenever 0 < e <- eo. Moreover, for a <- <= b we have that

y(i)(t, e) Y(i)(t)+O(e), =0,..., n-3,

and

y("-2)(t, e)= Y("-2)(t)+wx(t, e)+ O(e),

where wt(t, e)= ek-ilZL--xnl exp [-kalt-tole-a], 0< ka < k, is the interior layer cor-
rector at to.

Proof. For simplicity let us consider just the case n 3. Then in order to show the
existence of a solution of (4.1) with the stated properties we must construct smooth
functions u, v, a, /3 on [a,b]x[O, eo] such that u<=v, a<=, u(a,e)<=Ao<=v(a,e),
a(a, e)<-A1 <-13(a, e), a(b, e)<-B1 <-(b, e), and for in (a, b]

(4.7) u’ <_- z <_- v’ for all z in [a,/3],

while for in (a, b)

(4.8) ea ’’>-f(t, y, a, a’) and e" <-f(t, y, , ’)

for all y in [u, v]. To this end, we define for e > 0 the functions a and/3 by

Y(t)-wx(t,e)-eyl-l(eX(t-a)-l), a<-t<-to,
a(t, e) y,n(t)_wt(t,e)_ey2l_a(eX(b_O_l) to<_t<_b

and

y, eyll-t(e x(t-’)L(t)+wt(t,e)+ -1),
/(t, e)=

Y(t)+ wt(t,
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for appropriate positive constants yl, Y2 and l, where [fy,[<-_l in , and for A
lk-i + O(e) < 0 a root of eh 2 nt klh + I. Having defined a and/3, we choose u and v as

appropriate solutions of the initial value problems

u’=a(t,e), u(a,e)=Ao,

v’=(t,e), v(a,e)=Ao,

and thereby satisfy the inequalities in (4.7). It is now a straightforward exercise to verify
that a and fl satisfy the required algebraic inequalities and the differential inequalities
in (4.8) for e sufficiently small, say 0 < e <_- e0 (cf. the argument in [14]). Thus, by virtue"
of Theorem 2.1, we conclude that the problem (4.1) (with n 3) has a solution
y y(t, e) for 0<e <--eo satisfying on [a, b]

u(t, e) <- y(t, e) _-< v(t, e)

and

a(t, e) <- y’(t, e)<-[3(t, e);

that is, the conclusion of Theorem 4.1 obtains.
A similar argument establishes this result for general n -> 3.
In the same vein, we can extend the interior crossing results of 13] to the problem

(4.1) with f independent of y(n-1), namely the problem

(4.9)
ey (n h(t, y, y’, , y(-2)), a < < b, n _-> 3,

y (i(a, e) A., 0 <_- ] -<_ n 2, y (n-2l(b,
To this end, suppose that the corresponding reduced equation

(4.10) 0= h(t, Y, Y’,..., y(-2), a <t <b,

has solutions Y- Yc(t) and Y YR(t) with the same properties as the solutions of
(4.2), and that the smooth function h satisfies, for example,

for

hy(n-2’[Y(t)]>-m>O on [a, b]

Yc(t), a <_- -<_ to,
Y(t)=

YR(t), to <=t<--b,

and a positive constant m (cf. [13]). Then we can use Theorem 2.2 to show that the
problem (4.9) has a smooth solution y y(t, e) for each e >0 sufficiently small which
satisfies on [a, b]

y(i)(t,e)= Y(i)(t)+O(e), O<-i<-n-3,

and

y(-2)(t, e)= Y(n-2)(t)+vi(t, e)+ O(e).

Here vi(t, e)=(em-()/2[i--lXRI exp[-(me-)l/2lt-tol], 0<ml<m, is the interior
layer corrector at to.

Up to now we have considered interior layer phenomena for the problem (4.1);
however, we can treat boundary layer phenomena just as easily.

For example, let us assume that the solution Y- Y(t) of the reduced equation
(4.2) exists on all of [a, b] (and, of course, satisfies Y (a)= A for ]- 0,..., n -2).
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Consideration of linear problems of this form (cf. [28] or [31]) suggests that if there
exists a positive constant k such that

fy,.-,)[YL(t)]>=k>O on [a, b],

and if f is further restricted, then the problem (4.1) has a solution y y (t, e) for each
sufficiently small e > 0 such that

lim/ y(’)(t, e)= Y)(t)
e-O

0<=i=<n-3, for a <-t<=b,

while

lio+ y("-2)(t, e) y,-2)L (t) for a < <b,
e-0

if y(,-2)(b)# B,-2. In other words, the (n- 2)nd derivative of the solution exhibits
boundary layer behavior at b due to the lower order of the reduced equation.

To make these ideas precise, let us first define the regions @ and @+ by

=[a, b]x fx{z" Iz- Y"-2)(t)l<=dl(t)}x{w" Iw- I/’(Ln-l) (t)[ <= d2(t)},

@+ {(t, Yl,""", Yn-2, Z, w)in @" w- Y("-x) (t) >= O on [b 6, b]},

and

@_ {(t, Yl, Yn-2, Z, W) in @" w yn-1) (t) <-0 on [b -6, b]}.

Here I {(yl, , Yn-2)’ lye- y-l) (t)[-<_ 8, 1,. , n 2} for a small positive
y(Ln-2)constant 8, dl is a smooth positive function such that (r )[B-2 (b)] <_- da(t) <-

tr + 6 on [b 8/2, b and d(t) <- 6 on [a, b 6], and dE is a smooth positive function such
thate rexp[-k(b-t)e <-dE(t)<-e rexp[-k(b-t)e +8 on[b-6/2, b]and
dE(t) -< 6 on [a, b 8]. The functions dl and d have the properties near b which reflect
the anticipated boundary layer behavior of the (n- 2)nd derivative of the solution
there.

The following two results are extensions of a recent result of Goecke [5] on the
third-order problem (4.1). In the first one, we assume that f grows at most linearly as a
function of y ("- 1).

THEOREM 4.2. Suppase that
(1) reduced equatian (4.2) has a salutian Y= YL(t) af class C(")[a, b] such that

Y) (a) A for 0,. ., n 2;
(2) the function f is continuous with respect to (t, y, , y,_2, z, w) and continu-

ausly differentiable with respect to (Y l, Yn-2, Z, W) in ;
(3) there exists a pasitive canstant k such that fw >= k > 0 in ;
(4) far (t, yl,’ y,-2, z) in campactsubsets af[a,b]-(t, 1,..., -=, z, w)= O(Iwl) as Iwl--’o.
Then there exists an e0>O such that the problem (4.1) has a solution y y(t, e)

whenever 0 < e <= co. Moreover, for in [a, b we have that

y(i)(t, e) (i)
’L (t)+O(e) fori=O,... ,n-3,

and

y("-z)(t, e)= y(,-2)(t)+ WR(t, e)+ O(e).

-1]Here WR (t, e) IB.-z y(,-2) (b)l exp [ct] exp [k (t b)e (for c a known positive
constant) is the boundary layer corrector at b.
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(n-l)The analogous result for a right-hand side f which depends quadratically on y
is given by the next theorem.

THEOREM 4.3. Suppose that
(1) the reduced equation (4.2) has a solution Y YL(t) of class C(")[a, b] such that

Y) (a)=Aifor]=O, n -2, and yn-2) (b)<Bn_z(y[n-2) (b)>Bn-2);
(2) the function f is continuous with respect to (t, ya,..., Yn-2, Z, W) and twice

continuously differentiable with respect to (yl, ’, y,-2, z, w) in +(_);
(3) fw >= 0 in +(_);
(4) there exists a positive constant k such thatfww >- k > 0 (fww <- -k < O) in +(@_);
(5) for (t, ya, y,-2, z) in compact subsets of [a, b]R"-1

f(t, y," y,_z, z, w)= O([wlz) as Iwl+.
Then the cotclusion of Theorem 4.2 is valid with WR(t, e) replaced by VR(t, e)=

y(L"-2)kle ln[(b-a)-l(b-t+{t a}exp[-(kle)-lB,_2 (b)l])] for 0<kl<k, where
VR is the decaying solution of ev" klV ’2, v(b, e) -[Bn-2 --LV(n-2) (b)].

Theorems 4.2 and 4.3 are proved by applying the theory of [11] and [15] to the
z-equation of system (4.4) and noting that the components (y1,..., y,-2) of the

v(n-3)solutions are O(e)-perturbations of the corresponding derivatives (YL,. , ,L of
the reduced solution Y. The details are straightforward and are omitted.

These two results are distinguished by the assumption that the partial derivatives fw
or fww have a certain sign along the reduced solution Y. and inside of the boundary layer
at b. Suppose however that f is independent of y("-a) and that the reduced equation
(4.10) has a solution Y Y(t) satisfying Y(g(a) Ag for 0,..., n 3. If Y is stable
in the sense that hy--2) > 0 in the region c (q -, then we expect (cf. [13] or 15]) that
the problem (4.9) has a solution y y(t, e) for each e >0 sufficiently small such that

and

lim y(i)(t,e)= Y(i)(t), O<i<n-3 fora<t<b,
_O

lim y("-2)(t, e) Y("-2(t) for a < < b.

The precise statement is the next theorem which contains a more general stability
criterion than a corresponding result of Goecke [5] for a third-order problem. It is
proved by converting the problem to a system and applying results in [13] or [15] to the
second-order problem for z y(n-2).

THEOREM 4.4. Suppose that
(1) the reduced equation (4.10) has a solution Y Y(t) of class C("[a, b] such that

Y(i(a Ai for 0,.. , n 3;
(2) the function h h(t, y, Yn-2, Z) is continuous with respect to

(t, y, Yn-2, Z) and continuously differentiable with respect to (yl, ’, Yn-2,

(3) there exists a positive constant m such that h[ Y(t)] >- m > 0 for a <- <-_ b
Y("-E)(a) then(4) if tx # A,-2,

[A_ ] h(a, Ao," ,A_,s) ds>O

or I <<-_A,_ orA_a <-<l; while iv= Y(-)(b) B_, then

[B,_- v] h(b, Y(b), Y(-(b), s) ds >0

for v < rl <- Bn-2 or Bn-2 rl < t.
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Then there exists an e0>0 such that the problem (4.9) has a solution y y(t, e)
whenever 0 < e <- co. Moreover, for in [a, b we have that

and

yi)(t,e)= Y")(t)+O(e), i=0,’’’ ,n-4,

y"-3)(t, e) Y"-3)(t)+o(el/2wL(t, e))+O(ea/Zwn(t, e))+ O(e),

y"-z)(t, e)= Yn-z)(t)+O(wL(t, e))+O(wn(t, e))+ O(e),

where w(t,e)=la,-2- Y"-2)(a)lexp[-(mle-a)l/2(t-a)] and wn(t,e)=
y(.-Z)(b -a) 1/2(b[Bn-2 )l exp [-(mxe t)] for 0 < m < m.

The previous theorems suggest that if a problem of the form (4.1) is expressed as
the system (4.4) and if the corresponding reduced problem has a smooth solution
(Y, Z), then one should be able to adapt theorems for perturbed second-order
boundary value problems to this more general context. The idea is that if the (n -2)nd
derivative of the solution y (that is, z) exhibits nonuniform behavior in [a, b of the type
described above, then the lower order derivatives yi)(i O,.. , n 3) should be close
to the corresponding derivatives Y) of the solution of the reduced problem in the sense
that y(i)(t, e)-- Y()(t)+o(1) on [a,b] for =0,..., n-3. Consequently, these vari-
ables in the right-hand side of (4.1) can be replaced (to terms of order o(1)) by the
derivatives of the known reduced solution. One now has an algorithm for constructing
asymptotic approximations to the solutions of many singularly perturbed systems of
higher order.

We discuss next an application of Theorem 3.1 to the problem on (a, b)

y’=z, y(a,e)=A,

ez"=H(t,y,z), z(a,e)=, z(b,e)=n.
(4.11)

Here y, z, A, H, and 1 are in R, and the corresponding reduced problem is

Y’=Z, Y(a) A,
(4.12)

0 H(t, Y, Z).

For simplicity, let us assume that lt(t,A, 0)--0, that is, we will study
the behavior of solutions of (4.11) relative to the solution (Y,Z)=
(A, 0) of (4.12). And let us define the region yc by Y{"

{(t, a <=t<-_b, Ilzll_<- d(t)L where 6>0 is a small constant and d>0 is a
smooth function such that IIll<-d(t)<-IIll+ on [a, a + /2], d(t)<-8 on [a +8, b-6],
and I111_-< d(t)-<_ I111/ on [b-/2, b]. Then the results of [17] lead us to assume, for
example, that the Jacobian matrix J 01-1/0z satisfies

(4.13) z. Jz_-> mllzll= in Y{"

for a positive constant m. We expect that under this assumption the full problem (4.11)
has a solution (y, z)= (y(t, e), z(t, e)) for each e > 0 sufficiently small such that

lio+ Ily(t, e)- All- o for a -< _-< b,
e--O

and

lim_+ z(t, e) 0
e-O

for a <t<b.

The precise result is the next theorem whose proof is left to the reader.
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THEOREM 4.5. Suppose that
(1) the reduced problem (4.12) has a solution (Y, Z)--(A, 0);
(2) the function I-I is continuous with respect to (t, y, z) and continuously differenti-

able with respect to (y, z) in the region ;
(3) there exists a positive constant m such that the inequality (4.13) holds.
Then there exists an eo>0 such that the problem (4.11) has a solution (y,z)=

(y(t, e), z(t, e)) whenever 0<e --<eo. Moreover, for in [a, b] we have that

[[y(t, ) All- O(e /w(t, )) + O(e/w(t, ))

and

Ilz(t, e)l] O(w(t, e))+O(WR(t, e)),

where W(WR) is as in the conclusion of Theorem 4.4 with the pre-exponential factor
replaced by

Before turning to a discussion of some examples in the next section, we make
several remarks.

Remark 4.1. Theorems 4.2 and 4.3 describe the occurrence of boundary layer
behavior at b under the assumption that the reduced equation has a stable solution
satisfying the (n 1) conditions at a. However, suppose that the reduced equation
has a smooth solution Y YR (t) on [a, b] such that

(4.14) Y (a) Ai for 0,. ., n 3

and

(4.15) y-2 (b)= Bn-2,
(n--l)and that YR is stable in the sense that for w y

fw[ YR (t)] < 0 on [a, b

and

fw<0
in the boundary layer at a. Then we can show that the problem (4.1) has a solution
y y(t, e) for each e >0 sufficiently small such that

libra/ y(i(t, e)- Y (t),
e--0

0-<_i_-<n-3, fora<-_t<-_b

and

lim/ y(n-2(t, e) y-2 (t) for a < _-< b.
e-0

Similarly, the analogue of Theorem 4.4 can be established for a reduced solution
Y YR(t) satisfying (4.14) and (4.15) (cf. Example 5.1 below).

Remark 4.2. The results of this section can be veiwed as providing simple
illustrations of what could be called "nonlinear cancellation laws." Namely, for
higher-order singularly perturbed linear boundary value problems one studies the
asymptotic behavior of solutions relative to the solution of the reduced equation which
satisfies a lesser number of the original boundary conditions. The choice of these
"reduced" boundary conditions is dictated by rather general cancellation laws (cf. [31],
[28] and [29]). However, a problem of current interest in higher-order nonlinear
singular perturbation theory is the discovery of the appropriate analogues of these
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linear cancellation results. The above theory suggests one possible approach to this
problem.

Remark 4.3. In addition to the boundary layer and interior crossing layer behavior
discussed here, solutions of (4.1) may also exhibit shock layer behavior in the sense that
the (n-2)nd derivative may transfer from one reduced solution to another dis-
continuously in the limit of e 0. The study of such phenomena proceeds as in the
above analysis by applying second-order results on shock layer behavior contained, for
example, in [15] (cf. Example 5.5 below).

Remark 4.4. The boundary conditions for the z-parts of our problems have been
of Dirichlet type. However, there is now a fairly well-developed theory for perturbed
scalar second-order differential equations whose solutions satisfy boundary conditions
of Robin or Neumann type (cf. [16], [18]). In terms of the differential equation (4.1) this
means that we could impose boundary conditions of the form

y(i)(a, e)=Ai, -0,..., n -3,

ply(n-E)(a, e)-qly(n-(a, e)= An-E,

pg.y(n-E(b, e)+qEyn-(b, e) Bn_2,

for nonnegative constants Pk, qk such that Pk d-qk > 0, k 1, 2. The interested reader
should have little difficulty applying the results of [16] and [18] to perturbed problems
of higher order.

5. Illustrations of the theory. In this section we present several examples whose
solutions display some of the behavior outlined above.

Example 5.1. Let us consider first the problem

ey’"= 1 (y") =/(y"), 0 < < 1,
(El)

y(O, e)=Ao, y’(O, e)=A1, y’(1, e)=B,

which is uniquely solvable for all e > 0. (Existence follows from Theorem 2.1, while
uniqueness follows from the maximum principle [30].) For various choices ofA andB
solutions of (E1) exhibit interior and boundary layer behavior of the types described by
Theorems 4.1 and 4.3, respectively.

To see this, we first examine the reduced equation

(*) O- 1- (u")2,
and find that u ut(t)- -1/2t+At +Ao and u t(t)=1/2t2+At +Ao are solutions of
(*) which satisfy the left-hand boundary conditions. Similarly, we find that u UR(t)
1/2t2 + (B1-1)t + c and u R(t) --1/2t2 + (B- 1)t + c2 are one-parameter families of
solutions of (*) which satisfy the right-hand boundary condition. Since f’(t)< 0 and
f’(/R) > 0, while f’(Ut) > 0 and f’(UR) < 0, we can reject tt and /R as candidates for
limiting solutions as e- 0/, and thus concentrate on the stable functions u and UR.
We note that UL is uniquely determined at this stage, while UR still contains the free
constant c 1.

Let us now attempt to apply Theorem 4.1. We see that u[ u, at the point
to 1/2(A B + 1) and that to belongs to (0, 1) only if ]A B] < 1. Next, we also require
that UL(tO)=UR(tO), and in order to achieve this, we choose the constant c as
Ao+1/4(A-BI+ 1)2. Finally, we note that f(h)= l-A2>0 for Ihl< 1. Thus for [A-
BI<I and uR(t)=1/2t2+(B-l)t+Ao+1/4(Ai-B+l)2, all of the assumptions of
Theorem 4.1 obtain, and we conclude that the solution y =y(t, e) of (El) satisfies as
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while

y(t,e)u(t) and y’(t,e)u’(t) on[0, 1],

y"(t, e) u"(t) on [0, 1]\{to}.

Here u u(t) is the composite path defined by u(t) uL(t) on [0, to] and u(t) UR(t) on
[to, 1].

Suppose next that A1-B1 => 1. If AI-BI 1 then by inspection y(t, e) uL(t) is
the solution of (E1). However, if A B > 1, then uL (1) A 1 >B and we deduce
from Theorem 4.3 since f"< 0 that the solution of (El) satisfies as e 0+

and

y(t, e) uL(t) on [0, 1]

y (t, e)- u(t) on [0, 1).

Finally, if A1-BI_-<-I, then we anticipate using the right-hand reduced solution
UR(t) =1/2t2 +(B-1)t +Ao which now satisfies u(0)=Ao. This is obvious in the case
that A-B=-I since y(t,e)=UR(t) is the solution of (El). More generally, if
A1-BI <-1, then uOR (0)- B- 1 >A and we deduce from the analogue of Theorem
4.3 (cf. Remark 4.1) that the solution of (El) satisfies as e 0/

y(t, s)-- UR(t) on [0, 1]

and

y’(t, e)-- u’ (t) on (0, 1].

This example serves to illustrate the important fact that for higher-order singular
perturbation phenomena different members of a family of stable reduced solutions
often must be used to describe the asymptotic behavior of solutions of the full problem
for different choices of the boundary values (cf. Remark 4.2).

Example 5.2. In this example we illustrate our remarks on the problem (4.9) which
followed the proof of Theorem 4.1. Consider then the problem

ey’" y’- 2It[ h(t, y’), -1 < < 1,
(E2)

y(-1,e) A0, y’(-1, e) 2, y’(1,e) 2.

As with the previous example, the existence and uniqueness of solutions of (E2) are
guaranteed by Theorem 2.1 and the maximum principle. However, to understand their
asymptotic behavior as e 0+ we must apply the theory of 4.

Let us begin by noting that

Ao+ 1-t2, -1-<- -<- 0,
u=u(t)=

Ao+ 1 +t2, 0__<t__< 1

is the solution of the reduced equation u’= 21tl which satisfies all three boundary
conditions. Moreover, it is stable in the sense that hy, =- 1 > 0. From our remarks on (4.9)
we conclude therefore that the solution y y (t, e) of (E2) satisfies as e 0+

y(t,e)u(t) and y’(t,e)u’(t) on[-1, 1].
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We note that if y’(-1, e) # 2 and/or y’(1, e) # 2, then we can combine our interior
layer theory with the boundary layer theory of Theorem 4.4 to show that

y(t, e)- u(t) on [-1, 1]

but

y’(t, e) u’(t) on (-1, 1).

The latter limit is attained, of course, at -l(t 1) if y’(-1, e) 2(y’(1, e)= 2).
Example 5.3. We consider now an illustration of the integral conditions in

Theorem 4.4. The problem is

ey’"=y’2-(t+l)2=h(t, y’), 0<t<l,
(E3)

y(0, e)=A0, y’(0, e)=Ax, y’(1, e)=B,

and its reduced equation u’ (t + 1)2 has the two solutions u u(t) Ao + 1/2t2 + and
u t(t) Ao-1/2t2- satisfying u(0) t(0) Ao. However, since hy,(t, u(t)) > 0 while
hy,(t, t(t))< 0, we select u(t) as our candidate for an approximate solution of (E3) on
(0, 1). In order to apply Theorem 4.4 we must determine for what range of A and B1
this function u can attract the solution of (E3) in the boundary layers at 0 and 1.
First of all, if A > 1 u’(0), then

al 1 2
h(O, s) ds -a-al+>0

for all such A 1, while irA < 1 then

h(O,s) ds=- A1-AI+ <0

for A1 >-2. Similarly, if B1 > 2 u’(1), then

h(, s) ds =-B-4B
for all such B1, while if B1 < 2 then

h(1, s) ds=- B1-4Bl+-- <0

for B > -4. Therefore we deduce from Theorem 4.4 that for A > -2 and B > -4 the
problem (E3) has a solution y =y (t, e) for each e > 0 sufficiently small such that as
E-->0+

and

y(t, e)- u(t) on [0, 1]

y’(t, e)- u’(t) on (0, 1).

The latter limit is attained, of course, at 0 (t 1) if A 1 (B1 2).
Example 5.4. It is often necessary to combine the reasoning used in formulating

results like Theorem 4.2 and Theorem 4.4 in order to study certain asymptotic
phenomena. An illustration is afforded by the problem

ey’" y’- (1/2- t)yy" f(t, y, y’, y"), 0 < < 1,
(E4)

y(0, e)=Ao, y’(0, e)=A1, y’(1, e)=B1,
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where the data Ao, A and B1 are positive constants. Since [y, 1 > 0 we are assured of
the existence and uniqueness of the solution for each e > 0.

Let us consider just the solutions u const, of the reduced equation u’ (1/2- t)uu".
If we ask that u(0)= Ao, then u(t)--Ao > 0, and we must see whether u is stable in any
of our previous senses. First of all,

fy,,(t, Ao, O, O)= Ao(t-1/2)
is negative (positive) on [0, 1/2)((1/2, 1]) and zero at 1/2, and so we might be tempted to
reject it out of hand as an approximate solution. Nevertheless, fr,--- 1 and so u Ao does
possess the type of stability contained in Theorem 4.4. If u were to approximate the
solution of (E4) on [0, 1] with the exception of boundary layer regions at 0 and 1 (since
A 1, B1 > 0), then we would have to check whether the second derivative term in f could
disturb the boundary layer structure. Fortunately, this term enhances the boundary
layer behavior of y in the sense that fy,, < 0 near 0 and fr,, > 0 near 1 provided only that
y > 0. Indeed, by arguing as in the previous section, we can show that the solution
y y(t, e) of (E4) satisfies on [0, 1]

y(t,e)=Ao+O(e)

and

y’(t, )= o(v(t, e))+o(v(t, e)) + o(e).

-1]Here vL(t,e)=Alexp[--trte 1] and vR(t,e)=Blexp[--tr(1--t)e for 0<tr<Ao
are the boundary layer correctors at 0 and 1, respectively. A general result of this
kind can be formulated and proved using the theorems of 2 together with Theorem 5.7
of [3.

Example 5.5. In order to illustrate Remark 4.3 let us now consider the problem

ey’" y’- y’y", 0 < < 1,
(ES)

y(0, e)=Ao, y’(0, e)=A1, y’(1, e)=B1,

for data A 1, B1 such that

BI>AI+I and -(B+I)<A<I-B1.

This example can be viewed as a higher-order problem of the type first considered by
Lagerstrom and Cole [2] (cf. also [15]) if we write (E5) as the system

(E5’)
y’ z, y (0, e) Ao,

ez"=z-zz ’, z(O,e)=A1, z(1, e)=B1.

Indeed, for our choice of A and B1 we know (cf. [15] or [4]) that the z-problem in (E5’)
has a solution z z(t, e) such that

li/z(t,e)=
t+A1, 0<--t<t*

-,o +B l, t*<t_-<l,

for t*= 1/2(1-A- B1), that is, z exhibits shock layer behavior at t*. The function
y y (t, e) is then seen to satisfy the asymptotic relation

Ao+t2+Alt, O<-t<-t*,
y(t,e)---

Ao+- +(B-I)t+t*(A1-B+I), t*<-t<-l,

since y’ z.
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Example 5.6. We consider finally an application of Theorem 4.5 to the system on
(0, 1)

(E6)

)’2 Z2

eZ"=(z-z31+yy2z2) H(y, z),Zz--Z3--ylyzZll

y(0, e)=Ao, z(0, e)={, z(1, e)=..

The corresponding reduced (e 0) system has the solution (Ao, 0) and we must see if
this function is stable in the sense of relation (4.13). However,

z. H= z2 +z2-(z41 + z) [[zll=(1- Ilzll=)
since z + z42 -<_ (z + z22)2. As a result, Theorem 4.5 allows us to deduce the existence of a
solution (y, z) (y(t, e), z(t, e)) of (E6) for each e > 0 sufficiently small provided I111 < 1
and I111 < 1. Moreover, for in [0, 1] we have that

Ily(t, e)-A011 O(Ell2)
and

IIz(t, e)ll o(11 11 exp [-yte-’/])+ o(11 11 exp [-(1- t)e-’/])+ O(e),

for max {1 -I1{11 -Ilnll }.
We note that if we argue as in [17], then we can show that the solution of (E6)

actually exists for IIll <4 and I111 < 4. and satisfies as e -> 0+

and

Ily(t,e)-A011--,0 on[0, 1]

IIz(t, e)ll--, 0 on (0, 1).
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AN ABSTRACT PARABOLIC VOLTERRA
INTEGRODIFFERENTIAL EQUATION*

MELVIN L. HEARD

Abstract. We consider semilinear integrodifferential equations of the form

u’(t)+ A(t)u(t)= Io [a(t, s)go(s, u(s))+ gl(t, s, u(s))] ds + fo(t)+ f(t, u(t)),

u(0)= u0.

For each => 0, the operator A(t) ia assumed to be the negative generator of an analytic semigroup in a Banach
space X. Thus, our models are Volterra integrodifferential equations of parabolic type. These types of
equations arise naturally in the study of heat flow in materials with memory. Our main results are the proofs of
local and global existence, uniqueness, continuous dependence and differentiability of solutions.

1. Introduction. We consider the abstract Cauchy problem for the Volterra
integrodifferential equation

(1.1)
u’(t)+A(t)u(t)= [a(t, s)go(s, u(s))+ gl(t, s, u(s))] ds

+fo(t) +fl(t, u(t)),

(1.2) u(0) Uo.

We assume that for each -> 0 the operator A (t) is the negative generator of an analytic
semigroup in a Banach space X. Thus we regard (1.1), (1.2) as a Volterra
integrodifferential equation of parabolic type. These equations arise in problems
concerned with heat flow in materials with memory (see [5], [15] and references listed
there).

Our formulation of (1.1), (1.2) is a direct attempt to generalized some results of
G. F. Webb [21], [22] who studied problems similar to (1.1), (1.2) for the case when
A A(t) does not depend on t. We were also influenced by the work of Friedman and
Shinbrot [10] and W. E. Fitzgibbon [8].

Highly nonlinear versions of (1.1) have been considered by many authors, viz.
Barbu [2], [3], Barbu and Malik [4], Crandall, Londen and Nohel [7], R. C. MacCamy
[13], Rennolet [17] and Vrabie [20]. In i-7] a complete existence theory (as well as
boundedness and asymptotic behavior) is developed for the Volterra integrodifferential
equation

(1.3)
u’(t)+Bu(t)+ a(t-s)Au(s) ds F(t),

u(O) Uo.

The operators A and B in (1.3) are taken to be subdifferentials of proper, lower
semicontinuous convex functions on a Hilbert space. It is shown that for an appropriate
initial function u0 and forcing term F(t), (1.3) possesses a global strong solution
provided the kernel a(t) satisfies some general conditions broad enough to cover two

* Received by the editors December 10, 1979, and in final revised form March 17, 1981.
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physically important classes’

(al)

(a2)

a(0) >0, a(t) is locally absolutely continuous on [0, m), a’(t) is locally of
bounded variation on [0, );
a(0) > 0, a C[0, c)f3 C2(0, o) and a(t) is nonnegative, nonincreasing
and convex on [0, o).

In [17] these conditions are generalized to the case of nonconvolution kernels a(t, s).
In our work the assumptions on the kernel are of a different type (see hypothesis

(A5)). We must assume continuity of a(t, s) as a function of (t, s) plus a H61der
continuity assumption in the first variable. A similar hypothesis is made on fo(t) (see
(A4)). These assumptions are related to the method of approach we use in the study
of (1.1), (1.2). We treat this problem as a perturbation problem for the linear
equation

(1.4) u’(t)+A(t)u(t)=f(t), t>-O,

(1.5) u (0) u0.

For basic results on the Cauchy problem (1.4), (1.5) we rely on the operator-theoretic
methods of Sobolevsky [18] and Tanabe [19]. Thus our H61der conditions cannot be
appreciably relaxed. The nonlinear term fl(t, u) is assumed to be of the same type as in
[223.

In [7] (and also in [17]) the operators A and B are related by means of assumption
(1.7). This essentially says that B dominates A in a certain sense. In our work the same
type of assumption is made relating A(t) to the nonlinear operator go(t, u) (see, for
example, Corollary 2, 3). The operator gl(t, s, u) in (1.1) should be regarded as a
Lipschitz perturbation of go(t, u). It is displayed separately because it has a different
range than go(t, u), which allows weaker continuity assumptions in the variables (t, s)
(see hypothesis (A6)). It is deliberately included in order to have a broader physical
application for (1.1). Lipschitz perturbations are also allowed in [7] for (1.3). However,
we are able to obtain both existence and uniqueness for problem (1.1), (1.2). Further-
more, by making use of the special nature of (1.1) (i.e., -A(t) generates an analytic
semigroup) we are able to use compactness arguments to study (1.1) for certain
nonlinear operators go(t, u) which are neither monotone nor of Lipschitz type.

The paper is organized as follows. In 2 we present the basic assumptions and
preliminary lemmas. In 3 we prove existence, uniqueness and continuation theorems
for (1.1), (1.2). The basic assumption in this part is that the nonlinear operator go(t, u)
must satisfy a type of local Lipschitz condition. Section 4 deals with continuous
dependence and differentiability (in time) of solutions of (1.1), (1.2). In 5, by making
compactness assumptions, we generalize the results obtained in 3 to allow for greater
nonlinearities in the operator go(t, u). In 6 we briefly indicate how Volterra
integrodifferential equations of the type (1.1), (1.2) arise in heat flow problems. We
then discuss two examples illustrating the theory of 3 and 5. In 7 the problem of
regularity is considered.

2. Preliminaries. Let X be a Banach space over the complex numbers with norm

11" I1. Let {A(t): 0<=t<= T} be a family of closed linear operators in X satisfying the
assumptions:

(A1) The domain D(A) of A(t) is dense in X and does not depend on t.
(A2) For each in [0, T] the resolvent R (h A (t)) exists for all Re h <= 0 and
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there is a constant C > 0 such that

C
[IR (, At))ll a’ Re h -< 0, O<_t<_T.

(A3) There is a constant C > 0 and a number a, 0 < a < 1, such that if t, s, r
belong to [0, T] then

]I[A(t)-A(r)]A-I(s)I[<= Clt-r].
We denote by &’(X) the Banach algebra of all bounded linear operators on X. Then

A (s) is the infinitesimal generator of an analytic semigroup {e-ta(s)" => 0} in .’(X) for
each 0 <= s =< T (see [9]). Moreover, there exist positive constants C and 6 such that

I{e-ta(s)[[ <= C e -st, > O,

]In (s) e-tA()l] < C e -st

t>0

for all 0 <_-s _-< T. For each/x > 0 the fractional power A- (t) exists and is given by

A_. (t)
1 fo -sA(t)sta’-I

F-- e ds, O - <-_ T.

It is known that A-(t) is a one-to-one bounded linear operator on X. We define
positive fractional powers of A(t) by Ag(t)[A-"(t)]-1. Then A"(t) is a closed
operator with dense domain D(Ag(t)) (which may depend on t) in X and D(A"(t))c
D(A (t)) if z > u. Furthermore, for all real z, u we have

A" (t)AV(t)x A(t)A (t)x A+(t)x,

if x D(A(t)), where y =min (z, u,/z + u). Put A -A(0) and for each y D(A"(O))
define IlYlI, [[A"Y[[. Equipped with this norm, D(A) is a Banach space which we
denote by X,. For each 0 < <= 1 the embedding X, -X is dense and continuous, and
by the closed graph theorem, A(t)A-(s) belongs to (X) for all 0-<s, -< T. So the
functional y [[A(t)yll defines for each an equivalent norm on D(A) and the mapping
t- A(t) is uniformly H61der continuous from [0, T] into (X, X). We make the
following additional assumptions:

(A4) The function fo(t) is uniformly H61der continuous from [0, T] intoX with
exponent/.

(AS) The function a(t, s) is a continuous complex-valued function on [0, T]
[0, T] and satisfies a uniform H61der condition with exponent p in the
first place; i.e., there exists a constant ao > 0 such that

(2.1)

(A6)

(2.2)

(2.3)

(2.4)

In(t, s)- a(r, s)l aolt-l"
for all 0 -< t, r, s _-< T.
Let W be a nonempty open subset of X1 and for each y W let
B (y, r) {z Xl:lly zll <- r}. Let 0 < tz -< 1 be a constant and let

go: [0, T] WX,

g :[0, T][0, T] W-Xx,

f :[0, T]x W-X,
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be three continuous operators having the property that for each y W there exist r > 0
and positive continuous functions bo, bl, c such that B(y; r)c W and

(2.5)

(2.6)

(.7)

Ilgo(t, y)-go(t, y=)ll bo(t)llyl-

IIg(t, s, y)- g(t, s, y=ll <-_bl(t, s)llyl- y=lll,

Ilf(t, yl)-fx(t, y)ll,, -<- c(t)llyl-

for all y 1, Ye B (y r) and 0 <_- t, s _-< T.
Assumptions (A1), (A2), (A3)imply that the Sobolevsky-Tanabe theory of

parabolic equations in a Banach space is applicable. This means that if A ={(t, s):
O<=s<=t<= T} then there is a unique evolution operator {U(t,s): (t, s)A} having the
following properties:

(i)
(ii)

(iii)
(iv)
(v)

U(t, s) 5(X) for all (t, s) A and U :A (X) is strongly continuous.
For each x X we have U(t, s)x D(A) for all 0 <= s < <_- T.
U(t, r)U(r, s) U(t, s) for all 0_-<s _-<r <- -< T.
U(t, s) (X1) for all (t, s) A and U: A (X1) is strongly continuous.
The derivative (OU/Ot)(t, s) exists in the strong topology on (X) and
belongs to (X) for 0 -< s < -< T. It is also strongly continuous in (t, s) for
0 =< s < <- T and satisfies

f
(t, s) +A (t) U(t, s) O,

Ot
s<t<=T,

U(s,s)=L

Throughout the sequel, unless otherwise stated, the letter C will always denote the
universal constant appearing in [18] (and also in I-9, Part II]) which occurs in all of the
various estimates on term such as e-’A(S),A(s) e-tA(S),A(t)A-l(s), U(t, s),A(t)U(t, s),
etc.

Now consider the nonhomogeneous Cauchy problem

du
(2.8) --+A(t)u h(t), U(to) Uo.

dt

Let Ct ([to, T]; X) denote the space of all X-valued functions h (t) which are uniformly
H61der continuous on [to, T] with exponent/3. Define

Ilh(t)-h(s)ll
lhl- ,o____s,u.P . It_sl

Then Ct ([to, T]; X) is a Banach space with respect to the norm

IlhllC,o;;x)-- sup IIh(t)il/h].
to<=t<- T

It is well known that if h C ([to, T]; X) then the function

u(t)= U(t, to)Uo+ It U(t, s)h(s) ds, to <-t<- T,
0

is continuous from [to, T] to X, continuously ditterentiable from [to, T] to X and is the
unique solution of (2.8) on to < t-< T. Moreover, if Uo D(A) then u(t) is continuously
differentiable on [to, T] and satisfies (2.8) on to <- <- T.

We now present some additional preliminary results which will be useful later on.
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LEMMA 1. ([10, Lemma 1.1]). For each h Ct ([to, T]; X) define

(Lh)(t)= U(t, s)h(s) ds, to <-t<- T.

Then L CO([to, T]; X)- C([to;T]; X) is a bounded mapping and

COROLLARY 1. Define

P(y;h)=U(t,O)Y+o U(t,s)h(s)ds, ONtNT.

The P is a continuous linear mapping from Xa x C ([0, T]; X) inw C([0, T]; Xa).
LMMh 2. Let 0 < 1 and [ C([to, T]; Xg ). Define

w(t) U(t, s)f(s) ds, to r.

Then w C([to; T];X)CI([to, T];X) and w’(t)+A(t)w(t)=f(t), tot T.
Proof. For 1 this result is due to Kato [12]. By standard arguments it follows

that w(t) D(A) and

A(t)w(t)=t A(t)U(t,s)f(s)ds, tomtiT.

It is easy to see that it suffices to prove that A(t)w(t) is continuous from [to, T] to X. Let
to z < T, then

A(t)w(t)-A(z)w(z) [ A(t)U(t, s)f(s) ds + I [A(t)U(t, s)-A(z)U(z, s)(s) ds.

Let 0< <g and choose 0<e <min (, a). Let y= 1 +e. Then by [18, (1.69)]

where sup to s r}, Similarly

][e (t)U(t, s)f(s)[[ ds cIIfll., 
(t-r)

Therefore IIA(t)w(t)-A()w()ll clVl[.,(t-), and this proves continuity.
The next result is based on a simple compactness argument and its proof will be

omitted.
LEMMA 3. Let {E(t, s): 0 s, T} be a family of strongly continuous operators in

(X), Then for each x X we have

lim E(t, s)x E(to, So)X
t,s)- to,SO)

uniformly for (to, So) in [0, T] [0, T] and also uniformly for x in compact subsets ofX.
The last result that we need is a Gronwall lemma. Its proof can be accomplished by

an argument similar to that of [22, Lemma 2.1] plus the use of Lemma 1.
LEMMA 4. Let 0 <--_ to < tl <-- T and let R :[to, tl] X1 be a continuous function. Let

0 < Ix <- 1 be a constant and W be an open subset of Xa. Suppose there are positive
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constants Ci, 1 <- <= 6 and continuous functions
Ho [to, tl] [to, tl] W X,

H1 [to, tl] [to, tl] W -X,f [to, tl]X w--,x,,
such that

(2.9) IIHo(t, s, 3’)11 C, IlYlI, + C2,

(2.10) IIH,(t, s, y)ll, Cllyll, + C4,

(2.11) Ill(t, y)ll,. -<- cilyll, +c6,
(2.12) IIHo(t,s, y)-Ho(r, s,

for all t, , s in [to, t] and y W. Suppose u :[to, t]o W is a continuous solution of the
integral equation

f ,f
to

+ [ U(t, sff(s, u(s)) ds,
at

for to
>0 is chosen so that C7y-"F() + Cy-1 < 1 then

Ilu(t)ll, -<- (1 t)-1{2 lira IIR (s)ll, + c9} e v(t-t)
to<S<-t

for all to <- <-_ tl. If C2 C4 C6 O, we can choose C9 O.

3. Existence, uniqueness and continuation. Our first result concerns the local
problem

(3.1)
u’(t)+A(t)u(t)= t [a(t, s)go(s, u(s))+ ga(t, s, u(s))] ds

+fo(t) +fx(t, u(t)),

(3.2) U(to)=Uo.

Given Uo W we shall say that u(t) is a strong solution of (3.1), (3.2) on an interval
[to, to+6] if u(t)W for all to<-t<-to+6, u(t) is continuously differentiable
from [to, to + 8] to X, U(to)= Uo and u(t) satisfies (3.1) on [to, to + 8].

THEOREM 1. Assume (A1)-(A6) hold and let Uo W, toe [0, T) be given. Then
there exists a positive number 8 8(to, Uo) and a unique strong solution u(t) of (3.1), (3.2)
on the interval [to, to + 8] which also belongs to C([to, to + 8]; X1).

Proof. Given Uo W, let B B(uo; r) W be determined by (A6). Let 0 < 8 <_-

T- to be a positive number to be specified later and put I [to, to + 8 ]. For each function
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v e C(I; B) we define

(3.3)

(3.4)

for L Let

Then by (2.6)

(Gov)(t) It a(t, r)go(r, v(r)) dr,

(GlV)(t) ft gl(t, r, v(r)) dr

aoo sup la(t,s)l,
O<=s,t<=T

bl,m <sup r[bl(t, s)l,
O=s,t

bo,oo= oS<=utP<__rlbo(t)l,

sup
O<_t<=T

su, II(Gov)(t)ll <= aoaCgo, v6C(I;B),

where

(3.5) Cgo= rbo.oo + sup Ilgo(t, uo)[I.
Ot<=T

Assuming p =/3, we have by (2.1), (3.5)

[IGor(t)-o(s)ll < (alt- sl- / Is tolao)fgo.[t_slt
It follows that Gov C (I;X) and

(3.6) IIGovllc.;x [(ao + aoo)3 + aoo61-t3]Ce,
From (2.1), (2.5)we have

su,? [IGou(t)- Gov(t)ll <= abo,6 su,t9 Ilu(t)- v(t)lll,

and

[Gou -GoV] <-(a6- + ao6)bo t [[u(t)-v(t)[laSU

Therefore the mapping v--> Gov is Lipschitz continuous from C(I; B) into C (I; X)
and

(3.7)

Similarly, from Property (iv), (2.6) and (3.4) we have Glv C(I; X1) and

(3.8)

(3.9)

where

Cg rb.o + sup Ilg(t, s, uo)ll,,
O<--t,s<=T
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Thus mapping v GlV is Lipschitz continuous from C(I; B) into C(I; Xl).
Now for each v e C(I;B) we define

(3.10)

(CI)v)(t) U(t, to)Uo+ It U(t, s){Gov(s)+Glv(s)+fo(s)} ds

+ It U(t, s)fl(s, v(s)) ds,

By Lemmas 1 and 2 it is clear that (I) maps C(I; B) into C(I; X1). We show that for 8
sufficiently small, cI) maps C(I;B) into itself and is a contraction.

Let 0<r/<z, then by (2.7) and [9, (II.14.12), (II.14.14)], we have for each
veC(I;B),

(3.11) U(t, s)f(s, l.)(s)) ds < CCj:
8h
m, eL
7"1

where

Ctl rc + sup I(t, Uo)l[w
O<t<T

Now let

q(8) (1 + ao + a)6 + a81- +,

w(t) U(t, to)Uo + U(t, S)fo(S) ds,

Then by Lemma 1, (3.6), (3.8), (3.11) we have

lily (t)- uolla < Ilw (t)- uolla + Cq()[Co +c+ ce]

for all eL v e C(I; B). Since uoeD(A) we have w e C(I; X1) and W(to) Uo. So there
is a 81 > 0 such that

sup IIv(t)-uo[ll <r,
to<t<to+81

vC(;B).

Furthermore, if u, v e C(I; B) then by (2.7), (3.7), (3.9)

(3.12)

Choose 82 > 0 SO that Cqg(82)(bo,o + bl, + c) < 1. Then if 8 min (81, 82) it follows
that is a contraction mapping of C(I;B) into itself. Hence there is a unique fixed
point u of in C(I; B) and u(t) is a local strong solution of (3.1), (3.2).

To prove uniqueness, suppose we have two solutions ul(t), Uz(t) of (3.1), (3.2) on
/=[to, to+8] which belong to C(I; X1)(3 C1(I; X). Let

tl sup {t eI:ul(s)= b/2(S) for all to<-S<-t},

and suppose that tl<to+8. Then both Ul(t) and u2(t) are solutions of the
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integrodifferential equation

u’(t)+A(t)u(t)= It [a(t, s)go(s, u(s))+ gl(t, s, u(s))] ds +o(t) +/a(t, u(t)),

tl <---- <- to + 6,

u(t,)=u,

where ul ul(tl)= Uz(tl) and

o(t) [a(t, s)go(s, ul(s))+ gl(t, s, ul(s))] ds +Co(t).

Since u e W, there is a closed ball B1 B (u l; rl) c W such that (2.5), (2.6), (2.7) hold.
For each v C([tl, to + 8]; B1) define

(v)(t) U(t, t)u + I, U(t, s)(s, v(s)) ds

}+ It1 U(t, s){It[a(s, ,)go(,, v(’r))+gl(s, 7, v(’r))] d’r +)o(S) ds,

tl <-t<-to+6.

Then by previous arguments there exists 81 > 0 such that (I)1 maps C([tl, tl + tl]; B1)
into itself and is a contraction. But by continuity we have Ul(t) B1 and UE(t) B1 for all
tl =< =< tl + tl if 61 is sufficiently small. Thus ul(t) and UE(t) are both fixed points of (I)

and we get ul(t)-u2(t) for tl<-t<-tl +61. This contradicts the definition of tl and
proves uniqueness.

We now discuss noncontinuable solutions of (1.1), (1.2). It is expected that an a
priori estimate in the Xl-norm should produce a global solution defined on [0, T]. We
show that this is in fact the case under slightly stronger assumptions on go, gl and

(A6)’ Let W, ix, go, gl and fl be given by (2.2), (2.3), (2.4). For each closed
bounded set B c W there are positive continuous functions bo, bl and c
such that (2.5), (2.6), (2.7) hold for all yl, )"2 n and 0 -< t, s _-< T.

THEOREM 2. Assume (A1)-(A5) and (A6)’ hold. Let tT(t) be the solution of (1.1),
(1.2) on a maximal interval ofexistence [0, d) where d < T. Then for each closed bounded
setB Wwith nonempty interior Int B, there is a sequence {tn} such thattn --> d- as n
and (tn): Int B for all n >= 1.

Proof. We argue by contradiction and suppose t(t) e Int B for all 0_-< <d. We
shall produce a positive number 6, 0 < 8-< T-d, such that for any to in [0, d) the
integrodifferential equation

(3.13) u’(t)+A(t)u(t) f [a(t, s)go(s, u(s))+ gl(t, s, u(s))] ds +[o(t)+fl(t, u(t)),
at

(3.14) U(to) to,

where to t (to) and
t

[o(t) [a(t, s)go(s, t(s)) + gl(t, s, t(s))] ds +fo(t)

has a solution u(t) on [to, to+8]. By our uniqueness result, for to sufficiently close
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to d, u(t) represents a continuation of t(t) to the right of d. This contradicts the
definition of d.

First we choose an arbitrary point to [0, d) and keep it fixed. Then we define

Mg sup {[Igo(t, y)[I. 0 _-< _-< T, y B},

Mg sup {[[gl(t, s, Y)[[1:0 --< s, <-- T, y B},

Mr1 sup {]If(t, y)[[, 0 <_- _-< T, y B},

and let I [to, to + 8 ], where 8 is some positive number less than or equal to T d which
is to be determined later (depending only on B). For each v C(I; B) define Gov, Glv

by (3.3), (3.4) and v by (3.10) with Uo, fo replaced by to, o, respectively. Then from
(3.12) it is clear that we can choose 8>0, depending only on B, such that is a
contraction mapping of C(I;B) into C(I;X1).

For v C(I B we have

(v)(t)- to U(t, to)ao- o+ I U(t, s)fo(s) ds

+ U(t, s) a )go(r, (r)) dr ds

--It U(t,s){fot gl(s, % (’r)) dr} ds

+ / s)Oo (s) ds + / ds
at "lto

+ I U(t, S)fl(S, V(S)) ds

7

i=1

Consider J5, J6 and J7. From (3.6), (3.8), (3.11) we have

11J5111 =< C[(a0 + a)8 + a8-]Mgo,

1116111 --< C=MI, II111 -< CM

Similarly for J4 we have

IIJ4111 CTMI.
Consider J2. Following Sobolevsky [18, p. 32] we have

(t-to) (t-to)
IlA(t)J=ll <- C[fo]+fl[fo(t)l[ +E(t, t-to)fo(t),

where E(t, s)= I-e-sA(t). The function fo(t) has compact range in X and E(t, s) is
strongly continuous for 0 _-< s, t-< T (see [9, Lemma II.4.4]). So by Lemma 3

lim E(t, t- to)fo(t) O,
t- to
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uniformly in to. Thus IIJ2111 " 0 as to, uniformly in to and a similar argument works for
J3. For the remaining term J1 we use the integral equation to write

J1 U(t, O)- U(to, 0)]Uo

+ [U(t, s)- U(to, s)] a(s, r)go(r, a(r)) dr ds

Io l+ [u(t, s)- u(to, s)] g(s, r, a(r)) dr ds

Io+ [u(t, sl- U(to, s)g(s, a(sll s

+ [U(t, s)- U(to, Slgo(Sl ds,

where Uo (0). By Property (iv) and Lemmas 1, 2 and 3 each term above goes to zero
in the X-norm as to uniformly in to.

Therefore given e > 0 we can choose 8 > 0, independent of to, such that

II(v)(t)- aol[ < e, toNtNto+6, veC(I;B).

Since ao e Int B, we can choose e > 0 such that the ball B {y e X’ IIY o[[1 < e} is
contained in B. Then C(I; B) C(I; B C(I; B) and by the contraction mapping
principle there is a unique solution u(t) of (3.13), (3.14) on [to, to + 6].

CorollArY 2. Assume (A1)-(A5) hold and let (A6)’ hold with W Xa. Suppose
them am posigve constants C, 1 6, such that

(3.15)

(3.16)

Ilgo(t. y)ll cajlyll + c2.
Jigs(t. s. y)lla c3llyll + c4.

Jill(t. y)ll. <= Csl[y[[x + c6

]’or all 0 <- s, <- T and y X1. Then for each Uo X1 them exists a unique global solution
u(t) of (1.1), (1.2) on [0, T].

Proof. By Theorem 2, it suffices to show that each solution of (1.1), (1.2) is a priori
bounded in the X1-norm. From Theorem 1 with to 0 we have

where

+ fo U(t, s)f(s, u(s)) ds,

R (t) U(t, O)uo + fo U(t, S)fo(S) ds.

Let Ho(t, s, y) a(t, s)go(s, y) and H(t, s, y)= gl(t, s, y). Then Ho and H satisfy (2.9),
(2.10), (2.11). So by Lemma 4 we obtain the desired bound. 71

4. Continuous dependence and dillerentiability of solutions. We begin our dis-
cussion of continuous dependence by considering a sequence of integrodifferential
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equations

u’(t)+A(t)u(t)= [a(t,S)go,(s,u(s))+g,(t,s,u(s))]ds

+fo,.(t)+fl,.(t, u(t)), >=0,

(4.2) u(0) Uo,..

We assume that (A1)-(A6) hold and let u(t) denote the solution of (1.1), (1.2). We
suppose u(t) is defined on some closed interval [0, d](d <-_ T) and we seek conditions on
(4.1), (4.2) which guarantee that for n sufficiently large, its solutions will also exist on
[0, d] and converge to u(t) as n c. We shall assume that each an(t, s) satisfies (A5)
with constants ao and p independent of n. Similarly, we assume that each go,n, gl,. and
fl,. satisfies (A6) with the constant r and the functions bo(t), bl(t, s), c(t) independent of
n. We assume that fo,. C ([0, T]; X) for all n _-> 1 and we shall use the notation

la(t, r)-a(s,
[a(.,z)]o= sup

ioO<=t,sT It-s
We note that, by Theorem 1, for each Uo,. s W, there is a unique solution un(t) of (4.1),
(4.2).

THEOREM 3. In addition to the above assumptions, suppose that:

(i) lim sup la. (t, r) a (t, z) 0;
n--}oo O<-t,.r<= T

(ii) lim sup [an(’, z)-a(., r)]o 0;
n-o

(iii) lirnl[go,,,(t, y)-go(t, t)ll o, uniformly on bounded subsets of [0, T] W;

(iv) lirnllgl,. (t, s, y)-gl(t, s, y)lll =0, uniformly on bounded subsets of[O, T]

[0, T] W;

(v) lim lifo,. -foll  (ro, o;

(vi) 2irn]lfl,.(t, y)-fl(t, Y)[I. =0, uniformly on bounded subsets of [0, T] W;

(vii) lim [lUo,. uolll o.

Then there is an integerN >- 1 such thatfor each n >=N the solution un(t) of (4.1), (4.2) is
defined on [0, d] and

lim oS__<u,__<p Ilu. (t) u(t)llx- O,

lim oS<=u,p<=a llu’(t) u’(t)ll o.

Since the argument used to prove Theorem 3 is fairly standard, we omit the proof.
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We now turn to the question of differentiability of solutions of the Cauchy problem

(4.3) u’(t)+A(t)u(t)= [a(t,s)go(s,u(s))+ga(t,s,u(s))]ds+fo(t),

(4.4) u(0) Uo,

We always assume (A1)-(A6) hold and we let u(t) be the solution of (4.3), (4.4) on an
interval [0, d] (d -<_ T), which belongs to Ca(J0, d]; X)f3 C([0, d]; Xa). Define

ho(t) Io a(t,s)go(s,u(s))ds+fo(t), O<-t<=d,

ha(t) Jo ga(t, s, u(s)) ds, 0 <-_ <= d.

In 3 we showed that ho Co(J0, d]; X), ha C([0, d]; Xa) and

(4.5) u(t) U(t, O)uo + U(t, s)[ho(s) + ha(s)] ds, 0 <- <-_ d.

We make the following additional assumptions:
(Ca) The mapping t- A(t) is strongly continuously differentiable from [0, T]

to (Xa, X) and we let

d A(t)y=-A(a)(t)y, y Xl.
dt

We assume that A(a)(t)A-x(o) is uniformly bounded for 0 _-< t-< T and

[l[A()(t)-A(X)(s)]A-l(o)ll<-Clt-sl, O<-s, t<= T.

(fo) The function fo(t) has a derivative f’o(t) which is uniformly H61der
continuous on [0, T] with exponent/3.

(aa) The function a(t, s) is uniformly H61der continuous along the diagonal of
[0, T] x [0, T] with exponent p:

[a(t, t)-a(s,s)[<-ao[t-sl, O<-_s, <- T.

Furthermore, the partial derivative (Oa/Ot)(t, s) is continuous on [0, T][0, T] and
uniformly H61der continuous on [0, T] in the first place with exponent p:

Oa Oa
--(t,s)--(r,s) <-_aolt-r[, O<=t,’,s<=T.

(go) For each compact set K c W there are positive constants o, y,/x <- 1 such
that

Ilgo(t, ya)- go(s, y)ll_-<:o[lt- s[" +[[y- yll
for all y a, y2 K and 0 <= s, <= T.

(gl) The function (O/Ot) gl(t, s, y) :[0, T] x [0, T]x W--,Xa is continuous.
LZMMA 5. Let 0<w <1/2min (a,/3). Then ]’or each e >0, u(t) is uniformly Hb’lder

continuous in the Xa-norm on [e, d] with exponent oo. That is, there exists a constant
C(e) > 0 such that

(4.6) Ilu(t)-u(s)lla <-_c(e)lt-slL e <-t,s<-_d.
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Using Lemma 5 and the well-known differentiability result [9, Thm. II.8.1] we
have the following theorem.

THEOREM 4. Let the assumption (A1)-(A6) hold and let u(t) be given by (4.5).
Suppose that (C1), (f0), (al), (go) and (gl) ate satisfied. Then u(t) is twice strongly
continuously differentiable in the X-norm on the interval (0, d] and satisfies the
integrodifferential equation

u"(t) +A (t)u’(t) + Al)(t)u(t)

(4.7) -- (t, s)go(s, u(s))+ gi(t, s, u(s)) ds

+a(t, t)go(t, u(t))+ gl(t, t, u(t))+ f’o(t), O<t<=d.

If, in addition, u’(O)D(A) then u(t) belongs to C2([0, d]; X)f3 C1([0, d]; X1) and
satisfies (4.7) on [0, d].

5. Generalizations. In this section we consider the abstract Cauchy problem
(1.1), (1.2) for more general nonlinear operators go(t, u). We assume that

(5.1) A-l(0) is completely continuous on X.

It follows (see !-9, pp. 169-170]) that A-(t) is completely continuous on X for all
0</z-<_ 1, 0<-t-< T. We denote by X,(t) the domain D(A(t)) with norm Ilxll,
IlA"(t)xll. Then the embeddings X1 X,(t)X are compact for all 0< z < 1. We
assume there is a Banach space E and a number w (0, 1) such that

(5.2) X(t)E is a continuous embedding

for all 0_-< =< T with embedding contant independent of t.
Let W be a nonempty open subset ef X1 and assume there is a continuous function

q’[0, T]E W-X

which satisfies
(B1) For each y W there are a constant r >0 and a positive continuous

functional b0 defined on[0, T] E, which is bounded on bounded subsets
of [0, T] x E, such that the closed ball B(y r) {z XI"IIy z[[1 --< r}
belongs to W and

Ilq(t, x, yl)-q(t, x, y2)[l<- bo(t, x)Ily- y2ll

for all 0<=t <- T, x E and yl, y2B(y; r).
(B2) For each compact set K =[0, T] W the mapping x q(t,x, y) is

continuous from E to X uniformly for (t, y) in K.
(B3) For each y W the mapping (t, x)-q(t, x, y) is bounded on bounded

subsets of [0, T] E.
We now define

(5.3) go(t, y) q(t, y, y) for 0-<_ t_-< T, y W.

Our first result concerns local existence for solutions of the abstract Cauchy problem
(3.1), (3.2). The main ideas for the proof are taken from Sobolevsky 18] and Fitzgibbon
[8]. Since the proof is essentially the same as for Theorem 6, the details will be omitted.

THEOREM 5. Assume (A1)-(A5), (B1), (B2), (B3) hold and let go(t, y) be defined
by (5.3). Let fl, gl be defined as in (A6). Then given Uo W and toe [0, T) there is a
6 3(Uo, to) > 0 and a function u(t) belonging to C([to, to + 3]; Xa) f3 Ca([to, to + 3]; X)
and satisfying (3.1), (3.2) on [to, to + 3].
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We now consider global solutions of (1.1), (1.2) in the present situation, where go is
defined by (5.3). First, we strengthen our assumptions in the nonlinear operator q.

(B1)’ q is continuous from [0, T] E X1 to X and for each bounded set
B c X1 there is a positive continuous functional bo defined on [0, T] E,
which is bounded on bounded subsets of [0, T] E, such that

I]q(t, x, yl)-q(t, x, y2)ll<=bo(t, x)IlY2-YllI1
for all 0_<-t_-< T, x E and yl, yzB.

THEOREM 6. Assume (A1)-(A5), (B1)’, (B2) with W =X1, are true. Letfl and gl

satisfy the hypotheses of Corollary 2. Assume also that there are constants Co > O, C1 > 0
such that

(5.4) I[q(t, x, y)l[_< C(}lxllE / Ily[ll) / Co

for all (t, x, y) in [0, T] x E x X. Let go be defined by (5.3). Then for each uo X1 there is a
global solution u(t) of (1.1), (1.2) on [0, T].

Proof. Let uosX1. Then by Theorem 5 there exists a local solution u(t) of (1.1),
(1.2). Let to be a point where U(to) is defined and let ! =[to, to+8]. Let 0< r/< 1-to,
where to is determined from (5.2). In what follows, we use the notation Ci(i >-0) to
denote universal positive constants which are independent of to. lor fixed M > 0 let S
be the class of all functions v :I X which satisfy

[Iv(t)-v(r)ll<=Mlt-r[", to <=t, r<-to+6o, V(to)=AO’(to)U(to).

By (5.3) and (5.4) there is a positive constant C2 such that

(5.5) ]lgo(t, y)l[<-- c2[[ylll + c0, (t, y)e [0, T]xX1.

So by Lemma 4 there is C3 > 0, C4 > 0 such that

(5.6) Ilu(t)lll <= c3
and

(5.7) ]]A (t)u (t)ll <- C4

as long as u(t) exists. By interpolation we have

IIA (to)U (to)ll-<- C,
so that

(5.8)

for all tL v S.

Ilv(t)ll c6, IIA to)V t)ll <- C7

Now consider the integrodifferential equation

(5.9)

w’(t)+A(t)w(t)= [a(t, s)go(s, w(s))+ gl(t, s, w(s))] ds

+ ho(t) + h(t) +fl(t, w(t)),

(5.10)

where

W(to)=U(to),

(t, s)go(s, u(s)) +fo(t),ho(t) a ds
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t
(s )) ds.(5.12) hi(t) gl(t,s,u

We shall show that there is a positive constant 6 > 0, independent of to, such that if
6o=min (6, T-to) then (5.9), (5.10) has a solution on [to, to+6o]. By stepping off
intervals of length 60, we construct a global solution of (1.1), (1.2).

For each v $, define

g(t, y)=q(t,A-’(to)V(t), y), (t, y) I Xl.

Let B X1 be any bounded set. Then by (B 1)’ we have

I[g(t, yl)- g(t, y)[[-<_ bo(t, A (to)V(t))[ly Y[I
for all /, v S and yl, y. B. By (5.8) there is a constant b> 0 (independent of v and
to) such that

Therefore,

, bo(t, A (to)V(t)) < b<.
IIg(t, yx)- g,(t, yz)ll < bllyl- yzl[a

for all L yl, yz B and v $. Similarly by (5.4) there is C8 > 0 such that

(5.13) IIg(t, y)ll <-- Clllylla + cs, (t, y)ei xx.
Applying Corollary 2, it follows that for each v e S there exists a unique global solution
w(t) of the integrodifferential equation

w’(t)+A(t)w(t)= [a(t,s)g(s, w(s))+g(t,s, w(s))]ds+ho(t)
0

+h(t)+[(t, w(t)), teI,

w(to)=u(to).

By Lemma 4, there is C9 0 such that

)--1 IIRo(s)ll, + C9} e e I,(5.14) Ilw (t)llx (1 {2 vT

where

Ro(t) U(t, to)U(to) + U(t, s)[ho(s) + hl(S)] ds.

Now from (3.15), (5.5), (5.6), (5.11), (5.12), (5.14) and Lemma 1 we have

(5.x5) Ilw(t)lll <---- Clo, I.

Hence from (3.16), (5.13), (5.15) it follows that

(5.16) Ilgo(t, w(t))ll<=fxx, tel

and

(5.17) ILfx(t, w(t))ll, -<_ C12, e/

with Cll, C12 independent of both v and to.
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(5.8)

with

Define a mapping 0 on S by

(Ov)(t) a’(to)W(t), I,
where v and w are related by means of the integral equation

U(t, to)U(to)+ I U(t, s)[(w)(s)+fl(s, w(s))] ds
at

xP(w)(t) [a(t,s)g(s, w(s))+g(t,s, w(s))]ds+ho(t)+ha(t)

for L From (3.15), (5.6), (5.16) there is Ca3 > 0 such that

(5.19) III’v(w)(t)ll C13, L v S.

We wish to show that Ov $ if 8 is sufficiently small. It is clear that Ov C(I; X). So let
to<--t<--t+At<--to+8 and set Ao=-A(to). Then from (5.18)

ov(t + at)- or(t) A[U(t + at, to)- U(t, to)]U(to)
t+At

+a { I U(t + At, s)[(w)(s)+f(s, w (s))] ds
tO

=Y+J2.

By [9, Lemma II.14.4], (5.17), (5.19)

IIJxll C(ht)X-C4
and

II/zll--< C(At)-(llog At[ + 1)(Cz / C3).

Choose 0 < e0 < 1-w-rt and define to be the minimum of 1 and the expression

C[C4+(C12+C13) sup sa--’-o(llogsl+l)][
0<s<l

Then 6 does not depend on to and

[[Ov(t + At)--Ov(t)ll<=M(At)", tL vS.

Since Or(to) A3u(to), it follows that Ov S for all v S.
We consider S as a closed, bounded, convex subset of the Banach space C(I; X).

Then 0 maps S into itself and we next show that 0 is continuous. Choose a sequence {vn}
in $ such that vn - v in C(I; X) and let

Then from (5.18)

Or. (t) Aw. (t).

w.(t)- w(t)= ft U(t, s)[XI%.(w.)(s)-(w)(s)] ds

+ It U(t, still(s, w,(sll-fa(s, w(sl)] ds.



98 MELVIN L. HEARD

Applying Lemma 4 (with C2 C4 C6 0) we obtain constants K and y, independent
of n, such that

where

[Iw(t)-w(t)lla=(1-)-a{2 S<u.P IlR,,(s)[ll}e v(t-’),
to=’t

Rn(t) U(t,s) a(s, r)[gv.(z, w(r))-gv(r, w(z))]dzds.

We now show that Rn 0 in C(I; X1) as n oo. By Lemma 1, it suffices to show that

lim a(t, r)[g.(r, w(r))-g(r, w(r))] d" 0

in the space Co (I; X). But this follows easily from (B2). Hence wn w in C(I; X) so
that Ov, Ov in C(I; X). This proves continuity if 0. Standard arguments may be used
to show that 0 is also compact. Thus by the Schauder fixed point theorem there is an
element v S such that Ov v. Consequently v(t)= A’(to)W(t)on I and w(t)satisfies

w’(t)+A(t)w(t)= [a(t, s)q(s, w(s), w(s))+ gl(t, s, w(s))] ds

+ho(t)+h(t)+fl(t, w(t)), tel

with W(to) U(to). If we set u(t) =- w(t), we obtain the desired solution of (3.1), (3.2).

6. Applications. We first give a very brief description as to how equations of the
type (1.1), (1.2) can arise in applications to problems in heat flow. A thorough account
of these types of problems is given in 15]. Consider a rigid heat conductor in which heat
flows in only one direction. Let u(t, x), e(t, x), q(t, x) and h(t, x) denote the tempera-
ture, internal energy, heat flux and heat supply, respectively, where denotes time and x
denotes the position in the body. The energy balance equation is

(6.1) et(t, x)= -qx(t, x)+ h(t, x).

The classical linear theory for heat flow in a homogeneous isotropic material is obtained
from (6.1) by assuming that the internal energy depends linearly on the temperature

(6.2) e(t,x)=eo+bou(t,x), bo>0,

and the heat flux is related to the temperature by Fourier’s law:

(6.3) q(t,x)=-CoUx(t,x), Co>0.

However, in materials of fading memory type (Coleman and Mizel [6]) the classical
theory of heat flow is inadequate. In these types of materials assumptions (6.2), (6.3) are
replaced by more general relations which assume that the internal energy and heat flux
are functionals (rather than functions) of the temperature and the gradient of the
temperature, respectively. In the linear theory (Nunziato [16]) the functionals e(t, x)
and q(t, x) are taken, respectively, as

(6.4) e(t,x)=eo+bou(t,x)+ b(t-s)u(s,x)ds, t>-O,

(6.5) q(t, x) CoUx(t, x) + a(t- s)u(s, x) ds, >- O,
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where we are assuming, without loss of generality, that the history of the temperature is
prescribed as zero for <= 0. The functions a, b are usually assumed to be decaying
exponentials with positive coefficients. The energy balance (6.1) applied to (6.4), (6.5)
leads to the integrodifferential equation

bout(t, x)-cou(t, x)= [a(t-S)Ux(S, x)-b’(t-s)u(s, x)] ds
(.

+h(t,x)-b(O)u(t,x).

EXAMPLE 1. We consider a generalized semilinear version of (6.6). Let R
(-eo, +oo) and consider the following pure initial-value problem

Iou-(k(t, x)U)x [a(t, s)(o’(o(s, x)u(s, x)) + /(t, s)u(s, x)] ds
(6.7)

+ h(t, x) +f(u(t, x)), >= O, x R,

(6.8) u(0, x) Uo(X), x c:_ R.

We assume that all of the functions k, a, o-, p, y, h and f are real-valued. In what follows,
the letter C will be used to denote a positive constant depending only on T. We assume
that k is a positive continuous function having a continuous first partial derivative kx on
0 <- < m, x e R and satisfying

(i) 0 < k0 < k (t, x) < k’
(ii) kx(t,x)l<=kl,
(iii) k(t, x)- k(, x)l-<- CIt-l
(iv) k(t,x)-k(,x)l<-flt-l

for all 0 _-< t, -<_- T, x R, where ko, k, kl are constants depending only on T.
We assume that p is continuous with a continuous first partial derivative px on

O<=t<c,xR and

(6.10) Io(t,x)J<=C, Io(t,.x)l<=C, O<=t<-T, xR.

We assume that the nonlinear functions r,/ satisfy (see [7, Example 2]), f(0)= 0 and

(6.11) f,rsCl(-,+), [f’(s)l<-_M, I’(s)l_-<M, ssR

and for each r > 0 there is a constant Cr > 0 such that

Ir’(t)- r’(s)l-<- Cr[t-- sl, It[ <__-- r, IS[ _--< r,
(6.12)

[f’(t)--f’(S)[ <- Cr[t-- S[, Itl--< r, Isl--< r.

We assume that a and 3’ are continuous on [0, ) [0, ) and that a satisfies hypothesis
(A5) for each T > 0.

Let Co > 0 be a fixed constant. The change of variables u --> e-Ctu converts (6.7) into
an equivalent problem

P

ut-(k(t, x)u) +CoU J, [a(t, s)(r(p(s, x)ux(s, x)))x +’y(t, s)u(s, x)] ds

(6.13) +h(t,x)+f(t,u(t,x)), t>-_O, xR,

with a(t,s), p(t,s) 3,(t,s), h(t,x) in (6.7) replaced by e-ta(t,s), etp(t,x),
e-<t-s)y(t, s), e-h(t, x), respectively, and ’(t, y)=e-’f(ety). It is clear that the
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basic assumptions on a, p, y, h are unchanged. From now on we discuss the pure
initial-value problem (6.13), (6.8).
Let X -L2(-, +oo), the complex Hilbert space with inner product defined by

(u, )= | u(x) (x) dx

and corresponding norm lul=x/(u, u). Let H2(-o, +oo) denote the usual (Hilbert)
Sobolev space space with norm defined by

]lull -[ul / ]Dul / IDul,
where D denotes differentiation with respect to x. For each t_-> 0, we define a linear
operator A(t) in X by

A(t)u(x)=--x(k(t,x)Du(x))+CoU(X) a.e.x R,

where

u D(A)=D(A(t))=-H(-oo, +oo).

Define operators go, fl on [0, oo) D(A) by

go(t, u)(x) =-x o’(p(t, x) Re Du(x)) a.e. x R,

fl(t, u)(x)= e-Ctf(e ct Re u(x)) a.e. x R.

We define gl on [0, oo)x [0, oo) D(A) by

(6.14) gl(t, s, u)(x)= y(t, s) Re u(x), x R.

Finally, we define fo(t)(x) h(t, x) and assume that fo satisfies hypothesis (A4) for each
T>0. We now consider the Cauchy problem (1.1), (1.2) as an integrodifferential
equation in L(- oo, oo).

It is standard that {A(t): 0=< < oo} satisfies hypotheses (A1), (A2), (A3) for every
> 0. Consider the nonlinear operator go. Using (6.10), (6.11) we see that

f_ Igo(t, <= + <- <--dx C([Du[2 0 T.

So go maps [0, oo) x D(A) into X and has sublinear growth. By the $obolev embedding
theorem there exists a continuous injection HZ( -oo, + oo) C -oo, + oo), the Banach
space of bounded continuous functions on (-oo, + oo) having a bounded continuous
first derivative. So if B cD(A) is a bounded set then there is a positive number r such
that

[lullc,(-oo.+oo)--< r for all u B.

From (6.12) it then follows that
+oo

I_ [go(t,u)-go(t,v)[2dx<-Cllu-vll, u,vB, O<-_t<-T,

where C depends only on T and B. Similar type estimates show that

go(t, u) go(t, u) strongly in L(-oo, +oo)
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as t, t, un - u. Thus we conclude that go satisfies (A6)’ with W D(A). Using the same
type of argument we can show that the operator fl will satisfy (A6)’ with 1/2 and
X1/2 D(A1/2(O)) Hi(- c, +). It is also clear that gx satisfies (A6)’ and that both fl
and g have sublinear growth. Therefore by Corollary 2, for each Uo H2(-c,
the Cauchy problem (1.1), (1.2) has a unique global strong solution u(t) on [0, az) which
belongs to C([0, c); H2(- c, + c)) f3 CI([0, ); L2(- c, +)). If the initial function
Uo(X) is real-valued then by (1.1) the imaginary part Im u(t, x) is zero and we obtain a
strong solution of (6.13), (6.8).

Example 2. As an application of the results of 5 we consider the following
nonlinear initial-boundary value problem"

u,-(k(t, x)u) Io [a(t, s)(cr(s, x, u(s, x), u(s, x))) + y(t, s)u(s, x)] ds + h(t, x)

(6.15) +f(u(t, x), u(t, x)), >0, 0<x < 1,

(6.16) u(t, 0= u(t, 1)=0, t>0,

(6.17) u(0, x) Uo(X), 0<x < 1.

As in the first example, the functions k, a, r, y, h and f are real-valued. We assume
k(t, x) satisfies the usual hypotheses on 0<_- <, 0<_-x -<_ 1 (compare (6.9)) and a(t, s)
satisfies (A5) for each T>0. Suppose that y(t, s) is continuous on [0, c)x[0, c).
Assume that the nonlinear function o,(t, x, u, v) is continuous from [0, c) x [0, 1] x R x
R to R and has continuous first partial derivatives with respect to x, u and v. Also,
assume there is a constant c1>0 and positive continuous functions ci(t, x) such that

Icr2(t, x, u, v)[-<_ sx(lul / Ivl)/ c2(t, x),

Io’i(t, x, u, v)l <--cg(t, x), i= 3, 4

for all (t, x, u, v) in [0, az) [0, 1] R R, where O" denotes the first partial derivative
with respect to the th variable. We assume that the nonlinear function f(u, v) is C on
R R and satisfies

(6.18) f(0, v) 0 for all v R,

(6.19) Tf is bounded and locally Lipschitz continuous.

We let X L2(0, 1) and H2(0, 1) denote the usual (complex) Hilbert and Sobolev
spaces with norm[. [and I1’ I[, respectively. For each t_>-0 we define A(t) in X by

with domain

A (t) --y-- (k(t, x)Du(x))
OX

a.e. 0-<_x <-_ 1,

D(A) {u 6 H2(0, 1) u(0) u(1) 0}.

Then the family {A(t):O<=t <c} satisfies (A1), (A2), (A3) on each bounded interval
[0, T]. Property (5.1) is a consequence of the Sobolev embedding theorem.

By Nirenberg [14], there are positive constants M and K, 0<K <, such that
H2(0, 1) C1’[0, 1] is a continuous embedding, where Ca’K[0, 1] denotes the space of
functions having uniformly H61der continuous first derivative with exponent , and
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furthermore

Ilul[c,,o, <- MllulJlu[-, u H2(O, 1),

where a (K + )/2. We choose K < o < , then for each _-> 0 the operator A (t) is a
continuous (compact) mapping from X into CI’[0, 1] (see [1, Proposition 4.1]). By a
result of Kato [11] the space X, X,o (t) does not depend on t. So if we let E C1’’ [0, 1]
then (5.2) is satisfied.

Now define q(t, q, b) on [0, ] E Xl by

q(t, q, )(x) o’2(t, x, Re p (x), Re Dq(x))

+ o3(t, x, Re p (x), Re Dp(x)) Re D(x)

+ o4(t, x, Re p (x), Re Dq(x)) Re D2O(x)
for a.e. 0-<_ x _-< 1. Then q is a continuous mapping from [0, ) E XI to X and

Iq(t, q, 1)- q(t, qg, 2)1 <- b(t, (./9)l[/t --///2111,

where

4

b(t, p)= sup IO’i(t, X, Re q(x), Re Dp(x))].
0<----x----<l i=

It follows that q satisfies (B1)’, (B2) (with W X1) and (5.4).
We define the operator f on X by

fl(U)(X) =/(Re u(x), Re Du(x)), 0_<_x_<_l.

Using assumptions (6.18), (6.19) it follows that fl’Xl -- Ho (0, 1) D(A1/2(0)) is
well-defined, Lipschitz continuous on bounded subsets ofX and has sublinear growth.
So if we define go [0, c) XI --> X by

go(t, )(x) q(t, (x), (x)) -x o’(t, x, Re (x), Re DO(x)),

and gl by (6.14) then from Theorem 6, for each uoD(A), there is a global strong
solution u(t) of (1.1), (1.2) on [0, ) which belongs to C([0, ); H2(0, 1)) C1([0, c);
L2(0, 1)). If the initial function Uo(X) is real, we then obtain a global strong solution of
(6.15), (6.16), (6.17).

7. Remarks on regularity. In this section we discuss the regularity of solutions of
(6.13), (6.8) in the special case f(t, u(t, x)) clu(t, x), where Cl is a constant. We show
that if the functions Uo(X), k(t, x), p(t, x), r(s), a(t, s), y(t, s) and h(t, x) are sufficiently
smooth, then (6.13), (6.8) has a classical solution.

We shall always assume that the hypotheses made in 6 regarding (6.13) hold. In
particular, we assume that (6.9), (6.10), (6.11) are true. We make the following
additional hypotheses:

(HI) The partial derivatives kt(t, x), ktx(t, x), kx(t, x) exist and are continuous
on [0, c) R. Also, for each T > 0, there is a constant C C(T) > 0 such
that

(i) sup [kt(t, x)l <- C, 0 <- T;

(ii) suRP [kt,(t,x)l<=C, O<-t<- T;
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(iii)

(iv) suRP [k,(t,x)-k,(s,x)]<-_C[t-s[, O<-s, t<= T;

(v) sulktx(t,x)-k,x(s,x)l<Clt-sl, P<=s,t< T.

(H2)
(H3)
(H4)

The function a(t, s) satisfies hypothesis (al) of 4 for each T > 0.
The function o- belongs to C2(-c, +).
There is a constant 6 (0, 1] such that for each T>0 there is C C(T) >
0 such that

suap Ip(t, x)-p(s, x)l <- CIt-sl,
s [p(t, x)-px(s, x)l clt-sl

for all 0 =< t, s =< T.
(H5) The function fo(t) defined by fo(t)(x) h(t, x) satisfies hypothesis (o) of

4 for each T>0. Furthermore, foe C([0, c); Hl(-c, + c)).
(H6) The partial derivative (Oy/Ot) (t, s) is continuous on [0, ) [0, c).

By taking the positive constant Co sufficiently large we may assume without loss of
generality that Cl 0. By the results of 6, given a real-valued initial-function Uo
H2(-, +c), we have a unique global strong solution u(t) of (6.13), (6.8) (with
f(t, u(t, x))-= 0) which belongs to C([0, 03); H2(- (x3,
We make the following additional hypotheses.

(H7) fo(O)-a(O)uo belongs to D(A).

Under the hypotheses (H1)-(H7) the assumptions of Theorem 4 are satisfied.
Hence u(t) belongs to C([0, ); H2(-03, +cx3))("l C2([0, (x3); L2(-cx3, +03)). Using
the Sobolev embedding theorem we have the following result.

LEMMA 6. After redefinition on a set of measure zero the functions u (t, x), ux (t, x),
ut(t, x), ut(t, x) are all classical derivatives and are continuous on [0, c) x R.

Now consider the distributional derivative u**(t, x) of u(t, x). It is a measurable
function of (t, x) and satisfies a local L2 condition of the type

fttll/,ux(t,x),2dxdt<o, 0-<_ to< tl <o.

Furthermore, from equation (6.13)

k(t, x)ux(t, x) + a(t, s)o"(O(s, x)u(s, x))o(s, x)u(s, x) ds

(7.1) ut(t, x)+ cou(t, x)- k(t, x)ux(t, x)- h(t, x)

| [a(t, s)o"(O(s, x)u(s, x))o(s, x)u(s, x)+ y(t, s)u(s, x)] ds.
ao

Let

K(t,s,x)-
k(t,x)

{a(t, s)tr’(p(s, X)Ux(S, x))p(s, x)+ y(t, s)u(s, x)}
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and let F(t, x) denote the right-hand side of (7.1) divided by k(t, x). Then Uxx(t, x) is a
solution of the Volterra integral equation

ux(t, x) + K(t, s, x)u(s, x) ds F(t, x) a.e. _-> 0, x e R.

Since K and F are continuous, it follows that u,x(t, x) can be redefined on a set of
measure zero so as to be a continuous function on [0, c)x R. It then follows that
u**(t, x) is the classical second partial derivative of u(t, x) with respect to x. Thus u(t, x)
is a classical solution of (6.13), (6.8).

We remark that a slightly better regularity result is true, namely, u(t, x)
H3oc o, + m). This is proven by showing that for any bounded interval [a, b and any
eo > 0, T > 0 there is a constant C C(a, b, T, Co) > 0 such that

dIc lU x)[ dx < C

forallO<t<T,a<c<d<b,O<[hl<eo. Herethenotation h
U** denotes the difference

quotient

h 1
U,x(t, x)=--[Ux,(t, x + h)- ux,(t, x)].

The last inequality is obtained by estimating pointwise the function Uh (t, X) as a
solution of an appropriate Volterra integral equation.

Acknowledgment. The author wishes to thank the referee for valuable sugges-
tions which improved and broadened the results in the final manuscript.
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GENERAL SOLUTION OF THE PRICE-DIVIDEND
INTEGRAL EQUATION*

N. A. DERZKOt AND S. P. SETHI

Abstract. This paper reports some new closed-form formulas of financial valuation for a deterministic

firm with general financing policies and a time-dependent discount rate. A model of the firm is described
which includes the price-dividend-balance integral equation whose solution yields the time path of share
price, number of shares, and the value of the firm. The solution technique depends on deriving an equivalent
system of differential equations. A broad class of firms for which the solution formulas are valid is

characterized.

Introduction. In this paper we study the valuation of a firm described by a
deterministic model in which the discount rate or the rate of return required by the
stockholders of the firm is assumed to be time-dependent and exogenously given.
Special versions of this model are available in Gordon [2] and Miller and Modigliani [3].
For our purposes the firm is defined by two functions on [0, ); D(t) gives the rate at
which dividends are paid, and E(t) gives the rate at which external equity capital is
raised. The rate of dividend per share is given by D(t) divided by the number of shares
outstanding. External capital is raised by selling the firm’s stock at the current market
price. This process increases the number of outstanding shares when E(t)> 0. When
E(t)<0, the firm is buying back its own stock, thereby reducing the number of
outstanding shares.

Therefore, the essential piece of information for the valuation problem is the price
of one share which in our ideal world is assumed to be the discounted present value of
future dividend payments to that share [2]. An alternate approach is indicated at the
end of this paper.
Within this context, the governing equations of the model are developed and solved

under fairly minimal assumptions on D and E and a variable discount rate k(t).

1. Preliminary remarks. Traditionally a firm is defined in terms of the total rate of
earnings X(t), the dividend rate D(t) and the rate of external equity funding E(t). It is
normally assumed that D(t)<=X(t), and O<-E(t) for all t. A nonnegative function r(t)
giving the rate of return on the firm’s capital is also introduced.
The governing differential equation for X(t) is then

X’(t) r(t)[X(t)+E(t)-D(t)],
(1.1)

X(O) Xo iven.
This section concludes by showing that once Xo, D and are given, it is possible to

find X(t) and r(t), satisfying all the usual assumptions.
THnORnM 1.1. Let D(t) and (t) be nonnegative Borel measurable functions on

[0, oc) and let Xo be positive. Then there exist nonnegative functions r(t) and X(t) on
[0, ) such that

1. r(t) is locally integrable and positive,
2. X(t) is absolutely continuous, positive, and X(O)= Xo,
3. (1.1) is satisfied a.e.

* Received by the editors November 4, 1980 and in final form March 23, 1981.
t Department of Mathematics, University of Toronto, Toronto, Canada M5S 1A1.
Faculty of Management Studies, University of Toronto, Toronto, Canada, M5S 1V4.

106



SOLUTION OF THE PRICE-DIVIDEND EQUATION 107

Proof. We rearrange (1.1) as follows:

(1.2) 2-rX r(E-D).

(1.2) is a first order linear differential equation for X and has a formal solution

(1.3) X(t) exp (Iotr(r)dr){for (E(s)-D(s))d[-exp (-If r(r)dr)]+ Xo}.
We let 4(s)= -exp (-Jo r(,r) dr), and note that b is:

1. negative with b (0) 1,
(1.4) 2. increasing,

3. absolutely continuous.

Furthermore, for any function b satisfying the above requirements there exists a
corresponding r.

The term within { } on the right side of (1.3) can be written in terms of b as

t(E(s)-D(s)) d& (s)+Xo.

It is clear that by controlling the rate of increase of & on the sets where E(. )-D(. is
negative or very large we can arrange that E(.)-D(.) is integrable with respect to
db (.) and that (1.5) remains positive. This completes the proof.

We return now to D and E as starting points for a model.

2. Definition of the present model. We begin with the discount rate. Let k(t) be an
instantaneous discount rate such that the discounted value of M2 at time t2 to the
present time tl is

M1 M: exp k (s) ds

It is convenient to think of the exponential multiplier as a "present value" operator
pv (tl, t:). The present value operator has the useful property

pv (tl, t3)= pv (tl, t2) pv (t2, t3).

The minimal assumptions needed to write the basic equations of the model are:

(A1) E, D, k are real-valued locally integrable functions on [0,

(A2) D, k are nonnegative on [0,

A firm shall be the pair (D, E).
To write down the basic equations of the model we require a financial theory: the

price of a single share is the discounted present value of future dividends which that
share earns. Thus, if P(t) denotes price and N(t) denotes the number of shares
outstanding at time t,

f pv (t, ,r)D(,r)
(2.2) P(t)

N(’r)

E(.s ds.(2.3) N(t)=No+
P(s)

Of course, the value of the firm V(t) at time can be defined as V(t) N(t)P(t). Note
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that No is the number of shares at time t=0 and effectively establishes share
denomination.

We seek a solution P(t), N(t) in the class of positive measurable functions on [0, c)
for which the integrands of (2.2) and (2.3) are Lebesgue integrable. The equations then
imply that P and N must be absolutely continuous. It turns out that the calculations are
greatly facilitated if we work with the present value variables

9a(t) pv (0, t)e(t),

(2.4) (t) pv (0, t)D(t),

(t) pv (0, t)E(t).

If we multiply (2.2) by pv (0, t), we obtain

[’ pv (0, t) pv (t, r)D(r) dr
(0 t)P(t)= j, N(r)

pv

Also (2.3) can be written

pv (0, s)E(s)
N(t)=No+ ds.

pv (0, s)P(s)

Using the variables of (2.4), these equations become

(r)
dr,(2.5) (t)

N(r)

(s)
(2.6) N(t) No + -ds

a solution pair (, N) consists of a pair of positive and absolutely continuous functions
on [0, c), for which the integrals in (2.5) and (2.6) are Lebesgue and the equations are
satisfied.

Differentiation of (2.5) and (2.6) yields

(t)
(2.7) ’(t)

N(t)

g(t)
(2.8) N’(t)=(t),
t-a.e. Note that (2.7), which can also be stated as

D(t)
P’(t) k(t)P(t)-

N(t)

is the well-known arbitrage equation of Miller and Modigliani [3].

3. Solution of the (D, E) model. The natural class of functions in which to seek
solutions to (2.7) and (2.8) is larger than the natural solution class pertaining to (2.4) and
(2.5). To define it we need only require that there be a nonempty interval [0, T] on
which and N are positive and absolutely continuous. We shall call these blocked
solutions.

The initial value problem at 0 for system (2.7), (2.8) possesses a solution on
some nonempty interval [0, T] for each set of positive initial values (0), No. However,
we shall see shortly that under fairly lenient assumptions on and g, for each No there
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is a unique (0) which yields a positive solution on [0, o). This initial price (0)
coincides with the accepted value derived using finance arguments [3], [2],

(3.1) no= ((s)-(s))ds.

We clarify the connection between (2.5), (2.6) and (2.7), (2.8) in the following.
THEOREM 3.1. (t), N(t), 0 <-- < o are positive solutions of (2.5, 2.6) ifand only

they are positive solutions of (2.7, 2.8) and

(3.2) N(0) No,

(3.3) lim (t) 0,
t-oo

(.)
(3.4) N(--) e LI(O, co),

t(.
J-,l (0, (30)./-loc(3.5)

(.)

Proof. (=). Properties (3.2)-(3.5) are consequences of our assumption that the
integrals in (2.5), (2.6) are Lebesgue. In addition it follows that and N are absolutely
continuous and can be differentiated to yield (2.7), (2.8).

(). Assumptions (3.2)-(3.5) enable us to integrate (2.7), (2.8) to obtain

(t)- (T)
N(,r)

d’r

and

Io’N(t) No + (r)
dr,

which after taking limT-, yields (2.5), (2.6). This completes the proof.
To solve the differential system we proceed as follows. From (2.7), (2.8) we obtain

(3.6)
d

$(t)- (t) N(t)’(t) + N’(t)(t) - (N(t)(t)).

Integration from 0 to and application of the initial conditions yields

(3.7) N(t)(t) No(0)- Jo ((s)- ’(s)) ds.

We now use (3.7) together with (2.7) to obtain

’(t) -(t)
(t) No(O)-I ((r)- $(r)) dr

which has the solution

-(’r) d’r
(3.8) (t)- (0) exp No(0)- ((s)- (s)) ds"

Similarly, using (3.7) together with (2.8) yields

(3.9) N(t) No exp No(0)-I ((s)- g’(s)) ds"
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Furthermore, it is clear from formulas (3.8), (3.9) that, if No and (0) are positive,
the initial value problem has the unique solution given by the formulas on some interval
[0, T], T > 0. It is also evident that positive solutions cannot exist beyond any point T
for which

T

No’(0) Io ((s)- (s)) s.

Such points T will always exist if

SUpT I0
T

(@(s)- (s)) ds "rl

We shall therefore assume that 3’1 < 00. This being the case, consider the choice of (0).
If No(0)>yl, it follows from (3.8) that to satisfy limt_,o(t)=0, we need
0 (r) dr oo, that is, an infinite present value of dividend payments. It follows also
that supr Ior g’(s) ds oo. Thus, we have an explosive scenario in which stock is being
sold just to pay dividends on shares outstanding, which is not satisfactory from the
financial point of view. Considerations of this kind motivate the assumptions of the
following section.

4. Further assumptions. Let us assume, in addition to (A1), (A2), that

(’)-- ’(’) LI(0, o0),

and

(A3) 0<J (@(s)-(s))ds

The effect of (A3) is to fix a value of 9a(0) in (4.1) for which

No(0) ((s)- gO(s)) ds > 0

and for which the expression on the left approaches 0 as r oo. In the remainder of this
section we shall let

(4.1) (0) oo ((s)- ’(s)) ds.

Then, (3.8), (3.9) become

-@(r) dr
(4.2) (t) (0) exp i ((s)- ge(s)) ds’

g’(r) dr
(4.3) N(t) No exp

((s)- g’(s)) ds

We note that these closed-form solutions have been obtained in this general setting for
the first time.

Our final assumption requires that N(t) does not approach 0, that is,

’ ("F) dr
(A4) y =inf >-oo.

((s)- (s)) ds
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Under (A4), we are able to obtain the present value V(t) pv (0, t) of the firm from (3.7),
which now becomes

(4.4) V(t) pv (0, t)= N(t)(t)= Jt ((s)- g’(s)) ds,

and also conclude that limt_,oo (t)= 0.
.At this point we have completed the proof of the key theorem.
THEOREM 4.1. If (D, E) is a firm satisfying (A1)-(A4), then for an initial number

of shares No, (4.2), (4.3) is the unique positive solution existing on [0, oo) to the basic
equations (2.2), (2.3) governing share price and number of shares at time t.

We note that formula (4.4) is well known, if not mathematically rigorously derived,
in the finance literature [2]. It states that the value of the firm at time is the present
value of the total dividends accruing to the stockholders of record at time t. The integral
of the first term in the integrand represents the total present value of dividends issued by
the firm in the interval It, oo). A portion of this dividend is obviously going to stocks
issued in the interval (t, oo). However, this portion in an efficient market under certainty,
i.e., where no arbitrage possibilities exist, must equal the integral of the second term in
the integrand of (4.4).

Clearly, the residual represented by (4.4), which came to the stockholder of record
t, can now be interpreted as the present value of the firm at time t.

We also note that the steps of the foregoing analysis are reversible in the sense that
we could have started out with (4.4) as the formula for the value of the firm and derive
the price-dividend balance equation (2.2) and obtain the share price formula (4.2) with
P(0) as in (4.1).

Finally, it should be mentioned that the (D, E) model of a firm is meaningful under
weaker assumptions than (A1)-(A4). It is possible, for example, to define very general
solution classes to (2.4)-(2.6) by allowing the blocked solutions to extend to +oo with
value 0 and adopting the convention that 1/0=oo and 1/oo=0 in the integral
equations. The financially meaningful solution is then defined as the supremum of a
solution class. Such an approach has the advantage of producing a financially acceptable
solution for certain examples excluded by assumptions (A1)-(A4). Furthermore, it is
also possible to extend the model for the case when (D, E) is an arbitrary stochastic
process.
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MODELING INFECTIOUS DISEASE*
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Abstract. Sufficient conditions to insure the existence of periodic solutions to the nonlinear integral
equation, x(t)= _f(s, x(s)) ds, are given in terms of simple product and product integral inequalities. The
equation can be interpreted as a model for the spread of infectious diseases (e.g., gonorrhea or any of the
rhinovirus viruses) if x(t) is the proportion of infectives at time and f(t, x(t)) is the proportion of new
infectives per unit time.

1. Summary of results. The nonlinear integral equation

(1.1) x(t) f(s, x(s)) ds

can be interpreted as a model for the spread of a number of infectious diseases with
periodic contact rate that varies due to certain seasonal factors. This model was
formulated and discussed at some length by Cooke and Kaplan in [2]. Briefly, x(t)
represents the proportion of infectives (the number of individuals in the population who
are infectious divided by the size of the population) at time t, f(t, x(t)) is the proportion
of new infectives per unit time (f(t, 0)= 0), and the positive constant r is the length of
time an individual remains infectious. Cooke and Kaplan consider functions which
generalize f(t, x) a(t)x(1 -x), where a(t) is the effective contact rate. Equation (1.1)
represents an S-I-S model, that is, it is assumed that the population is divided into
susceptibles S and infectives I and that the disease is not lethal and confers no
immunity. Furthermore, there is assumed to be no latent period between being exposed
and becoming infectious.

Assuming that f is a continuous, bounded, nonnegative function which is
periodic in for some to >0, Cooke and Kaplan show that (1.1) has a nontrivial
to-periodic solution provided

1
a inf a(t) >-,

t[

whr a(t) is th uniform limit of f(t, x)/x as x drass to zro. This rsult can
interpreted physically as implying that, for th typ of disas modeled by (1.1), th
infection can rmain ndmi to th population and th number of inftivs can
osillat priodically provided th contact rat a(t), th avrag of fftiv contacts
with other individuals pr inftiv pr tim priod, xds 1/r. Thus th rsult is a
typ of threshold theorem, sin it assrts that th infection attains a "priodi steady
stat" in th population provided cr rmains abov th threshold lvl of 1.

Nussbaum E6 considered (1.1) in terms of th linear operator L dfind by

(1.2) L,x(t) a(s)x(s) ds
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and established the existence of a number ’o such that the spectral radius r(L,) satisfies

r(L,) 1 for
1 for

The number ’o represents a threshold in the sense that if > Zo, then (1.1) has a
nontrivial periodic solution, but if, ,o, then, for most functions of interest, (1.1) has
no nontrivial periodic solution. Smith [7] obtained similar results and established the
existence of a number ,o> o such that if zo < z < ,o, then (1.1) has a unique positive

o
periodic solution. Smith also showed that if ,o < z < z2 < z then the solution at 7 is
smaller than the solution at ,2. Crude estimates are given in [6] and [7] which show that
(1.1) has a positive periodic solution provided

inf a(s) ds > 1.
O<--_t<-o

Nussbaum [6] also gives estimates on r(L,) in terms of approximating operators with
finite dimensional range; however, these results may be difficult to apply and are
numerically implementable only for special contact rates a (s).

We establish the existence of positive to-periodic solutions to (1.1) in terms of a
simple product or product integral. The results are easily implemented and only require
that one have basic information about upper and lower bounds of the contact rate on
certain subintervals of [0, to]. We obtain periodic solutions without requiring that the
average contact rate exceed a threshold level on each time interval of length equal to the
duration of infection. Even though the average contact rate is small during some time
intervals, the disease may remain endemic to the population provided the contact rate is
sufficiently large during the remaining intervals. Although we do not specifically
consider the operator L, our results do have implications for r(L,) and may be viewed
as giving a computable, sufficient condition to ensure that r(L,)> 1.

We assume throughout that - and to are positive constants and make the following
assumptions on f and a"

HI. The function f(t, x) is continuous from (-oo, oo) [0, oo) into [0,
H2. For each R and x -> 0, f(t, x) f(t + to, x) and f(t, 0) 0.
H3. The function a(t) is the uniform limit as x approaches zero of f(t, x)/x and

a(t) is bounded away from zero.
H4. There exists R >0 such that f(t, x)<=R/ for all (t, x) [0, to] [0, R].
Assumptions HI, H2, and H3 are precisely as in [2] and [6]. Instead of H4, Cooke

and Kaplan [2] require f to be bounded above and Nussbaum [6] requires
limx_oo(f(t,x)/x)=O.

In our first result, we use the function

ex’- 1
x

P(x, Y) x--y
|e 1 x"

X
-e(’-’)*+ if x # y,

x-y
ifx =y.

If Mland M2 represent minimal contact rates on consecutive intervals of length -, then
P(MI, ME) provides a measure of the carryover of infectives from one interval to the
next.

THEOREM 1. Assume that f and a satisfy H1-H4. Suppose to N- + y, ]:or some
integerN >- 0 and some y >-_ O, and let b, c [0, to satisfy b + 3’ c. For each integer f, set

di b -(/’- 1)-, and letM inf {a (t): dj <- <- dj_}. Then (1.1) has a positive to-periodic
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solution provided
+

(i) a t) dt > 1, b <= s <= c,

(ii) MN+I’r > 1,

( eM:. M1 M1) Nl-X P(M.+, M.) > 1.(iii) (1 e -M’’) Mi’r
M2

eM2, +-With N =0 in Theorem 1, conditions (i), (ii) and (iii) can be reduced to the
requirement that

$4-"

a(t) dr> 1, O<-s-oo

(cf. Nussbaum [6, Lemma 7]).
Example 1. In studying the incidence of chickenpox, mumps and measles in New

York City and Baltimore for a thirty-five year period, London and Yorke [5] concluded
that the contact rate for each disease is 1.7 to 2 times higher in the winter months (when
school is in session) than in the summer months. Although these diseases are not S-I-S
diseases, the large variance in contact rate may be exhibited by other diseases.
Motivated by the work of London and Yorke, we let w 365, - 15, and assume that
a(t) >- 1.4/15 on [0; 260] and that a(t)>-.7/15 on [260,365]. Choosing b =0 and c 5
gives

M1 1.4/15,

M,.=.7/5, ]a,

and

M,. .4/5,

Thus, M2s" > 1, and

(1 -e-’) M, e"+ P(+I,)1.1214 > 1.
]=2

S+Also, for b s c, a(t) dt 1.4 . The existence of a nonzero solution to (1.1)
follows fro Theorem
interval of length 7.

Theorem Can be improved y replacing Conditions (ii) and (iii) with an integral
condition; however, the integral Condition is typiCally not as easily verified
Condition (iii).
To 2. Asse

and M,...,M are
-geriodic o[uton proMed

S

(i) Js a (t) dt > 1, b

(ii) M+(c+r-s)+g(s-)>l, csc+r,

where gl(s) Ml(S d:) and for f 1

g+(s) g(t).. e dr- g(t).+ e*(--’ dr.
+1
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Although verification of condition (ii) of Theorem 2 is not as easily done as
condition (iii) of Theorem 1, the determination of gN(s) is straightforward. At each
stage the integrands involve only expressions of the form c, ct, c ett, or ct e tt, for
constants c and M. The next example illustrates the dramatic improvement that can
occur with this extra computational effort.

Example 2. Consider the case described by the conditions a, 40, - 10, a(t) >= .2
on [0, 10], a(t) _-> .1 on [20, 40] and a(t) >-.075 on [10, 20]. We takeN 4. Since MN+17"
must be larger than 1, we must choose b-c =0. Then M1--.2, M2 =M3 .1 and
M4-" .075. Conditions (i) and (ii) of Theorem 1 (or Theorem 2) are satisfied, but the
product in condition (iii) of Theorem 1 is

(1 e-75)(2e 2e + 2)P(. 1,. 1)P(.075, .1) .3437.

Thus, the existence of a positive solution to (1.1) does not follow from Theorem 1.
However,

gl(s) .2(s + 10),

g2(s)=.2(s+20),

g3(s)=.2(s+30),

and

g4(S -40) 32- e75(- 1 + e -’75s) + .2s.

Then .2(10-s) + g4(s -40) 2+ e75(-1 + e-vss), and its minimum value on [0, 10]
occurs when s 10. This minimum is- e"75= 1.2553. Thus, if]" and a satisfy H1-H4,
the existence of a nonzero solution to (1.1) follows from Theorem 2.

2. Proofs of theorems. The proofs employ the compression of the cone theorem
of Krasnosel’skii [3] for completely continuous operators on ordered Banach spaces.
Let E be a real Banach space. A closed, convex set K c U is called a (positive) cone if
the following conditions are satisfied:

(i) if x K, then Ax K for A _-> 0;
(ii) if x K and -x K, then x 0.

A cone K in E induces a partial ordering <= in E by

x_-<y if and only if y-xsK.

(We will write x; y if y x K.) A Banach space E with a partial ordering <_- induced by
a cone K is called an ordered Banach space. By a completely continuous map we mean a
continuous function which takes bounded sets into relatively compact sets. We consider
completely continuous maps which take some subset Kc, 0 < c =< , of a cone K back
into K, where Kc {x K:llxll <_- c}, 0 < c < c, and K K.

The following theorem is essentially due to Krasnosel’skii [3, p. 137] (see also [1]
and [4]).

THEOREM 3 (compression of a cone). Let A K--> K be a completely continuous
operator. If r and R are real numbers, 0 < r < R, such that

(i) Ax x if x Kr and x O,
(ii) for each e >0, (l+e)x:Ax if x sK and IlxlI-R, then A has at least one

nonzero fixed point in K.
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Proof of Theorem 1. Let E be the sup-normed Banach space of continuous
real-valued functions on R which are to-periodic, and let K be the cone of nonnegative
functions in E. Define the operator A"K K by

Ax(t) f(s, x(s)) ds.

It is easy to see, using the Arzela-Ascoli theorem, that A is completely continuous. The
proof of Theorem 1 involves showing that under the given assumptions, the operator A
defined in (2.1) satisfies the conditions of Theorem 3. It follows from assumption H4
that A maps KR into KR, SO that A satisfies condition (ii) of Theorem 3. It remains to be
shown that A satisfies condition (i) of Theorem 3 for some r > 0.

Let k be a real number such that 0 < k < 1,

+"

k a(t) dt> 1, b <-_s<-c,

kMN+I, " > 1, and

1 e -kMN’) (kMr e kMz"
M1 kM2, M) N-1

M2
e + [I P kM.+ kM > 1.

j=2

It follows from assumption H3 that there exists a real number r, 0 < r < R, such that
f(t,s)>-_ka(t)s, O<-s<-r. Suppose xKr, x#O and Ax<-x. We will show that this
assumption leads to a contradiction. It will then follow that A satisfies the conditions of
Theorem 3 and has a nonzero fixed point in K.

Since Ax <= x,

c+"r C+7"I, a(s)x(s) ds >- I, a(s)Ax(s) ds

+’r

=fJb a(s)(I f(t,x(t))dt) ds

C+">=I, a(s)(I ka(t)x(t) dt) ds.

By changing the order of integration, it follows that

(2.2)

c+7" b t+’r

f a(s)x(s) ds>-f a(t)x(t)([ ka(s) ds)dt
Jb ,b

+ a(t)x(t)( ka(s) ds dt

ic (i, )+ a(t)x(t) ka(s) ds dr.



EQUATIONS MODELING INFECTIOUS DISEASE 117

We now transform the integral over [b z, b in (2.2) to an integral over [c, c + r] from
which the product in condition (iii) is derived.

Suppose g is any bounded, nonnegative, integrable function, is a real number, and
M=inf {a(t): l-r<=t<-l}. Then

It a(t)x(t)g(t) dt>--Il a(t)Ax(t)g(t) dt

=It- a(t)g(t)(It- f(s,x(s))ds) dt

>- fl- a(t)g(t)(ft- ka(s)x(s)ds) dt

:Ii-=:a(s)x(s)( f.l-.r ka(t)g<t)d ds

+II-: a(s)x(s)(Is ka(t)g(t) dt) ds

l-2r

+It-+ a(s)x(s)(Is kMg(t) dt) ds.

From this result, it follows that

Ii_a(s)x(s)(I kMg(t) dt) ds

+Ii;a(s)x(s)(IslkM(ItlkMg(tl)dtl) dr:z)ds.
With repeated application to the integral over [l- -,/], it follows that

a(s)x(s)g(s) ds

l---

(f
s+-r

fs+’Itil ftIl a(s)x(s) kMg(tl) dh + (kM) g(tl) dh"" d ds.
-2"r \ dl-’r ]=2 dl--’r
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For >= 2,

s+’r

f I ’’’It g(tl) dtl"’’dtj
l-’r ti

g(tl) dtj_’’" dt2 d*l dti
al-r ti t

s+ 1 (/1- ti)i-2
g(h) dtl dt,,, (j- 2)!

s+’r

f
s+’r

=f g(t)(Il (t-u)J-2) I’ ((t-u)’-2

l- (f 2)
du dr+ g(t) du dt

+r ,l--r (f 2)!

fs+ (t_l+r)i-1 Is’ ( (t-l+r)*-I (t-s-r)i-l) dtg(t) dt+ g(t)
j,_ (j- 1)! + (j- 1)! (j- 1)!

(t +r)i-1

fs (t--s--r)-1
g(t)

(] 1)!
dt- g(t)

+ (j-)
dt.

Thus,

a(s)x(s)g(s) ds

l-r

-2r
g(t) Y. (kM)

(t- + r)i-1

j=l (j- 1)!

t)g(t) E (kM)
i(t-s-r)j-1

+r ]=1 (j-- 1)!
d ds.

Hence,

(2.3)

l--r

(il l_Il- a(s)x(s)g(s) ds >=Ii_2, a(s)x(s) g(t)kMe kM(t-l+) dt

fs+r g(t)kMekM(t-s-’) dt) ds,

and by replacing + g(t)kM e kM(t-s-r) dt
[_ g(t)kMe kM(t-s-,} dt, it follows that

with the larger quantity

(2.4)

a(s)x(s)g(s) ds

l--r

ff1-2r a(s)x(s)(fl-r g(t)kMekM(t-l+’) (1--e kM(l-s-2r)) dt) ds.
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Application of inequality (2.4) to the integral on [b- r, b in (2.2) yields

Also, for any ],

Using the w-periodicity of a and x gives

a(s)x(s)(1-et’MN(d+l-s)) ds
N+I

c+’r--o

kMN(c--s)a(s)x(s)(1-e ds

a(s-o)x(s-w)(1-e kM(*-s) ds

a(s)x(s)(1-e kMN(c-s)) ds.

Therefore,
b S+’rI,_. a(s)x(s)(f, ka(t) dO ds

a (s )x (s ( (1-- kMN(C-S) )(kMl"r kM2"
M2

e
M2]

N_I

)II P(kM.+x, kM.) ds.
i=2
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Since a(t)>--MN/l on [c, c +r], it follows from (2.2) that
c/,r

b
a(s)x(s) ds

S+"

>--I, a(s)x(s)(Is ka(t) dt) ds

(2.5t
+

M2
e + P(kM/.+I, kM/.) ds.

/.=2

By assumption, I2/" ka (t) dt > 1 for b -< s -<_ c. Also, the function

kMN+I(c +r-s)+(1-ekM(c-s))(kMl"reM, M1
M.

P kM/.+ kM/.kM2" +
i=2

has only one critical value, and since that value is a maximum, the function attains its
minimum on [c, c + r] at one of the endpoints of the interval. When s c, we obtain
kM/lr and when s c + r, the value is

(1 _e_kMr,r.)(kMlr ekM.. ___M1 M M_) N-1

M2
e + 1-I P kM+ kM/.

/’=2

Both these values are greater than 1. This leads to a contradiction in (2.5) unless
a(s)x(s)ds O. If It, +" a(s)x(s)ds=O, it follows that x--0 on [b,c+r]. Then

b bO=x(b)>-Ax(b)=b_,f(s,x(s))ds>=Ib_,ka(s)x(s)ds, so that x--0 on [b-r,b]. A
continuation of this argument leads to the conclusion that x is the zero function, which
contradicts the original assumption. Hence, A satisfies the conditions of Theorem 3 and
has a nonzero fixed point in K. [3

Proofof Theorem 2. Using an argument analogous to that in the proof of Theorem
1 with inequality (2.3) substituted for (2.4), one obtains a nonzero solution to (1.1)
provided

a(t) dt > b <=s <-c,1,

and

+’r

(2.6) a (t) dt + g(s w) > 1, c <-_ s <- c + %

where gN is defined in the statement of Theorem 2. The desired conclusion then follows
from the inequality

c+’r

a(t) dt>-MN+l(c+r-s)’ c<--s<--c+r" [q

In Theorems 1 and 2, a(t) is required to exceed 1/r for some values of t. If
f(t,x)<a(t)x for x>0 (as is the case for the function f(t,x)=a(t)x(1-x)), this
condition is, in fact, necessary, for if a(t) <- 1/r for each t, it is easy to see that (1.1) has
only the zero solution.
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Theorems 1 and 2 give conditions which insure that the spectral radius of L is
larger than one; however, better estimates of the spectral radius can be obtained by a
slight change in the proofs. Suppose x is a nonzero periodic function, h >0, and
hx(t)=Lx(t)=_a(s)x(s)ds. By repeating the argument in Theorem 1 for the
operator (1/A)L instead of the operator A, one obtains a contradiction if

1
(i) -a(t) dt> l, b <-s<-c,

1
(ii)

h
M+xz > 1,

(M1T M2./A M1 M2r/h M2) NI1(iii) (1-e-M’/)\ h
e -e +

=2
p +I,M >1.

Hence, if h * is any number for which (i), (ii) and (iii) above hold, then r(L) > h *.
Upper estimates for r(L) can be obtained by replacing the minimum of a(t) on

each interval with the corresponding maximum and using the inequalities in Theorem 2.
Specifically, suppose U. sup {a(t): d _-< <_- d_} and h* satisfies

(iv) a (t) dt < 1, b <-_ s <- c,

and

1
(v)

h*
U+x(c+z-s)+gr(s-to)<l, c<-_s<-c+r,

where gl(s)= (1/h*)M(s-d2), and for/’=> 1,

gi+a(s) gi(t) - U.+ exp U.+x(t- di+) at
di+

g(t)-U.+ exp -U.+(t-s-,) dr.

Then r(L) < h *.
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UNIQUE AND MULTIPLE SOLUTIONS OF A FAMILY OF
DIFFERENTIAL EQUATIONS MODELING CHEMICAL REACTIONS*

LYNN R. WlLLIAMS- AND RICHARD W. LEGGETT

Abstract. Uniqueness and multiplicity of solutions are studied for the boundary value problem

/3x"(t)-x’(t)+pf(x(t))=O, 0_<-t<_-l, /3>0, p>0,

/3x’(0)-x(0) 0, x’(1) 0,

which arises in chemical reactor theory. The "reaction rate" f is given by

f(x)=(q-x)exp[-k/(l+x)], k>0, q>0.

Uniqueness is shown for (1) sufficiently small p, (2) certain regions of p and sufficiently small/3, (3) large
p and sufficiently large/3 and (4) fixed/3 and sufficiently large p. Regions of points (/3, p, q, k) are identified
where there are at least three solutions. The combination of these results gives an improved picture of the
behavior of the number of solutions as p and/3 vary.

1. Introduction. The boundary value problem

(1.1) x"(t)-x’(t)+pf(x(t))=O, 0_-<t_-<l, /3>0, p>0,

(1.2) /3x’(0)- x(0) 0, x’(1) 0

arises in chemical reactor theory and describes steady-state reactor concentration and
reaction temperature along a one-dimensional adiabatic dispersed-plug flow tubular
reactor. The function 1 is the Arrhenius reaction rate given by

(1.3) f(x)=(q-x)exp[-k/(l+x)], k>0, q>0.

It is known from experimental results that reactions modeled by (1.1)-(1.3) may
exhibit either unique or multiple steady states, depending on the constants , p, q
and k. Cohen [4] has shown that the bvp (1.1)-(1.3) has a unique solution whenever
k -<_ 4 + 4/q. The existence of at least three solutions to (1.1)-(1.3) in the case k > 4 + 4/q
has been suggested for some values of p and/3 by heuristic arguments [4], numerical
methods [3], and results of Amann [1], and has been demonstrated rigorously by
Leggett and Williams [5], [7] for an interval of values of p and numbers/3 greater
than some/3p.

The purpose of this paper is to expand upon known results concerning the number
of solutions of (1.1)-(1.3). In particular, we extend the uniqueness result of Cohen
to the case k >4+4/q by showing uniqueness for (1) sufficiently small p, (2) certain
regions of p and sufficiently small/, (3) large p and sufficiently large/3, and (4) fixed
/ and sufficiently large p. Additionally, we describe a method (based on results in [5]
for abstract ordered Banach spaces) for identifying regions of points (/, p, q, k) where
(1.1)-(1.3) has at least three solutions. The combination of these results gives an
improved picture of the behavior of the number of solutions of (1.1)-(1.3) as p and
/3 vary. This is illustrated for the special case q 1.1, k 10.
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We have attempted to make this article as complete and self-contained as was
practical. In particular, a proof of Cohen’s uniqueness result is presented, and a proof
of a suitably modified version of the abstract result [5] needed for the multiple solutions
results is included.

Other uniqueness conditions for the same general type of chemical reaction
problem considered here are given in [6]. However, the heat generation function
considered in [6] is slightly different from the function f considered here, and the
methods of [6] are different from ours.

2. Uniqueness, It follows from the strong maximum principle (see also [5]) that
every solution to (1.1)-(1.3) satisfies 0 <-_x(t) _-< q, 0 _-< _-< 1. Furthermore the solutions
to (1.1)-(1.3) are precisely the fixed points of the completely continuous operator A
defined on C([0, 1]) by

(2.1)

where

Ax(t) Io G(t, s)pf(x(s)) ds,

G(t, s) { e (t-*)/o, 0 < < s < 1,
1, O_-<s<t<-l.

Since G(t, s) is an increasing function of for fixed s, it follows that any solution to
(1.1)-(1.3) is strictly increasing. Further, Cohen [4] established the existence of
minimal and maximal solutions to (1.1)-(1.3). The uniqueness "result of Cohen follows
readily from this result and the following lemma.

LEMMA 2.1. If U and v are solutions to (1.1)-(1.3), a and b are real numbers such
that a <- u(t) <- v(t) <- b, 0 <- <-_ 1, and f(x)/x decreases on (a, b), then u v.

Proof. Assume u#v. Then f(u(s))>-_(f(v(s))/v(s))u(s), O<-s=<l, with strict
inequality holding for some s. Let r=mino==l u(s)/v(s) and choose to so that
rv (to) u (to). Then

rv(to) u(to)= Io G(to, s)pf(u(s)) ds

/,/(S)
> a(to, s)pf(v(s))- ds

>- rfo G(to, s)pf(v(s)) ds

rv (to).

This contradiction proves Lemma 2.1. El
THEOREM 2.2. (Cohen). If k _-<4 +4/q, then (1.1)-(1.3) has exactly one solution

for each value ofp and ft.
Proof. If k _-< 4 / 4/q, then f(x)/x decreases on (0, oo). [-1

The cases of interest occur, therefore, when k >4 +4/q. Then f(x)/x decreases
in (0, rl], where

1
(2.2) rl

2k + 2q
(kq 2q (kq(kq 4q 4))1/2),
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increases in [rl, r2], where

(kq 2q + (kq(kq -4q -4))1/2),(2.3) r2 -=
2k + 2q

and decreases in It2, c). Also, f has a maximum at

(2.4) to-- 21-((4k + k2/4kq)1/2-2-k),

f increases in [0, ro], f decreases in [ro, ), and rl < r2 < to.
Placing restrictions on p and/3 forces solutions to (1.1)-(1.3) to lie in intervals

where f(x)/x decreases. Thus, using Lemma 2.1, we extend the uniqueness result of
Cohen to the case k > 4 +4/q. The following lemma will be used to obtain some of
these uniqueness results.

LEMMA 2.3. Suppose p and are fixed and x is a solution to (1.1)-(1.3) such
that either x(1) <- ro or pf(ro) <- ro (to is given in (2.4)). Then pf(x(1)) > x(1).

Proof. Assume pf(x(1))<-_x(1). If x(1)_-<ro, then pf(x(t))<pf(x(1))<-x(1),
0_-<t<l. On the other hand, if x(1)>ro and pf(ro)<-ro, then pf(x(t))<-pf(ro)<-_
to<X(1), 0_-<t_-<l. Thus, in either case, x(1)=lopf(x(t))dt<x(1)dt=x(1), a
contradiction. [3

From this result, the uniqueness of the solution for small p follows easily.
THEOREM 2.4. If k > 4 +4/q and p <-rE/f(r2), then there is only one solution to

(1.1)-(1.3) for each/3 > 0 (r2 is defined in (2.3)).
Proof. If p <-rE/f(r2), then pf(ro)< ro since f(x)/x decreases in It2, o). Thus, if x

is any solution to (1.1)-(1.3), pf(x(1))> x(1) by Lemma 2.3. The maximum of f(y)/y
on It1, c) occurs when y r2 and pf(r2)<= rE. It follows that x(1)< rl. Therefore, by
Lemma 2.1, there is only one solution, since f(x)/x decreases in (0, rl]. [3

The next theorem shows that for fixed p, p > rl/f(rl), there is a unique solution
for all large/3.

THEOREM 2.5. Suppose k > 4 + 4/q, flo is the solution to the equation

rl r2

[(rl)-f(r2 e /3)
and

rl
Po =/3o(1 e -1/z)f(rx)"

Then, the boundary value problem (1.1)-(1.3) has a unique solution provided

r____k__ -1/13 r
(i)

f(r)
< p < Po and (1 e >- pf(rl)

or

r2
(ii) po<-p and (1-e-a/t)f(r2el/t)>=

P

Note. The expression/3(1-e -1/) is an increasing function of/3 on (0, c) with
range (0, 1). Thus if condition (i) is satisfied for/3, it is satisfied for/3 >_-/31. The same
is true for condition (ii), although this fact is certainly not as obvious. Suppose condition
(ii) holds for 1 and p and suppose /3 _->/3. Since r/f(r)> rz/f(r2), it follows that
f(rz)>f(r2 ea/t). Thus if [1 i[0, then

B(1-e-x/) f(r2 e/)>-l(1-e-X/l)f(r2 e/l).
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On the other hand, if/31 > flo, then/3 > flo and

F2 F2 rl rl

pf(r2 e 1//3) <p(r2 e 1//3) pf(rl)-pof(rl)
-1//3o)=flo(1-e =/3(1-e -1//3).

Thus, in either case, condition (ii) holds for/3.
Proof of Theorem 2.5. We will show that if condition (i) or condition (ii) holds

and x is a solution to (1.1)-(1.3), then x(0)>= r2. The theorem will then follow from
Lemma 2.1, since f(x)/x decreases on It2, cx3).

Suppose p and/3 satisfy condition (i). Then

rl rl -1//3(1 e-1//3)--> --> -flo(1-e /3o),
pf(rl) pof(r,)

so that fl _->/30 and f(r2 e 11/3) >=f(r2 e11/3). Therefore,

rl 11/3/3(1 e-1//3)f(r2 e 1//3) >_-- f(r2 e
pf(r,)

r2

pf(r2 ell/3o) f(r e
r2/)>__
P

Now suppose p and/3 satisfy condition (ii). If/3 _->/30, then

/3(1 e -11/3) >/30(1 e -1//3) rl rl

pof(rl)--pf(rl)’

and if/3 < flo, then

r2 r2 rl
/3(1 e-1//3) >

11/3 11/30)-pf(r2 e pf(r2 e pf(rl)"

Hence, if p and/3 satisfy either condition (i) or condition (ii), then

rl r2fl(1 e-1//3) -->max
), 1//3pf(rl pf(r2 e

Assume x is a solution to (1.1)-(1.3) and x (0) < r2. Then,

x(1)= f pf(x(s))ds <=el//3 f e-S//3pf(x(s))ds= el/Ox(O)<el/Br2
30 30

and

X(0)= Io e-S//3Pf(X(S)) ds > o_<-t<-lmin {pf(x(t))}f e -sl/3 ds

min {pf(x(O)), pf(x(1))}(1--e-1//3).

Thus, if f(x(O))-<f(x(1)), then

x(O) > pf(x(O))8(1 e -’//3) pf(x(O))
x(O)

fl(1 e-il/3)x (O)

=>
p/(rx)

fl(l _e_,//3)x(O) >=x(O)
rl
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a contradiction. However, if f(x(1))<f(x (0)), then x(1)> ro and

x(O) > pf(x(1)) (1 -e -1/t) >-pf(el/tr2) (1- e -1/t) -_> r2,

also a contradiction. Thus x(0)=> r2 and the desired conclusion follows.
The next result establishes the existence of only one solution for fixed/3 provided

p is sufficiently large.
THEOREM 2.6. Suppose k > 4 + 4/q and fll is the solution to the equation

-k 1//31) ( -k )qe (q r2 e exp
1 + r2e

1/1

Then (1.1)-(1.3) has a unique solution, provided

(i) /3>/31 and p > e k

or
(ii) fl </31 and p >= 1 ek/fl.
Proof. Suppose x is a solution to (1.1)-(1.3) and x(0)< r2. Then

x(1) Io pf(x(s))ds<el/eIo e-S/pf(x(s)) ds el/Ox(O) <- el/tr2.

If condition (i) is satisfied, then fl>=fll so that f(x(1))>-_f(r2 e
f(x (0)) ->_ f(0) so that

x() Io
1/t1) f(0). Clearly,

pf(x(s)) ds > p min {f(x(O)), f(x(1))}

>= pf(O)) pq e -k >- q,

a contradiction. If condition (ii) is satisfied, let =/3//31. Then 0 < < 1 and

x(1)= Io pf(x(s)) ds > Io pf(x(s)) ds

>- tp min {f(x(0)), f(x(t))}.
But

e’-s/pf(x(s)) ds

e(’-s)/tpf(x(s)) ds e’/tx(O) el/tlx(O) <

Thus, f(x(t))>f(el/lr2)=f(O). Also, f(x(O))>=f(O), so that x(1)>tpf(O)=
(/B1)pqe -k >-q, another contradiction. Therefore we must have x(0)_->r2, and the
desired conclusion follows from Lemma 2.1. [3

The final uniqueness result gives uniqueness for small/3 when p < rl/f(r).
THEOREM 2.7. Ilk <4+4/q, p<rl/f(rl), (1-e-1/t)<rl/pf(ro) and

rl-pf(rl)
pf(ro) + pf(r)[-1 + In (f(rl)/f(ro))]’

then (1.1)-(1.3) has exactly one solution.
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Proof. Suppose x is a solution to (1.1)-(1.3). Then

x(O) fo e-S/’f(x(s)) ds < pf(ro) Io e-S/B ds

pf(r0)/3 (1 e-/) _-< r.

If we show x(1)<_-r as well, then the result will follow from Lemma 2.1.
Suppose there exists s (0, 1] such that x(t) r. Then

e(t-s)/t3pf(x(s)) ds

< tpf(r) + pf(ro) It e(t-s)/" ds

tpf(r)+ pf(ro)(1 e t-x)/t) =- g(t).

Now g’(t)= pf(rl)-pf(ro) e (t-a)/t, so that the maximum value of g occurs when

and

/(rl)
1 +/3 In

f(ro)

g(1 +/3 in f(rl)]f(ro)] ( f(rl) pf(ro)B(l_f(ra)]f(ro)]\
1 +/3 In f(ro)lPf(r) +

nf-o)*’
f(rl) pf(rl))pf(rl)+ B\pf(ra) pf(ro)-

<= pf(r) + r pf(r) r,

a contradiction. Thus, x(t)< rl for each t.

3.1. Multiple solutions. Our basic multiple solutions result is a special case of a
theorem concerning completely continuous operators on ordered Banach spaces [5,
Thm. 3.4]. However, for the sake of completeness, a short sketch of the basic ideas
in the proof will be given.

THEOREM 3.1. Suppose k < 4 + 4/q and rE/f(r2) < p <- rl/f(rl). Choose a (rl, r2]
and let b be the number in (to, q) such that f(a)= f(b). If there exists y (0, 1] such
that [3 satisfies the inequality

{ a f(O) b-a}(3.1) /3(1-e-V/)->max pf(ai-(1-Y)f Y-pf(ro)
then (1.1)-(1.3) has at least three solutions.

Proof. For x s C([0, 1]), let a(x)=minx_v<=t<=x(t), and consider the sets of con-
tinuous functions on [0, 1] defined by

Ua {x O <- x(t) < r, O <- <-_ 1},

U2={x "O<-x(t)<-pf(ro), O<_-t<_ 1, a(x)> a}

and

U={x "O<-x(t)<-pf(ro), O<-t <- 1}.
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The operator Aox(t) given by

Aox(t) Io G(t, s)pfo(x(s)) ds,

where

fo(x)=f(x), x<=q,
(0 x>=q

is a completely continuous map which leaves U and U1 invariant and has the same
set of fixed points as A defined in (2.1) (see [5, Example 2.2]). Further, Ao has no
fixed points on the boundary of U1 in U, so that the fixed point index i(Ao,., U) is
defined for U1 and U, and i(Ao, U1, U)= i(Ao, U, U)= 1. (See [2] for properties of
the fixed point index.)

If x is an increasing function such that O<=x(t)<=b, [0, 1] and a(x)>-a, then

a (Aox) Aox (1 "y)
-3/ I11pfo(X(S)) ds + e(1-v-s)/pfo(X(S)) ds

--3/

> (1 y)pf(O) + pf(a) I1 e (1-3/-)/t ds

(1 "y)pf(O) + pf(a)[3 (1 e -3//) _-> a.

Also, if x U and Aox(1)> b, then

a(Aox) =Aox(1- )

IOx-’v 11 (-3/-’)/OpfO(X(S))dspfo(X(S)) ds + e
--3/

fo PfO(X(s)) dS- fl (1-e(1-3/-s)/t)pfo(x(s)) ds
--3/

>=aox(1)-pf(ro) fl (1--e (1-3/-s)/) ds

> b-pf(ro)(y-(1-e-3//t))>-a.

It follows from the above that Ao has no fixed points in the boundary of U2 in
U. For if Aox x and x(1)<= b, then, since x is increasing, we have a(Aox)> a. On
the other hand, if Aox x and x (1) > b then Aox (1) > b and a (Aox) > a. Thus, the
fixed point index i(Ao, U2, U) is also defined. Let Xo be an increasing element of U2
with Xo(1)_-< b and define h" [0, 1] U2 --) U by

h(t, x) (1 t)Aox + tXo.

Then h is continuous with compact range. Suppose h(t, x)= x for some x 0U2. If
Aox (1) > b then a(Aox) > a, so that a(x) a((1 t)Aox + tXo) > (1 t)a + ta a. Also,
if Aox(1) _-< b, then

x(1) (1 t)Aox(1) + tXo(1) =< b,

and since x is increasing, a(Aox) > a, and a(x) a((1- t)Aox + tXo) > a. Thus, i(h(t, ),
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U2, U) is defined for each and is independent of t. Therefore

i(Ao, U2, U)= i(h(1,. ), U2, U)= 1.

By the additivity properties of the fixed point index, it follows that
i(A, U\(.UI U2), U)=-I. Therefore the index is nonzero on U1, U2 and
U\(U1 U2) and it follows that Ao (and hence A) has a fixed point in each of these
sets. 71

3.2. Determination of the smallest I satisfying (3.1). The expression/(1 e -v/)
defines an increasing function of/ with limit 3’ at +. Hence, if (3.1) holds for/ =/1
and % then it holds for all/ -->1. If a/pf(a)>= 1, then

pf(a)

so that (3.1) will not hold for any /. Let ap be the number in (rl, r2] such that
a,/pf(a,)= 1, choose a (ap, r2], and let b[ro, q] be such that f(a)=f(b). We will
determine the smallest value/(a, p) of/3 satisfying (3.1) for some 3, (0, 1].

Let

a b-a
Po Po a -7-: + f(ro)’

P1--PI(a)-
-a In (f(O)/f(a))

f(a) -f(O)

and

(pa b a) f(a)
F r(a)

a f(O)
i-

f(a) pf(ro)f(a)-f(O)’
and note that F> 0. We shall divide our discussion into cases described in terms of
P0, PI, and F. However, some preliminary discussion is required.

Inequality (3.1) will be satisfied if and only if both the inequalities

(3.1)’ fl(l_ e_V/) + (1_ 3,
f(0) a

f(a) pf(a)
>--0

and

b-a
(3.1)" fl (1- e-V/) 3" + ->0

pf(ro)

are satisfied. For 3"-<_F, (3.1) reduces to (3.1)’ and for 3"-_>F, (3.1) reduces to (3.1)",
since 3" _-< F if and only if

a f(O) b-a
pf(a)

(1 3’) f-a) => 3" -pf(ro--"

Furthermore, it is easy to verify that F => 1 if and only if p <= P0.
Note that, for fixed/, the left side of (3.1)" is a decreasing function of 3" and is

positive for 3" sufficiently close to zero. In particular, smaller values of 3" yield smaller
values of/3 satisfying (3.1)".

For fixed /, the left side of (3.1)’ has its maximum value when 3"=
-ln(f(O)/f(a)), increases in (O,-ln(f(O)/f(a))) and decreases for 3"_->
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-/3 In (f(O)/f(a)). For 3’ =-/3 In ([(O)/f(a)), (3.1)’ reduces to

f(O) f(O) pf(O)- a
+f-lnf-] + pf(a--->--O,

and the left side of this inequality is an increasing function of/3 which is positive if
and only if

a pf(0)
fl >= =--flo(a, p).

Plf(a) -f(O) +f(O) In

Thus rio(a,p) is the smallest number for which (3.1)’ holds for some number 3";
however, the required 3’ is -rio(a, p)In (f(0)/f(a)), which may be greater than 1. In
fact, -/3o(a, p) In (f(0)/f(a)) < 1 if and only if p ->el.

We are now prepared for our case-by-case discussion.
Case 1. p <= Po and p -> P1. These inequalities imply that

[(0)
-rio(a, p)In f-_--< 1 and 1 _-< F.

Since 3’-<F for all 3" (0, 1], (3.1) reduces to (3.1)’ and (a,p)=flo(a,p).
Case 2. p<=Po and p<P1. In this case -flo(a, p) In (f(O)/f(a))> 1 and 1-<_F.

Again 3"-< F for each 3" (0, 1], so that (3.1) reduces to (3.1)’. Since/3o(a, p) does not
satisfy (3.1)’ for any 3"(0,1], it follows that (a,p)>flo(a,p) and that
-fl(a, p) In (f(O)/f(a)) > 1. Therefore if (3.1)’ holds for fl fl(a, p) and some 3" (0, 1],
it must hold for 3" 1. Then/3(a, p) must be the solution to the equation

fl(a, p)(1-e -1/t(a’p)) a
-0.

pf(a)

Case 3. p>=Po and p>-P1. These inequalities imply that both F and
-/3o(a, p) In (f(O)//(a)) are less than 1. We will subdivide this ease in terms of these
two numbers.

Case 3a. F=< -/3o(a, p) In (f(O)/f(a)). For 3" (0, F], (3.1) reduces to (3.1)’ and
(3.1)’ is not satisfied for/3 </3o(a, p). If/3 _->/3o(a, p), -/3 In (f(O)/f(a)) _>- F, so that the
smallest value of/3 satisfying (3.1)’ for some 3’ (0, F] is the solution to

B(l_e_V/3)+(l_F f(O) a

f(a) pf(a O.

If 3" IF, 1], then (3.1) reduces to (3.1)" and the smallest value of/3 satisfying (3.1)"
for some 3" [F, 1] is the solution to

b-a
fl(1- e-r/t)-F+ 0.

pf(ro)

But, since

fl(l_e_r/o)+(l_F) f(O) a

f(a) pf(a)

/ (a, p) is the solution to

(a,p)(1-e_r/(a,p)) + (1_ F f(O)

p[(ro)’
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Case 3b. F> -rio(a, p) In (f(O)/f(a)). With 3" -rio(a, p) In (f(O)/f(a)), (3.1)
reduces to (3.1)’, and (3.1)’ is satisfied with/ =/o(a, p). Since rio(a, p) is the smallest
value of fl satisfying (3.1)’ for any 3", it follows that/(a, p) =/o(a, p).

Case 4. p -> Po and p < P1. These inequalities imply F _<- 1 and
-/3o(a, p) In (f(O)/f(a)) > 1. If 3’ (0, F], then (3.1)’ is the pertinent inequality and best
results are obtained when 3" F. If 3" IF, 1], then (3.1)" is the pertinent inequality
and again best results are obtained when 3" F. Thus/3 (a, p) is the solution to

(a, p)(1-e-r/(a’P))+(1-F) f(O)
f(a) pf(a)

4. An example. Consider the case q 1.1 and k 10. Then

ro 0.78233, f(ro) 0.0011623,

rl 0.15550, f(rl) 0.0001647,

r2 0.63729, f(r2) 0.0010299,

rl r2944.199, =618.797,
f(rl) f(r2)

and f(0) 0.00004994.
By Theorem 2.4 there is only one solution if 0<p _-< 618.797 and/3 >0. From

Theorem 2.7, it follows that the solution is unique provided

230.117
p<944.119 and /3-<-0.243737.

Using Theorem 2.5 with/3o 2.22 and po 1172.669 establishes a unique solution if

or if

944.119 <p _-< 1172.669

(4.1) 1172.669 <-p and

944.119

fl (1 e-1/’)f(O.63729e 1/)->0.63729

Finally, it follows from Theorem 2.6 with/31 1.85034 that there is only one solution
when

lO/3->1.85034 and p>-e

or

40756.5
(4.2) /3<1.85034 and p_->.

The boundaries of the regions described by (4.1) and (4.2) intersect when p 22,082
and/3 1.8459.

For multiple solutions, observe that the minimum value of all(a) + (b a)/f(ro)
for a [rl, r2] is 846.99 and occurs when a =r2. Also the minimum value of
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-(a In ([(O)/f(a)))/([(a)-f(O)) for a e[rl, r2] is 1616.9. Therefore if p <-rill(r1), then
p <=P(a) for each a e (r, r2]. Now if 618.797 <p =< 846.99, it follows from Case 2
that/3 (a, p) is the solution to

(a, p)(1- e-1/t(a.t’)_
pf(a)

=0,

and that 13, =- infa,,<a<=rz (a, p) =/3 (r2, p). If 846.99 < p _--< 944.119, let a be the number
in lap, r2] such that

al bl-al
f(al) f(ro)

For a <=al, it follows that p <-Po(a) and, from Case 2, that/3(a, p) is the solution to

On the other hand, if a > al then p >P0(a) and it follows from Case 4 that fl(a, p)
is the solution to

f(0) a
fl(a, p)(1-e-r(a/(’*’’)+(1-F(a))-i pf(a)=O.

Clearly fl(a,p)>=(ax, p) for a<-al. Also with this choice of constants, (a,p)>-_
/3(a1, p) if a _-> al. Thus,/p =/3(a1, p). The following table gives the value of tip for
selected points p (618.797,944.119].

p 620 650 700 750 800 847 900 944

/3 258 10.08 3.97 2.52 1.86 1.49 1.262 1.132

The combination of these results gives the following graphic description of the
number of solutions when q 1.1 and k 10.

00

ORNL- DWG 81-8982

MULTIPLE UNIQUE
SOLUTIONS

7r’--,._.. _-I 4,
r2 r Po 1200 22,000

2) (rt)
P

FIG.
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ON THE ESTIMATION OF FUNCTIONS OF SEVERAL VARIABLES
FROM AGGREGATED DATA*

NIRA DYNe" AND GRACE WAHBA

Abstract. This work was motivated by the problem of obtaining a smooth density function over a
geographical region from data aggregated over irregular subregions. Minimization of a family of roughness
criteria given "volume" data leads to smooth multivariate functionsmLaplacian histosplines, having a
certain order of the iterated Laplacian of constant value in each of the subregions and satisfying natural
boundary conditions on the boundary of the region. For inexact data, e.g., in case of estimating an underlying
density given counts of events by subregions, Laplacian smoothing histosplines are constructed, analogous
to smoothing splines in the univariate case, and a method for choosing the smoothing parameter is presented.

For both cases of exact and inexact data, modified roughness criteria, independent of the region, are

discussed, and results known for point-evaluation data are extended to the case of aggregated data.

1. Introduction. The work in this paper is motivated by the following problem:
incidence rates of certain types of cancer are known to vary geographically; for
example, persons living in areas with higher exposure to sunshine are more likely to
get skin cancer than those in more northerly regions. Data on population density and
disease occurrence is typically collected by bureaucratic subdivision. It is desired, from
this aggregate data, to obtain an estimate if(X1, X2) of the probability p(xl, x2) that a
person living at (x l, xa) will contract the disease in a given year. Contour map
representations of/ can then be used to visually look for geographic patterns in p,
and for apparent correlations with other geographically varying variables.

For concreteness, we consider data reported by state. Let i represent the
contiguous 48 states of the U.S., and fi the ith state. If U(Xl, xa) is the population
density at point (x l, x2) (we pretend this is well defined), then the expected number
of cases of our subject disease in state is

f p(xa, Xz)U(Xl, x2) dxa dx2.

The population si , u (xl, x2) dxl dx2 of. state is assumed to be known exactly. The
population of further subdivisions, e.g., countries, can also be assumed to be known
exactly. In a particular year, the number Z of cases actually occurring in lq is reported.
If p is very small, then Zi may be modelled as a Poisson random variable with mean

tz. From this data it is desired to estimate p(xl, x2), (Xl, x2) lq. We will do this by
first estimating u(xl, x2) using only the population data {si}, and then estimating
g(xl, xz)p(xl, xz)u(xl, x2) using the disease count data {Z}. The estimate of p is
then the quotient of these two estimates. For notational convenience we suppose that
population data is aggregated at the same level (i.e., state) as the disease count data.

It is possible to obtain heuristically reasonable estimates of u and g by assuming
that they are "smooth" in some sense, namely by minimizing certain measures of
roughness. The roughness measures we will consider in most detail are defined by

(1.1) 11 (b/) / (/,/2 2+ u,) dxl dx2

* Received by the editors July 12, 1979. This research was sponsored by the U.S. Army under contracts
DAAG29-75-C-0024 and DAAG29-77-G-0207.

? Mathematics Research Center, University of Wisconsin-Madison, visitirig from the Department of
Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel.

Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin 53706.
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or

2 2 2(1.2) J2(u) (uxlxl + 2u2 + u_2) dxl dx2.

We will also briefly consider the more general measures

(1.3) J(u)-- m--i’ dXl dx2, m 1, 2, 3," ".
i=0 OX 10X2

First we consider the problem of estimating u. With the roughness measures (1.1)
and (1.2) our estimate t(Xl, x2) of u(xl, x2) will be the solution to one of the following
problems.

Problems I-1/1-2. Find u X (an appropriate space of functions on fl) to minimize
J(u)/J2(u) subject to the volume-matching constraints

(1.4) f fu(x,y) dxdy=si, i= 1, 2,... N

where LI/u= lqi f.
We obtain a characterization of the solution to a general problem of which

Problems I-1 and 1-2 are special cases.
Problem I-A. Let lq be a smooth bounded subset of R d, Euclidean d-space. Find

u H’(fl) to minimize J(u)= A(u, u), where

A (u, v E f at3DuD v dx,

subject to

)i(X)U(X) dX Si, i=1,2,...,N.

Here H"(fl) is the Sobolev space of functions with mixed partial derivatives up to
order m in L2(f), x (xl, x2, xd), c (c ,..., aa),/3 (/31, ,/3a), la /= ci,

/=1 ai =/=1 i=m, Du =(Ou/Ox 0xd); a are functions of x satisfying
certain conditions specified in 2, and the {b/} are linearly independent functions in
L2(I).

The characterization of the solution to Problem I-A is given in 2. Certain further
details are carried out in 3 for the special cases of Problems I-1 and I-2. A simple
example of Problem I-1, with concentric circles as subdomains, is worked out explicitly
in4.

Numerical algorithms for computing the solutions to Problems I-1 and 1-2 will
appear in a separate paper.

The solutions to Problems I-1, I-2 and I-A are not required to be nonnegative,
although it is known, of course, that u(x, x2) and g(xl, x2) are nonnegative. In this
paper, we sidestep the philosophical, theoretical and computational problems of
imposing nonnegativity on the solution and hope to address this problem separately.
The results of Lions and Stampacchia [12] will be relevant.

We know of very little literature specifically on the volume matching problem
(although it is, of course, only a special case of the well-studied problem of estimating
a function given the values of some linear functionals (see Golomb and Weinberger
[9], Kimeldorf and Wahba [11]). Boneva, Kendall and Stefanov [2] discuss a special
case in one dimension. Schoenberg and de Boor [16] discuss a volume matching
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problem in two dimensions where the roughness measure has a tensor product structure
and l) is a rectangle with the fi’s a rectangular subdivision. Our interest in this problem
was sparked by a paper of Tobler [18]. He proposed to solve the volurne matching
problem by minimizing Jl(U)=n (u21 + u22)dXl dx2 subject to volume matching
conditions, positivity constraints, and certain boundary conditions, and suggested a
numerical algorithm for doing this. Some of the results here are alluded to in our
comments to his paper (Dyn, Wahba and Wong [8]).

Our results show that the solution to Problem I-A and the special cases I-1 and
1-2 satisfies a certain elliptic boundary value problem with Neumann boundary con-
ditions. Numerical implementation of these boundary value problems can be avoided
if one is willing to modify the roughness criteria. Let X be a suitable space of functions
on R2 (to be defined), and define Jrn on X by

ira(u) x .
i=o Ox m-i dx

OX2

Problem -m. Find u X to minimize -m (U) subject to

u dx si, i=1,2,...,N.

If t7 is the solution to this problem, we will have af,, (tT) => J, (tT) >= J,, (tT), with inequalities
holding in general. This approach of using .,(u) as a roughness criterion has been
extensively used for estimating surfaces given evaluation data by Duchon [6], [7],
Meinguet [13], Paihua and Utreras [15] and Wahba [19]. Using these available results,
we derive in 7 an explicit expression for the solution of Problem -m and a readily
computable approximate solution. The results generalize easily to d dimensions.

We now proceed to the problem of estimating g. Since the data Zi are only
estimates of the ft we only want g to satisfy volume-matching conditions approxi-
mately. As in the case of smoothing splines (see [5] and references therein), we are
led to another problem.

Problem II-m. Find g X to minimize
2

i=1

with J,,(u) defined by (1.3). Here the {wi} should be equal to 1/variance Z. The
parameter , represents a trade-off between the roughness of g and the infidelity of
g to the data. The variance of Zi is i, which is, of course, unknown. In practice, the
wi would have to be chosen iteratively. One could set wi 1/Z initially, since Zi is
an estimate of i. The resulting estimate of g is then used to get {w} for a second
estimate, etc.

In 5 we characterize the solution to Problem II-m for J, given by (1.3) and for
given wl, , WN. In 6 we indicate how A may be chosen to approximately minimize
the predictive mean square error. In 7 we g.ive an explicit~ representation for the
solution to Problem II-m with J,, replaced by J,, (Problem II-m). More significantly,
we give explicit formulae for approximate solutions to Problem II-m which are suitable
for numerical computation. In this context we also derive formulae for computing an
optimal based on the results of 6.

Hopefully, these results will provide the first step towards efficient methods for
converting aggregate data to density maps.



ESTIMATIONS OF FUNCTIONS FROM AGGREGATED DATA 137

2. Smooth surfaces on bounded domains matching integral data. Consider a
bounded domain fl of R d with F its boundary, and a bilinear form

(2.1) A(u, v)= Z | a,t3(x)D’uDt3v, a,t3 sLY(f)

where x (x,..., xa), a (aa, , a), a] ==a ai, ai a nonnegative integer, D
(O/Ox’) (O/Ox]) (and similar notation for ). With this definition, A(u, v) is
continuous on H (fl) x H (fl), where H (fl) is the Hilbert space

H(n)={u[Du eLf(n), [alUm}, lul’(n> E
By assuming that

(2.2) E a(x)yy, >C0 E Y,

for all y (yl," ", Yk) and k # {a] [a] m}, we have that [A(u, u)]/2 is a seminorm
on H () with a null space Q (the space of all polynomials of total degree less than
m, which is of dimension M (+-)).

In this section we prove the existence and uniqueness of the solution to Problem
I-A. For given s,.. , s, find u H(fl) minimizing A(u, u) among all functions in
H () satisfying the integral data

(2.3) Jn Ui Si, 1,..., N,

where &a," ’, ON are N linearly independent functions in LZ(f).
In particular, we characterize the solution of Problem I-A as a solution of a

certain boundary value problem.
We prove two lemmas.
LEMMA 2.1. In the subspace Ho ofH (l)) given by

(2.4) Ho= {Ulu eH"(lq), IaDu =O, Icl<m},
x/A(u, u) is an equivalent norm to

Proof. By (2.1) there exists C1 > 0 such that

(2.5) A(u, u)<-- c llull  (.), u

Iterating the Poincar6 inequality 14],
2

we obtain, for any 0-< k < m,
2

Thus, by (2.4) and (2.2),

(2.8) Ilull = < C3 Y. Ia (Du)2 < C3
H"()

I,1=, --ooA(U, u) u ego(f).

Let Q -span {ql," qM}. We assume that N >M and that the N linear func-
tionals in (2.3) are linearly independent over Q. Without loss of generality we can
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assume that the matrix

M

i,/’=

is of rank M. Therefore, there exists a basis {41,"’’, CM} of Q with the property

fl 4itN-M+J ij, i, i 1,"(2.10) M.

LEMMA 2.2. In the subspace H1 ofH (lq), given by

(2.11) H(l)= {uJu Hm(l), fa ub =O, =N-M+ l, ,N},
/A(u, u) is an equivalent norm to Ilulli.(m.

Proof. For any u HI(I) there exists q O such that Uo u-q Ho(f), and,
therefore,

U UO-t" 2 4i UOIN-M+i

(2.15) t&. ., ] 1,..., N-M,

with

M

(2.16) i b.- Y aiiN-M+i, {aii} arbitrary.
i=1

(2.14) aci si- E SU-M+, gl,4)i gi, j 1,’’’, N-M,

and A(t, a)= A(u, u). Therefore, Problem I-A is equivalent to Problem (I-A)’.
Problem (I-A)" Find t e H1 minimizing A (u, u) among all functions of H1 satisfy-

ing (2.14), or equivalently satisfying

In particular, it is possible by assumption (2.9) to choose {aij} such that

(2.17) fn q O, f 1,..., N-M, q O.

Since, for any b 6 L2(),

(2.12) Ira. ubl <--][q[IL2(Ia)I[UIIH"(O)’ uH’(f),

we get, in view of Lemma 2.1,
M

i=1

C44A (Uo, Uo) C44A (u, u).

This together with (2.5) completes the proof of the lemma.
Let u e Hm(O) satisfy (2.3). Then

M

(2.13) a U E SN-M+i4i Hx,
i=1
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By Lemma 2.2, the linear functionals

Li(u) ya ui, j=l,...,N-M(2.18)

are bounded in H1 with respect to the norm [A(u, u)]1/2. Invoking the Riesz representa-
tion theorem, we conclude the existence of sj H1,/" 1,..., N-M, satisfying

(2.19) A(u, )= f uci, all u H1,

and due to (2.1.7)

(2.20) A (q, :.)= Jn q 0, all q O.

Since 41,"’", bu are linearly independent so are :1,""", u-t, and the solution to
Problem (I-A)’ is known to be the unique function in the span of {q,...,
satisfying (2.16), (see [9]). The solution to Problem I-A is related to this solution
according to (2.13). The following theorem summarizes the above findings.

THEOREM 2.1. Them exists a unique solution to Problem I-A. The solution is of
the form

N-M M

(2.21) t E c,sc, + E sv-
i=1 i=1

where Sl, N-M are the unique functions in HI determined by (2.19), and
cl, ", cr-t are the solution of the nonsingular linear system

N-M M

(2.22) Y. c,A(j,, ji)= 4 sj- Y. S,V-M+I 4l], j 1,"" ", N-M.
i=1 /=1

An immediate consequence of Theorem 2.1, (2.19) and (2.20) is
COROLLARY 2.1. The solution of Problem I-A is uniquely determined by the

variational characterization

and the matching conditions

(2.24) In ui si, i= 1,..., N.

In (2.23), yl, , ’ are constants, which in particular satisfy

In case 1 is a smooth domain, the solution of Problem I-A can be further
characterized in terms of a boundary value problem. Since each , 1 <-_ <-_N-M,
satisfies (2.19) and (2.20), namely

A (u, i) fFt Ui for all u

we conclude from Aubin [1, Corollary 2-2, pp. 219-220] that sci is the unique solution
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in Ha to the boundary value problem

(2.26) AsCi i in f,

(2.27) 8j:i 0 for m <= f =< 2m 1 on F.

In (2.26) A is the differential operator of order 2m given by

(2.28) Au Y (-1)IOlD (a(x)Du),

and in (2.27) 6 (62,,-1, , 6) is a differential operator of order m mapping

(2.29) Hm(o,A)={u[uH(O),AuL2(O)}

H-i-1into=_ /(F), such that the generalized Green formula holds

i=o

(0/ is the operator of normal derivative to the boundary F).
The characterization (2.25), (2.27) of 5 H, tother with Theorem 2.1, yields

the [ollowin.
THnORnM 2.2. The solutio to Problem I-A, for a smooth domai is uiquely

dexrmied as the solutio to the boundary value problem

(2.31) A= Z T,, infl,
i=1

(2.32) 3i 0, m j 2m 1 on F,

which satisfies the matching conditions (2.24). In (2.31) 71,’" ", 3’N are N constants
satisfying (2.25).

3. Laplacian histosplines--The volume-matching surfaces. In this section we
specialize to the concrete problem of finding a smooth surface u u(xl, x2) having
prescribed volumes over specified subdomains in R 2. We characterize the volume-
matching surface as a function with the even order differential form
[(O/0x)2 + (0/x2)2] of constant value in each of the subdomains. These surfaces are
therefore strikingly analogous to even degree one-dimensional splines and are regar-
ded as functions with a certain even order derivative of constant value in each
subinterval. Following a suggestion of Professor Iso Schoenberg, we term these surfaces
"Laplacian histosplines" in analogy to the univariate histosplines of Boneva, Kendall
and Stefanov [2], which are the even degree univariate splines solving the "area
matching" problem.

We consider in detail the following two problems. Let fl be a smooth bounded
domain in R 2 subdivided into N disjoint domains 12,. ., fiN, fl [.J = fli.

Problem I- 1. Find u sH(fl) minimizing

(3 1) In (u2 + u2xl xz) dXl dx2

among all functions in Hl(f) satisfying

(3.2) fa tt Si, 1,.. , N.
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Problem I-2. Find u s H2(f) minimizing

(3.3) 2 2 2(Uxlxl + 2Uxix2 + ux2x dxl dx2

among all functions in H2() satisfying (3.2).
From a practical point of view these two problems are the most interesting, since

computation of solutions of similar problems with higher order forms (2.1) becomes
too complicated, with the increased complexity of the operators A and in Theorem
2.2.

Using Theorem 2.2 for the special setting of Problem I-1 together with the
classical Green formula [3],

fo(3.4) UXI.)X1 + UX2UX2"-" (--AU)V "Jl" -n v,

we obtain’
THOZM 3.1. The solution to Problem I-1 is uniquely determined by the

conditions"

N 1 in ,
0 elsewhere,

2 1=0,

=0 onF,
On

u=si, i= 1,... ,N.

To get a similar result for Problem I-2, we first derive a more general Green
formula for the bilinear form corresponding to the seminorm (3.3). By a repeated use
of (3.4), we get

(3.5) u.v.l+2U..v..+ u..v.. (A:u)v- 7-7_ zXu v + V. Vv,
On

since on F, Vu. Vv=(Ou/On)(Ov/On)+(Ou/Or)(Ov/O’r), where O/Or is the tangential
derivative to F, the last term in (3.5) becomes

(3.6) Ou .Tv
On On 2 On

Comparing (3.5) and (3.6) with the generalized Green formula (2.30), we conclude
that, for the seminorm (3.3), A and 6 of Theorem 2.2 are

(3.7) A A2, 6 (63, 62), 62
On

2, 63 A + --.On
Thus, by Theorem 2.2:

THEOREM 3.2. The solution to Problem 1-2 is uniquely determined by the
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conditions"

N
A2t iXai in

i=1

E Yi q=0,
i=1

q 1, Xl, X2,

0/72--0, +A =0
On

on F

=s, ,N.i= 1,...

Remark. It can be shown by Theorem 2.2 and repeated applications of the
classical Green formula that, for the higher order roughness criterion

ia (m) ( om )2(3.8) J,(u)
u

i=1 OX rn--i dx dx2, m >-3,
Ox2

the solution to the volume-matching problem satisfies

N

(3.9) (-1)mAmu V/Xa, in ,
i=1

with the appropriate boundary conditions,

(3.10) 8.u 0 on F, m<-j<_2m-1.

4. A simple example of an explicit Laplacian histospline. ConsiderN subdomains
in Rg‘,

(4.1) lqi={(xl, x2)lRi_x</xx2<Ri}, i=1,...,N,

with Ro_->0 and 12 U/s=x i. In the following we derive the explicit form of the
solution to the volume matching problem, I-1.

2By the radial symmetry of the problem, u u(r) with r= x/x +x2, and in view
of Theorem 3.1, -At/= yi in lqi, 1,. ., N. Since [3]

M(r)
1 d- rr Erf’(r)],

"’i 2(4.2) t -r + Ci log r + bi in [Ii, 1, , N.

The coefficients y, ci, bi, 1,..., N satisfy the following conditions implied by
Theorem 3.1 and the continuity of t and d/dr"

"}IN CNda
=0= R+(4.3)

dr r=RN RN
(boundary condition),

(4.4) -Ri-1) =0, ")/i 1 =0
i=1 i=1

(4.5) Ci Ci+l (i --’/i+l)-, i= I,’’" N-1 continuity of
dr ]’
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(4.6)

(4.7)

b, bi+l (’yi -’}/i+l)T-(ci -i+l) log Ri,

i=1,...,N-1 (continuity of t),

ci{R2i R2iTl[logRi_l_ ]}
1 N (volume matching).+b,

2 2r’

The total number of linear equations (4.3)-(4.7) is 3n, as is the total number of known
coefficients. If Ro > 0, there is an additional boundary condition to be satisfied;

dt
=0=

ylRo Cl
ifRo>0.(4.8)

dr r=Ro 2 +Ro
Claim. /fR0>0, (4.8) is linearly dependent on (4.3)-(4.5). If Ro=O, then (4.3)-

(4.5) imply c O.
Proof. Summing (4.5) for 1,..., N-1 we get

u 1 1N R -1 ,y R 2 2 2i-Ri-)+ yIR- TNRCl-C y, (,-,/)-y
which, in view of (4.4) and (4.3), can be written as

RCl--CN---(’Y1 --yNRN)=1/2"r’R--CN.

Therefore, c 1/2ylRo, proving the claim. 71
By integrating r(r), one can transform this volume matching problem into an

interpolation problem (similar equivalence exists between area-matching splines and
interpolating splines in the one-dimensional case [16]). Thus, defining

(4.9) U(r) pu(o) do, u(r)
1
U’(r)

r

we have to construct an "interpolating spline" of the form

(4.10) U(r) A +Br2 + cr4 + Dir log r,

satisfying

1 i(4.11) U(r)e C(Ro, RN), U(Ri) -- s,
1=1

i=1,... ,N,

i=1,...,N.

5. Laplacian histosplines tor inexact data. In this section we consider the problem
of finding a smooth function ff given inexact volume data. Similar analysis can be
done in the more general setting of 2.

Problem II-m" For a given set of data Z,..., ZN, find H"*(I)), minimizing

(5.1) w, g-Z, + A],, (g),
i=1

r2It is easy to check that the functions 1, r2 r4, log r constitute an extended Chebyshev
system on any interval of the form (0, RN). Thus U(r), considered as a function of r,
is a Chebyshev spline. (For the notion and construction of Chebyshev splines see,
e.g., [10, Chapter 10].)
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where J,(g) is defined in (3.8); f, lql,’’’, fN are as in 2, and h, WI," WN are
fixed positive constants.

In the notation of 2 any g H"(fD can be represented as g gl + g2 + g3 where
gx Q, g2 span {q,. ., N-M} and g3 satisfies

(5.2) f g3 0, 1,. , N.

By (5.2), g3 H is orthogonal to 1,""’, sCr-M with respect to the inner-product in
H1 corresponding to the norm x/J,(.). Therefore g3 does not affect the first term in
(5.1), while J,(gl +g2+g3)=J,(g2)+J,(g3) and necessarily the solution to Problem
II-m is of the form

N-M M

(5.3) 1 "2 Cii + dii.
i=1 i=1

Since for the volume data, ,..., r in 2 are of the form

i Xn,, 1,. , N,

then by (2.16), (2.17) and (2.26),

{10 in"i’
(5.4) (-1)"A":i in f., ] # i, ] 1,..., N-M,

7ii infi, ]=N-M+I,...,N

with ’0 satisfying

(5.5) ’/i] 6I-[" 6I--’0, l--" 1,... ,M, i= 1,... ,N-M.

In view of (5.4), (5.5) and (2.27), the solution , to Problem II-m, given by (5.3),
satisfies the boundary value problem

N

(5.6) (- 1
i=1

(5.7) ]=0 on F, m_-<]-<2m-1,

with 3’1, ’, ’N being N constants restricted by

(5.8) /i lf 41-- O I, M.
i=1

In (5.7), the boundary operators 8,,..., 2,- are as in the remark in 3.
The following theorem relates the values of the constants 3’1, ’, 7r in (5.6) to

the "smoothed data", namely to the values

(5.9) , f , i= 1,...,N.

THEOREM 5.1. The solution , of Problem II-m satisfies (5.6) with

Wi(5.10) i---(Zi-2i), i=1,.. ",N.

Proof. The coefficients in (5.3) satisfy the necessary conditions for minimizing
(5.1), namely the vanishing of the partial derivatives of (5.1) with respect to
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1,""", CN-M and d1,’’’, dM. In terms of the bilinear form A,,(.,.) corresponding
to J,, (.), these conditions become

i=1

(5.12) E Wi(2 -Zi) j O, j 1,’" ", M.
i=N-M+I

In deriving (5.11), we recalled that

f :j=0, i=N-M+I,...,N, f=I,...,N-M.(5.13)

Let K be the (N-M) (N-M) matrix, with entries

(5.14) Kij A,,(sci, i)= Ia :i Ia sci’

Let T be the (N-M)xM matrix with entries

i,i=l, .,N-M,

and let

W diag {wl,. ., WV-M}, .W diag {WN-M+I, WN},

C (CI," CN-M)’, Z (ZI," ’, ZN-M)’, Z. (ZN-M+I," ", ZN)’,

(2,..., 2_)’,
With this notation, (5.11) and (5.12) become

(5.5)

(5.16)

KW(z AKc O,

z. -= -W. -T’W(z-).

Since K, as defined in (5.14), is symmetric positive definite, (5.15) implies

1
(5.7) c =-W(z-e),

while, by (5.3), (5.4) and (5.6),

(5.18) Ci (--1)mmm ’/ti in ’i, 1,. ., N-M.
Therefore, (5.10) holds for 1, .., N-M, and (5.8) becomes

(5.19) (/N-M+i,’’’,

Comparing (5.19) with (5.16) we conclude that (5.10) holds for N-M+ 1,..., N
as well.

A direct consequence of Theorem 5.1, the representation (5.3) of g and (5.4), is:
COROLLARY 5.1. The solution ofProblem II-m is of the form

1 N-M M

Z wi(Zi--2i)i / E ZN-M+ii,(5.20) g " i---1 i=l
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and satisfies the integro differential equation

1
(5.21) (--1)mAm -’ =El ’)( W Z

with boundary conditions

(5.22) 6. 0, m <_- ] _-< 2m 1.

Equations (5.21), (5.22) indicate an alternative direct way for the computation
of , avoiding the computation of the functions :1,’ , sCN-M.

We conclude this section by deriving explicitly the relation between the vector
of given data Z (Z1,..., ZN)’ and the vector of smoothed data (a,..., )’.

From (5.20) we get =(1/A)KW(z-)+ T. and, after substituting for . from
(5.16),

(5.23) T.z + T.Iy-IT’W(z-z)+IKW(z-z).
With B (I + (1/A)KW + TW.-1T’W)-, (5.23) and (5.16) become

(5.24) z B(z Tz. ), z. g W. -1T’WB(z Tz. ).

Combining the last two expressions, we conclude that

(5.25) A(A)Z

with

B -BT )(5.26) I-A(h)= _W.-T,WB W. _T,WBT
6. The problem of choosing A. We give a procedure for choosing h in Problem

II. In this section we suppose (inaccurately!) that the {wi} in the definition of Problem
II are given positive constants. In the problem presented in the introduction we want

wi I/variance Zi 1//z. Since the /xi are being estimated, the wi can be chosen
iteratively by one of several obvious ad hoc procedures. In what follows, the wi are
assumed fixed and given. It is likely that wi =- 1 will give reasonable answers in most
cases when the/x are all of the same order of magnitude.

A good criteria for choosing A is the minimization of R (A), defined by

(. (= o.- .
i=1

where E is expected value, ffa is the solution to Problem II and the Oi are given positive
weights. Since the/x are not known, we cannot minimize R (A). However, an unbiased
estimate /(A) of R(A) is available by generalizing an observation in Craven and
Wahba [5]. Let A (A) be the N N matrix satisfying

A(A)Z [a
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Such a matrix is given explicitly in (5.25), (5.26).
Then (6.1) becomes

R () EIID o/ (Ix A (A)z)ll
where Do =diag {01,""’, ON} and /x (/.1,"’’,/./,N)’. Defining e (el,""", EN)’ by
Z =/x + e, we have

EIIDo/( A(A)Z)II EIIDo/ [(I A

-liD0/ (I-A(h)tz / Tr DoA(h)XJ’(h ),

where E diag {var Z, var Z2," ’, var Zs} diag {/x 1,/x2," , IXN}.
Let diag {Z,..., ZN}. We claim that an unbiased estimate/ (h) of R (h) is

given by

/ (h) liD 10/2 (I A (h))Z[[2 Tr D 10/2 (I A(h))(I A(h)’)D
(6.2)

+ Tr Do/2A(),a(,)’D /20

In fact, (6.2) simplifies to
N

(6.3) I(X)=IIDlo/Z(I-A(X))ZII2+ OZ-2TrDo(I-A(A)).
i=1

To confirm our claim, observe that

EIIDo/ (I a (A))ZII2 liD ao/2 (I a (A))z
(6.4)

+ Tr Do/ (I a(,))Z(I a(,)’)D o/z,
and

(6.5)

Substituting (6.4) into (6.2) and using (6.5), we obtain EI(A)= R(A). Thus, it is
reasonable’ to choose h by minimizing/ (h).

7. Laplacian histosplines for a modified smoothness criterion. Problems in coding
a numerical algorithm for computing t and related to solving the Neumann boundary
value problem in an irregular domain can be avoided by modifying the smoothing
criterion somewhat.

Whether or not this modified smoothing criterion gives results equally pleasing as
the smoothing criterion previously used, and whether the computing time required is
comparable or not remain to be seen. However, the coding of an algorithm for the
modified criterion appears to be relatively straightforward and is similar to already
existing codes for the case of point evaluation data [13], [15], [19].

The results below are modest generalizations of results given by Duchon [6], [7],
and later discussed by Meinguet [13] and Wahba [19].

We let d 2; however, the generalization to arbitrary d dimensions is immediate
from the known results whenever 2m- d > 0. Let X be a suitable space of functions
on R 2 for which

(7.1)
j=O j OX OXJ2

is well defined and finite.

X is the Beppo-Levi space of all the Schwartz distributions for which all the partial derivatives in
the distributional sense of total order m are square integrable in R [13].
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We modi.fy Problems I-m and II-m to the. following’
Problem I-m. Find u X to minimize J,,(u) subject to

u (x x2) dx dx2= i=1,2,... N.Sir

Problem I’I-m. Find g X to minimize

w Z- g(x, x.) dx dx +’Jm(g).

Usually, we will.only be interested in the restriction of u or g to f. If t is the
solution to Problem I-m, clearly ],(tT)>= J,(t)-> J,,(t/), and equality will be obtained
iff can be extended to all of R in such a way that the extension u is in X and satisfies

2 0 for (X1, X2) .
Generally this is not possible, but is always possible in the case of one-dimensional
histosplines. Moreover such an extension is also possible for domains with radial
symmetry, as in the example of 4, which is, essentially, a univariate problem in r.
Indeed, by defining a(r)= (r), OrR,, a(r)= (R), R r, with , the solution
in 4, we get J() J(ff), where both a and a match the same volume data.

The solution to Problems -m and fi-m can be given explicitly; we do this later.
However a representation of a computable approximate solution for m 2 can be
obtained quickly from the known results, and we proceed to do this. Let x (x, x2),
and let {t/}=l be a fine regular mesh of points in fl, tl (X, X), such that

u(x, x) dx dx: E u(t), H(O),a u

where a I,l/ne, being the area of and ni the number of mesh points in fl.
We now consider

Problem i-m-{t}. Find u X to minimize ](u), subject to

ai Y’. U(tl) Si, 1, 2," ", N.

Problem I’I-m-{t/}. Find g X to minimize

tE Wi Zi ai 2 g(tt) + Aim (g).
tl fi

THEOREM 7.1. Suppose the N M matrix T with

(7.2) Ti ai Y q(&)
tk 1")

is of rank M. Then the solutions to problems -m-{t/} and I’I-m-{t/} are unique and have
representations

(7.3)

N M

u(x)= E cirli(x)+ E dvq(x),
/=1 u=l

N M

gx (x) E cini(x) + E dvq (x),
i=1 v=l
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where

rti(x) ai 2 Em(X tl),

m(X)- 0,lxl2-2 log Ixl, 0, {22m-lrE(m 1)t]}-1,
2Ixl=#x+x2,

and {q(x)} span the space of polynomials of total degree less than m. The coecients
c (ca,. , cu)’ and d (da,. , d)’ satisfy the following equations:

Problem i-m-{t/}.
(7.4) Kc + Td s,

(7.) T’c =0,

where K is the N N matrix with ifth entry

Kii aiai Z Em (tk, tl),
tk
tl

Problem II-m-{t}"

i,j=l,.. .,N,

(7.6) (K + A W-1)c + Td z,

(7.7) T’c =0,

s=(s, ,su)’.

where W diag {wl,. , WN}, and Z (Z1, ZN)’.
Proof. The special case ni ai wi 1, 1, 2,..., N is just the problem of

interpolating or smoothing evaluation data, and in this case the result has been given
explicitly in [6], [7], [13], [19]. The extension to the case of general ni, ai and wi is
straightforward from these results and is omitted.

Observe that the solution to Problem ]-m-{t/} can be obtained by solving (7.6)
and (7.7) for the solution of Problem I’I-m-{t/}, with A 0 and Z replaced by s. We
now put (7.6) and (7.7) in a form suitable for the computation of c, d and/ (A). Let
R be any N (N-M) matrix satisfying R’T 0. Since T’c 0, there exists a unique
N-M vector b, say, with c Rb. Left multiplying (7.6) by R’ and substituting c Rb
gives

(7.8) R’(K+AW-a)Rb=R’Z.

We next assert that R’KR is strictly positive definite. To prove this we use the following
result [6]"

Suppose t, , tn do not fall on a straight line. Letf ([1, , fn)’ be any nonzero
vector satisfying . fq(t) O, v 1, 2,. , M;

i=1

then Y’."./= (ffiEm(ti- ti)) > 0. We need to show that if r (rl," , rv)’ satisfies T’r O,
then r’Kr > 0. Let F be the n N matrix with jkth entry ak if tg fk and 0 otherwise,
let E be the n n matrix with jkth entry Em(tj--tk), and let T be the n M matrix
with jvth entry q(ti). Then K F’EF and T F’T. Suppose T’r 0. Then, if f F’r,
we have 7’f T’r 0 and so 0 <f’Ef r’F’EFr r’Kr.
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In case h 0 or A is a given positive constant, b is obtained from (7.8), c Rb
and d is obtained from (7.6) as the solution of the system

(7.9) (T’T)d T(Z-(K + h W-1)c).

We proceed to the case where we choose according to 6. To compute R (h)
we first obtain an expression for A (h). The appropriate definition of A(h) is

A(A)Z

/a, Z
ttl

a2 Y , (h)
tt2

as E ff, (tl)

Using the fact that ai t,a, (rh(tl)) Kij, one obtains, from (7.3),

(7.10) A(,)Z Kc + Td.

Combining (7.6) and (7.10), we get

(I A(A))Z (K + h W-)c + Td (Kc + Td) h W-Xc.

Since, by (7.8) and the definition of b, c =Rb =R(R’(K +AW-X)R)-XR’Z, we finally
obtain

(7.11) I-A(,)=hW-R[R’(K+,W-I)R]-aR ’.

R can always be chosen so that R’W-aR=IN_M, giving I-A(h)=
W-aR (B + AI)-R ’, where B R’KR is a symmetric positive definite matrix. Now,

let UDnU’ be the eigenvalue decomposition of B with Dn diag {bl, , bN-M}; then

(7.12) I-A(h)=AW-aRU(Dn+hI)-aU’R’.
Recalling the expression (6.3) for/ (),

(7.13)
N

liD /= (z A (X))ZII= + E o,z, 2 Tr {Do,(Z A (A))},
i=1

and substituting (7.12), we obtain
N-M

(7.14)
i,j=

where

N N-M lu
i=1 biq-A

V (Vl,’"", ON-M)’= U’R’Z,

H={hii}= U’R’W-1DoW-aRU= U’R’ diag {-, }RU,
L {li]}--- U’R’,DoW-XRU U’R’ diag { ZA-O’,W1

"’’, -N jRU.
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In the special case Do W, the matrix H is I since R’W-1 R =I, and then (7.14)
simplifies to

N-M 12
2 N N-M lii(7.15) R (A) A 2 2 (be -- A)2 d- i=IE wiZi 2A

i=’-- bi-+-A

With the expression for/(A) in (7.14) (or (7.1.5)), repeated computations of/(A)
for different values of A are straightforward, once the matrix H, the vector v and the
diagonal of the matrix L are computed. Hence the value of A minimizing/ (A) can
be computed by standard minimization methods.

We remark here wi.thout proof that the arguments in [13] can be used here to
prove that the solutions to Problems -m and I’-m have representations of the form

N M

E cjO(x)+ E dq(x),
i=1 v=l

where

(7.16) (x) | Era(x, t) dtl dt2, (tl, t2)

and the {q} are as before. The vectors c and d satisfy equations of the form (7.4)
and (7.5) with Ki and T. given by

Ki= Ia f, E,(x, t), T= Ia q(x).

Since E. is the fundamental solution of the iterated Laplacian (see [4] V; [17] p. 47),

A"(x) 1, x f, A",(x) 0, x ;.
Therefore the solutions t and ff to Problems -m and II-m satisfy A,"t 0, A" 0
outside lq and A"t, Am are constant on each fi.

Note added in proof. Further results on the volume matching problem may be found
in [20], [21]. Contour maps for some Wisconsin cancer mortality rates by county using
the solution to problem -2 may be found in [22].
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SYMMETRIZATION WITH EQUAL DIRICHLET INTEGRALS*

MARIE-THIRtSE KOHLER-JOBIN’

Abstract. Using a symmetrization method first introduced in [7] and developed further in [8], [9], we
give, in particular, isoperimetric bounds for the functionals

inf -o ; dx j

sharper than those given in Crooke [Applicable Anal., 3 (1974), pp. 345-378], [Colloq. Math., 38 (1978), pp.
263-267], Crooke and Sperb [SIAM J. Math. Anal., 9 (1978), pp. 671-681].

1. Introduction
1.1. Let D be a bounded domain of N, with a piecewise analytic boundary 8D.

By (D) we mean the space of all real-valued functions v(x), vanishing on 8D,
continuous onD and piecewise continuously differentiable in D, for which the Dirichlet
integral olv[2 dx is finite.7v is the gradient of v(x), namely

x (Xl, x,’’’ ,xu).

Let a be a positive number. We then define the decreasing domain functional

2 inf 2oc (a, D)
(x)(o) o v dx

We point out that in the case a 1, the solution of the variational problem above is
given by the first eigenvalue of the Laplace operator, and in the case a 1/2 and D
simply connected and plane, the variational problem (1) is actually the torsion problem
[11].

In [3] Crooke, using the Schwarz symmetrization [1], [2], got the following result.
THEOREM 1. Let D be a three-dimensional bounded domain and let 1 denote the

sphere of 3 having the same volume as D. Then
2c (2, D) => c2(2,/).

In a second paper [4], the same author computed c2(2,/)" If/ is the radius
of/, then

(2) c2(2’/) 8rr’ Zo2[y’(zo)]2

where Zo denotes the first positive zero of the Emden-Fowler initial value problem [6].

2 3 d
y"+-y +y =0, y=y(z), ’=

z dz
(3)

y(0) , y’(0) 0.

As indicated in [4], the same method enables us to compute isoperimetric bounds for
the variational problem (1). [5] deals with the case N 2.

* Received by the editors December 2, 1980, and in revised form April 7, 1981. This work was
supported by the Swiss National Foundation of Science.

’Department of Mathematics, Stanford University, Stanford, California 94305. Current address:
Planchettes 14, CH-2900 Porrentruy, Switzerland.
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1.2. The Euler-Lagrange equation corresponding to (1) is

c2(a, D )], U2-(4) AU+[DI[Ydx -1 0 in D.

It follows from Pohoaev’s results [10] that"
If N 2, the variational problem (1) has a positive solution U(x), which belongs
to C2(j)("1C(/) and satisfies (4) for every positive a.
If N _-> 3, the same statement holds, provided that a < 1 + 2/(N- 2).
Furthermore, if N _-> 3 and a ->_ 1 + 2/(N- 2), the eigenvalue problem (4) possesses
no weak solution in a starlike domain.

From now on we have to assume that (4) has a solution. This means that we assume
that a satisfies

2
(Ha) a<l+ ifN>=3.

N-2

The solution of the problem (1) then satisfies (4) and thus belongs to C(D)f’) C(E3).
Using the same method as Crooke [3], [4] and Crooke and Sperb [5], we get the

following statement.
THEOREM 2. Let 1 be the N-ball of RN, with radius I having the same measure

as D. Then, if a satisfies (Ha), we have

a(’0N ] 2 ]2a -2(5) c2(a’D)c2(a’l’))--" N+a(2-N) "Zo [y (z0) /-[N+o(2-N)],

where Zo is the first positive zero of the initial value problem

(6)

N-1 2-1 dy"+y’+y =0, y y(z), ’=
z dz

y (0) 1, y’(O) O,

and ton is the (N- 1)-measure o/ the unit N-ball.
The proof is exactly the same as those given in [3], [4], [5]; and therefore we will not

repeat it here.
In the case N 3, the problem (6) is the Emden-Fowler initial value problem.

The values of z0 and y’(z0) are listed in [6] for some a. This enables us to give the
following numerical results’

(7)

2c (a, D)/3-

1.892342
9.869582
19.91524
34.20395
64.29614

102.3737
148.8229
193.2528
212.6305
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1.3. An auxiliary boundary value problem. We now consider the functionals

(8) P[v]= Iv l dx / v(x) dx, v(x) CS(D),

(9) P(D)= max Ply].
t(x)(D)

It is well known that the maximum above is given by the function u(x) solving the
boundary value problem

(10)

and that

Au=-I inD, u=0 on0D;

(11) P(D) J u(x)dx Jm [VuI: dx.

We point out that P(D) 1D), and that both corresponding extremal prob-
lems (1) (for the choice a =) and (9) are equivalent. In the particular case where
N 2 and D is simply connected, P(D) is actually the torsional rigidity of the plane
domain D. Because of this, we call P(D) the torsional rigidity of D, even if N >_-3

and/or D is not simply connected.
By the $chwarz symmetrization, we get P(D) <_- P(/), where/ denotes the N-ball

of R, with radius/, having the same measure as D. This is the generalization of the
Saint-Venant and P61ya theorem [11]. (For further information on this theorem or
on the $chwarz symmetrization see [11], [2].)

Now let D* be the N-ball of R, with radius R*, having the same torsional
rigidity as D. Thus, by definition,

(12) P(D*)=P(D).

Since P(D) is an increasing domain functional, we have R* <_-/. The goal of this
paper is to show the statement below. The latter sharpens Theorem 1 and Theorem
2.

THEOREM 3. Let D* be the N-ball of RlV having the same torsional rigidity as D.
If a > 1/2 and if further, c satisfies (Ha), we have

c2(c, D) >-c2(a, D*).
We note that by definition (12), c2(1/2, D)= c2(1/2, D*). The next two sections deal with
the proof of the foregoing theorem.

2. Symmetrization with constant Dirichlet integrals
2.1. Let t(x) be any positive function of class C(D)f3 C(/), taking the value

zero on the boundary OD. To it corresponds a lower bound P(D;t(x)) of P(D) given
by the maximum principle

(13) P(D; t(x))= max P[v],
v(x)(D)
v(x )=,( t(x ))

where q(i) denotes a real-valued function of the real variable . According to [7], [9],
we call P(D; t(x)) the "modified torsional rigidity olD with respect to the function t(x)".

(14)

(15)

(16)

Throughout this paper we will use the following notation"

D := {x DIt(x) > "i},

F := {x D[t(x)= },

tmax ’-- max t(x),
xD
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(17) a() := | dx,
aD

(18) y() := f [Vt[ ds.

Because of the regularity of t(x), we have

da Ir ds
(19)

d Ivtl"
Using as an independent variable, the functional (8) can be written as

f(’max d(l
2

f( tmax (da)P[(t(x))] - y() d + 2 () - d.

We now get the following statement about the functional P(D; t(x)).
LEMMA 1. The function (), defined by

a()
2o q

=o ’
solves the maximum problem (13). Furthermore,

(21)

tmax
P(D, t(x))=

a2ff)
(i)

dt ID (t(x)) dx

fp [V(t(x))lz dx.

Proof. Because the proof stands already in [7], [9] we only give an outline of it.
An integration by parts leads to

P[dp(t(x))]-P[q(t(x))]= --- y() d,

which is never negative and takes the value zero if and only if ()= o().
Applying the foregoing lemma to the partial domain D, (14), we get

tmaxa2()(22) pff) := P(D; t(x)-)= d.

According to (13) and (21), pff) is the "modified torsional rigidity of the domain D
with respect to the function t(x)-". The case where D is not connected is not
excluded in (22).

COROLLARY 1. Let O)s be the (N- 1)-measure of the unit N-ball. Then, we have

(N + 2) N(N-2)/N "OON2/N’
and equality holds if and only ifD is a N-ball and the level sets F are concentric spheres.

Proof. Applying the Schwarz inequality to (18) and (19), we get



SYMMETRIZATION WITH EQUAL DIRICHLET INTEGRALS 157

We now use the geometric isoperimetric inequality
2 . Ea (Ul:Z’:

The inequalities above lead to

-1

,y(.) > N2(N_I)/N 2N/N [()]_ (d_).to _a_i__2(r-1)/r

We now use the latter and (22) to finish the proof of the corollary.
We point out that in the case N 2 and D simply connected, the corollary implies

that for the particular choice t(x) u(x) (where u(x) solves the boundary value
problem (10)),

This is exactly the statement of the Saint-Venant and P61ya theorem [11], [2].
By means of t(x), (22) defines a function p(t(x)) in D; and, by (20) and (17),

(23) Iv lVP(t(x))[ ds aZ().

2.2. Choice of the comparison domain. We compare D with the N-ball of RN,
D*(t(x)), defined by

(24) P(D*(t(x))) P(D; t(x)).

On the left side of the definition (24) stands the torsional rigidity of the comparison
domain, whereas on its right side stands the "modified torsional rigidity of the domain
D with respect to the function t(x)." Clearly, to each function t(x) corresponds such
a ball, and since P(D; t(x))<=P(D), the radius of any of those balls is never greater
than R*, the radius of the N-ball D* defined by P(D*)= P(D), (12).

Now let v(x) be a nonnegative function of ’(D) such that v(x)= (t(x)), q(i)
being a piecewise continuously differentiable function of the positive variable . Our
goal is to construct a function v*(x), defined in D*(t(x)), belonging to (D*(t(x)))
and such that

Iv *l dx Io dx.
*(t(x))

For this purpose, we define a one-to-one correspondence between the level sets F
of t(x), and the concentric spheres of D*(t(x)). In the latter, we use the spherical

N iXi[2)l/2coordinate r Ix] (Yi= Let p*(?) be the torsional rigidity of the concentric
N-ball with radius ?, (9). Then

(25) if and only if p (i) p*().

The quantities p() and p*() stand as "common measure" between the domains D
and D*(t(x)). Since p() is decreasing in i, p(0)= P(D; t(x)), p(tmax)= 0, the function
v(x) q(t(x)) can be regarded as a function of the variable p. Without ambiguity, we
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now write

q(P) q(t(x))lt(x= if p()-- p.

In the same way we write a(p) for the measure of the partial domain D such that
p() p. From now on, we denote with an asterisk * all the quantities related to the
comparison domain D*(t(x)). For example a*(p*) is the measure of the N-ball of
radius such that p*()= p*.

In analogy to (22), we define

(22") P*(X)ltxle" P*().

DEFINITION. The function v*(x)= q*(p*(x)), where q*(,O*) satisfies

(26) a*(p*)dq*=a(p)dq for p* p,

(27) *(P(D*(t(x)))) 0

is the "symmetrization of v(x) with equal Dirichlet integrals."
This symmetrization possesses the following properties"
LEMMA 2.

(A) v*(x)>-O in D*(t(x)), v*(x) 0 on O(D*(t(x))).

(B) w*(p*)_-> w(p) Zorp*=p.

(C) f, iVv,[Z dx_ f,]vvlZ dx.
*(t(x))

Proof. The first statement is an immediate consequence of (26) and (27). Since
the "modified torsional rigidity" is an increasing domain functional, Corollary 1 leads
to the inequality a*(p*) _-< a(p) for p* p. The latter and (26), (27) prove the statement
(B). The last one follows from (23),

,o -p a (p) dp,

and from the same argument for v*(x),

fO*(t(x)) aO dp*
I[a*(*)] dp*.

We point out that this symmetrization conserves not only the global Dirichlet integral,
but also the Dirichlet integrals in corresponding partial domains (25).

We list another important property of "symmetrization with equal Dirichlet
integrals."

LEMMA 3. Let f(v) be any positive, increasing function of the positive variable v.

Let further F(v)= =o/(s) d. Then

F(v(x)) dx <-_ fD*(t(x)) F(v*(x)) dx.

Proof. The left integral can be written as

P(D;t(x ))
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After an integration by parts, we get

F(v(x)) dx f(q(/)) a(/) alp.
aO

But, by Lemma 2(B), () *(p*) for p p*, and since f() is increasing, f( ())
f(*(p*)) for =p*. Furthermore, by the definition of v*(x) (26), (27), we have

F(v(x)) dx f(*(p*)) -]a*(p dp*
aO

But P(D; t(x))= P(D*(t(x))), and thus, after an integration by parts,

F(v(x)) dx ,o F(*(p*))
dp*]

alp*.

The latter is actually D*tCx) F(V*(X)) dx. This finishes the proof of Lemma 3.
It is also clear that by its very definition v*(x) belongs to (D*(t(x))).
This symmetrization method was first introduced in [7] and developed further in

[8], [9].

3. Applications of Lemma 3
3.1. Proof of Theorem 3. Let U(x) be the solution of the Euler-Lagrange

equation (4). Then

[olv uI dx]c2(a, D) o U dx

Let D*(U(x)) be the N-ball of u such that P(D*(U(x)))=P(D; U(x)), (24). Let
further U*(x) be the "symmetrization of U(x) with equal Dirichlet integrals" (26),
(27). Then according to Lemma 2

I:lv ui ex I iv u,i dx.
*(U(x))

Furthermore, since a > 1/2, we can apply Lemma 3. We get

U2a dx <-_ Io,<U(x>) U*]z dx.

From the three last relations, we have

c2(a,D)>= [o.<,<ivu*l dx]
D,<U<[U*]2 dx

The latter leads to

c2(a, D) >= c(a, D*(U(x))) inf
v(x )e (D*(U(x ))) { E.[o.<<:= Ivl dx3}D*(U(x)) I’)2 dx

Since 2(t, D) is a decreasing domain functional and since D* _D*(U(x)), we con-
clude that

cZ(a, D) => c(a, D*) for a > 1/2.
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3.2. Generalization of Theorem 3. We consider the following extremal problem.
Given are a bounded domain D of lN with a piecewise analytic boundary OD, a

positive number C, and a positive, increasing function f(v) for v->0. We define
F(v) =0 f(:) dsc, and we look for

(28) sup {IDF(V)dxI=:M(D,C).v(x) qg (D
v(x)>-O

OlVvl2dx----C

(Notice that we do not exclude the case where M(D, C) .) If there exists a maximal
sequence u,(x)such that each u,(x) belongs to C(D)f") C(D), then

(29) M(D, C)<-M(D*, C),

where D* denotes, as before, the N-ball of RN having the same torsional rigidity as D.
The proof is easy. To each u,(x) corresponds a N-ball D*(u,(x)) defined by

P(D*(u,(x))) P(D; u,(x)). According to Lemma 3, if u,*(x) is the "symmetrization
of Un (X) with equal Dirichlet integrals", then

foF(u,) dx <= ID F(u* dx.
*(u,,(x))

Since M(D, C) is an increasing domain functional (for fixed C), we conclude that

M(D, C)= ,-lim IDF(U,) dx <-M(D*, C).

3.3. Remark. We can extend the results of the present paper to some more
general problems. Indeed, let now D be a plane, simply connected, bounded domain,
and let p(x) be a positive function of class C(D) C() satisfying

AInp+2Kp>_O inD

for some constant K. Using an idea due to Bandle [1], [2], we get isoperimetric bounds
for the functional

inf { [DIVvI2 dX]a}D -D ’p"X Ol >

corresponding to those of this paper. The method follows exactly as that described
in [8], [9].

Acknowledgment. I am thankful to Professor J. Hersch for suggesting Lemma
3 to me, and to Professor L. E. Payne for introducing me to some of the problems
discussed in the present paper.
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AN EXPLICIT FORMULA FOR f() AND THE GENERATING
FUNCTIONS OF THE GENERALIZED LUCAS POLYNOMIALS*

MASSIMO BRUSCHIt AND PAOLO EMILIO RICCIt

Abstract. From n=k=l Ft,n-l(ll,’’’, Ir)sgr-k, where 1 is a x matrix and 11,"’, L are the
invariants of (elementary symmetric functions of the eigenvalues), we first derive a formula for f().
Then we obtain the generating functions for the Fk,, and thence for the generalized Lucas polynomials
F.,, n -l.

Introduction. Consider the expression (see [19], [4])

(i) "= gn-l(I,"" ,L)r-
k=l

where n is an integer, d an rxr matrix and I,...,L are the invariants of d
(elementary symmetric functions of the eigenvalues). From (i) we first derive the
following formula for f() (f(h) a holomorphic function of the complex variable h):

r-h-1

(ii) [()=
h=0 v 2=o (--1)’hr- dh h, Io 1.

Note that (ii) implies Sylvester’s matrix interpolation formula and does not in
general require the knowledge of the Jordan canonical form of d. Recently formulae
for e only have been given [1], [16], [12].

Furthermore we determine the generating functions of the F,, k 1,. ., r, and
therefore of the generalized Lucas polynomials (in r variables)

k-1

E Fg,n+r-g-1 (I1,’’’ Ir)Z n=

Various papers have been devoted to the study of the above polynomials (see [21])
and to the extension of the algebraic theory of the Lucas numerical functions (see,
e.g., [133, [22]).

1. Formulae on the powers o[ a matrix. Consider the r x r (r 2) complex matrix
and let

(1.1) A(,)=I,-I= (-1)Jljtr-j, Io-- 1
j=o

be its characteristic polynomial. It is known (see [4]) that for every positive integer
n we have

(1.2) ,.n.__ F,,,,-1(I1,... ,L)r-’.
k=l

Furthermore, if s is a nonsingular matrix (1.2) holds also for n a negative integer.
The functions f.,(I1,. It), k 1," , r, n >_--1 are defined by the recurrence

relations

(1.3) F,,,,(II,..., L) (-1)J/l/.Ft,,_j, k 1,..., r, n _->r- 1
j=l

* Received by the editors October 19, 1979, and in final revised form March 2, 1981.
5 Istituto di Matematica Applicata, Universifft degli Studi di Roma, Rome, Italy.
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and the initial conditions

(1.4) Fr-k+l,h-2(I1, ", Ir) tk,h, k, h 1," r.

If L O, the functions Fk,,(I," ", L) for n <-1 are defined instead by

(/rl 11 /) k=l, r, n<-i(1.5) Fk.,(I1, ", L) Fr-k+l,-n+r-3
L

and again satisfy (1.3).
The functions Fl.n(I1,’", L), n--1, are called in the literature generalized

Lucas polynomials (see [2], [21]). The above results have been extended (see [4]) to
a matrix whose minimal polynomial is known. In this paper, however, we shall suppose,
for simplicity, that the characteristic polynomial is known. It is easily seen that the
results hold also if the minimal polynomial is known.

2. Representation of the resolvent matrix (Ao-)-1. By the method used
in 1 we find a representation for the resolvent matrix of as a polynomial in of
degree r-1 (see [5, pp. 93-95]).

Let Jl(A),’’’ ,Jr(A) be the invariants of the characteristic matrix of . Jk(A),
k 1,..., r is then the kth elementary symmetric function of the eigenvalues of .
It is easy to verify that

(2.1) Jk=Jg(h)= o (-1)i r-j
Ih , k=l ...,r.-- k j

Now we can show:
THEOREM 1. Under the same notation and assumptions as in 1, the resolvent

matrix (h-s)-1 may be represented by the following formula:

(2.2) (,5 -)-1 Z (__ 1)/’1 r-h-j-1 h.
m(/ h=O j=o

Proof. Put Jo 1 and J, A(A); by virtue of the formulae (1.2), (1.5), (1.3) and
(1.4) we can write

r-1

(/,, __j)-I Z Fr-k,-2 (J,""’, Jr)(A -5)k

k=0

1 r-1
y. (-1)kJr__(5-)

A(Z) --o

1 r-lk (k) k_hd?hY’. Y’. (--1)h+k Jr-k-lA() =o h=o h
(2.3)

1 r-1 r-l_ (k) k-hh2 (-1)+ Z--lX
h=0 =h h

1
(1)h=O =o h k+l

(1)h=o =o h h k+l IA
r-]-I h+k [k[ r-]Hence (2.2) follows, since =h (--1) th)t+) 1 as a particular case of a known

identity on Gauss’ hypergeometric function (see, e.g., [17, Ex. 4, p. 69]).
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3. A representation for the matrix function f(’). Let f(A) be holomorphic in a
domain C of the complex plane, let D c C be a "Cauchy domain" (see [20, p. 288])
containing all the eigenvalues of the matrix and such that D c C. Let , be the
boundary of D. Then f() is defined by the Dunford-Taylor formula (see [10, p. 44])

f(ag) f(A)(Ao aq)- dA.

Formula (3.1) is analogous to Cauchy’s integral formula in the theory of holomor-
phic functions and it is also ascribed to L. Fantappi6 (see [8]) or to F. Riesz (see [18]).
An equivalent statement is the following:

THEOREM 2. Under the above assumptions, we have

r-h-1

(3.2) f() /h=0

Note that the line integrals which appear in (3.2) may be easily evaluated by the
theorem of residues if the eigenvalues of the matrix s are given. Moreover, if the
Jordan canonical form of the matrix is known, it is possible to deduce Sylvester’s
interpolation formula from (3.2) (see [6], [9, vol. I, pp. 101-103]).

However, (3.2) does not require the knowledge of either this canonical form or
the eigenvalues of . It is in fact sufficient to know a "Cauchy domain" D (D C)
enclosing all the eigenvalues of the matrix (see, e.g., [7, p. 20]). For example, if
f(s) e (a function important in the theory of linear differential equations with
constant coefficients), (3.2) becomes

e
A(A)

dA Mh,
h=0

where as curve , we may choose any circle with center at the origin and radius greater
than the spectral radius of

4. The generating functions for the functions Fk,n(ll,’’" ,I,), k =l,’..,r.
The classical method to derive the generating functions (see, e.g., [3, p. 358] or [15,
pp. 31-32]) leads us to state:

THEOREM 3. The functions

(4.1) Y’J= (- 1)iz i/
=o (-1)iz% k 1 r

are, respectively, the generating functions of the polynomials F.,(I, L), n -1. In
fact, there exist the following expansions in power series of the complex variable z:

E k r.

ff k 1, (4.2) gives, in particular, the generating function of the generalized Lucas
polynomials (in r variables):

Fl,n+r-2 (I1,’’" L)z"
.=o Y,’=o (- 1)*z’Ii

Finally, the preceding statement allows us to determine the generating functions
of the functions Fk.,(I,’’’, L) for n <-1. In fact, by (1.5) it is easy to prove that"



GENERATING FUNCTIONS OF GENERALIZED LUCAS POLYNOMIALS 165

THEOREM 4. Under the same notation and assumptions as in the preceding section,
there exists the following expansion in power,series of the complex variable z:

Acknowledgments. The authors are greatly indebted to the referees for many
valuable suggestions to improve the paper.
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SYSTEMS OF DIFFERENTIAL EQUATIONS WHICH ARE COMPETITIVE
OR COOPERATIVE. I: LIMIT SETS*

MORRIS W. HIRSCH’

Abstract. A vector field in n-space determines a competitive (or cooperative) system of differential
equations provided all the off-diagonal terms of its Jacobian matrix are nonpositive (or nonnegative). The
principal result is that limit sets of such systems cannot be more complicated than invariant sets of systems
of one lower dimension. In fact orthogonal projection along any positive direction maps a limit set

homeomorphically and equivariantly onto an invariant set of a Lipschitz vector field in a hyperplane. Limit
sets are nowhere dense, unknotted and unlinked. In dimension 2 every trajectory is eventually monotone.
In dimension 3 a compact limit set which does not contain an equilibrium is a closed orbit or a cylinder
of closed orbits.

Introduction. One of the most interesting questions to ask about a dynamical
system is: what is the long-run behavior of its trajectories? In many systems it is
natural to expect, or at least hope, that almost all trajectories either converge to an
equilibrium or asymptotically approach a closed orbit (= periodic trajectory). Unfortu-
nately there are many systems that not only lack this convenient property, but cannot
even be approximated by systems that have it. Such systems are often said to be
"chaotic" or to possess "strange attractors".

To make matters worse, it is very hard to discover the long-run behavior of any
but the simplest systems. Research on this problem has bifurcated into two quite
different methodologies. A great deal of recent work has gone toward exploring the
consequences of various assumptions about the large scale structure of the system,
e.g., hyperbolicity of the nonwandering set, structural stability, ergodicity, and so
forth. The basic examples come from geometry and physics; the mathematical tech-
niques tend to be topological. For a recent overview of this work see Smale [15,
Chapt. I].

This structural approach is very useful for the conceptual understanding of
dynamical systems, but usually it is of little direct help to the researcher who wants
to understand a particular system. Not only is it extremely difficult to decide whether
a particular system has a given structural feature, but many systems do not satisfy
any of the axiom systems commonly used in the structural approach. In consequence
much research has gone into determining the long-run behavior of special systems
(or classes of systems) that arise as models in biology, chemistry, economics and so
forth. Algebraic techniques play a prominent role, but owing to the diversity of systems
studied very few general principles have been developed.

In this and subsequent articles I hope to make a start at bridging the gap between
these two approaches by using structural ideas to analyze a fairly broad class of
systems, namely those which are competitive or cooperative (defined below). Such
systems are sometimes associated with the concept of negative or positive feedback.
They have been used to model a variety of biological, chemical and economic systems;
see, e.g., [1], [5], [8], [9], [11], [12], [13], [14].

A general principle emerging from this analysis is that in such systems, especially
cooperative ones, there is a strong tendency for bounded trajectories to converge to

* Received by the editors November 12, 1980, and in revised form May 12, 1981. This research was
supported in part by the National Science Foundation under grant MCS 77-04242.

5" Department of Mathematics, University of California, Berkeley, California 94720.
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equilibria or to periodic trajectories. This will be made more precise in later articles,
but Theorem C below can be viewed as an instance of this phenomenon.

An efficient way of investigating the long-term behavior of a trajectory x(t)
defined for all >_-0 is to study its to-limit set to(x); the set of points which are limits
of sequences X(tk) where tk +00. Thus, to say that to(x) consists of a single point p
means that x(t) converges to p; such a p is necessarily an equilibrium. On the other
hand, if to(x) is a closed orbit of period T then x(t) will eventually oscillate with
period approaching T.

In addition to to-limit sets there are a-limit sets, defined similarly by letting
tk ----00. These are less important in applications but are useful for technical reasons.

The basic theme of this paper is that there are strong geometrical and topological
restrictions on the way limit sets are placed in Euclidean n-space. Section 1 contains
the basic definition and states the main theorems. Basic technical results about limit
sets are proved in 2. The remaining sections contain the proofs of the main theorems.

1. The main results. Consider a C system of differential equations in ",

(1.1) :dxi Fi(Xl, "’’, x,) Fi(x), 1,... n.
dt

The system is called
competitive if OFi/Oxi <-0 for j # i,
cooperative if OFi/Oxi >-0 for j # i.
A well-known type of competitive system is the model of competing species,

(1.2)

where

dxi
d--- Fi(x) ximi(x)’

(1.3) OM
<0 for j

and x is restricted to the nonnegative orthant

R-’--{X eRn" xiO, 1,’’’ ,n}.

It is known that, for n 2, every bounded solution defined on [0, oo) or on (-oo, 0]
converges. (Compare [5], [6], [11], [13]. A stronger result is proved in Theorem 2.3
below.) In contrast to this, Leonard and May [9] give examples of 3 competing species
having oscillatory solutions.

Smale [14] has proved the general result that any dynamical system in Nn-1 can
be embedded in a system of n competing species. Let An-1 c N" be the simplex spanned
by the unit vectors ei, 1,..., n, where the kth component of eg is 6gk.

THEOREM (Smale). Let X be any C vector field in An-1. Then there exists a C
vector field F (Fa, , F,) in satisfying (1.2) and (1.3), such that FIA- Xand
A"- is an attractor.

This result means that for n > 2 there is no hope of proving an analogous
convergence theorem. It seems to imply that the limiting behavior of competitive
systems can be arbitrarily complicated. For example one can start with a strange
attractor in A3 and extend it to a structurally stable competitive system in 4. On the
other hand the results below show that there are in fact important restrictions on the
limit set structure of competitive systems.
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Briefly put, our main result is that compact limit sets in a competitive or cooperative
system are unknotted and unlinked. In a kind of converse to Smale’s theorem, Theorem
A shows that a limit set of such a system can be deformed isotopically and equivariantly
into an invariant set of some Lipschitz system in one dimension lower; moreover, the
deformation is very simple geometrically. (Theorem A also implies that Smale’s choice
of the simplex An-1 is not entirely arbitrary; for example the conclusion is not true
for any simplex containing 0 and a positive vector.)

Theorem B says that a finite family of disjoint compact limit sets can be isotoped
into disjoint convex sets.

Theorem C concerns 3-dimensional systems; it says that a compact limit set which
contains no equilibrium is either a closed orbit or a ribbon of closed orbits. Thus
generically it is a closed orbit.

We now explain the main results in more detail.
By a limit set we mean either an a-limit set or an to-limit set (full definitions are

given in 2).
In the rest of this section we assume that (1.1) is cooperative or competitive and

is defined in n or . More general domains are described in 2.
Let L c be a set. Let E-lc n be a hyperplane orthogonal to a vector v.

n n-1Define 7r" -- E to be an orthogonal projection. We say L is compressible along
v if rlL is a homeomorphism with Lipschitz inverse, and 7r maps L equivariantly
respecting the flow of some locally Lipschitz vector field Y in E-. (Equivariant
means - takes trajectories of (1.1) in L to trajectories of Y, respecting parameteriz-
ation.)

A vector v is positive if v>O, 1,..., n.
THEOREM A. Let L be a limit set (of a system (1.1) as above). Then L is

compressible along any positive vector.
This has the corollary that every trajectory is nowhere dense. Moreover, the

Lipschitzian nature of (-[L)- implies that the dimension, and even the Hausdorff
dimension, of L is -<n- 1.

The proof of Theorem A is given in 3.
A collection L, , L, of disjoint subsets of " is unlinked if there is a ditteotopy

of [ carrying them into disjoint convex sets. In 6 we prove"
THEOREM B. Uvery finite collection of disfoint compact limit sets is unlinked.
In dimension 3 Theorems A and B imply that closed orbits are unknotted and

unlinked. Theorem A allows us to bring into play the Poincar6-Bendixson theorem
in studying 3-dimensional competitive or cooperative systems. In 4 we prove"

THEOREM C. Suppose n 3. Let L be a compact limit set which contains no
equilibrium. Then:

(a) L is either a closed orbit or a cylinder of closed orbits.
(b) L is a closed orbit if the system is cooperative and L is an to-limit set.
(c) L is a closed orbit if all closed orbits are hyperbolic.
Theorem C has interesting implications about the observed long-term behavior

of a bounded solution x(t) of a 3-dimensional competitive or cooperative system.
First consider the case when the to-limit set L contains an equilibrium p. Then

x(t) gets arbitrarily near p; moreover, it stays within any given neighborhood of p for
arbitrarily long periods of time. An observer would be hard put not to conclude that
x (t) has stabilized at p.

Consider next the case when L does not contain any equilibrium. Then according
to Theorem C x(t) will either converge to a limit cycle, or it will oscillate with slowly
varying period, the rate of variation tending to zero.
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Section 5 also contains a proof that if a cooperative system has a certain generic
behavior then the only compact to-limit sets are closed orbits.

The proofs of Theorems A, B and C are based on a famous comparison principle
of Kamke which implies that the flow of a cooperative system preserves the vector
ordering (Kamke [7]; see also Coppel [2]). Recall that this ordering is defined by

We also write

x < y if Xi < Yi for all i.

x <= y if Xi Yi for all i.

This result can also be used to study competitive systems since these correspond
to cooperative ones through time-reversal" changing the independent variable from
to -t.

Define vectors x, y to be related if x < y or y > x, and to be unrelated otherwise,
i.e., when there exist i, ] with xi -<- yi and

The form of Kamke’s result we shall use is:
THEOREM O. Let x(t), y(t) be solutions defined for a <- <-_ b.
(a) Suppose the system is cooperative, fix(a)< y(a) then x(b)< y(b).
(b) Suppose the system is competitive. If x(a) and y(a) are unrelated then so are

x(b) and y(b).
This result is valid for systems defined in R or R, and also for systems defined

in sets F described in 2.

2. Limit sets. In this section we consider a cooperative or competitive system

dxi_(2.1) d---F(xl"" ", xn), 1,"., n

defined by a C vector field F: F . The precise assumptions on the domain F
are given below following the statement of the main results of this section. They are
satisfied if F

_
or .

The first result is a useful criterion for a solution to converge. It can also be
viewed as an existence criterion for certain kinds of equilibrium points.

A point p F is an equilibrium if F(p) 0.
THEOREM 2.1. Assume (2.1) is cooperative. Let x’[0, oo) F be a solution whose

image has compact closure in F. If x(T) is related to x(O) ]’or some T>0, then x(t)
converges to an equilibrium as t-->

This implies that no two points of a closed orbit of a cooperative system can be
related, and the same holds for competitive systems by time reversal. It follows easily
that in dimension 3 a closed orbit cannot be knotted.

The following result expresses important limitations on the geometry of limit sets.
THEOREM 2.2. Suppose (2.1) is cooperative or competitive. Then no two points of

a limit set can be related. Moreover, if y is a limit point then the vector F(y) is unrelated
to the zero vector.

The following result shows that 2-dimensional cooperative or competitive systems
have trivial dynamics.

THEOREM 2.3. Assume (2.1) is cooperative or competitive and n 2. Let y" [0, -)
F be the solution through y(0), " t/(y). Then either [y(t)l--,oo as t-->-, or else y(t)
converges to some point of F as --> -. In fact [0, ’) is the union of two intervals, in each
of which both yl(t) and y2(t) are monotone.
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Before proving these results we describe the assumption on the domain F. We
wish to cover the cases where F R or R. But there are interesting systems which
are cooperative in some regions and competitive in others. Consider for example the
following system in :

dxi(2.2) ai(xi)[bi(xi)+ g(s)],
dt

where ai>-O and s =Xl+" .+x,. Evidently-(2.2) is competitive where g’(s)<=O and
cooperative where g’(s)>=O. (Such systems are suggested by Grossberg’s models of
adaptive networks [5]. They also arise in models of economic competition.)

From now on F is a locally closed subset of " whose interior Int F is dense in
F. This means that F is the intersection of an open set with the closure of an open
set. The vector field F" F--> " is assumed to extend to a C map on an open set in ".

The final assumption is that F is p-convex" if a, b F and a => b then F contains
the line segment between a and b. Kamke’s comparison principle (Theorem D above)
is then valid. (But Theorem 2.3 is valid without p-convexity.)

The following statements on domains of solutions and limit sets are easily proved
using standard theorems in differential equations and the assumptions about F.

Let W c R be an open set containing F and G" W n a C vector field extending
F. For any y e F there is a unique nonextendible solution :(t), a < </3 to the initial
value problem

d= G(), (0) y.
dt

Let I(y)c R be the connected component of 0 in the set

{t: a < </3 and :(t) e F}.

The restriction of : to I(y) is the solution (in F) to (2.1) passing through y at time
0. It is denoted by y(t) or b,(y). Since the interior of F is dense this solution is

independent of the choice of W and G.
Set

t/(y) sup {t" e I(y)}, t_(y) inf {t" e I(y)},

so that -oo <_ t_(y) <= 0 -< t+(y) -< oo. We say the solution through y terminates if t+(y) e
I(y); otherwise it is nonterminating. In the nonterminating case if t/(y)<oo, then
either ly(t)leo or y(t) approaches the boundary OF of F as t t/(y). If y(t) is
nonterminating and the forward orbit

O+(y) {y(t): 0 <_- < t+(y)}

has compact closure in F, then t+(y)= o.
Suppose y(t) is nonterminating. Its w-limit set w(y) w(y(0)) is defined to be the

set of points p e F such that

p lira y(tk)

for some sequence tk in I(y) converging to t/(y). It is easy to prove that if p is an
w-limit point of y (i.e., p e w(y)) then the solution through p is nonterminating. It is
also noninitiating, i.e., t_(p)I(p). Moreover, w(y) is invariant: if pew(y) then
bt(p) e w(y) for all el(p). It is well known that O/(y) has compact closure in F if
and only if w(y) is a nonempty compact connected set. In this case t/(y)= oo.
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If y(t) terminates then to(y) is defined as the empty set.
The a-limit set a(y) is defined similarly, replacing t+(y) with t_(y); it has analogous

properties.
A closed orbit y of period T 0 is the image of a solution u: F such that

u(t + T)- u(t) for all t. Notice the set of periods of y, together with 0, is a closed
subgroup of .

PROPOSt:ION 2.4. Assume (2.1) is cooperative and x:[0,)F is a solution. Let
T > 0 be such thatx (T) >= x (0) orx (T) <- x (0). Letp F be a limitpoint of {x (kT): k ’+}
with T I(p). Then p lies on a closed orbit 3" of period T and to(x)= y.

Proof. We suppose x(T)>_-x(0), the other case being similar. Then

In particular,

x(t+T)>-x(t) for all t>0.

x((k+l)T)>-x(kT) for all k 7//.

It follows easily that

(2.3) p lim x(kT)= lim x((k + 1)T), k 7//.

Therefore p(T)=p, so p lies on a closed orbit 3" of period T. From (2.3) and the
continuity of solutions it follows that 3’ to(x). Q.E.D.

Proof of Theorem 2.1. Let x:[0, oo)- F be as in Theorem 2.1. There is an open
set $ c containing T such that x(s)> x(0) [or <x(0)] for all s $. By Proposition
2.4, to(x) is a closed orbit 3" and 3" has period s for all s S. It follows that 3" consists
of a single equilibrium p. Q.E.D.

The proof of Theorem 2.2 requires the following result, Proposition 2.5, which
has some independent interest: it shows that solutions to (2.1) cannot oscillate with
respect to the partial ordering <.

Let y(t) be a curve in n defined on some interval/c R. A subinterval J [a, b] I
is called an up-interval if y(a) < y(b), and a down-interval if y(a) > y(b).

The following result is due to L. Ito.
PROPOSI:ION 2.5. Assume (2.1) is cooperative or competitive. Then a solution

y" I F cannot have an up-interval and a down-interval which are disfoint.
Proof. We prove the cooperative case; the competitive case follows by time-

reversal.
Suppose there are an up-interval K and a down-interval J with J t.J K /,

J fqK 3. We assume J <K (i.e., u < v for all u J, v K), the other case being
similar. Put

J=[a,r], K=[s,b], a<r<s<b.

Let s’ K be the smallest number such that y(s’)-<_ y(t) for all K; we denote
this by y (s’) inf y (K). Then Is’, b is an up-interval disjoint from J, so we may replace
K by [s’, b]. Thus we may assume that y(s)= inf y(K).

We prove the proposition by showing that neither r- a -< b s nor r- a > b s
can hold.

Assume r- a <- b s. Then s < s + r- a -< b. Since Is, s + r- a ] is a translate to the
right of [a, r] it follows that [s, s + r- a is a down-interval. But then

y(s+r-a)<y(s) and s+r-aK,

contradicting y (s) inf y (K).
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Assume r- a > b s. Then a < a + b r < s < b. Since [a + b r, b is a translate
of [a, r] to the right it follows that [a + b r, b is a down-interval. Thus

y(a + b r) > y(b) > y(s).

Define c [a + b r, s] to be the largest number such that y(c) >= y(b), so that c < s < b.
Then y(c) > y(s), i.e., [c, s] is a down-interval.

Suppose s c -<_ b s. Then translating [c, s] by s c provides a down-interval
Is, 2s -c] Is, b], contradicting y(s) inf y(K).

Finally, suppose s-c > b-s. Then c <c + b-s; since [c + b-s, b] is a right-
translate of the down-interval [c, s] we have

y(c+b-s)>y(b).

But this contradicts the definition of c. The proof of Proposition 2.5 is com-
plete. O.E.D.

In the cooperative case the following result also holds: if z(t) is a solution defined
for all >-0 then it cannot have both an up-interval and a down-interval. For one of
the intervals could be translated to the right until it is disjoint from the other interval,
in contradiction to Proposition 2.5. A similar (but less interesting) conclusion holds
for a solution to a competitive system defined for all t-<_ 0.

Proof of Theorem 2.2. Suppose p < q. From the definition of limit set there must
exist tx < t2 < t3 < t4 with z(tl), z(t4) so close to p, and z(t2), z(t3) so close to q, that
z(tl) < z(t2) and z(t4)< z (t3). Therefore Its, t2] is an up-interval which is disjoint from
the down-interval It3, t4), contradicting Proposition 2.5.

Suppose F(p)>0 and p to(Z). Then p(e)> p for sufficiently small e >0. Since
p(e)to(z) this contradicts what has already been proved. The other cases are
similar. Q.E.D.

Proof of Theorem 2.3. By time-reversal we may assume (2.1) is cooperative. We
also assume y(t) is not constant. The interval I- {t _->0: y(t) is defined} is the union
of the following sets:

AI--{t el: F(y (t)) >_- 0, i= 1, 2},

A2 {t I: F2(y (t)) >0 > FI(y (t))},

A3={tsI:Fi(y(t))<-O,i 1,2},

A4 {t I: F2(y (t))< 0 <F(y (t))}.

Notice that these sets are pairwise disjoint. And if A and s > and s I then
s A. For

Dcks_t(y(t))F(y(t)) F(y (s))

and, from Proposition 2.6 below, D4r(x) is a nonnegative matrix for all x F, r I(x),
r > 0. Similarly if, A3 and s > t, s I then s A3. This proves that either A Or A3
is empty.

Let k {1, 2, 3, 4} be such that OAk. If k 1 or 3 then ICAk, so yi(t) is
monotone, 1, 2. If k 2 or 4 and I- Ak there must be a smallest to I with to Ai,
] 1 or 3. Then I Ak Ai. This proves the last sentence of Theorem 2.3. O.E.D.

Theorem 2.3 is true even without p-convexity of F: the proof uses only the
following result.

PROPOSITION 2.6. Let {bt} denote the flow of a cooperative system defined in a
set F Rn which satisfies the assumptions above except that F is not assumed to be
p-convex. Then D4t(x) is a nonnegative matrix for all >-_ O, x F.
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Proof. We apply Kamke’s theorem (which holds for nonautonomous systems) to
the variational equation along a fixed solution x(t)= Or(x):

dA
(2.4) d-- DF(&,(x))A.

Here A(t) is an n x n matrix. It is easily seen that the right-hand side of (2.4), that
is, the matrix function

satisfies

O(t, A)= (DF(&,(x))A,

OG >-_ 0 for (i, ]) # (r, s),
OArs

so that Kamke’s comparison theorem applies to solutions to (2.4). Now the solution
B(t) to (2.4) with initial condition B(0) 0 is the constant solution B(t) 0, while the
solution with initial condition A(0)-I is D&,(x). Since 0_<-I we have B(t)<-_A(t), for
all _-> 0, i.e., D&,(s) is a nonnegative matrix. Q.E.D.

Proposition 2.6 has an interesting consequence for competitive systems, due to
S. Grossberg [5]. We say a solution x(t) is switched on at time to if Fi(x(to))>0 for
some {1 n }. Grossberg calls the following result the ignition principle.

PROPOSITION 2.7. Let F be as in Proposition 2.6 and let x(t) be a solution to a
competitive system in F. If x(t) is switched on at to then x(t) is switched on all tl > to.

Proof. Let the competitive system be

dx
d--i=

Consider the corresponding cooperative system obtained by time-reversal,

dy= F(y)=--G(y).
dt

Fix tl > to, and observe that the curve y(t)- X(tl-t) is a solution to the cooperative
system.

If x(t) is not switched on at time tl then G(x(tx)) <- 0, so F(y (0)) >= 0. Therefore
F(y(s)) => 0 for all s > 0 by Proposition 2.6, since

F(y (s))= Dqbs(y(O))F(y(O)),

and DOs(y(0)) _-> 0. Putting s tl to shows that F(y(q to)) >- 0, so G(x(to)) <-_ O,
contradicting x(t) being switched on at to. Q.E.D.

3. Extension and proof of Theorem A. In this section we consider a cooperative
or competitive system

dx
(3.1) d-7=F(x).

THEOREM 3.1. Let L be a limit set. Then L is compressible along any positive
vector v.

Proof. It suffices to consider only unit vectors v. Let ,to: RnEn-= v +/- be an
orthogonal projection onto the hyperplane orthogonal to v. We first show that ,rolL
is injective.
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Suppose p,qL and 7ro(p)=zro(q). Then p-q=Av, A. If p#q then p,q are
related since A 0 and v > 0. But this contradicts Theorem 2.2; therefore rolL is
injective.

For distinct nonzero vectors a, b n let A (a, b) denote the positive acute angle
between the lines {ha:h } and {hb: h }. It is easy to see that if rlL is not
Lipschitz then there exist sequences pi, q in L such that pi # qi and

A(v, pj qi) - O.

Suppose this holds, and let wi denote the unit vector (pi qi)/[pi qi[. ThenA(v, wi) 0.
Passing to a subsequence we may assume that wi +v. Interchanging pi and qi where
necessary we may assume wi v. Choose k so large that Wk > 0 and set w Wk. Then
Zrw (Pk) rw (qk), contradicting the injectivity of rw proved above. This shows that Zrv IL
is Lipschitz.

Set 7ro r and define

H: r(L)En-, H r F (r[L)-.
Now F is C so F" L R" is locally Lipschitz. Therefore H is locally Lipschitz. By a
result of McShane [14] H can be extended to a locally Lipschitz vector field on E"-.
Notice that H(Trx)= 0 if and only if F(x)= 0, by the last statement of Theorem 2.2.

To say that zr:L E"- is equivariant means that if x(t) is an integral curve of
F in L then zr(x(t)) is an integral curve of H. This follows from the definition of
H. O.E.D.

We conclude this section with another compressibility theorem for cooperative
systems.

THEOREM 3.2. Suppose (3.1) is cooperative and K c F is a compact set which is
the closure of the image of a solution x:[0, oo)oK. If x(t) does not converge to an
equilibrium then K is compressible along any positive vector.

Proof. Observe that K O/(x) t_J o(x). Let zrv: " v +/- be an orthogonal projec-
tion where v > 0. Using arguments similar to those above, one can show that if olK
is not injective, or (TrvlK)-1 is not Lipschitz, then X(to) and x(tl) are related for some
to, tl->_0. But then by Theorem 2.1 x(t) converges to an equilibrium. The rest of the
proof is like that of Theorem 3.1. Q.E.D.

4. Proof of Theorem C. In this section we assume given a competitive or coopera-
tive system

(4.1) dx--A= F(x, x., x3), 1, 2, 3
dt

defined in a set F c R3 satisfying the conditions in 2.
THEOREM 4.1. Let L be a compact limit set which contains no equilibrium. Then:
(a) L is either a closed orbit or a cylinder of closed orbits.
(b) L is a closed orbit if the system is cooperative and L is an o-limit set.
(c) L is a closed orbit ifL contains a hyperbolic closed orbit.
Proof. Let zr" R3

_
E2 be an orthogonal projection onto a plane perpendicular to

a positive vector. By Theorem 3.1, r maps L homeomorphically and equivariantly
onto an invariant set of some locally Lipschitz vector field Y in E2. Clearly r(L) is
compact and connected, and it contains no equilibrium.

Let denote the flow of Y.
The Poincar6-Bendixson theorem (see, e.g., Hartman [4]) implies that r(L) is a

union of closed orbits and trajectories that spiral down to closed orbits in both positive
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and negative time. We shall prove that such spiralling cannot in fact occur, so that
rr(L) is a union of closed orbits. From this part (a) of the theorem follows easily.

Let z rr(L). Suppose z is not on a closed orbit. Then, as , Or(z) spirals
down to a closed orbit 7 c rr(L).

Let A denote the component of E-y which contains z; let B denote the other
component. Let T > 0 be the period of y.

It is well known that y is an attractor for the flow restricted to A. Thus there is
a compact neighborhood N or y in A such that

OT(N 3/) c Int N.

Define W rr(L) V) (B U N). Then W is a compact subset of rr(L) and

T(W) c Int W.

Put V (rrlL)-l(w). Then V is a compact subset of L and

T(V) C IntL V.

This, however, is impossible for a compact limit set L by a result of Franke and
Selgrade [3]. This contradiction shows that z, which is an arbitrary point of r(L),
must lie on a closed orbit. This completes the proof of (a).

Now assume the system is cooperative.
Suppose that L is not a single closed orbit, but is a cylinder of closed orbits. Then

7r(L) contains a 2-disk D. Let p L be such that rr(p) is the center of D.
Let x(t), >0 be a solution of (1) whose to-limit set is L. There exists t0>0 such

that X(to) Int D. Let q L be such that 7r(x(to)) zr(q). It follows that X(to) is related
to q.

There exists tl > to such that x(h) is so near q that X(to) is related to x(tl). It now
follows from Proposition 2.1 that x(t) converges to an equilibrium as o. Thus L
is an equilibrium; this contradiction completes the proof of (b).

Part (c) follows from (a) since a cylinder of closed orbits cannot contain a
hyperbolic closed orbit. Q.E.D.

By exploiting Theorem 3.2 we can establish other criteria for L to be a closed
orbit in the cooperative case. Suppose L is a compact to-limit set of a cooperative
system (4.1), say L to(x). Suppose L contains a nonequilibrium closed orbit 3’. Then
x(t) does not converge, and so Theorem 3.2 implies that the closure of {x(t): =>0}
is compressible. Set z 7rx(0). Thus (in the notation above) 0t(z) has the to-limit set
r(L). Since 7r(L) contains the closed orbit r(3"), the Poincar6-Bendixson theorem
implies 7r(L)= 7r(3’). Since r is injective it follows that L 3’.

Now suppose L does not contain a closed orbit, L contains only a finite number
of equilibria, and x(t) does not converge. Then by using Theorem 3.2 and Poincar6-
Bendixson one can show that L must contain a cycle o equilibria p,. ., Pk (k >-_ 1):
this means that for each 1,. ., k there is a solution yi(t) in L whose a-limit in pi

and whose to-limit is pi/, with Pk/l P. Thus we obtain:
THEOREM 4.2. Assume that (4.1) is cooperative and contains no cycle o[equilibria.

Then every compact to-limit set is a closed orbit (possibly an equilibrium).
It is well known that existence of a cycle of equilibria is a highly unstable

phenomenon. It cannot occur if all the equilibria are hyperbolic and their stable and
unstable manifolds meet only transversely--a generic property of C vector fields (see
Smale 16], Abraham and Robbin [17]).

In applying approximation theorems to cooperative systems there arises the
difficulty that the cooperative condition is not stable. However, the property of being
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strongly cooperativemOFi/Oxj > 0 for # j--is stable. Given a cooperative field F every
neighborhood of F in the compact-open C topology contains a strongly cooperative
field G of the form

G(x) F(x) + 6 . x, 6>0.
j=l

The field G can then be approximated by fields having generic properties. In this
way, using standard approximation methods of differentiable dynamical systems, one
can prove the following result:

THEOREM 4.3. LetFbe a cooperative vectorfield in F c Rn. LetK F be a compact
set and e a positive number. There exists a strongly cooperative vector field G on F with
the following properties:

(a) For all x K,

IF(x G(x )l + IIDF(x DG(x )ll < e.

(b) All equilibria and closed orbits ofG are hyperbolic, and their stable and unstable
manifolds meet only transversely.

(c) If n 3 then every compact w-limit set is a closed orbit (perhaps degenerate).

5. A criterion for unlinking. In this section we prove a topological result, Proposi-
tion 5.2, needed for the proof of Theorem B.

An isotopy of Rn is a family of C diffeomorphisms ht" " --> , 0 <_- <-_ 1, such that
h0 is the identity and h,(x) is Coo in (t, x).

Let M {Ai}, {Bi} be two collections of subsets of " indexed by the same
set S. We say M and are isotopic if there is an isotopy ht of " such that h (Ai) Bi
for all S. This is an equivalence relation.

The family M is unlinked if it is isotopic to a family such that there exist
disjoint convex sets C R with B C for all S.

Let f,..., fr be continuous real-valued functions on n-. Let L be the graph
of fi; we consider L as a subset of "-ax -".

LEMMA 5.1. Iff <" < fr then {Lx, , Lr} is unlinked.
Proof. Given real numbers u <"" < Ur there is a single isotopy of R carrying

each ui into the open interval (i, + 1). Moreover, the isotopy can be chosen to be
C in the parameters (u 1,’’’, ur). We assume such a family of isotopies has been
chosen once and for all; for fixed ua <" < Ur we denote the isotopy by

yg(t, ul,’"" ur, y),

where g is Coo.
An isotopy of n--1 X is defined by

ht(x, y)= (x, g(t, fa(x), fi(x), y)).

Evidently ha takes the graph of fi into the convex set C {(x, z) ,-a R: < z < +
1}. Since these sets are disjoint the L are unlinked. Q.E.D.

PROPOSITION 5.2. For 1, , r let K c- be a compact set and g:Ki a
continuous map. Let Li ,-a ff denote the graph of g. Suppose that g(x) < gi(x)
whenever < ] and x Ki f’) Ki. Then {Lx, , Lr} is unlinked.

Proof. This follows from Lemma 5.1 provided the g extend to continuous maps
fi: Rn-1 such that fi < f/for < ]. Such extensions can be found as follows.
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By Tietze’s theorem the gi extend to continuous maps i" R"-I R. Let

mi <min {fi(x): 2 <=] <=r, x Ki}.

Let U be a neighborhood of K so small that < m on U. Let p" R"-I [0, 1] be a
continuous function which is 1 on K1 and 0 on "-= U.

Define

f:-,
f(x) p(x)(x) + (1 -p(x))m.

Then f(x) < gi(x) for / > 1, x K. A similar procedure extends g to f ,-1 with
f >f and f(x) < g(x) for > 2, x K, etc. In this way the required . are successively
defined. Q.E.D.

6. Extension and proot ot Theorem B. Theorem B is a special case of a more
general result, Theorem 6.1, proved below.

We suppose given a cooperative or competitive system

(6.1)
dx

F(x)

defined in a set F as in 2.
Let L be an invariant set. We call L a pseudo-limit set if it satisfies the following

condition. Given two points of L and e > 0, there is a trajectory (not necessarily in
L) that comes within e of each of the points. Evidently limit sets and orbit closures
are examples of pseudo-limit sets.

A set L is balanced if p, q are unrelated for all p, q in L.
THEOREM 6.1. Let L, , L be disjoint compact pseudo-limit sets. Suppose that

each Li is balanced. Then {L, L} is unlinked.
The proof depends on the following lemma. Define a relation < on

{L,.. , L}: L <L if p < q for some p Li, q L.
LEMMA 6.2. The relation < is a partial oMering.
Pro& Since each L is balanced it is impossible that L <Li.
Suppose L <L <L. We want to prove L <L. There exist points

p L, q, q’ e L, r L
such that p < q, q’ < r. Let U, U’ be neighborhoods in F of q, q’ respectively such that
p < U, U’<r. Let y(t) be a solution entering both U and U’. Suppose y(t0) U,
y(tl) U’.

By time-reversal we assume t to.
Suppose the system is cooperative. Let x(t) be the solution such that X(to)= p.

We have X(to)< y(t0). Since t0 t, the order-preserving property (Theorem D of 1)
implies x(t) < y(t). Now y(t) U’ so y(tl) < r. Since x(t) L it follows that L <L.

Suppose the system is competitive. Let z(t) be the solution such that Z(tl) r.
By a similar argument one sees that

p X(to) < y(t0) < Z(to)

and Z(to)L. Thus in all cases L <L. This completes the proof of Lemma
6.2. Q.E.D.

Proofof Theorem 6.1. It follows from Lemma 6.1 that the Lk are partially ordered
by <. We relabel the Lk so that if Li < L then <.
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Let E"-1 c R" be a hyperplane orthogonal to a positive unit vector v. Let ,r" Rn
En-1 be the orthogonal projection. Define continuous maps

gk" ’n’(Lk) "> , X --> (X, V ),

where (.,.) is the standard inner product.
Identify " isometrically with E"-1 x in such a way that E- is identified with

E"-x 0 in the natural way, and Av is identified with (0, Av) for all A . Then Lk is
identified with the graph of gk.

The partial ordering of the Lk by < implies that whenever </’ then gj < gj on
,r(Li) f’)r(L). It follows from Proposition 6.2 (with Ki zr(L)) that {L,..., Ls} is
unlinked. Q.E.D.
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A CLOSURE PROBLEM FOR SIGNALS IN
SEMIGROUP INVARIANT SYSTEMS*

JOHN J. BENEDETTO"

Abstract. Let Vr be the L1 variety generated by f L1. The closure statement, V L1, is characterized
for a class of functions (damped signals) f L in terms of a canonical semigroup F and a constructible
measure v; the characterization does not use Wiener’s criterion {x: (x)=0}= , since this condition is
difficult to verify in practice. Damped signals arise in certain variational and number theoretic problems.
Applications include the verification of the closure statement in several cases as well as the construction
of new nontrivial invariant subspaces of weighted L1-spaces. The main technique involves the proper
approximation of v, which is supported in F

___
[0, oo); the main point is that for certain damped signals this

approximation requires information from the distant past, that is, from a neighborhood of -oo. The
terminology, "semigroup invariant systems," in the title, is used to formulate a notion generalizing the
"shift invariant systems" of digital signal processing.

Introduction. A bounded function S on the real line is a signal if

S’-" E
]=0

where 0 Ao < A <A <. , lim A , S(0) 0 and XA is the characteristic function
of the set A. A {Ai: j 0, 1,. .} is the set of jumps of the signal S. L() is the space
of Lebesgue integrable functions on , S(t)=e-S(t) is the damped signal on
corresponding to the signal S and a >0, and V is the L()-closed translation
invariant subspace generated by S. For a given signal S and a > 0, we shall characterize
the closure statement, V LI(), in terms of the semigroup F {A + 3/: A, /s A}, a
measure u corresponding to S, and a >0. The closure statement for signals was
originally discussed in Benedetto [5]; the main results of that paper are independent
of the present work, although the characterization of closure that we give here is
suggested by some of the results there.

The closure statement, V L(), is usually characterized by Wiener’s Tauberian
theorem: V =L() if and only if the Fourier transform, , never vanishes. The
reason that we have developed our characterization is because of the difficulty, in
general, of determining whether or not vanishes. (Of course, Wiener’s theorem is
formulated for all of L() and not only damped signals.)

In our paper [5] we stated two problems, one from analytic number theory and
one from prediction theory, which deal with damped signals and depend on the validity
of the closure theorem. We now mention two other applications. They concern the
three ingredients, F, u and a, of our closure theorem.

1. The usual deterministic sampling of continuous-time signals is periodic, and
of course, an infinite periodic sequence of sampling times beginning at 0 is a
semigroup. It may happen that optimal (for a given project) sampling for a given
continuous-time signal requires sampling over a semigroup more general than a
periodic sequence. Our results provide a closure theory, which in turn is closely related
to spectral theory, e.g., Benedetto [3, pp. 100-101], corresponding to semigroup
sampling. Also, in the case of random sampling or deterministic periodic sampling in
which noises may render some of the samples useless, our characterization of the
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supported in part by a Faculty Research Grant at the University of Maryland.

University of Maryland, College Park, Maryland 20740. Current address, Department of Mathe-
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closure statement shows the necessity of dealing with the semigroup generated by
available sampling times in order to determine the range of integrable messages that
can be formed from $ in a damped system depending on c.

2. The results of 5 and some preliminary facts we verified in [5, 4] yield an
explicit example of a nontrivial invariant subspace X for the weighted La-space,

L/z {f: f_ If(t)l e -/:z dt<oo}.
The existence of such subspaces has been established by Domar using a device due
to Vretblad. Our example is the subspace

X {[: [(t) e -’/z V/},

in the case where F {log (n + 1)" n 0, 1,. } and $ alternatively takes the values
1 and 0. The characterization of the nontrivial invariant subspaces of weighted
LO-spaces, especially on half-lines, is difficult, and Domar, N. K. Nikolski and others
have established a basic theory. Our semigroup technique provides a means of
constructing these subspaces for certain weights.

Section 1 establishes notation. Our characterization of the closure statement is
given in 3 (Theorem 3.1) in a prediction theoretic setting; this characterization is
more useful in checking for closure than the Tauberian theorem, where ZS must be
computed. Theorem 3.1 depends on an analytic approximation technique and the
algebraic construction of a measure u with the property that S u is the Heaviside
function. The analytic technique involves the construction of a norm II" II, and Theorem
3.1 has the form

inf T ’ll 0:v L
T

where T belongs to a special class of distributions. The algebraic construction is made
in 2 (Theorem 2.1) and is the reason that Theorem 3.1 is applicable.

Theorem 3.1 has two parts. The first part provides a complete theory for a form
of closure which is stronger than the conclusion V LI(R). This theory is given in
4 (Theorems 4.1-4.3) and is applicable when u can be approximated without recourse

to the distant past. Such is the case when the differences between consecutive terms
of F do not tend to 0 too quickly. Necessary conditions for this approximation in
terms of first order distributional convergence are given in Theorem 4.4.

The second and more subtle part of Theorem 3.1 deals with the cases in which
, can only be approximated from the distant past. That such cases occur is verified
in Proposition 5.1. The remainder of 5 develops a theory (Theorems 5.1-5.2) to
check on the closure theorem, V LI(R), when approximation from the distant past
is required, and shows, by means of a weak compactness argument (Theorem 5.3),
that this theory is best possible for the approximations we have constructed.

Section 6 contains some examples of closure for special semigroups as well as
some constructive aspects of u with which we did not deal in 2.

1. Notation. If S is a signal with jumps at A and F is the semigroup generated
by A, that is, F {A + 3" A, 3" A}, then we say that S is a signal on the semigroup
F {3"i}. If S is a signal on F for which S(3"2i)= 1 and S(3’2i+1)= 0,/" 0, 1,. , then
S is a 0-1 signal.

C,/" 0, 1, , , denotes the space of f-times continuously differentiable func-
tions on the real line having compact support. For each , C is topologized in the
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usual way, e.g., Schwartz [20], and its dual is denoted by Di. D-
distributions andD(X) is the space o distributions T having support, supp T, contained
in X. Do is the space of Radon measures and it is clear that for all j >_-0

Do(X)
_
Di(X)

_
Di/(X)

_
D(X)

("X" will not be used in the ease X ). 5" is the Schwartz space of infinitely
differentiable functions f on Rt: that is, f satisfies the condition liml,l-o Itmf(’)(t)[ 0,
for each m, n->_0. St’ is given the usual metric topology defined in terms of this
polynomial condition for each derivative, e.g., Schwartz [20], and the dual space 5"
of 9 is the space of tempered distributions. We shall also deal with the space D/
{TD: la --aT for which supp T _[a, )}.

M(X) is the space of bounded Radon measures supported by X (e.g., Benedetto
[4]) and Me {tz M" card supp/z < oo}. It is clear that L

_
M
_
Do. The dual ofL(R)

taken with the norm Ilfllt’()= i lfl, is the space L() of essentially bounded measur-
able functions. Lo (resp., LIo) is the space of measurable functions each of whose
elements is essentially bounded (resp., integrable) on every bounded set of . C _

L
consists of the continuous elements of L.

R+ {t : => 0} and H is the Heaviside function: H(t) 1 if + and H(t) 0
if < 0. The distributional derivative, H’, of H is the Dirac 8 "function", 8 80 Mr.
8v Me is the unit mass at y . Finally XA denotes the characteristic function of the
set A_ .

2. Semigroups and a signal convolution equation.
PROPOSITION 2.1. Let F={yi: j =0, 1,’..}c_[0, oo) be a discrete additive semi-

group and take integers n >-tn >-O. Then there is a unique integer j >-0 for which

(2.1) [’)Q "]" Vm, ")//+1 "]" "m) Z:) ["n, ’n+l).

Proof. Take the largest integer j such that Yi + Ym Yn. Then Yi+ nt- Ym > "Yn. Since

Yi+l + 3’,, e F and since yn+l(> q/n) is adjacent to y,, we have yi+a + 3’,, >-- y,+l, which is
what we wanted to prove.

Because of Proposition 2.1, we can make the following definition.
DEFINITION 2.1. Let F={yi:j=0, 1,...}_[0, eo) be a discrete additive semi-

group, and take integers n _-> m-> 0. Then j(m, n) is the uniquely determined integer
j for which (2.1) holds.

We shall use the first part of the following example in Theorem 2.1.
Example 2.1. Let F={yi: j =0, 1,...}c_ [0, 00) be a discrete additive semigroup

with 0 yo < y < y2 <" and let A be a set of generators of F.
a) There is M such that for all j, Yi+l-Yi <=M; in fact, we take M yx. To see

this, assume the opposite, viz., yl < yi+l-Yi for some j. Take the largest integer n for
which nyl <-Yi. By hypothesis, (n + 1)ya < Yi+a, and this is a contradiction since Yi and

/i+1 are adjacent elements of F and
b) In light of part a) we note that {yi+1-Yi} needn’t be decreasing, even excluding

the case that Yi+-Yi is eventually constant. For example, given yl, we choose
y2 (yx, 3yl/2) and y3 2yx. Then "g3-- /2 > T2-- "Y1. On the other hand we always have

T2 < 2T1’Y3--< 2T1,

since 2y F.
c) Suppose A {yl, ]/2} is linearly independent over the rationals. Then a yl/y2

is irrational and so, by Hurwitz’s theorem (e.g., Hardy and Wright [14, p. 164]), there
are sequences {p,}, {q,}c_M tending to infinity for which
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Using this we shall show that

lim (yj+l yj) 0,

noting a similar result for any linearly independent set A. The limit will be verified if
we show that for any e > 0 there is K > 0 such that

/]’, k’>K, :lj, k k’ for which I(/’-])A1 +(k’-k)X21<e.
For this e we employ Hurwitz’s theorem and choose N such that, for all n > N,
1/( q,) < e. We complete the proof by writing p, and q, as differences k k, and

d) Let G ={-A" , A F}. G is a group and by the characterization of the
discrete subgroups of we see that if lim (i+ i) 0 then G .

THZOZM 2.1. Let S o S(Ai)Xtx.x+ L(), S(Ao) 0, be a signal with lumps
at A and let F be the semigroup generated by A. Write S rS(yi)Xv.v+, where
we could have S(i)= S(i+).

a) There is a discrete measure (possibly unbounded)

(2.2) v E av6 Do[0, )

such that

(2.3)

and

(2.4) S-1= u’= E av6’ D[0, m)

(that is, $ S- 6). Further, v is the unique distributional solution of (2.3).
b) For integers n >=m >=0, we write S(m, n) for S(yi(,,.,)), where ](m, n) is defined

in Definition 2.1. The coefficients av in (2.2) are given by either of the formulas (2.5)
or (2.6)"

(2.5)

1
a= S(0),

av, ao(1 aoS(O, n)- aviS(l, n) av._lS(n 1, n))

and, with S(0) 1, ’q’n > 0,

(2.6)

av. 1 + (-1) "-("-k) S(mx, m2)S(mz, m3)’ S(mk-, mk)S(mk, n).
k 0ml<m2<"’<mk<n

The inner summand of (2.6) has (,) terms and the total sum has 2" terms.
c) Let S(O)= 1 and define

Vn avj6vj and
0

Then ]’or all n

H, 1 on [0, y,,+a),
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and

/=o o

Proof. i) Suppose (2.3) has been proved. By its definition in (2.2) we known that
u D[0, oo) since F is discrete. Thus, by (2.3),

(2.7) 8 H’= S u’= S (g a3),
and so (2.4) follows.

ii) Since S-1 exists, we automatically obtain the uniqueness in part a). In fact, if
S T H, then T H S-1= Y. a,(H 8’)= Y a,8, u by (2.4).

iii) The proofs of (2.3) and (2.5) are done together in parts iv)-vii) of the proof.
iv) Let ao 1/S(0). Then

and, in particular,

On [yl, ")"2), we have

ao3o* S 1 on [0,

S(‘/1)aoo * S s(0)

and we want to choose a, such that

Vt e [yo, y2), (ao3o + a18,) * S(t) 1.

To this end, we note that

S(t-Yl) S(0) on IV1,

since e [yl, "/2) implies t-"/1 e [0, "/2-"/1), which in turn is contained in [0, "/1) since
2"/1 -> "/2. Thus we choose a,, such that (S("/1)/S(O))+ aviS(O)= 1, i.e.,

1 1
av S(0---- S("/1) S(0)----5.

Consequently, for this a, we have

1=0

and, in particular,

(aoSo + a,,,,) S 1 on [0,

v) We shall now explicitly see how Proposition 2.1 and Definition 2.1 play a role
in the proof. We want to choose a2 such that

(2.8) Vt ["/0, "/3), (aoSo-I- a,l/1 -Jr- a,_S,) S(t) 1.

8v2. S 0 in ["/o, "/2) and

(aoSo + avSv,) S 1 in [0, "/2).

Thus the first step in finding av2 for which (2.8) is valid is to show that 8o * S, By, S
[nd By=. S are constant on ["/2, "/3).
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From Example 2.1a we know that ]/1

[0, 73- 3’2)c_ [0, yl) and so S(t-/2) S(0).
Also, 61 * S Y S(]/j)X[vj+vl.+I+vI) S(]/j(1,2)) on [3’2, ]/3), where %(1.2) is deter-

mined as in Proposition 2.1./’(1, 2) could be 0 or 1 depending on F. Finally, 6o * S
S(]/2)( S(]/i(0,2))) on [3’2, ]/3). We can now solve for av2, since avl and ao are known
and since (2.8) leads to the equation av2S(O)+ awS(]/i(1,2))+ a0S(]/2)= 1. Thus,

1
av2 S(0)

(1 a0S(]//(0,2))

vi) We proceed in the same way for av. The problem is to choose av such that

(2.9) Vt []/0, ]/4), (ao6o + av6v + arab3, + av3.v3) * S(t) 1.

6v3 S 0 on [0, ]/3) and (ao6o + aw6v + aw6v) * S 1 on [0, ]/3) by the previous step.
Because of Proposition 2.1 we see that on []/3, ]/4) we have 6v3 * S S(0),

3’z * S E S ]/ / / + "Y "V + "V S(]/](2,3)),

/1 * S S(]/j(1,3)) and 3o * S

We can now solve for av, since av, av, and ao are known and since (2.9) leads to
the equation

av3S(0) + awS(]/i(2,3)) + awS(]/i(1,3)) + aoS(]/3) 1;

thus,

1
av -5-L-, (1 aoS(yio,3))- avlS(]/a,3))- a,2S(]/j(2,3)).

u)

vii) This method of construction is obviously valid for all n. Thus, as in (2.8) and
(2.9), if we are given ao, avl,..., av,_l, then

Vt [0, Hn(t)= ( avfir,) * S(t)= 1,

where av, is given by (2.5). Consequently, (2.3) and (2.5) are valid, as well as part of
c). (2.3) and parts i) and ii) of the proof yield all of part a).

viii) The verification of (2.6) follows by systematically substituting the values
avj, 0<_-f<n, obtained by (2.5), into the formula for av, (also given by (2.5)).
Thus, avl 1-$(0, 1);

av 1 aoS(O, 2)- aS(1, 2)
1 aoS(O, 2)- S(1, 2)(1 aoS(O, 1))

1-(S(0, 2)+ S(1, 2))+ S(0, 1)S(1, 2),

a,/ 1 $(0, 3)- av,S(1, 3)- av2S(2, 3)

1-8(0,3)-S(1,3)(1-S(0, 1))-S(2,3)(1-(8(0,2)+S(1,2))+S(0, 1)8(1,2))

1-(S(0,3)+S(1,3)+S(2,3))+(S(0, 1)S(1,3)+S(0,2)S(2,3)+S(1,2)S(2,3))

-$(0, 1)S(1, 2)S(2, 3),

av, 1 S(O, 4)- av,S(1, 4)- av2$(2, 4)- aviS(3, 4)

1-S(0, 4)-S(1, 4)(1- $(0, 1))-$(2, 4)(1-S(0,2)-S(1,2)+S(0, 1)5’(1,2))
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-S(3, 4)(1 S(O, 3)-S(1, 3)-S(2, 3) +S(O, 1)S(1, 3)+S(O, 2)S(2, 3)

+ S(1, 2)S(2, 3)- S(0, 1)S(1, 2)S(2, 3))

1- (S(0, 4)+ S(1, 4)+ S(2, 4)+ S(3, 4))

+ (S(O, 1)S(1, 4)+ S(O, 2)S(2, 4)+ S(1, 2)S(2, 4)

+ S(0, 3)S(3, 4)+ S(1, 3)S(3, 4)+ S(2, 3)S(3, 4))

-(S(0, 1)S(1, 2)S(2, 4) + S(0, 1)S(1, 3)S(3, 4)

+ S(0, 2)S(2, 3)S(3, 4)+ S(1, 2)S(2, 3)S(3, 4))

/ S(0, 1)S(1, 2)S(2, 3)S(3, 4).

The general case ollows in a similar way, and so (2.6) is verified.
Since we have already proved (2.5), the proof of part b) is complete.
ix) From (2.5)we have a 1 S(0, 1), so that lal =< / Ilsll, From the definition

Of H1,

IHI IS + awS(" -y)l--- Ilslloo(1
=< Ilsll(1 + 1 + IIsIl) <= 211sll / Ilsllz=< (1 + Ilsll)=.

Next, aw_ 1- S(0, 2)-artS(l, 2), and so

and, from the definition of H2,

--< Ilsll(1 / 1 / Ilsllo +(1 / Ilsll))

311sll / 311sll / IIslIL <-- ( / Ilsll).
For av3 we have

<- / Ilsll / (x / Ilslloo)llsll / (x / IIslIL)IIslI
/ Ilsll(x +(1 / Ilsll) / ( + IIsltL))= (1 / Ilsll),

amd the general estimate for a. follows since

1 + r(1 +(1 + r)+(1 + r) +... +(1 + r)"-) (1 + r)".

Similarly, for H, we have

[n,I In,,-1 + a.$(. y,,)l <-- (1 + Ilsll)" / lay. Ilslloo --< (a / Ilsll)" (1 / Ilsll).

The final formula for H, in part c) is clear from previous considerations.
THeOReM 2.2. Let S be a 0-1 signal and take as defined in Theorem 2.1.

Then ao 1 and

(2.10) ’qn > 0, a. (-1)"av.,,
i=1

where the set {(m, n)" 1,. , ],} of ordered pairs is characterized by the property that

(2.11) Vi 1,..., ],, 3,,,, +3,,,
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In particular, "y,. 3’,.

Proof.

s s- E x,+ * a,, Y Y a,’, x,+
k=0 j=O

Consequently,

(2.12) 6 a,(6,o+,-B.r+, +6,+,-3,+, -’]t4+,yi--]t5+7i -[-"" ")
i=0

avoSo+vo- avo6w+vo + avoB,+vo a,o6,+,o + avot4+vo- a,o6v+,o +"

We now combine like terms in (2.12), noting that the coefficient of 6., n >-1, is 0
since the left-hand side is 6. Thus, because of (2.12), we read off that avo 1. Also,
av 1 since 6v 6v.. + 6. only for the eases (m, n) (0, 1), (1, 0); thus, from (2.12),

0 6,(-avo + a), i.e., av,- ao 0,

and so av 1. Generally, for each n >_-1, we define {(m, n)} as in (2.11). From the
array in (2.12), we have

(2.13)
n mx> m2>" > mi. =0,

0= nx <n2<" "<ni. n,

so that we are scanning a triangle (in this array). Because of (2.13) we see that

’qn>_-l, 2=<].-<n+l.

Also, because of (2.12) we can now write the coefficient of 6,, n -> 1, as

Y. (-1) ., 0.
i=1

Since mi. 0 and ni. n, we obtain our result. [3
Example 2.2. a) If F ={0}UN and S =.oX[2,.2,+) then

S (, + ,x) H,

and ao a 1 and a, 0 for all n > 1.
b) In general, Y av diverges and, in fact, if $ is a 0-1 signal associated with an

arbitrary semigroup F then a e Z for all y e F and, hence, Y a converges if and only
if a 0 for all large y.

Remark 2.1. The representation of av in (2.6) is analogous to the structure of
the polynomials constructed in [5, Thm. 3.3].



188 J.J. BENEDETTO

3. The closure statement for damped signals. Let S be a signal and let D/ be
the space of distributions on R supported on half-lines [a, oo), where a varies. If a > 0,
TeD+and T.SsLIoc, we define

(3.1) IITII f_ e-tlT * S(t)[ dt.

We then set

(3.2) Y {T D+" T S s Loc, IITII < oo, and =1/3 < c such that e-3tT ’}.

Remark 3.1. a) If T1, T2 D/, then T1 T2 D/ exists, and supp T T2_
supp T1 +supp T2 (e.g., Schwartz [20, p. 172]).

b) Let S Xco,v), and let T Ix’ e D/, where Ix is a measure having a discrete or
singular part and where supp/z

_
[a, a + y/2]. Then

T S Loc;
in fact, T S Ix S’= Ix 6-ix 6 Ix- -vix. We use the hypothesis on supp/x to
ensure that/z- zvix does not cancel any of the "singularities" in Ix.

PROPOSITIOY 3.1. Given a signal S:
a) For all a > O, Y, I1) is a normed vector space.
b) If a <= a2, then YI - Y2.
c) For all a > 0, Mr

_
Y.

d) For all Ix Do D+, Ix * S L
_
Loc.

Proof. a) It is clear that I1" L is a seminorm on Y. If T Y and Ilrll -0, then
T S 0 a.e. by properties of the Lebesgue integral. Since T D+ and S is not the
zero-function, we conclude that T 0 by the Titchmarsh convolution theorem (e.g.,
Schwartz [20, p. 173]).

b) Take a2 O1 and T YI. To prove IIT]I,2 < and e-t3tT if" for some/3 < a2.

where c min {0, a} and supp T
_

[a, oo). Thus, I[TL < oo. Next, we write/3 a,- e
and

e-(O2-e)tT e-(O-e) e-(O2-oa)tT e-13tT1.
By hypothesis we take fl so that e-OfT S’, and since a2 a 1, we also have e-3trl S’.

c) If IX M, then Ix S is a finite sum of translates of S and so the inclusion,
Mr

_
Y, is clear.

d) Part d) follows from the definition of the Stieltjes integral in the following
way. By the Riesz representation theorem, Ix F’ in the distributional sense, where
F 6 BVloc,

F(x)=F(x+) and F=0 on(-,a).
Thus,

F(a)S( L(R) and

IX * $(x)=F(a)S(x)+ S(x-t) dix(t).

S(x t) dix (t)

and so Ix * S s Lc.
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Note that this result depends on the fact that if Ix Do and K
___
R is compact

then IXXK M(R). [3
PROPOSITION 3.2. Given a signal S, a > O, and an element T Ys there is < a

such that the following are true for the bilateral Laplace transform L and s r + i’:
a) L(T)(s) is an analytic function in the half-plane, cr > .
b) L(T * S)(s)

_
e-StT * S(t) dt for cr > .

c) L(T * S)(s) L(T)(s)L(S)(s) for r > .
Proof. By the definition of Ys, we choose /3 e (0, a) so that e-OtT 6e’. Then,

using (S, o) to indicate the functional value S(p), we see that

L(T)(s) (T, e -st) (Te-t, e

is well defined for r >/3. In fact, T D/ implies that e -s-)’ on supp (e-O’T).
The analyticity follows by the usual arguments (e.g., Benedetto [1]) and so a)

follows, b) is immediate and c) follows since L(S)(s) is analytic in the half-plane r > 0
and because

L(T S)(s)= (Tt, e-St)(Sg, e-S"). [-1

For the closure theorem, Theorem 3.1, we shall need the following two spaces:

Xs {T Ys" ::l{ix, }
_
Mr such that 11Z Ixn [Is --> 0},

Xs,o {T Ys f3 D[0, )" :l{ix,} Mr(f0, )) such that liT- Ix, lls --> 0}.

Also, given a signal S and a > 0, we define Ss as the product Ss(t) e-StS(t), and we
let Vs (resp., V+ be the Ll-closed (resp., Ll(/)-closed) translation invariant (resp.,
right translation invariant) subspace generated by

Part a) of Theorem 3.1 depends on Wiener’s Tauberian theorem, part b) depends
on the Nyman-Beurling theory, and if the conditions of part b) are valid, then so also
are those of part a).

THEOREM 3.1. (Closure theorem). Given a signal $ and a > O, the following hold"
a) infTx T- ulls 0 if and only if Vs La(). Xs can be replaced by Ys orMr.
b) infTX.ollT--’ll --0 if and only if V- =LI(+) for all v>=a.
c) If e-Otu ’ for some < a, then Vs L1().
d) liT- 0 for some T Ys if and only if u Ys. In this case T since I1" I1

is a norm.

Proof. c) If e-Btu 5’ for some fl <a, then v Ys and so infTsy liT-uil
I1 - 11 -o. The closure follows from part a).

d) If liT- u[[s 0 for some T Ys, then S (T- u) 0, a.e., and since S, (T- u)
D/, we conclude from the Titchmarsh convolution theorem that T u. The converse
is obvious.

b)i) Suppose Vs L(R/); we don’t have to consider any /3->a to verify this
direction. Since es L(R/), where es(t)= e-Sgto,o(t), we can approximate it in terms
of Vs. Thus, given e > 0, there is a finite set F

___
[0, c) for which

(3 3) lies(" )- E cs("-t)S(.
tf

Since Y cg(x t)S(x t) es(x)S * Ix(x), where Ix Y (cs(-t))St, (3.3) becomes

and, of course, Ix Mr[0, c)_ Xs.o. Thus, we have verified the necessary conditions
for closure.
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ii) The proof of sufficiency is the difficult direction of part b) and involves the
Nyman-Beurling theory (e.g., [17], [18]). By hypothesis, we choose {tzn}_Mr[0,
for which

(3.4) lim- I1- tz.ll =0.
For any s tr + i’, tr ->_ O, we compute

IL(e(S * Ixn))(s)-L(e,)(s)[= rio e-(S+’)t (1-S*tx,,(t)) dt

since u S H. Consequently, because of (3.4),

1
limL(e(S /x,))(s)=,

where the convergence is uniform in the half-plane r _->0. Therefore, for all s for
which r -> 0,

(3.5) :In such that IL(e,,(S * tz,))(s)[ > 0.

We shall use (3.5) to prove that

(3.6) ts, cr >- O, IL(,S,,)(s)I > O.

Suppose L(S)(s)= 0 for some s, o, >= 0. Then, if x >_-0,

e -(s+)x f e-(S+)tS(t) dt e-(S+’)XL(S)(s)L(e,,(zxS))(s)

and hence, L(e,,(S /,))(s) 0 for all n.
This contradicts (3.5), and so (3.6) is obtained. Nyman’s theorem asserts that if

f LI(R+) does not vanish identically in any neighborhood of 0, then the variety V/

generated by f is all of LI(R+) if and only if [L(f)(s)l>O for each s=cr+iz, tr>=O,
e.g., Nyman [18], Koosis [17] and Benedetto [5, Remark 1.3].

Therefore, in our case, we have V+ LI(+) because of (3.6). The result is also
true for all 3’ => a sincethe analogous condition for 3’ corresponding to (3.6) is obviously
true since we are dealing with exponentials.

a)i) We begin by verifying sufficiency. Suppose V # Lx(R). Then ()=0 for
some R by the Tauberian theorem (e.g., Benedetto [3]). For this we choose any
e > 0 for which

Then, by hypothesis, there is T X (resp., Y orMs) such that I1 , L < and hence,

I I-- -(Ot+i’r,tSe-(a+i)tS * (,- T)(t) dt + e * T (t) dt

--< II- Tll / IL(S T)( //)l
< e + L(S)(a + i’)L(T)(a + iz) e,

since L(S)(a +i’)= ,(). "e <e" is the desired contradiction, and so V must be
all of L ().
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In this calculation it was important to be able to use Proposition 3.2c.
ii) Suppose V LI(R). By this hypothesis and the fact that e LI(R) we can

find, for a given e > 0, a finite set F
_

for which

Ile( )- E cx(" -t)S(" -t)llLl() < e.
teE

As in (3.3), this expression can be written as fly- [[ < e, and so we have verified the
necessary conditions since # M X Y.

POeOSTIOY 3.3. Given a signal S and a >0. Suppose there is a sequence
{,} M[a, ), with a fixed, for which lim flu 0. Then, for all y a, Vv L().

Proof. Take y a. Ilu ,[Iv Ilee(-)(S * ( g,))[l()
and this term tends to 0. The result follows from Theorem 3.1.

4. Closure in terms of causal approximation to the g-system. For a given signal
S on a semigroup F, we found a measure in Theorem 2.1 for which S H. For
any signal T T(Ti)g[i,Vi+l) on F, we can associate the signal

In particular, By * T is a signal on F for each y s F. Extending the usual terminology
from signal processing, we say that v is a semigroup invariant system, the v-system
associated with S.

The most obvious corollary of the closure theorem is the sufficiency of

(4.1) lim I1 11 0

to ensure the closure, V; L (+) for all a. The u-system is causal since supp u
+; cf. Oppenheim and Schafer [19, p. 16]. In this section we investigate the approxima-
tion of u by means of the canonical sequence {u,}. To this end, we take a signal S for
which S(0)= 1 and a fixed number a > 0, and we define

(4.2) C 1 + IIsIl and b,, e -at dt.
n

TEOM 4.1. Given a signal S and > 0 the following hold"
a) If

(4.3) lim e-t 2 a,S(t-) dt O,
m j=m i k=m

then (4.1) is valid and so V L (+) /or each a.

b) Condition (4.3) is satised g

(4.4) lim 2 b, la, O.
m j=m k=m

c) Condition (4.4) is satisfied if any of te following equivalent conditions is valid"

(4.5) 2 b,C <,
k=l

(4.6)

(4.7)

lim bj, C 0,

lim Y bi, C =0.
m-oo ]=m+l k=O
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Proof. a)

[l’- u-[l e-lS * (u- u,-l)(t)l at- e -at Y akS(t-Tg) dt.

If t[yj, yj/l) and k>>-_m, then S(t-A)=O since t-A<O. Hence, [lu-um-]l
equals

, e-at akS 3’ dt,
j=m Vi k=m

and part a) is complete.
b) Since S L(R), it is clear that (4.4) implies (4.3).
c) Because of Theorem 2.1c, (4.4) follows from (4.6).
Since C > 0, it is clear that (4.6) implies (4.5). The converse follows since

C <-_K C dx =K’(C-Cm)-KC.
k=m

Thus, (4.5) is equivalent to (4.6). Similar observations provide the equivalence of (4.6)
and (4.7). [3

Another aspect of causal approximation to the u-system deals with the condition,

(4.8) Vq 6, ::! lim (eun, 4q).

If (4.8) is valid, then eu’ since 6e is barrelled (e.g., Horvath [15, p. 216]), and
since (ep(u- u,), > 0 on C, a dense subspace of . Thus, we obtain the closure,
V L() for a > , because of Theorem 3.1c. In this regard we have:

THEOREM 4.2. Given a signal S and
such that

(4.9) sup E
Oj<n

then eav ’, and hence V L().
Proof. The basis of this verification is Schwartz’s characterization of tempered

distributions (e.g., Schwartz [20, pp. 239-240]): T ’ if and only if there is p 0,
F Cb(), and a positive polynomial P such that T (FP)). Since only has a discrete
part and e av e-Vv, the continuity of F in the Schwartz criterion allows us to
take p 1 in (4.9).

For each p 1, we define

F(t)
ae t-y) if t>0

and P(t) 1. F is a finite sum for each and, hence, F is a continuous function. It is
also clear that (FP)+ av e-V8v.

The proof will be complete once we show that F is bounded. Take any > 0.
Then (y,_, ,) for some n 1 and so t- ,- for all ] n 1. Therefore, the
boundedness follows from (4.9).

Remark 4.1. (4.9) can certainly be weakened as a sucient condition that eu
be tempered. On the other hand, the requirement eu ’ is a very strong condition
for closure and cannot generally be expected. In this regard, note that if eu ’,
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then eu’’ since (eu)’ St" and eev’= (eeu)’+Beev. The converse is not obvious,
but we do have"

THEOREM 4.3. Given a signal S and a >0, if eeu’ ’ for some fl < a, then
V La(R).

Proof. Let Xn=X[o.n3, then Ile(H--xn)IILI(R)->O. Define Tn=S-a,X,. Then
IIT.L < oo and supp T [0, oo). In fact, we have

since 6 X’. 6- 6v+.. Also, note that eTn (etS-1) (eex.). This follows because

(eT.,q) (S-a X., etq)= (S1, (x.(t), e(t + u)q(t + u)))

(et(u)S-1, (et(t)X,(t), (t + u)))= ((eoS-a) * (ex,), ).

Thus, since et3S-1 eev’ ’ and eoxn has compact support, we see that eeT. ’. The
result follows by Theorem 3.1. l

We now investigate the relationship between a-convergence, Iltt.-v[l 0, and
weak. convergence, /x. T in tr(Da, C). The following result is included in this
section since the boundedness condition (4.10) of part a) is related to the criteria in
Theorem 4.1 and since the support condition of part b) is causal.

THEOREM 4.4. Given a signal S and a > O, assume that lim [l/x,, v[[ 0 for some
sequence {/z,}

_
Mt.

a) If

(4.10) Va < b, :lK,b such that sup e Y’. lay < K,b
y<b

then lim tz. v in tr(Da, C
b) if

(4.11) ]a

and

such that Vn, supp/x.

_
[a, ),

(4.12) :ly > a such that sup
then lim tz. u in tr(Da, C ).

Proof. a) Take q C with supp q
_

[a, b]. We calculate

(4.13)

recalling that S-1 X av6’v. If y >-- b, then 3’ + Y > b for all y F. Hence, the supremum
in (4.13) is really taken over the interval y (-oo, b). For any such y, q’(y + y) 0, if
y+y>-b or y+y <_-a, i.e., if y->b-y or y<-a-y.

Consequently, the supremum in (4.13) is dominated by the supremum in (4.10),
and so the result is proved since I1.- vll 0.
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b) Because of the convergence IIn 0, there is a subsequence of {/zn} (which
we call {/z,}) such that

(4.14) lim g,,(t) lim e-"’S (, ,)(t) 0 a.e.

By condition (4.12) there is p y/a > 1 such that

By a standard convergence theorem, e.g., Benedetto [4, Chapter 6], this norm
boundedness coupled with (4.14) yields

(4.15) Vq L"(R),

where 1/p + 1/q 1. Take q9 C and observe tt S ( v) is an element of L()
supported on a right half-line. We compute

II (S* (n--p’) (sup [e"t(t)[)[[--[l,
t

and conclude that lim S (,- )= 0 in g(Do, C). As in (4.13), we obtain

(4.16) (, , )= (S (, )(t), E a’(y + t)) for C.
Note that, for each t, av’(y + t) is a finite sum and so av’(y + t) is a continuous
function. Also, if supp [c, d], then a’(y + t) 0 for all d. We now let C
equal 1 on a neighborhood of [b, d] where b min {0, a, c} and so the right-hand side
of (4.16) is

(4.17) (S (, v)(t), 6(t) E a’(y + t)),

where (.)
independently of n. Combining (4.16), (4.17) and the fact that S, (,-)0 in
q(Do, C), we see that

Example 4.1. Theorem 4.4 is a partial answer to the general question: when
does 0 imply that/z,--) , in a weak, topology or, more to the point, in
what ways can this implication fail? In the case that 0 and/zn- T D in
some tr(Dj, C) topology we can conclude that T , when the following line of
reasoning is valid. First, for q C, we let f.,(y) (/z, T, (x + y)) and so S (/z,
T)--) 0 in a weak topology if T and S are convolvable and lim Sf,, 0. Secondly,
since II/n  11. -, 0, we have S (, ,)--) 0 a.e. for a subsequence. Thus, in conjunction
with Helly-type or equicontinuity criteria in the first case or Vitali weak compactness
criteria in the second (of which (4.12) is a special example), we can conclude that
S, , S, T; and hence , T because S-1 exists. An essential ingredient of this
approach is that T S exists. This occurs if the condition

(4.18) Vo e C, T q[(_.0) e L(-, 0)

is satisfied. In fact, by basic convolution (of distributions) criteria, T S exists if and
only if (T ,)(, 0)LX(R) for all , OsC (e.g., Dierolf and Voigt [7]); and, for
all 0 C, 0 L(R) is supported in a left half-line. Note that (4.18) is satisfied
if supp T is contained in a right half-line.
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Remark 4.2. a) If F has the property that lim (yj+l-yj)= 0 and if S is a signal
on F with the property that avj has order of magnitude (1 + IIS[I) infinitely often (this
possibility is not precluded from Theorem 2.1) then (4.10) does not hold.

b) With regard to (4.10) and the criteria of Theorem 4.1 it is interesting to
determine to what extent (4.1) characterizes the closure V LI(R+), y >= a.

The situation dealing with H instead of u is much simpler. We consider the limit,

(4.19) lim S tzn H.

Proposition 4.1. Given a signal S, a > O, and {/xn}
_
Ms, assume {S

is uniformly bounded.
a) If lim_.oolltzn-ull=O, then (4.19) is valid pointwise a.e. and in the

weak topology r(L, L) for some subsequence of {tz}.
b) If (4.19) is valid pointwise a.e. (and hence in the weak. topology cr(L, L)

by hypothesis) and (4.11) is also assumed, then limn_.o o.
Proof. b) is clear by the dominated convergence theorem. For a) The hypothesis

of a-convergence yields convergence in measure of {S./xn} to H, and, consequently,
(4.19) is valid for a subsequence almost everywhere. Weak convergence follows since
{S /x} is uniformly bounded.

5. Approximation to the ,-system from the distant past. In light of Theorem 3.1
and the fact that supp u F

_
[0, oo), the following is a natural question. Are there

semigroups F, signals S, on F and a >0 such that V La() and every sequence
{T,}

_
Y, for which lim T, ull 0, has the property that "supp T, - -oo", i.e., for

every a , there is n na such that {t : supp tzn f3 (-oo, a)} ? Proposition
5.1 answers this question in the affirmative. The rest of the section is devoted to a
study of why and how recourse to the distant past is required to approximate the
u-system and, thus, ensure closure.

PROPOSITION 5.1. LetF {yj log (] + 1):/" =0, 1,. .} and letS be the 0-1 signal
on F. Then"

a) There are a<a2<a3 such that V2LI() and VI V3 =LX(R).
b) There is a (0, 1/2) such that V,, L(R) and supp T, --> -oo (in the sense defined

above) whenever {T,} c_ y,, and lim,_.o T, ull 0.
Proof. a) Let a2 1/2 and note that, by the analyticity of the Riemann zeta function,

st(s), there are aa (0, 1/2) and a3 (1/2, 1) for which (ax + iz) and ((a3 + iz) never vanish.
Because of the functional equation for ’(s) and Theorems 4.3 and 4.4 of Benedetto

[5, 4], we obtain our result.
b) Using the analyticity of ’(s) again, we choose a (0, 1/2), for which sr(a + i-)

never vanishes. Consequently, by Theorem 4.3 of Benedetto [5, 4], we have the
closure V, LX(). ByTheorem 3.1, we choose {T,}

_
Y, for which lim,_oo T, vile

o. Suppose there is a <_-0 such that, for all n, supp T,
_

[a,
Then, taking any y _-> a, we have

and so lim,_.oo lIT, ul[ 0. In particular, lim,_.oo lIT, ulla/2 0 and so Va/z L(g),
a contradiction since sr((1/2)+i’)=0 for some z, i.e., because of Theorem 4.4 of
[5, 4]. U

Remark 5.1. a) If F and $ are as in Proposition 5.1, then, by Theorem 3.1a and
the analyticity of ’(s), V La() for all but at most countably many a (0, 1). Also,
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Proposition 5. lb does not a priori preclude the possibility that V+ LI(R+) for some
a (1/2, 1), and thus, for all y -> a. On the other hand, we do have

where s =a + iy and X(s)= zrs-(1/2)r(1/2-1/2s)/r(s/2), and so (/) 0 if and only if
l_(y) 0, a (1/2, 1). Consequently, we expect that V+ L(R) for all a e (0, 1).

b) In light of Proposition 5.1b, it is important to approximate v in certain natural
ways by means of sequences {T, }

_
Y for which supp T, --c. One approach, which

is essentially causal and provides no insight into the phenomenon of Proposition 5.1,
is the following. Let T, v +/z, where / Mr(-az, 0), supp/z, -c, supp/x

_
[a,, c) and

More effective approximations than that given in Remark 5.1b involve approxi-
mate identities. We modify the usual definition of approximate identity for our
situation.

DEFINITION 5.1. A sequence {p,} of integrable functions on is an approximate
identity if IIp, llLln) O(1), n, each p, satisfies the conditions that p, 1, that
supp p, is compact and that for all e > 0 there is p, L () such that

and

Vn, Ip, l<-p a.e. on I\[-e, e]

lim O, 0 a.e. on \[-e, e].

THEOREM 5.1. Given a signal S on a semigroup F, let {p,} be an approximate
identity. Then:

a) {S, (t,, p,)}_L(R) is uniformly bounded and pointwise a.e. convergent to
H(x). In particular, lira S (t, p,) H in the weak topology tr(L, L).

b) t, * O,(x) vR.) ap,(x --y), where

R(x,n)={V[x-r,,x+r,]fqr} if suppp,_[-r,,r,],
R (x, n) {y Ix, x + r, f’) F} if supp 0, - [-r,, 0],

R(x,n)=(v[x-r.,x]r} if suppp,_[0, r,].

c) Given a > O, iffor each n there is ft, (0, a) such that

(5.1) v * o,(t)= O(e"’), oo,

then lit’ * o.ll, < oo and e-n"t(t" * p.)(t) L
_

5f’ for some q. (13., a). In particular,
t’*p. Y.

d) Iffor each e >0 them is g L(-oo, -e) such that

(5.2) Vn, p.

then

(5.3)

=e g(t) a.e. on (-c,-e),

lim fly O, vil 0.
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Also, (5.2) is satisfied iffor each e > 0 there are > a and K > 0 such that

tn, | p, <=K e’ a.e. on (-o, -e ).
d_

Proof. a) Since each of the factors is convolvable with the other, we have that
S (u p,)= H p,. Also,

IS*(u * p,)(t)l II p,(x)H(t-x)dx

and so {S * (v * p,,)} is uniformly bounded. Next, [H(t)-S ( o.)(t)l <--
I p,(x)(H(t)-H(t-x)l dxl, and for a fixed t, Itl > 0, we have H(t-x)=H(t)if
and so

Itl
(5.4) tn, | p,(x)(H(t)-H(t-x)) dx -’-0

d.-Itl

For the range \[-Itl, Itl], we see that

(5.5) Il>l,I lo,(x)l In(t)-n(t-x)l dx <-_ 2Il>l,I Ip,(x)l dx,

and the right-hand side goes to 0 for large n because of the dominated convergence
theorem and the fact that {p,} is an approximate identity. Thus, (5.4) and (5.5) yield
the pointwise convergence of S (u p,) to H, and part a) is complete.

Part b) is clear. For example, if x is fixed and supp p, [-r, O] then x y [-r, O]
if and only if -y [-r, -x, -x], which is the same as y [x, x + r,].

c) Suppose that supp p, c__ [-r,, oo), r, -> O. Then we compute

(5.6)
f. e- eOn(- du dr<<_K

noting that supp u 0, [-r, o) so that the first inequality in (5.6) follows from (5.1).
Now, for any r e (, a), e-’u o(t) vanishes on (-m, -r,,) and is bounded by

K e-(- on [-r,, o). Thus, e-’u, o(t)eL’(N)c_ 9"(N), and part c) is complete.
d) The second part of d) is clear by setting g(t) Ke(’-. To verify (5.3) given

(5.2), we first compute
0

(5.7) I1’- ’* o11 | e-lH* 0()1 dr/ [ e-lg(t)-g,
ao

noting that the second integral in (5.7) tends to 0 from part a.
The first integral of (5.7) is

0 0I_ -’[Io I_ II_ o(u duldt"e p,(t-x) dx dt= e-’

Take any e > 0. We first show that

(5.8) lim e O,(u) du dt O.

In fact, if s (-o, -e), then lim,,_,, I_ o 0 since lim,,_,,
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Then using (5.2) and the dominated convergence theorem again we obtain (5.8).
We now observe that there is C such that

p,(u) du dt<=Ce.

This is clear since I[p, llt.l(R)= O(1), n c. Combining (5.8) and (5.9), we obtain that
0

lim e O(t-x) dx dt-Ce,

and so the result follows from (5.7) and the fact that e is arbitrary. 3
THEOREM 5.2. Given a signal S and a > O, and let {pn} be an approximate identity.
a) If

(5.10) Vn, :lfln (0, a) such that u pn(t) O(ent), t-,
and

(5.11) Ve >0, :ly>a and :IK, such that Vn Ip,(t)l<=Ker’a.e. on (-,-e),

then Va L (R).
b) If (5.10) and

IIt(5.12) sup On(u) du o(e-ar"), n - c,
t[--rn,O] --rn

where supp pn - f-m, ) and rn >= O, then Va L1().
Proof. a) (5.10) and Theorem 5.1c yield the fact that u, pn Ya for each n.

Given e >0, (5.11) yields

for each n and each (-, -e), and this gives (5.2), as in the second part of Theorem
5.1d.

From (5.2) and Theorem 5.1d we obtain (5.3), and this gives the closure, Va-
L(), because of Theorem 3.1 and the fact that u pn Ya for each n.

b) Because of Theorem 5.1 and the role of (5.10) in part a) it is sufficient to
prove that

0

lim | e-’lH p.(t)l dt O.(5.13)
d.

The integral in (5.13) is bounded by

e ar" sup tan(t--X) dx ea" sup pn(u) du
t[--rn,O] t[--rn,O]

and so the result follows from (5.12). lq

(5.12) can be replaced by a weaker integral condition.
Remark 5.2. Let S be a signal on F. If the consecutive elements of F are well

spaced, then verification of the closure Va -LI() can usually be made by means of
the theory developed in 4. On the other hand, if lim (y+-y)=0, then there is
good reason to expect the condition, supp Tn-, to occur in the situation that
Tn Ya, Va LX() and lim liT. 0. In fact, for the case Tn v On, if supp pn --, then u pn involves long sums of consecutive coefficients, a, e.g., Example 5.1,
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and so there is greater opportunity for cancellation among the a, thus allowing for
(5.10) to be satisfied. Further, since an could possibly be as large as (1 + Ilsll ) e.g.,
Theorem 2.1, then, for nonnegative approximate identities p (with p 1) (5.10)
forces height restrictions on {IP(3’n)l}, and, as a consequence, p must extend farther
and farther to -o in order that (5.11) also be satisfied.

Example 5.1. Let S be a signal on F and let a > 0. For each n _-> 1, let pn be
defined as

if x (-Cn, 0],
pn(t)= bn if x e (-(C, +Bn),-Cn],

0 elsewhere,

where bn, cn, Bn, Cn > 0. Assume lim bn lim Cn 0, lim Bn lim cn eo and bnBn +
cnCn 1. Thus, {pn} is a positive approximate identity. By Theorem 5.2 we obtain the
closure V LI(R) if bn, cn, Bn, Cn can be chosen so that for all n there are fin < a

and K, such that

tt>-_O, [cn Y. a,+bn Y a,l<--Kne’,
t/<= t+Cn t+Cn <)’ +(Bn +Cn)

and there are 3’ > a and K such that

Ib l-<-g e

Example 5.2. We now outline another procedure with which to minimize
liT-  11o, T Y, without using approximate identities.

a) Let $ be a signal and define

]=0

Thus,

(n)(A () S(’Yi)(e-iXvi+l e-iX/i),
o

and (,)A(R)L(). Clearly, limS(,)=S in the weak.topology (L,L) and
hence also in the topology of ’. For the procedure below it is useful to deal with
If h(t)=H(t)-H(-t), then (h)=pv(1/h), and so (h)=8+pv(1/h) since H=
(1 + h), e.g., Horvth 16], cf., Schwartz [20, pp. 258-259].

b) We assume that (,) never vanishes and that 1/(,)<< P for some polynomial
P; hence, 1/() ’. Of course, in the case n 1, e -ixv 1 for
therefore, ()(h)= 0 for all such h..In case (,)has zeros, and there can be at most
a discrete zero set by analyticity, then (,) can be modified in the following formalism
by inserting smaller and smaller "tubes" on which , must travel in neighborhoods
of zeros.

c) Let H(,) have compact support and converge to H, and let {f,} have the
properties that each supp f, is contained in [-R,, R,], R , and {,} converges to
8, e.g., f Xt-n..n.. The convergence of {H()} and {fl} is specified according to the
problem. We set

(5.14) T ((S(), H())f
and expect {T, S} to converge to H in a reasonable way. In fact, T, has compact
support and (S, T,)*= (((,/d(,), f,, which tends to . It is necessary that T
be an element of L() and that various continuity criteria be valid.
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If H(,) C (R) then (1 /(,))^ H, is a slowly increasing function since
(e.g., Schwartz [20, p. 239]) and so T, L f’l L.

d) Even with the assumptions in part b) it remains to verify the formal conver-
gence, T, S- H, in the context of closure problems for the I]" Ila-topology. A very
particular case of this is to ask under what circumstances lim T,, $ H a.e. when
lim T, $ =H in the weak, topology r(L, L1), cf., Theorem 5.1a. Of course, in
general, it need not happen that pointwise convergence is a consequence of r(L
convergence, e.g., Benedetto [4, Thm. 3.12].

If {S, Tn} converges to H in the weak,topology r(L,L1), then
sup IIs, T ll o< o. In the following result, we assume this boundedness. The
hypothesis of convergence in measure is related to the discussion in part d of Example
5.2; Lebesgue proved that pointwise a.e. convergence on finite measure spaces implies
convergence in measure. Finally, (5.16) and (5.17) reflect an assumption of weak
compactness.

THEOREM 5.3. Given a signal S and a > O, let {T,} Ya be a sequence with the
properties that S T, L(R),

and {S * T,} converges in measure to H on every compact subset of . Suppose

(5.16) lim e-a’[S * T,(t)[ dt=O uniformly in n
oO

and

(5.17) lim f e-’lS * T,(t)l dt=O uniformly in n and x<=O.
00 d +(-O,O)

Then lim, I1 - --0 and (since T, Ya) Va =LI(R).
Proof. For each n, we define ]’, (t) by the properties that I[, (t)[ e -at and

(5.18) ]’,(t)(S T,(t)-H(t))= e-’[S T,(t)-n(t)].
Take e > 0. We’ll find n such that for all n _-> n

(5.19) I f.(S T,-H) <e,

and the result will follow by (5.18). We begin by choosing a compact set K K
_
R

and 0 0 > 0 such that

E IK -at E
e dt <-(5.20) In, .e-at[T, * S(t)[ dt< and

"no.o) 4

and, for all Borel sets satisfying the condition IB[< 0,

(5.21) tn, e-atlT, * S(t)l dt <g and e dt <-
n[o.o) 8"

(K" is the complement of K and [BI is the Lebesgue measure of B.) (5.20) follows
from (5.15) and (5.16), and (5.21) follows from (5.15) and (5.17). Using (5.20) we
estimate, for each n,

I [.(S T.-H) Itc .l’, S T,-H)
2E
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Since {S T,} converges in measure to H on K, there are Ko
_
K and no such that

(5.23) ln>=no, ItKo, IS*Tn(t)-H(t)l<e/(4I,,.e-"tdt)
and IK NKI< 0 (e.g., Benedetto [4, Exercise 3.19]). Consequently, using (5.21) we
have

If,, (T,, * s-H)

o n:, n:n[o,)

From the uniform convergence in (5.23) we see that

e
4

for all n no. Thus, the right-hand side of (5.22) is less than e/2 for all n no and
so (5.19) is obtained for

Remark 5.3. a) Given the hypothesis that {T} Y, the sucient conditions in
Theorem 5.3 are essentially necessary (e.g., Grothendieck [12, Cor. of Prop. 4 and
Thin. 2]); cf. the comment after (5.24) in Remark 5.3b. The hypothesis {T} Y
Theorem 5.3 is reflected by (5.10) in Theorem 5.2; and the weak compactness
conditions, (5.16) and (5.17), of Theorem 5.3 are practically equivalent to (5.11) in
Theorem 5.2. The verification of conditions (5.10) and (5.11) in Theorem 5.2 or their
analogues in Theorem 5.3 depends on delicate estimates of the coecients a.

b) For this part of Remark 5.3 we discuss the weak compactness conditions (5.11)
(or (5.16) and (5.17)). Generally speaking, an L-norm bounded set {F}L(N) is
weakly precompact (that is, in the weak topology (L, L)) if and only if for all e > 0
there is K N, compact, such that

and or all e > 0 and for all K N, compact, there is U K, open, such that

(5.24) Wn, [ If.l<
NK"

(e.g., Grothendieck [12, Theorem 2]). (5.16) and (5.16’) are equivalent, whereas (5.24)
is a weaker statement than (5.17); cf. (5.21) where (5.17) is used. The conditions for
compactness are naturally more stringent. An L-norm bounded set {F,} L() is
precompact if and only if (5.16’) and for all e > 0 there is > 0 such that

(5.25) wltl < , n,
(e.g., Dunford and Schwartz [10, IV. 8.20 pp. 298ff.] and Grothendieck [13, pp.
287-289]). In this context we mention the result that every compact subset of a Banach
space is contained in the normed closed convex hull of some null sequence.
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6. Examples
Example 6.1. Let F=cU{O}={3",=cn: n =0, 1,...}, c>0.
a) Given m <n, we compute ](m, n). ](m, n) is the largest integer ] for which

[’, +/i, ’,, + /i+1)--- [’/,, y,+a), i.e., [cm +c], cm +c] +c)_[cn, cn +c), and so

(6.1) /m < n, yj(,.,) c(n m).

b) Given a signal S for which S(0)= 1 and a number a >(1/c)log (I/IISlI),
then Vv+ L1(R+) for all 3’ --> a. To verify this we use Theorem 4. lc. For the semigroup
F, abj. e-Ci(1 e-"C), and so condition (4.5) is equivalent to the convergence of the
series E exp(-i(ac-log(l+llsll))). Thus, we obtain the desired closure. Letting
T 6 + 61, we see that V L (N) for all a > 0 by Theorem 3.1.

c) Given a signal S for which S(0)= 1 and a number a > (1/c)log (1 + IISlI), we
can obtain the closure V La(N) directly by means of Wiener’s Tauberian Theorem
and an elementary estimate. We compute

I(y)l I(1- e-’+"))/(a + i’)l ]Y. $(c])e -’‘+’’,
I0

>K 1 -IISlI E (e K 1 -II$1loo
I -=

where K depends on , 3’ and c. Thus, 1(3")1>0 if >(1/c)(l/llsll); and so the
desired closure follows the Tauberian theorem.

d) In light of the essential equivalence of parts b) and c), it is desirable to use
Theorem 4. la instead of Theorem 4. lc. Since F is a group, condition (4.3) of Theorem
4. la becomes

lira e akS(C(]-- k))
m ]=m k=m

(6.2) lim E e- a S(O)- ak S(c(]-m))
m]=m k=0 k=0

+ ak (S(c(]-n))-S(c(i-(n +1)))) =0.
k=O

Thus, estimates on o a and knowledge about successive values of S yield closure
information beyond parts b) and c); cf. Benedetto [5, Example 5.1] for the best
possible result for 0-1 signals.

e) Let S=gto.)+Kx.). Hence, g(y)=0 if and only if K= 1-e(+’)c. In
particular, for a given a and c, we have closure if K is chosen so that [K- 1 e.

Example 6.2. Let F {yi}, Yi log (] + 1).
a) Given m < n, we compute ](m, n). In order that y + Yi N y,, we have log ((m +

1)(] + 1)) N log (n + 1), and hence, We set

+1 m

We need only check that 3"]+1-]-3"m 3"n+l. Since ] is the largest integer for which
3’,, + y, -<- 3’,, we must have 3’, + y,+ > y,, and since F is a semigroup, we have 3’,, + 3q+ >----
3"n+l.
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b) Let S be a signal with jumps at F and take a > O. If

(6.4) lim Y ark 0,
m->oo ]----m k=m

then V LI(I+) for all y-> a. In fact,

log (]+ 1) 1
e dt<= .l+a,

Jlog] ]

and so a direct application of Theorem 4.1b yields (6.4).
c) Let S be the 0-1 signal corresponding to F and fix a yn. We wish to find all

ordered pairs (, m),/’, m >_- 0, such that y] + ,, yn, i.e., log ((j + 1)(m + 1))
log (n + 1). Thus, for a fixed n -> 1, we wish to find all solutions (j, m), j, m >_-0, of the
equation

(6.5) ]m + + m n.

Hence, when m [0, n] we check to see if (m + 1)l(n- m). If "no", we throw out this
m; if "yes", we keep the rn and ((n- rn)/(m + 1), m) is a solution. Solutions of (6.5),
for the first few n, are:

n 1, none n 6, none
n=2, none n=7, (/,m)=(3,1),(1,3)
n=3, (/, m)= (1,1) n=8, (i,m)=(2,2)
n 4, none n 9, (L m) (4, 1), (1, 4).
n =5, (L m)=(2, 1),(1,2)

d) As in Theorem 2.2, , is the number of solution of (6.5). If m + 1 > n rn for
rn[0, n], then 2m>n-1 and so rn>(n-1)/2. Thus m+l ’n-m for any rn>
(n 1)/2; hence, for all <j,, the corresponding m mi is less than n/2.

Let us now estimate , for the case of the 0-1 signal on F. Fix a large integer K.
Then we have, approximately, that

for at most 1/2 of {n’n e [1, K]},

for at most of {n’n e [1, K]},

for at most 1/4 of {n’n e [1, K]}, etc.

By adding all of these "solutions", we see that them are at most K log K solutions of
the "equation"

m+l
where 1 <- m < n <-K.

e) Let us now translate the 6e’ condition (4.9) of Theorem 4.2 for the case of F
and arbitrary S. For the sake of convenience we take p 1 in (4.9). Larger p are not
automatically ruled out, since it is not clear what happens for the two cases" y,-3’]
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log (n + 1)/(] + 1)< 1 and y.-yj =log (n + 1)/( + 1)_-> 1. We compute

O_j<n

logn+
=o (j + 1) j + 1

=(.. lay, log(n+l) 2 (n+l n+l
=o n =o (re+l)] kj+l 1+2

-ni=o(]+l) =o o_ _(m+

-no(]+l)0 ]+1o (m+l)0.

Thus, because ol easy upper and lower bounds on the logarithm, (4.9) is valid if and
only if

(6.6)
io

Naturally, (6.6) should bc compared with (6.4).
f) Let $ bc the 0-I signal on F. The usefulness of our various closure criteria

depends on the dicult number theoretic problem of determining if [ffi] is even or
odd. We illustrate this with two cases.

i) Let us apply Theorem 4.1 in a finer way than part b. Because of the integral
estimate to bc made in Theorem 4.1, wc take in the range, [y, i+1), of integration
and ask in what way $(t-), ], can be evaluated. First note that

(6.7) [log[],log([]+l))[log]+,log,
In fact, (] + 1)/i [(] + 1)/i] + m/i,
[(] + 1)/i]+ 1. Now, t s[, .) implies t-log e[log ((] + 1)/i), log ((] + 2)/i), and,
consequently, S(t-)= S(log [(] + 1)/i]) because of (6.7). Thus, Theorem 4.1 yields
the closure, V L(N+) for all N , in case

(6.8) lim a,fl(log [(]+ 1)/i]) /](+= O.

Generally, it will be quite dicult to check if [(] + 1)/i] is even or odd (and, hence,
S(log [(] + 1)/i]) is zero or one), but estimates such as (6.8) show the value of trying
to estimate partial sums

ii) In order to apply Theorem 2.1b, we must compute S((,) where ] =](m, n)
is given by (6.3), and S() is 0
](m, n), m < n, we see that

-1

Thus, if n is odd we have from Theorem 2. lb that
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The first few a’s given by the formula in Theorem 2.1b are

ao=l, a1=1, av2=-l, av3=2, av4=0, a5=-1, av6=-l.

g) We illustrate why the calculation in Example 6.1c does not work for F
{log (j + 1)} but how it does provide an interval in which () is nonzero. Fix a (0, 1]
and let S be the 0-1 signal on F. Then, if s a + iy, we have

(6.9)
=1

By the mean value theorem we obtain

j+l1 -exp -s log j---j
and so

Isllg(r)l>l E s(,j)[1 e s(,, [/(]+1).

= <lsl
I I I (_)i+

Consequently, (7)>0 if [7<a(2+/(1 +a)-l)/2. Finer estimates yield longer
"nonzero intervals."

h) Let $ be the 0-1 signal on F. Then lim, $ , H in the weak topology
(L, L). In fact, if there were weak convergence, then, since lim, $ , H a.e.,
{S ,} L() is uniformly bounded and supp $ , [0, ), we’d be able to con-
clude that lim, I[, 1 0 for each a > 0. This is a contradiction for the case a .

i) We define a dyadic-log semigroup F. Let d(1) 0, d(2) > 0, and d(2") n d(2)
for n 2. If 2" <j <2"+, we define

d(j)= d(2")+: d(2),

where j 2" + j’. Next, we set ,j d(j + 1) for all j >_- 0 and Fa {,i}. For each n >_- 1,
there are 2"+ 1 elements of Fa in the interval [d(2"), d(2"/1)]; these elements are
d(2"), d(2" + 1), d(2" + 2),..., d(2" + 2") d(2"+1). The interval [d(2"), d(2"/x)] has
length d(2) and for each d(2" +/’) [d(2"), d(2"/a)),

d(2"+j+l)-d(2"+j)=
d(2)
a

Note that d(2")= 2n_l
Fa is a semigroup. In fact, if n >- m, 0 <- j < 2" and 0 <- < 2", then

id(2) (2,+,,) d(2)
")d(Z"+i)+d(Z’+i)=d(Z")+Jd(Z)+d(2")+2" 2"

=d +---(j+i2"-

d(2,/’) + d,(2)+,, (/2" + i2") ra,

where 0 =< ]2" + i2" < 2 2"+".
Example 6.3. Let S be a signal on a semigroup F, and assume $(0)= 1. In this

example we record some formulas for u besides the basic one developed in Theorem
2.1. The major thrust of the example is to relate the measure v with the polynomials
P, (xx,. , x,) that we constructed in [5, Theorem 3.3 and Example 3.2].
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a) We begin by recalling the main property of {P}. First, we define

s,(x)= E s x(x),
m-----1

where )(,. Xt.-/,,./zv. Then there is a sequence {P.} of polynomials (of nth degree
and n variables) such that/xs S H, where

Vt N
n=0

and Av P,(x,..., x,) for xi S((] + 1)/N).
b) Because of part a) and the definition of S- we can formulate in terms of

F {n/N: n 0, 1,...} as follows:

(6.10) VN,
ONn,lNm,

Note that the right-hand side of (6.10) is independent of N. Thus, if y’< A < y" are
consecutive elements of F and is a continuous function satisfying (y)= 1 and
supp e (y’, y"), then

(6.11) ax E a A r+ - r+,., N N

independent of N. Since S(0)= 1, we obtain

M+I
(6.12) M and N> 1

c) Using a standard technique from integral equations, we compute

(6.13) E ( S)" H,
n=O

where (8- S)" denotes n-fold convolution.
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ON A GENERAL CONCEPT FOR SEPARATION OF VARIABLES*

J. HAINZL?

Abstract. A new definition of (generalized) separability for a linear operator L of arbitrary order is
given which, when specialized to the Helmholtz operator, includes ordinary separability in nonorthogonal
and "heat type" coordinates. On the basis of this definition, a set of commuting operators is explicitly
constructed and various relationships between eigenvalue problems for these operators and separated
equations corresponding to Lu 0 are derived. Moreover, a transformation of B/icklund type for separable
operators is obtained.

1. Introduction. In a number of papers, W. Miller and others (see the references
in [8]) obtained numerous interesting results concerning separation of variables in
mathematical physics. A first attempt to deduce some of these results in a systematic
way from an exact definition of variable separation was made in [2]. There, I succeeded
only by using a rather narrow definition of separability which was a simplified version
of Niessen’s definition in [9]. For any operator separable according to this definition
and satisfying certain additional assumptions, I was able in [2] to construct explicitly
a set of mutually commuting operators with properties found earlier for many examples
separately (see [8]).

In their recent paper [5], Kalnins and Miller notice that my definition used in [2]
does not include separability of the Helmholtz operator in nonorthogonal and "heat
type" coordinates. The present paper is a new attempt to overcome this problem. A
new definition of (generalized) separability (G-separability) is proposed which extends
Niessen’s definition [9]. It covers, e.g., the nonorthogonal types of separable coordin-
ates for the 4-dimensional complex Helmholtz equation which were listed by Kalnins
and Miller in 3 of their paper [4]. An interesting feature of the new definition is
that in the corresponding "separated" equations there may occur more than one o.d.e.
with respect to some fixed variable, and, in addition, p.d.e.’s are admitted, too. The
present definition is still narrow enough to allow proving results which include the
main statements in [2] as special cases. For instance, if L is a G-separable operator,
it is now possible, without any essential further assumption, to construct a set of
(partly) commuting operators such that there exist useful relationships between
eigenvalue problems for these operators and the equation

(1.1) Lu =0.

The present paper may also be regarded as an attempt to settle some of the general
questions concerning variable separation which were raised by Koornwinder in [6]
and [7].

Let us say a little more about the contents. Section 2 contains the definition of
G-separability of an operator L, which is justified by nontrivial examples and by
Theorem 1 claiming that any solution of the "separated" equations also satisfies (1.1).
In 3 the operators $i and from these the operators $ depending on separation
constants are defined. Theorem 2 then states surprising commutation relations includ-
ing the mutual eommutability of all $. Central topics of 4 are the interrelations
between the simultaneous eigenvalue equations for the operators $ and two kinds of
separated equations (Theorems 3 and 4). A frequent special case is treated differently
in Theorem 5. Section 5 investigates simultaneous eigenfunctions of Si. Here, various

* Received by the editors December 23, 1980, and in revised form June 11, 1981.
? Faehbereieh Mathematik, Gesamthoehsehule/Universit/it Kassel, Kassel, West Germany.

2O8



GENERAL CONCEPT FOR SEPARATION OF VARIABLES 209

results are obtained concerning the question when such eigenfunctions also satisfy
(1.1). In 6 we use Theorem 1 to derive results that can be interpreted as a Bicklund
transform for G-separable operators (Theorems 8 and 9). In the last section, 7,
some of the results achieved in the paper are illustrated by means of the examples
given in 2.

2. Definition and justification of generalized separability; special cases.
Assumptions. Let Ik, k 1,..., N be open connected subsets of R or C and

fl := I1 x... xlN.
Lii are assumed to be linear homogeneous (ordinary or partial) differential

operators of arbitrary order with Coo-coefficients defined on f, i, j 1,. , n. If we
denote by ai the term of order zero in Lii, and put

Lq =: gq + aq,

the following condition has to be satisfied.

Mi commutes with Mkt and akl, i.e.,

(2.1) [M, Mkt] := MMk-MklMi 0, for i, ], k, l= 1,..., n, k # i.

[Mii, ak] 0

Then, obviously, [Lo, Lkl] 0 for k i, and

det (Lq)l<-i_n
l]n

is a well-defined linear homogeneous differential operator on
DEFINITION OF GENERALIZED SEPARABILITY (for short, G-separability). A linear

homogeneous partial differential operator L of arbitrary order, expressed in the
variables x (x 1, , XN) fl, is called G-separable if and only if for some n N there
exist operators Li (i, 1,..., n) satisfying the preceding assumptions and a Co_

function f, defined and nowhere zero on fl, such that

fL det (L.).

This definition of G-separability is actually unrelated to coordinates; it covers,
however, the usual separability concept. We note the following special cases (i)-(iv):

(i) n N; Li is an ordinary differential operator in the variable x, i, 1, ., n.

If f 1, this yields the definition of separability given by Niessen [9]. If, on the other
hand, Mi 0 for 2,.. , n, we obtain the definition used in my paper [2].

(ii) Li is an ordinary differential operator in some variable Xk, where k depends
on i, but is independent of ]. In this case, condition (2.1) is not satisfied automatically
and therefore has to be verified. As an example, we can take the complex 4-dimensional
Helmholtz operator L := A4-/x, expressed in some nonorthogonal separable coordi-
nate systems established by Kalnins and Miller in [4]. From that paper, the coordinate
systems (3.1), (3.16) and (3.19) could be chosen. We give the details for the coordinate
system (3.19). The connection between the cartesian coordinates z,’.’,z4 and
Xl, X4 reads

2z + iz2 XlX2--x2 -" 2x4, zl- iz2 xl,
(2.2)

Z3 q- iz4 XlXE--1/2X) -[- 2x3, z3- iz4 X2,
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and L can be expressed in the following way as a determinant (Ok :-" t/fXk)"

(2.3) A4--/ 2004 + 20203 +XO+ X20 I.

0 -1 0 X1 201 0

--/x 1 202 0 0 X2

3 0 --1 0 0 0

o o o - o o
04 0 0 0 -1 0

oi o o o o -Thus, n 6, f 1, 12 C4, and the operators Lij, defined by the determinant, obviously
satisfy (2.1).

(iii) For some indices i, Lij is a partial differential operator with respect .to a
certain subset of variables (which is the same for all ]), the remaining L, being of the
same type as in case (ii). Condition (2.1) has to be verified.

Example. L := A4-/z (complex). Choose the nonorthogonal separable coordin-
ates given by Kalnins and Miller in [4, (3.34)]:

(2.4)

where zx,..., Z4 are the Cartesian coordinates. Then we find the following deter-
minant expression:

2 2
X1-- X 2

023 4,4
ai(xOl) LO2(X2302)4- 2(X1 X2)(A4 /at,)

X1 X2 (X1X2)
2(x-x)

X1X2
t3t94 --/./, (X X2

(2.5)

where

--2 ]-1LI -1 0 -x 0 -2x

L2 1 0 x2 0 2x

03 0 -1 0 0 0

o o o -1 o o
04 0 0 0 -1 0

0304 0 0 0 0 -1

2 2Lll := 4x 101 4- 12X13 [d,Xl,
2 2L21 := -4x202-12x202 4-

Condition (2.1) is clearly satisfied; f(x) := xl x.
(iv) Any linear homogeneous partial differential operator with constant

coefficients is G-separable. As an example showing the general procedure we take
the operator

(2.6) L := cxO + C120102 4- C22022 4" ClO1 4" CO,
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which can be written in the form

(2.7) L

CO Cl 1712 Cll C22
(91 -1 0 0 0

(9102 0 --1 0 0
(9 0 0 -1 0
(9 0 0 0 -1

The following result justifies our definition of G-separability by showing that it has
the crucial property known for ordinary separability. (Henceforth, the functions .u are
always understood to be C

THEOREM 1. Let L be G-separable with Lij as above, and assume that for some
(A 1," ’, A,) C"\{0}, the function u is a solution of the "separated" equations

(2.8) Y. AkLikU 0, 1," ’, n.

Then u is a solution ofLu O, too.

Proof. Assume without restriction h O. In the following determinants involving
operators Lij and functions LilU, it is understood that, when they are expressed as
alternating sums of products, the factor LilU is written on the extreme right-hand side.
With this agreement, we obtain by repeatedly using [Lii, Lkl]- 0 for k i:

fLu det (Lij)u

--h-(1 hkLlkU L12
k=2

-h-l hkL.kU L.2
k=2

=-h

LlkU L12
]-1 /k

k=2
Lnku Ln2

Llk L12 Lln

k=2
Lk L2 L
0 since two columns are identical

Hence, Lu =0. U

3. Construction oi commuting operators. From now on, we assume L to be
G-separable, with f, Mi, ai, for i,/" 1,..., n defined as in 2. The rank of the
matrix (aj) is assumed constant throughout f; more precisely, we postulate for some
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m, O<-m <-n,

rank of (aii(X))l<_i<_ n m

(3 1) for all x
a(x):=det (a(x)),,+<_<_ # 0

m+l_j_n

Let Ars denote the algebraic complement of ars in the matrix (aij)m+l<-i<-n,m+l<=i_n.
From (2.1), we then easily see that

(3.2)
[Mpi, Ap,] O, [Mi, Api] O, [Mi, a] 0

fori, p=m+l,...,n, k=l,...,m, ]=l,...,n.

Now define the operators Si, i, j 1,.. , n as follows:

-a AMi fori=m+l,...,n, ]=l,...,n,
p--m+l

(3.3) Sii:
-Mii + a- aiqApqMpi for 1, ., m,

p,q=m+l

A straightforward calculation then yields M in terms of S"
-Sii- E aikSki for 1,..., m, ] 1,

k=m+l
(3.4) M , aiS for i= m+l,..., n,

k--m+l

n

An important instrument in the calculations below is the following formula proved
in [2, proof of Thm. 1] by means of Sylvester’s determinant identity (see [1, p. 32, (28)])"

(3.5) AkiApi AkiApi (-1) z,.i

kp is the determinant of the matrixwhere m + 1 <-_ k < p <- n, m + 1 <- < j <- n, and Aii
arising from (ar),,+<--_r<--,.,+_<--, by cancelling the two rows with numbers k, p and
the two columns with numbers i, j. From (2.1) we conclude

(3.6) [A kp M] 0,q, rAi,ar[tclkPlVlplj_.lj forl=l nii

With arbitrary but fixed complex numbers A 1, ’, An we now define the operators

(3.7) Si ;--" 1kSik, 1 <-_ <- n.
k=l

Of course, we are interested only in the case where not all At are zero.
THEOREM 2. (a) [Sir, Sis]+ [Sis, Sir]--0 for i, ], r, s 1,..., n.
(b) [Si, Si]=O for i, /= 1,..., n.

Proof. As is easily seen, it suffices to prove (a) and (b) for < j. We obtain

[St, Si] E ris[Str, Sis] E
r,s= <--r<s<=n

lrts([Sir, Sis]-[Sis, Sir]) "Jl- l2r[Sir, S]r]’
r=l

hence (a) implies (b). To prove (a), we distinguish three possible cases, putting

X :--[Sir, Sis] "Jr-[Sis, Sir].
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Case 1. m + 1 <- < <= n. Using (3.3), (3.2), (3.5), and (3.6), we calculate

X=a-1

k,p=m+l

--a

--a

-1

-1

-1--a

AkiMkra-1ApiMps ApiMpsa 1AkiMkr{ +akiMksa apiMpr apiMpra akiMks }
k,p=m+l
kp

-1 -1MkrAkiApia Mps-MprAkiApia Mks
+MksAkApia Mp-MpsAkApia Mkl

Mkr(AkiApi AkiApi)a-lMps
Mpr(AkiApi AkiApi)a-lMks (

-I- Mks (AkiApi AkiApi)a-lMpr
Mps(AkiApi AkiApi)a-lMkr

(--1)k+p+i+iAkPiMkrMsii p MprMks+MksMpr. MpsMkr)
m+lk<P<-n

0 from (2.1)

Case 2. 1 <- <-_ m < ] <- n. From (3.4) we first obtain

X Mir + aikSkr, Sis Mis + aikSks, Sir
k=m+l k=m+l

=-[M,. S.]-[M,., S.]- i [aikSkr, Sis]-- [aikSks, Sir].
k=m+l k=m+l

Now we claim that the first two terms on the right-hand side vanish. More precisely,

(3.8) [Mip, Siq]’-O for l<-_i<-m<]<-n, p,q=l,...,n.

This follows from definition (3.3) together with (2.1), (3.2), noticing that [Mp, a] 0
when p 1,. ., n implies

aa 1Mip Mipaa aMpa

and hence, [Mip, a -1] 0. Again from (3.3) and (2.1) we deduce

(3.9) [aik, Si] O, k m + 1,..., n,

This implies
[aikSkr, Sis] aik[Skr, Sis],

Thus,

/=l,...,n, l<-i<-rn<]<-n.

[aikSks, Sir] aik[Sks, Sir].

X a,k ([Skr, Sis + [Sks, Sir]) 0.
k=m+l

0 from case

Case 3. 1 -<_ <_- ] -<_ m. Equations (3.4) yield

k=m+l k=m+l
0 from (2.1)

=0 from (2.1), (3.8) =0

k=m+l p=m+l
=0
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-I- Mis, ., aikSkr -t- ., aikSks, Mir + aikSks,
k=m+l k=m+l k=m+l

=0 =0

p=m+l

k,p=m+l
([aikSkr, a,S,s] + [aikSks, aloSor]).

By means of (3.9), we obtain

aikSkraipSps aipSpsaikSkr aikaioSkrSps aipaikSpsSkr aikaio[Skr Sos ],

and in the same way

[aikSks, aioSor] aikaio[Sks, Spr].

Hence,

aikaio([Skr, Sos] + [Sks, Sor]) 0.
k,p=m+l

0 from case

This ends the proof of Theorem 2. [3

4. Simultaneous eigenfunctions of $1,’", S,. Remember that Si are defined
in (3.7) by means of n arbitrary constants hi,. "’, An which are assumed fixed. We
now prove the following equivalence:

THEOREM 3. Let u be any function on fl. Then the statements (a) and (b) are
equivalent"

(a) u satisfies the n eigenvalue equations

(4.1) Siu libl, 1 <= <- n.

(b) u solves the n "separated" equations

(4.2)
lkMikU ----iiU- AlailU, 1,..., m,

k=l /=m+l

AtMitu Alailu, m + 1,. ., n.
k=l /=m+l

Proof. (a) ::> (b). Using (3.4) we calculate for m + 1 <= -<_ n

AkMiku---- Ak ailSlkU
k=l k=l /=m+l

ait ASIU:- ailSlU A.lailbt,
/=m+l k=l /=m+l /=m+l

and for 1 <-i=<m

ikMikU ik ik + ailStk U ---Siu- E
k=l k=l l=m+l l=m+l

ailSlu ---Aiu-
/=m+l

AlailU.
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(b) => (a). From (3.7) and (3.3) we obtain for m + 1 -< -< n

Su=- Aka -1 ApiMpku
k=l p=m+l

---a -I Api Ak.Mpku
p=m+l k=l

a E Api E AtaptU
p=m+l /=m+l

a , At ApiaplU
/=m+l p=m+l

ail

AiU.

Using this result and (3.4), we finally obtain for 1 <= <- m

S,u=- ., X,Mi,u- Xk Z aipSpku
k=l k=l p=m+l

/=m+l p=m+l k=l

-. u XpU,.,p

Notice that (4.2) and (2.8) coincide in case m =0. In any case, the following
result can be derived:

THEOREM 4. A solution u of (4.2) (or (4.1)) which vanishes nowhere on f also
satisfies equations (2.8)mwith the same (A 1,.. , A,) as in (4.2)--i[and only ira A2

Proof. Define the matrices At,... ,A4 by decomposing A := (a)<,,ti, as
follows"

( A A)} m
(4.3) A

m. n-m

By assumption (3.1), there exist Ag and an (n- m, m)-matrix function C such that
A =A2C, A3=A4C. Thus, C =AA3 and

(4.4) A1 =A2AA3.
Now a simple calculation shows that a solution u 0 of (4.2) also satisfies (2.8) if and
only if

(4.5) A=, A3=0 in,

where is the column vector (Ax,..., A)’. From (4.4) and (4.5) we finally conclude

=A2AIA3 =0.
=0

Let us still consider the following special case which frequently occurs (for m 1
see 7)"

(v) Mi=O for lin, m+l]n.
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In this case we obtain Sij 0 for m + 1 -<_ ] _<- n. Now, if for some h C", the nonzero
function u satisfies (4.1) and (2.8), Theorem 4 yields A1 "-A2 Am 0, hence

Si hkSik=O forl<_--i<_--n.
k=l

Using (4.1) again, we now obtain h,/l h, 0, and thus, h 0.
Summarizing, we have seen that in case (v) (4.1) and (2.8) can be satisfied

simultaneously only in a trivial way. Hence, in this case equations (4.1) cannot be
used to find such nontrivial solutions of Lu -0 which also satisfy (2.8). However, the
following substitute of Theorem 3 can be established (for rn 1 see also [2, Thm. 8]):

THEOREM 5. Suppose (v) is satisfied. Then:
(a) For any fixed (Am+l,’’’, h) C and any function u on l’l the statements

(al) and (a2) are equivalent:
(al) u satisfies the equations

0 for i=l .,m,
(4.6) E Si]u I]=I hiU for m + 1,. ., n.

(a2) u satisfies the separated equations

(4.7) Milu -b hkaikU 0, 1, n.
j=l k=m+l

(b) If m 0 and u satisfies (4.6) or (4.7) for some (h,+l, , h) e C-, then u
is a solution ofLu O.

Proof. (a) The proof of this part is a straightforward calculation using (3.3), (3.4).
Since it is quite similar to the proof of Theorem 3, we omit it.

(b) By using multilinearity of the determinant fL with respect to the first m
columns, and owing to assumption (3.1), we obtain

(4.8)

Mll q- all Mira q- aim al,m+l

Mn + an Mnm + anm an,m+

Mll Mlm al,m+l aln

Mn Mnm an, + ann
To this latter determinant, which is a G-separable operator again, we may now apply
Theorem 1 with (h 1," , h,) (1,.. , 1, h,+x,. , h,) # 0. The proof is completed
by noticing that the role of equations (2.8) is taken over by equations (4.7). (q

For m 1, another useful formula holds (see [2, (20), (22)]):
COROLLARY 1. Assume (V) with m 1. Then

(4.9) Sll -a-X[L.
Proof. Expanding the determinant on the right-hand side of (4.8) (m 1) with

respect to the first row, and using (3.3), (3.4), we obtain

fL aM + a a kSk aS [’i
k=2

In the next section, we investigate eigenfunctions u of the operators Sii and ask
when such functions also satisfy Lu -O.
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5. Simultaneous eigenfunctions of the operators S.. Now assume that the func-
tion u on fl is an eigenfunction of all operators Sii with corresponding eigenvalues/ii"

(5.1) Si]u i]u, i, ] 1," , n.

Put

(5.2) B ".’-" ([i])l<=i<=n

and let A be the column vector with elements A1,." ", A, occurring in (3.7). In case
u does not vanish identically, we notice that u also satisfies (4.1) if and only if

(5.3) BX X.

We first prove the following lemma:
LEMMA 1. If U satises (5.1), then

(5.4) flu gu.

Here, the ]’unction g is given by

(5.5) g := (-1)" det D,

where D (dij) is the following (n, n )-matrix

[3i] + E aik[3k4 ai,
k =m+l

(5.6) d := 1 <_- ] <_- n.

ail[31a- aq,
k=m+l

l <=i <=m,

rn + 1 <=i <=n,

Proof. By (3.4) and (5.1) we obtain

--[i]- E ail[3k4 + ai u,
\ k=m+l /

Liiu (Mii + aii)u
( Y. aia+a u,
k k=m+l

l<=i<_m,

m+l<=i<=n.

By (2.1), the factors of u on the right-hand side commute with Lrs, r < i. Hence, we
successively calculate (zr runs through all permutations of the figures 1, , n)"

fLu

k =m+l
ankflkrr(n) + a,,.,,.(,.,))L.,,.(1) Ln-,rr(n-)U

E (__)sgnr rl --i’n’(i)-- E
i= k=m+l

aikflk,rr(i) + ai,rr(i) aikk,rr(i) W airr(i) U
i=m+l k=m+l

(-1)"(detD)u. Iq

Next, we ask for conditions under which a function u satisfying (5.1) is also a
solution of Lu 0. By Lemma 1, this means that we have to find conditions for det D
to vanish identically. First we prove some sort of necessary condition.
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LEMMA 2. With B as in (5.2), define the matrices B1," ", B4 by

(5 7) B =:

m n-m

Then, in general, det D does not vanish identically unless the following property (P)
holds (1 unit matrix):

(P) det (B1 B2 ) 0 ]’or all (n- m, m)-matrices Z.
Z B4-I

Proof. It suffices to give an example. For this, we assume case (i) of 2, and
choose the matrix (aii) in the following way:

(a)li___ := with X := (xi)m/i.

(5.6) then yields

B B2D=
B3-X B4-I"

We claim that, by the special choice of X, all possible products p made up of elements
from different rows and columns of B3-X together with the function 1 are linearly
independent. This can easily be verified by successively regarding those products
consisting of a maximal number of factors. Thus, from the assumption det D--0 we
conclude that, in the usual expression of det D as an alternating sum, all the coefficients
of such products p must vanish. This obviously yields property (P).

Remark. From (P), we clearly obtain

det (1 B4-IB2 )=det(/l B4-IB2 )=detBl.det(B4_l)=O.
(Here and in what follows, the determinant of a (0, 0)-matrix is defined to be 1.)
Moreover, condition (P) implies the following weaker condition (Q):

(1 B2 ) is independent of the choice of the matrix Z.(Q) det
B4-I

This condition holds, for example, if B2-" 0. For m 0 and m n, condition (Q) is,
of course, empty.

LEMMA 3. Let D (dii) be defined by (5.6), and for the matrix B, decomposed as
in (5.7), assume that condition (Q) is satisfied. Then we have

(5.8) det D a det Bx det (B4-I).

Proof. For m 0 or m n, assertion (5.8) is seen directly; thus we may assume
0< m < n. Using the decomposition (4.3) of the matrix (aii) and (4.4), we obviously
get the following form for D"

=(BI+A2B3-Ax B2+AzB4-A2D
\ A4B3-A3 A4B4-A4 ]

A B+AEB4-A23

A4B3-A3 A4B4-A4 ]’
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and this latter matrix coincides with the product

-A-IA3 B4-In-m)
where Ik is the (k, k)-unit matrix. Here, the first factor has determinant det A4 a,
and by assumption (Q), we obtain for the second factor

det \(B3 BI
-A-aA3 B4-In-m

B2
| =det Ba det (B4-In-,,).

B4-In-m]

This proves (5.8).
Remark. Notice that the above proof still works if condition (Q) is replaced by

the special assumption

B3-A-A3 =0.

Thus, in case (Q) is not satisfied, the assertion of Lemma 3 remains true as long as
A3 0 and B3 0.

LEMMA 4. Suppose 0<re<n, and assume that the (n,n)-matrix B=
(ij)<-i<-n.<-j<=n decomposed as in (5.7), satisfies condition (Q). Then det B det (Bn-
In-") # 0 implies B2 O.

Proof. (a) We first treat the following special case:

BI=I", B4-In-m =In--re.
Choosing a matrix Z (zij) of indeterminates zi, 1 -<_ _-< n m, 1 -<_ ] -<_ m, we calculate
the determinant

d :=det(
by Laplace’s generalized expansion theorem applied to the first m columns of the
matrix. A straightforward computation yields

(5.9) d=l+ ’. Y. (+l)zd,"+i + second and higher order terms in zi.
i=1 j=l

Since, by condition (Q), d is independent of z, in particular the coefficients of all
linear terms in (5.9) must vanish. This means B2 0.

(b) In the general case, we have by assumption det B # 0 and det (B4-In-) # 0,
hence B-x and (B4-In_)- exist.

Now, from

(Hi 82 )(n
-1 0 ) (I n2(n4-ln_m)-1)Z B4-/-" (B4-/-,,)-1 ZB-

we obtain

d’=det( I,, Ba(B4-In_m)-)ZB-?

(det B)-(det (B4-In-,))-1 det (B B2
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Thus, owing to (Q), d is independent of Z. Then, obviously, is also independent of, := ZB-(1. Now, from part (a) of this proof, we have B2(B4-In_,,)-1 0 and therefore
B2=0.

Now, let us draw some conclusions from the above lemmas. As an immediate
consequence of Lemmas 1 and 3 we obtain:

THEOREM 6. Assume u to be a simultaneous eigenfunction of all operators Si with
corresponding eigenvalue matrix B satisfying condition (Q). Then

(5.10) fLu (-1)ha det B1 det (B4-In-,,)u;

hence u O is a solution ofLu =0 if and only if detB1 =0 or det (B4-In_,,) 0.
In the case m- 0, where condition (Q) is empty, the following corollary holds:
COROLLARY 2. Suppose det (aii)l<-i<-n,l<-i_n 0 in II, and let uO be a simul-

taneous eigenfunction of all operators Si with corresponding eigenvalue matrix B. Then
u is a solution of Lu 0 if and only if u solves the "separated" equations (4.2) with
some nonzero vector A (A1,." ", An) Cn\{0}. In this case, A is an arbitrary nonzero
fixpoint of the matrix B.

Proof. For any fixed A (A 1, , An) Cn\{0}, the following chain of equivalences
holds:

u solves equations (4.2)-- - u satisfies the eigenvalue equations (4.1)
(Theorem 3)
< z-A is a fixpoint of B.

(see (5.3))
Now, B has a nonzero fixpoint if and only if det (B-In) 0, and this is true, by
Theorem 6 (m 0), if and only if Lu O.

COROLLARY 3. Suppose 0 < m < n. Letu0 satisfy the eigenvalue problems (5.1)
with eigenvalue matrix B as in (5.7). Moreover, assume B2 0 and det B1 O. If then
u is a solution ofLu O, u also solves the equations (4.2), where A (A 1," , An) Cn\{0}
is an arbitrary nonzero fixpoint of B.

Proof. Let u be a solution of Lu 0. Owing to B2 0, B satisfies condition (Q),
and Theorem 6 then yields det(B4-In_,)=0. This implies det(B-In)=
det (BI-I,). det (B4-In_m)=O, and thus, B has a nonzero fixpoint A Cn. The
equivalences established in the proof of Corollary 2 then end the proof.

From Lemma 4 and Theorem 6 we further conclude:
THEOREM 7. Suppose 0 < m < n. Let u 0 be a simultaneous eigenfunction of all

operators Sit whose eigenvalue matrix B, decomposed as in (5.7), satisfies condition
(Q). Then, if B2 O, u is a solution ofLu O.

COROLLARY 4. Suppose 0 < m < n. Let u 0 be a simultaneous eigenfunction of
all Sit. For the corresponding eigenvalue matrix B, decomposed as in (5.7), we assume
that (Q) is satisfied and that B2 has rank m. Then u is a solution of Lu 0 which also
solves the "separated" equations (4.2) with (A1,’", An) Cn\{0} being an arbitrary
nonzero fixpoint of B.

Proof. Lu 0 follows from Theorem 7, since the assumption on the rank implies
B2 # 0. Moreover, the assumption rank B2 m is equivalent to the existence of an
(n- m, m)-matrix C such that B2C I,. Therefore we have

B__In=(BI-I,,, BE )=( B1 Bz ).(IC 0 )B3 B4 In-m B3 +B4C C B4 In-m In-m
Hence, using property (Q) and Lu 0, we obtain

det (B-In)=detB1 det (n4-In_m)=O.
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Thus, B possesses nonzero fixpoints, and by the equivalences in the proof of Corollary
2, the proof is finished. 1-1

Remark. Notice that the condition rank B2 m, implying 2m <= n, will sometimes
contradict condition (Q). For instance, in case 2m n, (Q) implies det B2 0. But it
is easy to find matrices B satisfying both conditions.

6. Transformations of Biicklund type. For any function u vanishing nowhere on
f, we now define v := (vl,’’’, vN) by

(6.1) v := u-Ou, 1 <-_ <-_N.

NMoreover, let a (a,. , ar), a e 0, be any multiindex with [al := =1 ag->_ 1, and
define the nonlinear differential operator N for .n-tuples w (Wl,’’’, wr) of C-functions w on II inductively as follows. Denote by 6 the multiindex which is 1 in
position and zero elsewhere. Then:

(6.2) N,(w):=wi, N+,(w):=wiN(w)+OiN(w), l<-i<-_N.

Obviously,N is an operator of order lal- 1, and from its definition and (6.1), we obtain

(6.3)

Finally, if

(6.4)

we put

(6.5)

Ou N(v) u, (0 := 0’’’ 0" for cz (al, ", ON)).

M, Y. c, (x )0,
O(w) := Y c(x)N(w).

Now, from Theorem 1 we easily derive"
THEOREM 8. Assume that the function u, which is nowhere zero on f, is a solution

of the first order system

(6.6) Oiu viu, 1 <= <= N,
where v (vx, , vu) satisfies the nonlinear differential system

(6.7) hO(v) + Y ha 0, 1 _-< <_- n
k=l k=l

]’or some (h a,..., h,)e C"\{0}. Then u also solves the equation Lu O.
Remark. Using Theorem 3 or Theorem 5 instead of Theorem 1, statements

analogous to the one above could be established. For a special case, see [3, Thm. 2].
Systems (6.6), (6.7) may be regarded as Biicklund-type transformation of the

linear G-separable operator L. (See [10, pp. 81, 82].) To make this clearer, we now
specify the assumptions on the operators Lq. We assume

(6.8) {1,... ,N}=EIUEU. "UEr
to be the finest possible partition of {1,..., N} into disjoint nonempty subsets E
with the following property"

(6.9) The operators Lia, L, depend only on the
variables with indices from one set E, (1 _-< <_- n).

(In cases (i) and (ii) of 2, E are one-element subsets.) From (6.9) and (6.2)-(6.5),
it follows that the ith equation in (6.7) explicitly depends only on the variables xt, e E,,
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and contains only functions Vk, k E, and their derivatives with respect to such xt.
The functions Vk, however, may depend on the remaining variables, too. The following
theorem states when this does not happen.

THEOREM 9. Let u be a function nowhere vanishing on lI and let v (vl, , vN)
be defined by (6.6). Then the following statements (a) and (b) are equivalent:

(a) u is a product u UlU2"’’ Ur with C-functions u depending only on the
variables xt, E.

(b) For all u 1,. , r and all k E, the function Vk depends only on the variables
Xl, E.

Proof. The implication (a) => (b) is obvious. Let us prove (b) => (a): For u /x and
k E, ] E, we obtain (in the complex case) 0i0k(ln U) Oi(U-10kU) OiVk 0. By
standard arguments, this yields

In u

where w is a Coo-function depending only on the variables x, E. Thus, (a) follows
by exponentiation.

Remark. As is well known, solutions vl,’", VN Of (6.7) with nontrivial
(h 1, , An) yield a solution u 0 of (6.6), and hence of (1.1), if and only if
holds for all i,]= 1,...,N.

In the important special case where L is a second order operator separable
according to case (i) or (ii) of 2, the equations (6.7) are first order nonlinear ordinary
differential equations, each for a single function Vl only.

In [10, pp. 81, 82], A. C. Scott treats the Biicklund transform of the linear
Klein’Gordon equation in polar coordinates (two space variables, N 3). Here, one
of the equations corresponding to (6.7) is a Riccati equation. Scott conjectures what
was shown above, namely "that the procedure works for any separable, linear partial
differential equation."

7. Examples.
(a) Consider the complex 4-dimensional Helmholtz operator L:=A4-/z,

expressed in the coordinates x defined by (2.4). First, we assume/z 0. Then, from
(2.5), we obtain m =0 and a =/x(x2-xl). By (3.3) we calculate

S:= xx-------L- ((x3
X1 --X2

Sll "-/d,-1A4 "-/x-lL + 1,

x3 )0] + 2(x - x )0304 X i-lM11 x 1Ma),

where

2 2Mll := 4x 101 -" 12x101, 2 2M21 :=-4x202- 12x202,

S31=t3, $41--032, S51--04, $61=0304, Si]--O for 1-<i-<6, 2-<]._-<6.

Since m 0, (2.8) and (4.2) now coincide. Looking for solutions u 0 of (2.8)
with A (A1,’’’, 16)# 0, we easily find that 11 must be nonzero; hence we assume
without restriction A 1. We calculate that (2.8) with A 1 has a solution u # 0 if
and only if , (1, A 2, A 3, A ], A 5, A3A 5) with A 2, A 3, A 5 arbitrary complex. Moreover,
we easily verify that any such solution u of (2.8) (and hence of (4.1)) is a simultaneous
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eigenfunction of all Sij with eigenvalue matrix

1 0

A2
A3

h5
hIs 0

Such functions actually exist and, by Theorem 1 or Corollary 2, are solutions of Lu O.
Now assume/x 0. Then m 1 and a =det (ai)2<-i<-_6,2<=<-6 1. Since condition

(v) of 4 is satisfied, (4.9) yields

Sll-’(X2--x1)A4.

Moreover, we calculate

82 -M2 x2 0304,

and the remaining $ii turn out to be the same as in case tz 0. Here again, we may
assume 1 in (2.8), which then obviously coincides with (4.7). Solutions u # 0 of
(4.7) are seen to exist if and only if
arbitrary complex. Any solution u of (4.7) is actually a solution of (5.1) with eigenvalue
matrix

0 0 0

B=

131s 0 0

and, by Theorem 5(b) or Theorem 6, satisfies Lu 0.
(b) Take again L := 4->, but in coordinates x given by (2.2). Assume > # 0.

From (2.3) we obtain n 6, m 0, a =-> and

S51=04, S6 =0, S3=2N-02, Ss=2N-01, S25=201.
The remaining S, are zero.

Since m 0, (2.8) and (4.2) coincide. Looking for solutions u # 0 of (2.8) with
h (h , , 16) # 0, we necessarily obtain h 0, so we may choose h 1. Then (2.8)
has solutions u # 0 if and only if h (1, h, h, h, As, h ) with h e C, h3 and As s C/{0}.
By Theorem 1, these solutions satisfy Lu 0, but they don’t satisfy (5.1), as is easily
verified. For solutions u # 0 of (5.1) with eigenvalue matrix B (i), the only possible
values are: B3, Bs arbitrary complex, Bs BlS and else B,=0. Corresponding
eigenfunctions are

u U(Xl, x) const exp(sx+B3x).

Since det (B-I) # 0, we conclude from Theorem 6 that these functions u do not
satisfy Lu 0 and a fortiori, (2.8). Also, by Corollary 2, they fail to solve (4.1) with
some nonzero
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Let us now look at the case /z=0. From (2.3) we obtain rn=l, a=
det (aii)2<-i<-6,2<-i_6 1, and

Sll=--X1032--X2t942, S21=--X2t942, S13=S23=-2t92, $15=-201, $25=0.

The remaining Sij agree with those obtained in case 0.
Concerning solutions u # 0 of (2.8) with h 0, we now obtain the weaker con-

dition"

A2, A3, A5 C.

By Theorem 1, these solutions satisfy Lu 0 but, as a short calculation shows, they
fail to satisfy (4.1) or (4.2).

As for solutions u 0 of (5.1), the eigenvalue matrix B (/3ij) is given by’

13, 15 C, 23 =/313, all other/3i. 0.

Corresponding eigenfunctions of Si are now

(7.1) u u(xl, x2)= const exp (-1/2(/15xa +/3x2)),
and these are special solutions of (2.8) with A =(1, 0, 0, 0, 0, 0), the latter being
arbitrary functions of xx, x2. That Lu 0 is satisfied by (7.1) could also be seen from
general results using Lemma 3 and the corresponding Remark" Notice that we have
A3 0 and B3 0.

(c) Consider the operator (2.6), (2.7) as a representative of arbitrary linear
homogeneous operators with constant coefficients. In case Co 0 we have rn 0, a Co,

Sxx 1- c-aL, and Si Mi else. If Co 0, we obtain m 1, a 1, S1 =-L, while the
remaining Sij coincide with Mi again.

Let us investigate the systems (6.6), (6.7) for this example. With the notation

O
2 :’- (1, 0), O

3
l= (1, 1), O

4 := (2, 0), a
5 := (0, 2)

and using the definitions from (6.2)-(6.5), we obtain

Qix(wx, w2) N,,(wl, w2), 2 <- -<_ 5, Qi 0 else.

Case co O. Without restriction, we may choose A 1. Equations (6.7) then read

(7.2)
CO "q- A2C "" A 31712 "" A4C11 "" A5C22 0,

N,(v, v2) Ai, 2 _-< _-< 5.

These equations yield conditions on A2,’’ ’, A5 under which they are easily solved
for v, v2. Details are left to the reader.

Case Co 0. Since condition (v) of 4 is satisfied, we may use (4.7) instead of
(2.8) (see Remark following Theorem 8). Then u 0 is a solution of (4.7) if and only
if v, v2, defined by (6.6), satisfy the equations resulting from (7.2) by cancelling Co.
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A QUASILINEAR PARABOLIC EQUATION DESCRIBING THE
ELONGATION OF THIN FILAMENTS OF POLYMERIC LIQUIDS*

M. RENARDYt

Abstract. We study the equation

oii 3 n--t a - ds
Ux(S) u(t))

where u(x, t) is a real-valued function of x e [-1, 1] and e , with the boundary condition

3n + a(t-s)
u(s) u(t)] ds=f(t)

at x 1. This equation is derived as a model for the elongation of thin filaments of polymeric liquids, u
denoting the position of a fluid particle in space, a the memory kernel, and f the force acting on the ends
of the filament. We study the evolution of u, assuming the initial condition u(x, =-) x. It is shown
that under appropriate conditions on a and f the boundary condition can be uniquely resolved with respect
to Ux. The full problem is transformed in such a way that it is approachable by the Sobolevskii theory of
quasilinear parabolic equations. This yields the existence of solutions to the initial value problem on
suciently small time intervals. Moreover, we show that if f(t) converges to zero exponentially as
and is small in an appropriate norm, there exists a solution globally in time, which approaches a stationary
limit as +.

1. Introduction. We study the following problem occurring in polymer process-
ing: A thin filament of a viscoelastic liquid is subjected to a force f acting on its ends
as shown in Fig. 1. We investigate the temporal evolution of the displacement. The

FIG. 1

equations that our analysis is based on involve the "rubberlike liquid" constitutive
assumption for the stress-strain law [3] and certain approximations based on the
thinness of the filament, which allow the reduction to a spatially one-dimensional
problem. Using these assumptions, we shall derive the following equation

"’= + a(t-s)(1.1) Ou 3rtox Ot -x Ux(S) u(t)] ds

where u(x, t) is a real-valued function of x [-1, 1] and R. As usual, a subscript
x denotes partial differentiation with respect to x and "dot" denotes partial differenti-
ation with respect to t. The arguments (x, t) are suppressed unless needed for proper
understanding. Equation (1.1) is supplemented by the nonlinear Neumann boundary
condition

(1.2) 3n- + a(t- s) Ux(t)2 U_x_(S_!
Ux(S) u(t)} ds =/(t)

atx=+l.
In these equations u(x, t) denotes the position at time of a fluid particle, which

is at the position x in a certain reference state. This reference state will be identified

* Received by the editors April 20, 1981. This work was supported by the U.S. Army under contract
DAAG29-80-C-0041 and by the Deutsche Forschungsgemeinschaft.

t Mathematics Research Center, University of Wisconsin-Madison, Madison, Wisconsin 53706.
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with the state of the fluid at =-oo, i.e., we have u(x, t--oo) x. The variable O
denotes the density of the fluid, r/the Newtonian part of the viscosity, and f the force
acting on the ends of the filament. The memory kernel a:[0, co) N will be assumed
to have the following properties, which we shall refer to as assumptions (a):

(i) a has the representation

(1.3) a(t) I e-t dt(h)

where/x is a complex valued Borel measure on the complex plane C such that 1 e L (/x)
(i.e., 1 is integrable with respect to the total variation of/x), and supp is contained
in {I Cl-0 <-arg I <_-0, I11>-et for some q < 7r/2 and e >0. Since a is real, we may
and will assume that d/z(1)= d/z (I).

(ii) a(t)>-O for tel0, c).
(iii) a is monotonically decreasing.

Note that (i) implies in particular that a is continuous and that lal can be estimated
by a decaying exponential. The motivation for assumptions (a) will become apparent
later in the paper. The sectorial condition for supp/ is needed to make the problem
fit into the theory of parabolic equations; (ii) and (iii) will have important implications
for the spectra of certain linear operators. In physical theories derived from "molecular
network" or "bead-spring" models (see [4] and the references in [3, Ch. 6]) a turns
out to be a finite sum of decaying exponentials. This is clearly a special case of
assumptions (a),/x in this case being a finite sum of Dirac measures located on the
real axis.

The boundary condition (1.2) agrees precisely with the equation describing the
evolution of the length of the filament when inertial forces are neglected. This problem
has been discussed previously by Lodge, McLeod and Nohel in [5] and by the author
in [7]. Lodge, McLeod and Nohel consider the solution as known for < 0 and assume
it is nondecreasing. They then assume/ 0 for > 0 and study existence, asymptotic
behavior and various monotonicity properties of solutions. In [7] the force/ is a given
continuous function N N. It is assumed that/e converges to zero exponentially as
-c, and that either/ converges to 0 exponentially as +o and is small in a

suitable norm, or the size of 1 is arbitrary, but ](t) vanishes identically for greater
than some finite to. (In the latter case we need the additional assumption that supp/x

is on the real axis; in fact, in [7] we assumed that/x was a finite sum of Dirac measures
on the real axis, but the same ideas can be applied to the more general situation as
we demonstrate below.) In both cases it is proved that, given the initial condition
ux(t=-m)= 1, a unique positive solution exists for all times t, and moreover
limt_+ ux(t) exists and is strictly positive. Whereas the arguments in [5] rely mainly
on monotonicity properties, the main tools in [7] are the implicit function theorem
and the use of Lyapunov functions.

The present paper will be arranged as follows: In 2 we explain the basic physical
laws and the approximations leading to (1.1), (1.2). We start from the basic laws of
continuum mechanics, using the "rubberlike liquid" constitutive relation. The equation
of motion in the interior of the filament and the boundary conditions on the lateral
surface are then solved formally by a power series expansion with respect to a "thinness
parameter" in an analogous manner as was done in the theory of thin elastic rods [6].
The first order terms in this expansion lead to (1.1). The formal expansion does not
in general fit given boundary conditions at the ends of the filament, and one is
confronted with a "boundary layer" problem. Since we are only interested in a first
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order approximation, we shall not deal with this situation lere. Instead, we consider
the balance of force, taking into account only terms not involving the small parameter.
This leads to (1.2). Section 3 summarizes the results of [7] concerning (1.2) as explained
above, taking into account the modifications required by the more general assumptions
on a. As a result, we may subsequently consider ux as being given on the boundary.
In 4 and 5 we finally deal with the full problem (1.1), (1.2). Using (1.3), this problem
is transformed in such a way that it fits into the abstract theory of quasilinear parabolic
equations introduced by Sobolevskii 2], [8]. An "initial condition" in the evolution
problem so defined will not necessarily involve the whole history of u, but only certain
of its moments the choice of which depends on the support of /. In 4 we shall
explain this transformation and as a consequence of the Sobolevskii theory obtain the
existence and uniqueness of solutions to the initial value problem locally in time.
Section 5 deals with the case where ] converges to zero exponentially as t-> +o and
is small. We assume the filament is undeformed (u- x) at =-. It will be shown
that a solution of the full problem exists globally in time, which approaches a stationary
limit as --> +.

2. Derivation of the basic equations. We assign to each point in the fluid two
different sets of coordinates. By (rl r2, r3) we denote "body coordinates" i.e
coordinates labelling a specific particle in the fluid. These coordinates can be identified
with the position of the particle in space, when the fluid is in a certain "reference
state". (It will later be convenient to take as a reference state the state of the fluid
at time =-). On the other hand (yl, y2, y3) will denote coordinates labelling a
point in space. We are interested in finding trajectories of fluid particles, i.e., a
functional dependence y/(.l, .:, .3, t). In our exposition of the equations describing
this functional dependence we follow Lodge [3]. (For a summary of the relevant
equations, see [3, pp. 206-207].)

To each point (sr, srE, sr3) there is assigned a body metric tensor y and a body
stress tensor r. y is defined by the relation

Oy Oy

r is related to y by a constitutive law which expresses the specific properties of the
material. We use the "rubberlike liquid" constitutive relation ([3, p. 143]):

OY Ir’ +py -1-+ a(t- s)y(s) ds,

--1where y,1 denote the components of y i.e., Y1/jk--tSk, 1"/ is a positive material
constant called the viscosity, and a is a given function, which will always be assumed
to satisfy assumptions (a) stated in the introduction. The variable p is an unknown
having the physical significance of a pressure. The introduction of this variable is
necessary, since we assume the fluid is incompressible; i.e.,

(2.1) det y 1.

The evolution of yk is determined by Newton’s law, which for a Cartesian space
coordinate system takes the form

(2.2) p)).k -OYk{O ,71.si _.IrsTl.i rs}.
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The Fi denote the Riemann-Christotiel symbols associated with the metric tensor 3"- "Y -=}
ocr 01 J"

Equations (2.1) and (2.2) have to be supplemented by boundary conditions referring
to either the displacement or the stresses on the boundary of the liquid. We shall here
deal with stress conditions. Let Y denote the components of surface traction referred
to space coordinates. Then the boundary conditions on a surface sr= const, are given
by

ilOY
k

II 1/2 yk.(2.3) 7r -(y )-

In the problem of the elongated filament, the surface traction on the lateral surface
is zero, whereas at the ends there is a longitudinal surface traction equal to f divided
by the cross-sectional area of the filament. For convenience, we let . and y,
respectively, denote the coordinate in the direction of the filament and z, 3 and
2 3y y respectively, the transversal coordinates. It is assumed that in the undeformed

reference state (i.e., at =-) the filament is cylindrical and axi-symmetric, i.e., in
this state we have yi= i, where fix (by appropriate normalization of length scale)
ranges from -1 to 1, and r (2)2+(ff3)2 ranges from 0 to 6, the radius of the
filament. Then, for small , equations (2.1) and (2.2) and the boundary conditions on
the lateral surface can formally be solved by a series expansion in powers of r and .
This epansion is analogous to that used by Nariboli [6] for the problem of longitudinal
elastic waves in a thin rod.

We put 2= 2/6 3= 3/6 r/6, so that the lateral surface now corresponds
to ? 1. We make the following ansatz:

yl( 8x, 83)= E 82P(, )
v=O

X
0

3
Y (ff, 8e, 83)= X 8O(ffx,

2p(ffx, 82, 6{3) E 8R(C r, ),
=0

where P, Q, R are polynomials of h degree in 2. This ansatz is inserted into (2.1),
(2.2) and the lateral boundary conditions, which are supposed to be satisfied for all
values of 8. Formally, this yields an infinite set of equations for the coecients of P,
Q and R. We are only interested in deriving an equation for the first term P0(ffx),
and we shall in the following only carry out the series expansion as far as needed for
this purpose.

When terms up to 0(8) are taken into account, we find for the metric tensor

o
where 8Po/ (SPa/)- + (Oo/X)Oo.
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Putting 6 0, we find from (2.1)

(2.4) \-] O 1.

Next we consider the boundary conditions on the lateral surface. At a boundary point
where 3 0, these yield the equations rzl 22 23=zr =r =0. (Because of the radial
symmetry it suffices to consider these boundary points; if the traction vanishes there,
it does so everywhere else.) The quantity r23 vanishes identically as a result of the
radial symmetry. For r22 we obtain the following terms of the order O(1)

22(2.5) 7r _RoQ_2 0 Ifn(O2)+ a(t-slO2(s) ds =0.

Finally we have

(2.6) r2 -n(y2a)+a_ a(t-s)y2(s) ds =0.

All solutions we are going to consider shall satisfy limt_,_ p(t)=I_o a(-s)ds and
lim_,_ y2(t)=0, the convergence being exponential. If (a) holds, it is then not
difficult to prove that the only solution to (2.6) satisfying the specified conditions is
21y 0. In the first order in 6 this yields q 0. The law of motion (2.2) now yields

the following equation for Po(y= (OPo/O()-2)"

( aPo -2 O [OPo-2_aPo O -Ro(-) /OPo\ -2

+ ooa(t-s)-) (s) d- ( OPo -2

-n-\O(x) + ooa(t-s)-) (s) d

In order to simplify notation, we shall henceforth write u for P0 and x for r’. The
last equation now yields (1.1) after a few manipulations, when (2.5) and (2.4) are
used to express R0 in terms of u.

Finally, we have to specify boundary conditions at the ends of the filament. As
noted in [6], the asymptotic expansion which we used for the interior problem generally
fails near the ends, and a "boundary layer" has to be taken into account. The boundary
layer is discussed in a forthcoming paper by Reiss, which is summarized in [1], but
not published yet. We are here only concerned with a first order approximation, and
we shall ignore boundary layer effects. Instead, we take care of the force balance in
the zeroth order with respect to 6. Namely, if one formally inserts our expansion into
the boundary conditions at the ends, it is seen that all traction components transversal
to the direction of the filament are 0(6). The longitudinal traction component gives
the following terms of order O(1)"

--+ a(t-s)
ux(t) u ds." r -(’}, zr \O) 3nu uZ(s)

Since the cross-sectional area of the filament is in first approximation equal to u-’,
we shall require that z f. Ux. This yields (1.2).
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3. The boundary problem. In this section we consider the problem of solving
(1.2) for ux, when f is given. The results we present slightly generalize those of [7],
allowing for the more general class of kernels a satisfying assumptions (a). In order
to simplify notation, we write y for ux. Instead of (1.2) we study the slightly more
general problem

(3.1) s(y3(tt )3rt} + I_ a(t-
\ y---s)- y(s) ds f(t)y

where 0< a < 3. Equation (1.2) corresponds to a 2, and, as explained in [7], the
case a 1/2 is also physically interesting: namely, it describes the deformation of a sheet
of the polymer, when inertia is neglected, as shown in Fig. 2.

_,7/
-f

FIG. 2

We put g(h ’-oo e-X(t-S)y-2(s) ds, h(h)= t__o e-;’(t-S)y(s) ds,

y(A) g(A)y z 6(A) h(A)y -x

Then (3.1) is equivalent to either of the following systems"

(3.2)

(3.3)

3r/3) J (h(h)- g(h)y 3) d/x (h) +fy ",

(a) -ag(a) + y-=,
/ (1) -,h (,) + y;

3n3) y" I ((X)- r(X)) dtz(x) +fy,
2 _[ 2

_
"(A) =-AT(A)+ 1 --T(X) (T(A)- 6(,)) d/x(A) +-y(a)/y

1 l" 1
_

Both forms will be used in the following. Equations (3.2) or (3.3) will be regarded as
evolution problems in the space X Rx (LS(x))2, 1 <-s < o. Here LS(z) denotes the
space of all (equivalence classes of) functions g’C+C such that g()= g(z) and Igl
is integrable with respect to the total variation of z. Clearly, the right side of (3.2)
or (3.3) is the sum of an analytic generator and a smooth nonlinear term.
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A trivial solution for f=0 is given by y 1, g(A)= h(A)= y(A) 8(A) l/A, and
we are interested in solutions converging to this trivial solution as -oo. As a first
step we investigate the spectral properties of the linearization of (3.2) (of course (3.3)
gives the same result) at this point, i.e., we study the inhomogeneous linear equation

3rlBy I (h(A)- g(A)) dtx (A) + 3 y - dr, (A)

(3.4) fig(A) + Ag(A) + 2y 1(A),

/3h (A) + Ah (A) y 2(A).

If -B is not in the support of , the last two equations can be resolved with respect
to g(A) and h(A). This inserted into the first equation of (3.4) yields

I 1B I 1 I 2(A)-()3nBy-3y d,(X)+3y wd(X) 3n, +

Hence the resolvent exists at B. if and only if -B is not in the support of and

a(B):=3nB-3
A+B x

Clearly, p(B) vanishes for B 0. Namely, we have

a(B) 3B n + da(x)

Using the relationship between and the kernel a, we find

A(A +B)
d(A)= a(t)

1

B
e

dt.

For B # O, the real part of this expression is given by

(t Im #))+Im B e sin (t ImB)} dt.{Re B(1-e-’ cos -tReB

If Re B 0, condition (a) (ii) implies that the first contribution is positive, and condition
(a) (iii) implies that the second contribution is positive, too. Hence Re 1/(A(A +
B)) d(A) 0, whence certainly P(B)# O.

For easier reference, let us put Y (y, g, h) x (L’ ())2 in (3.2) and write (3.2)
in the form

(3.5) ’=L(Y- Yo)+N(Y- Yo, f)

where L denotes the linearization of the right side at the trivial solution Y0
(1, l/A, 1/I). Analogously, we put Y’= (y, y, 8) and write (3.3) in the form

(3.6) "’= L’(Y’- Yo)+N’(Y’- Yo, f).

We have just proved
PROPOSITION 3.1. The spectrum of L (or L’) consists of the algebraically simple

eigenvalue 0 (geometric simplicity is immediate, and algebraic simplicity follows from
the fact that the resolvent has a first order pole) and a remainder contained in the left
halt-plane. Moreover, the restriction ofL to the range ofL generates an analytic semigroup
of negative type.
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Before we can state our theorems, we must first define some spaces of functions.
DEFINITION 3.2. Let Z be a Banach space and tr a positive real number. Then

X(Z) := { v e Cn (’ Z) t-,+/-lim e t’tllv()(t)ll 0 for k 0, 1,. , n,

denoting the kth derivative},
Y(Z) { v e Cn(, Z) ,-.+lim e l’lllv)(t)ll-- 0 for k 1, 2, , n,

lim e-tllv(t)ll= O, lim v(t)=: v() exists and lim e’llv(t)-v()l[ 0}.t--- t-oO

A natural norm in X: is

k=0 tl

A natural norm in Y: is

sup e-’llv(t)[I + IIv (o)11 + sup e’llv(t)- v (o)11.
t--0 t0

THEOREM 3.3. Let cr > 0 be small enough. Then the following holds" Iff X:()
has sufficiently small norm, (3.6) has a unique solution Y’ satisfying Y’-Yoe
Y: ([) (X: (L (/x)))2. y, depends smoothly on f.

Proof. We rewrite (3.6) in the form

(3.7) G( Y, f) - --L’ N’( l7", f) 0.

It is a consequence of Proposition 3.1 that (d/dt-L’)-1 maps X()X’(LS(I.t,))2

into Z, := Y: () (X: (L (/x)))2. Hence G is a smooth mapping from Z, X:() into
Z, and we have DgG(0, 0)= id. By the implicit function theorem, (3.7) can therefore
be resolved with respect to I7" in a sufficiently small neighborhood of (0, 0).

I7, is clearly unique within that neighborhood. We want to show that it is in fact
unique within the class of all functions converging to zero as -c. To see this, let
us first consider functions I7" satisfying limt_,_ e-"tl[/’ll--0 for some o" between 0
and tr. If I7" is such a function, then certainly e-"lllT"(t)ll is smaller than e on some
interval (-c, tl]. We can now apply an analogous implicit function argument as above,
but rather than considering functions on all of R, we consider only functions on
(-o, tl]. From this we see that I7" is unique in the class of all functions that approach
zero exponentially as -. Finally, if we assume Y converges to zero at all, it can
be seen from the last two equations of (3.3) that y-1/A and 6-1/A converge to
zero exponentially, because if only these two equations are considered, the zero
eigenvalue in the linearization does not occur. From the first equation of (3.3) we
find that ) converges to zero exponentially, and hence the convergence of y to its
limit has to be exponential, too. [3

If further restrictions are made on/x, a global result can be proved that does not
rely on the smallness of f.

THEOREM 3.4. In addition to (a), assume supp/x is contained in the real axis and
I is positive real. Let f: be continuous and such that limt_.,_ e-tf(t) 0 for some
tr>0 and f(t)=0 for t>-to. For any such f, equation (3.3) has a unique solution
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satisfying limt-,- Y’(t)= Yo. This solution exists globally in time; moreover,
limt_,+ Y’(t) (y(), l/A, l/A) exists and y() > 0.

Proof. From the arguments in the proof of the last theorem we already know the
existence and uniqueness of a solution on some interval (-o, tl]. In order to prove
that the solution exists globally in time, it is more convenient to look at (3.2) rather
than at the equivalent equation (3.3). Solutions of (3.2) continue to exist as long as
y stays away from zero or infinity. From the second and third equation of (3.2) one
obtains positive lower bounds for g(h) d/x(h) and h(h) d/z(h) in every finite time
interval, provided that y remains positive, and these bounds do not depend on any
estimate for y. Hence, if y becomes too large, y3. I g(A)d/x(A) will dominate over
fy and also over h(A)d/z(A) (the latter being less than some constant times
max(_.0y(r)). Analogously, if y becomes too small h(A)d/z(A) will be the
dominant term. It is immediate from this that y cannot go to zero or infinity in finite
time, and therefore the solution exists globally.

For t>to, we now have f=0, and, putting a(h)= y(h)-l/A, fl(h) 8(h)- l/A,
we find from (3.3)

(3.8)

-{f =.
As we know that y(a) and 8(A) stay positive, the denominators a + 1/A and
are always positive, and the left side of (3.8) is therefore the derivative of a positive
function that decreases along trajectories. (It is easy to prove that a and/3 are nice
enough for all the integrals to make sense; namely, one sees from (3.2) that ag(a)
and ah(A) and hence ay(a) and 13(I) are bounded.) As a consequence, a and fl
converge to zero exponentially as + oo in the L2-norm and a fortiori in the LI-norm.
From the first equation of (3.3) one sees then that 3) converges to zero exponentially,
whence y must converge to a limit exponentially. Moreover, one easily concludes
from the second and third equations of (3.3) that a and fl in fact converge to zero
in the L-norm and not only in the LE-norm. This concludes the proof.

Remark. It is almost trivial to prove [7] that y(oo)> 1 if f> 0 and y(oo)< 1 if
f< 0. Since the equation under study describes the evolution of the length of the
filament, if inertia is neglected, this is a result that one would obviously expect. We
have no analogue yet for the full problem (1.1), (1.2).

4. Local time existence. We now turn to the study of (1.1). According to what
we have seen in the last section, we consider Ux(t) b(t) > 0 as being given at x + 1,
where b is a smooth function of t. We want to reformulate (1.1) in such a way that
it fits into the theory of quasilinear parabolic equations. For this purpose we make
the following substitutions

e -x(t-s) (Ux(S)- Ux(t)) ds,
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g2(h) ff e-h(t-s)( uxx(s)3 Ux(t)Ux(S))4 ds,
u(s) u(t)

g(a | e-’-s> (u-; (s)- u-; (t)) ds,

--- ds.
Ux(S)

Equation (1.1) now assumes the following form:

pi" 3rlp-2rxx 6rip -3qrx 2p f g2(A d/x Lp_ f g4(A)d/x(A),(a)-

(4.1) I(A) -Agl(A)---a’

2(a) -ag2(a)-prXx. g(a) +
P

gx(a)+

2r3(a) -ag(a) +

4(a) -ag4(a)- r.p g,(a + 2rqp g,(a +

with boundary condition p b(t), r (t) at x m 1.
Since ff &, the first boundary condition follows from the second, once it is satisfied

initially, and we shall ignore it.
We will show that (4.1) can be treated by the Sobolevskii theory. For this we

first introduce some notations. H will denote Sobolev spaces of functions on [-1, 1],
and L(>, H) will denote the space o H-valued unctions defined on C, which are
s-integrable with respect to the total variation o > in the Bochner sense (or a precise
definition, see, e.g., [10]). We put X =H2x(Ha)2x(L(,Hx))4. Moreover, in (4.1)
we substitute r-(t)x and introduce the abbreviation y (p, q,
We rewrite (4.1) in the form

(4.2) ) A(y)y +f(y, t)

where A(y) is defined as the following linear operator"

A(y)y’ rx,:’xx,-(3 -2,,,
nP rxx-6np-3q’x),-ag’(a)-rx,p

_Ag, (a >_ (g, (A + _)?’x 4q(7+ g(a)+ rx,

-ag(a)+--e,-ag;(a)-p" g,(a)+ ex-2qp g,(a)+

with the boundary conditions *’rx=Oatx=ml.
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We shall show that (4.2) satisfies all the requirements of the Sobolevskii theory
when regarded as an evolution problem in Xs(1 <-s < oo). More precisely, we shall
prove:

THEOR.M 4.1. Let 1 <= s < o be arbitrary. Let yo (po, qo, ro, gi,o) Xs be given
such that oH3, ro,x=O at x =+1, Agi,oLS(tz, H1) and mint_l,lpo(x) >0. Then,
for some T>0, equation (4.2) has a unique solution y6CX([0, T],Xs) such that
y(0) yo.

Proofi We shall deduce the result from [2, Thm. 16.2] ([8, Thm. 7] resp.). For
this we have to verify the following conditions stated in [2] as (F1) and (F3)-(F5).

(F1) The operator A0 A(yo) is densely defined, closed and generates an analytic
semigroup.

(F3) For v, w in a neighborhood of yo in Xs there exists an appropriate/ C
such that

II(A(v)-A(w))(A(w)+t)-’ll-< cIIv- wll

with some constant c independent of v and w.
(F4) For v, w in a neighborhood of y0 and t, r e [0, T] there is some constant c

such that

Ill(v, t)-f(w, ’)1[ <-- C([t- -[ + IIv wll).

(F5) yo e D(Ao).
(The conditions in [2] are more general, and we have only formulated the special

case applying to our problem.)
(F4) and (F5) are trivial consequences of the smoothness of b and our assumptions

on the initial data. (F3) is clear, if it is proved that the H3-norm of the f-component
of (A(w)+/)-ly can be estimated by Ilyl[. This will be immediate from the arguments
leading to (F1) with yo replaced by w.

To prove (F1), consider the equation (A0+/3)y y’. In the f-component this
leads to

3,/
_

-3 f,Po rxx-6po qor +/f=

and the equations for the other components can be trivially resolved once is known.
It is now a simple consequence of Theorem 19.2 in [2] (which is from Agmon and
Nirenberg [9]) that if/3 is in a sector not containing the positive real axis, and [/31 is
large enough, we have an estimate of the form

This concludes the proof.

5. Solutions for small forces. The goal of the present chapter is to establish an
analogue of Theorem 3.3 for the equation (1.1), i.e, to prove existence of solutions
globally in time for small forces f. f 0 now corresponds to the boundary condition
Ux(t) b(t)= 1 = l(t)= O. In this case (4.1) has the trivial solution p 1, q 0, r 0,
gi(A) 0. As a first step we shall study the linearization of (4.1) at this trivial solution
with homogeneous boundary conditions rx =0. The linearized equation reads as
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follows:

(5.1)

/ rx, 0 rx,

21 11g(a) (a) g.(a) &, (a),
p p

2(h) -hg2(a)---
h’

4(/

We abbreviate (5.1) in the form 1 Ay. We shall study the spectral properties of A
as an operator in the space Xs of 4 (1 <-s < oo is again arbitrary). Consider the
resolvent equation (A-a)y =f= (fl, f2, f3, f4(h), fs(h), f6(h), fT(h)). If -a is not in
the support of , this equation is immediately resolved with respect to p, q and gg(h),
yielding the following equation for r

3r+__r. d(a)_ar=h_
fs(a)

d.(X)_
fT(a)

O O h(h+) o h+ o a+

As noted in 2, 1 1/(1 ( + e)) d(1) has a positive real part for Re 0. Moreover,
this expression obviously goes to zero like 1/la if a in any sector {a e CI- + @ +
e N arg N @ e), being the angle of assumptions (a) and e any positive number.
From these properties it can easily be seen that the following holds"

PROPOSTIO 5.1. A is the generator o[ an analytic semigroup. Moreover, the
spectrum o[ A consists o[ the semi-simple eigenvalue 0 and a remainder lying strictly
in the le[t hall-plane.

Semi-simple here means that the resolvent has a simple pole at 0, or equivalently,
that R(A)N(A)= X,, R (A) and N(A) denoting the range and nullspace of A.

For technical reasons, the spaces X, Y of 3 are not quite appropriate for the
study of our present problem, and we shall use the following spaces, which are defined
in a very similar manner.

DEFINITION 5.2. Let Z be a Banach space. Then H"(R, Z) denotes the spaces
of all functions R Z whose first n derivatives are square integrable in the sense of
Bochner. Let moreover

H" -t HX, (Z) {re (N, Z)le v, e v s (N, Z)},

+t(Y, (Z) {v Z[e-tv H (, Z) ]v Z such that e v) e H" (N, Z)}.

Natural norms in X, and Y, are defined in an analogous way as for X,, Y,. The
use of these definitions lies in the following lemma:

LEMMA 5.3. Let the space Xz and the operawr A be as above, and let > 0 be
small enough. Then the operator

y(t)+ (A )--1y(t)

is bounded from;(X2) into 9;(N(A))@(R (A) D(A)), where N(A), R (A) ana
D(A) denote the nullspace, range and domain of A, rewectively.

Proof. Note that since X is a Hilbert space, the norm in H" (R, X2) can easily
be expressed in terms of the Fourier transform, thus reducing the statement of the
lemma to estimates on the resolvent of A. The latter follow from Proposition 5.1. (It
is this argument that fails, if X is chosen rather than .)
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With these preliminaries, it is now easy to establish an analogue of Theorem 3.2
for the nonlinear problem (4.1). Again we put = r-t(t)x, and we put y
(p- 1, q, r, gl, g2, g3, g4). Then (4.1) has the form

(5.2) 3) Ay +)r(y,/)
where A is the operator studied above. 1 is a smooth mapping from "(N(A))O)
X(D(A)R(A))X,/I (R) into X, (X2) for any n _->1, and, according to Lemma
5.3, (d/dr-A)-x is (for r small enough) a bounded linear mapping fromY(X2) into
Y,(N(A))f(D(A)f’)R(A)). The following result is now immediate from the
implicit function theorem.

THEOREM 5.2. Let tr > 0 be small enough. Then, in a neighborhood of y O, lJ 0
in Y.(N(A))X.(D(A)f]R(A))xX.+x (a), (5.2) has a unique resolution y y(/)
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THE UNIFORM ASYMPTOTIC EXPANSION OF A CLASS OF
INTEGRALS RELATED TO CUMULATIVE DISTRIBUTION

FUNCTIONS*

N. M. TEMME

Abstract. An asymptotic expansion is given for a class of integrals for large values of a parameter,
which corresponds with the degrees of freedom in a certain type of cumulative distribution functions. The
expansion is uniform with respect to a variable related to the random variable of the distribution functions.
Special cases include the chi-square distribution and the F-distribution.

1. Introduction. We consider integrals of the type
1/2 n

(11) fa(r/)(-) I_ e-a:Z/2fa () d(

for large values of the positive parameter a. The independent variable rt ranges over
an unbounded domain

(1.2) H={--x+iylx,

where .3 > 0; 6 may depend on a but it must be bounded away from 0 when a c.
The function fa (r) is required to be an analytic function of the complex variable r Ha
and we suppose that

(1 3) dk/a(’--)- 0(1’];" e’), x +oo,dk
where x + iy e Ha and where /k, (.0 are real numbers not depending on a. Hence,
the integral (1.1) converges for a > w, Fa (- oo) O, Fa (o0) is finite and these limiting
values do not depend on Im /, when r

The function fa (sr) can play the role of a probability density function and Fa (rt)
can be viewed as a cumulative distribution function. Then the variable r is related
to the random variable of the underlying statistics and the parameter a corresponds
with the degrees of freedom. As we will show in later sections, the gamma and beta
distribution functions can be transformed into (1.1). When fa (’) is a density function,
it is supposed that it is positive for real " and that Fa(+ co)= 1. These conditions are
not required here.

From further conditions for fa (’), which will be given in the next section, it follows
that (for large a) Fa(OO) has an asymptotic expansion with leading term 1. This
expansion is written as

’A___7 A.(a)(1.4) Fa(OO) + - n O, 1, 2,. ,
s=oa a

where the coefficients As do not depend on a, A0 1 and

A,(a)= O(1), a--,oo, n =0, 1, 2,....

* Received by the editors April 9, 1981.
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239



240 N.M. TEMME

To describe some aspects of the expansion of Fa(r/) we suppose that r/ in (1.1)
is real. For fixed values of r/ we have, by using well-known methods of asymptotics,

if r/<O Fa(rl)=(2,rra)-/2e-a’/2fa(rl---)[l+O(a-1)],
if n=0
if rt>0

F(0) -o(0)[ + O(a /)],
Fa(rl)= l + O(a-1).

From these relations it follows that the asymptotic behavior of Fa(’O) is completely
different in the three cases distinguished and, moreover, that the asymptotic forms
do not pass into one another when r/changes from negative values into positive ones.
The above approximations are not uniform with respect to small values of rl.

In asymptotics we describe these phenomena by saying that the end point of
integration r/ may coalesce with the saddle point at " 0. Several contributions in
the literature deal with this aspect, for instance Erd61yi (1970), Olver (1974), Bleistein
and Handelsman (1975) and Wong (1980).

The object of this paper is to give an asymptotic expansion which is uniform with
respect to r/. The uniform approximation is not only valid in a neighborhood of r 0
but in the whole domain Ha. It is well known that such a uniform expansion cannot
be described by elementary functions as arise in (1.5). In the present case we need
the normal distribution function

(1.6) P(x) (27r)-1/2 e -t2/2 dt.

This is not surprising since we know from probability theory (the central limit theorem)
that the normal distribution appears if in (1.1) a is large. It also follows by taking for
fa(sr) a constant.

The form of the expansion for Fa (rl) is as follows. For n 0, 1, 2,. ., we write

(1.7)
Fa rl Fa O P rl x/) + Ra (r/),

e-an2/2
Ra(rl) B(s)+4a =o a a

where the functions Bs(r/) do not depend on a. In the next section we will give
representations for Bs (r) and Bn (a, ,/) from which information follows about the nature
of the expansion in (1.7) and about the uniformity with respect to r/. In (1.7), Fa()
can be replaced by (1.4).

The present paper extends the results of Temme (1979) on incomplete gamma
functions to the more general class of integrals (1.1). In 3 this special case will be
considered again, together with other examples. We present our results for r/ in the
strip Ha. It is possible to introduce a more general simply connected unbounded open
domain D, which should contain each real point r/ as an interior point. Depending
on fa (st), it is possible to introduce branch cuts, and D is not necessarily one-sheeted.
This will not be done here because it makes the presentation less transparent. However,
t is not difficult to modify our results for such a general case, for instance, by analytic
continuation. Some modifications should be made in the assumptions" Fa (oo) may not
be finite, since it may depend on the direction in which r/approaches infinity.
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2. Construction of the asymptotic expansion.
2.1. Conditions on [a (’) and A. We suppose that, apart from the requirements

on f (if) given in 1, f (’) has an asymptotic expansion

"- 6(C) 6.(a, C)
(2.1) f(’)= Y. + n=0,1,2,...,

s=0 a a

where 4o(0)= 1, and 4s(ff) do not depend on a and are analytic in Ha. For the
remainders 4, (a, st), we assume that

(2.2) 4,(a, )= O(f,,()) as a -+oo,

uniform in Ha (if fa (’) happens to vanish in Ha, this requirement should be modified
in ,(a, ’)= O(max(1,

As will be shown, it is not possible to define the expansions (1.4) and (2.1)
independently of one another. There is a relation between the coefficients As and the
values of 4 ]k)(0), the kth derivative of 4s() at ff 0. This follows from a well-known
principle in asymptotics that says that the asymptotic expansion of the integral

e- (’) dsr, a - oo

is obtained by expanding 4(sr) in power of sr and integrating term by term.
In the underlying case each term in (2.1) has to be expanded. Writing

(2.3) 4s(Sr) E bs,", [srl < a,
t=O

we obtain for s 0, 1, 2, 3, and a + oo

(--)
1/2 I_ (a2--)tF(t+1/2)(2.4)

a _aC2/2tl)se () d--- Y s.2t
,=o r)

By rearranging the results for all terms in (2.1) and by collecting terms with equal
powers of a-, we obtain (1.4) with

,=o r{} *-"" s 0, , 2, ..
2.2. Integration by parts procedure. Let us first suppose that f() in (1.1) does

not depend on a. That is, we write &o(ff) instead of f (if), and we consider

(2.6) F(> (r/) e-/4,o(’) d’,

with 4o(0)= 1. Taking into account that the main contribution of the integral will
come from a small neighborhood of the point " 0, we write (cf. (1.6))

-a=/2 [0(’) 1] d"

p(rlx/-)_(2rra)_l/2 Cbo()- 1
d e -ac2/2

P(rt4) + (2rra)-1/2
1 &o(rt)

e -ar12/2 "+" (2rra)-1/2 If 4o1 (sr) e -2/2 dsr.
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The function &(o1) (’) is holomorphic in Ha. It is given by

4,(o’ (r)=d ,bo(r)- 1.
d

Repeating this process, we obtain

(2.7) F(a) (rt) P(x/) A)
s=O a

B (’rt)e-an2
E4-5ao a

where A() and B()(r/)s are special cases (i.e., with =0) of a more general set of
functions defined for t- 0, 1, 2,. ..

(s)=,1,, (o),
(s)

u ,rl
t (ts o t s>--O

(2.8)
(s-l) (s--l)

(s) d &, (r/)- Ot (0)
s=>l,

4,(n) (n).

The same procedure can be used for each integral

(’rl)-- e-a2/2f[)t(() dr, t=0; 1,2,...,

where &t(sr) appears in (2.1). The result is as in (2.7), with F(a
(t) (t)replaced by F(t (r/), As B (rl), respectively.

For the complete asymptotic expansion of Fa (r/) we collect terms of equal powers
of 1/a in the expansions of each a-tF(t (r/), and the result is

Zs e-an2 Bs()(2.9) Fa(rt)’--P(rta) --+ Y’.
s=O a a s=O a

with

(2 10) As i As-, Bs(n)
t=0 t=0

It is not yet clear how to interpret the formal expansion (2.9) as an asymptotic
expansion. In the next subsection we will discuss a method that gives a more satisfactory
relation for the coefficients As and Bs(l) and from which a simple expression for the
remainder in (2.9) follows (that is, for the function Bn(a, l) of (1.7)). The numbers
constructed here are the same as those defined by (1.4) and (2.5). This is proved first.

LEMMA l. Let As, s O, 1,.’., be defined by (2.8) and (2.10). Then As satisfy
(2.5), with chst given by (2.3).

Proof. The function &s)(/) defined in (2.8) are analytic in Ha. Let us define
by writing

t(s) (s)(7I)--- E )tr T, 13f]l<, S, t----0, 1, 2,’’"
r=O

(o)with t &t of (2.3). By using the third line of (2.8), we obtain
(s-l) > >(s) (r + 1)t t,r+2, S 1, r O, O.



ASYMPTOTIC EXPANSION OF A CLASS OF INTEGRALS 243

. (s) in terms of (o)Applying this relation repeatedly, we can express , tr tr Ctro The result
is

(2.11) ()=(r+l)(r+3)...(r+2s-1).+2=2F(r/2+1/2+s)
r(r/2 +

of (2.8) satisfies A(t)= 4,()to giving for A of (2.10)

,t) 2,_, F(1/2+s--t)

This proves the lemma.
In the examples in 3, the numbersA are usually obtained via (1.4). IfF(o) 1,

then A 0 (s _>-1), and (2.5) gives an extra relation between ,r. Of course, it is
possible to normalize F(r/) by dividing f(r) byF(oo). Then the scaled function F(rt)
satisfies Fa(OO)= 1.

LEMMA 2. Let B(n), s O, 1,. , be defined by (2.8) and (2.10); let the numbers
Bst be defined by

(2.12) B(n) E B,n’, [nl < 6.
t=0

Then

F(1 + t/2 + r)
(2.13) Bs, Y 2 Cs-r,t+2r+l.

r=0 F(1 + t/2)

Proof. This follows from (2.11) and the second line of (2.8) i-!
Remark. It may be rather difficult to compute the functions Bs(r/) from the

definitions in (2.8) and (2.10), especially for values of r/ close to zero. Then the
representations in (2.12) and (2.13) may be useful.

2.3. A simpler recursion for BOI). Consider the function R(r/) defined in the
first line of (1.7)..From (1.1) and (1.6) it follows that

d
(2.14)

dn
R(’rl)= (a/2"rr) 1/2 e-’/z[f(l)-F,(oo)].

The substitution of (1.4), (2.1) and the formal series

Ra(rt) =e-ana/2 E Bs(y)_
into (2.14) shows that (2.14) is formally satisfied if

nBo(n) 1- Co(n),

d(2.15)
?Bs(rt)=As-s(ql+-Bs_a(), sel.

As outlined in foregoing subsections, the As are related with the numbers Cst defined
in (2.3); this relation is given in (2.5).

It is not clear, yet, that the functions Bs (,/) constructed in 2.2 satisfy the recursion
in (2.15). This will be proved in the theorem which follows.

(t)THeOReM 1. Let for s=0, 1,2,... ,Bs(/) be defined in (2.10) with r (1)
defined in (2.8). Then B(n) satisfy the recursion relation of (2.15).
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Proof. We use induction on s. For s 0, see the second line of (2.8) with 0;
it gives the first relation of (2.15). Suppose, next, that the theorem is correct for the
function Br(t) of (2.10) with 0 <- r <_- s 1, for some s >- 1. Then the right-hand side of
the second line of (2.15) becomes for this s (see (2.10) and (2.8))

Hs-l-t(rl)=As-cs(rl)+As (o) (r/) +
t=o t= dT/ T/

(s--t)As s(r/)+-E , (rl)=As (s--t)t
t=O t=O

(t) (s-t) . (s-t) (s-t)[,-,-, (n)]=..[, (o)-, ()]
t=O t=O

(t)
I lI s-t 7 "OB (’O ),

t=0

which proves the theorem. 1-1

2.4. Representations for the remainder.
THEOREM 2. Consider for (1.1) representation (1.7), where the functions Bs (q) are

defined in (2.15). Then for the remainder Bn(a, rl) of (1.7) we have for n O, 1,.

(2.16) e-an2/2n(a, rt)=-a B.() e-a;a/2 d(

+ [:n+l(a, Sr)--fi-,+a(a)] e -a2/2 d(,

where fi.,(a) and ,(a, ) are defined in (1.4) and (2.1).
Proof. From (2.14) (or from (1.1), (1.6), (1.7)) we have

1/2

e [fa () Fa (oe)] dsr.

Using

we obtain

-a2/2[&0(st)_ 1 + &l(a,a) Al_!a)]a d(

.(a,n)=B.(n)+

(2rra)-1/2 e -aC2/2[_ aBo() + l(a, )- l(a)] dsr,

which gives (2.16) with n 0. Considering (2.16) with n >-_ 0 we proceed by using the
obvious relations

n+l(a, if) bn+l(g") + ’),
a

a,+(a)
an+a(a)=A,+l+

a

B.+(a,n)
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Then, by partial integration of the first integral in (2.16), this formula becomes

--a12/2[e B.(/) + B,,+.(_a,a ’O)]
e-aC:/ZB,, () + c,,+() A,,+a - B,, () +

b,+2(a,a ) _A,,+z(a.____..)]a d.

The integrated term vanishes at r =-m (this follows from (1.3)), and by using (2.15)
we obtain (2.16) with n replaced by n + 1. lq

THEOREM 3. Under the same conditions as in Theorem 2 we have for n
0, 1,2,...

(2.18) e-ani/2jn(a rt)=a f, (B,(()e -ac2/2 d+ f, [fiXn+l(a)-,,+l(a, )] e -a-/2 d.

Proof. From the definition of Ra(rl) in (1.7) it follows that

lim Ra(rl) O, n x + iy Ha.

Hence, we could have started with (2.17) with interval of integration [rt, az) and a
different sign before the integral. The rest of the proof runs as in Theorem 2. [3

It follows from both theorems that, for fixed real values of r/, B, (a, rt) of (1.7) satisfy

(2.19) Bn(a, rt)= O(1), a +oo.

For r/<=0 this follows from (2.16), for r >-0 from (2.18). Hence, again for fixed r,
Ra(?) of (1.7) satisfy

(2.20) Ra(rl) O(a -1/2 e-an2/2), a +.
It is not difficult to show that (2.19) and (2.20) hold uniformly with respect to rt

in compact subsets of Ha. In all relevant applications (see 3) the number to of (1.3)
is 0. Also, bounds for B,(a, rl) can be constructed that are holding uniformly with
respect to r/ Ha.

In our previous paper Temme (1979) on incomplete gamma functions such bounds
for B,(a, r/) were computed for n 0, 1,..., 10. In that paper we overlooked the
remarkable point that both representations (2.16) and (2.18) can be used for construct-
ing these bounds. Consequently, formula (2.17) of that paper should be revised for
r/<0 and (2.19) for rt >0. Also, Remark 1 in the cited reference (p. 760) should be
skipped. More details will be given in 3.4.

In the next section some examples are worked out. In each example the functions
are related with statistical distribution functions. Usually transformations are needed
for a representation in the standard form (1.1).

3. Examples.
3.1. Incomplete normal distribution function. We consider

(3.1) Fa(rl) (G)
1/2 ’Irl dsre-a2/2

1+ ,2
in the strip Ha with 6 1. This function finds wide application in probability theory,
mathematical statistics and in problems involving the heat conduction equation. Jones
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(1972) used it for describing the asymptotic expansion of a double integral. It con-
stitutes a sort of generalization of the error integral. To see this note that

F(m) (2aTr)a/ e/O(/),
where O(x)= 1-P(x) =1/2 erfc (x/,,/-).

The function 1’ (st) of (1.1) is here 1/(1 + (z), and in this simple case the coefficients
B(n) can be constructed rather easily. We have f(ff) 0(ff) and (ff)=0 (s 1).
From the known expansion of the error function we obtain

AsF() E , Ao 1 As
(- 2)F(s +)

s=oa r() sl,

which can also be obtained from (2.5) with

0 ifslort=2r+l, r0,
t (_ 1) ’/2 else.

Hence, from (2.12), (2.13) it follows that for Inl < a
F(t + s +)

B()
,= r(t +) (-n)"

which can be expressed in terms of Gauss’ hypergeometric function 2F(a, b; c; z):

(n) n(_2)
r(s +)

 e’(s + x; -.

/.n +1

The second relation enables us to write

F(S +)
+ 2)F() f01 (B(n)=n(-2)(1 (l-t)-/2 1-t dr,

n +1

from which we obtain

2

Hence, Bs() are bounded on N.
The representation for (3.1) becomes (see (1.7))

e-’/ -Bs(n)+
) ).with B0(n) n/(1 + n Bl(n) n(3 + n)/(1 + n In this example other B() can

be computed by using recursion relations of F-functions. It easily follows that
2 2( + n )S+l(n) -s(2s + ),-(n)-[(2s + )n + 4s + 3]Bs(n).

To estimate the remainder we remark that in (2.16) +(a, ()= 0 and ],+(a)[ can
be replaced by A+I. This follows from a known result about the asymptotic expansion
of the error function

()/ ()/ (a)
F()

a a/e erfc +,
s=0 a a

where A(a)= OA, n 0, 1,... with 0 < 0, < 1.
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It follows that (see (2.16))

2"F(n +-}) in 1 +az
_a2/2le-’"/2B, (a, rt)[ <--

F(23-) 1 + 2 e dr.

The integral can be expressed in terms of Fa(rt) and P(r/ff). This estimate is valid
for rt e . However, for rt->0 it is better to use the representation of (2.18) which
gives the same expression with an interval of integration [rt, oo).

It follows that (3.2) can be used throughout the strip Hx. It is not difficult to
extend the results for a larger domain, or for complex values of a.

3.2. Sievert integral. This integral is defined as
0

(3.3) I(0, a)= I_ e a(1-1/cso)

,n-/2

a > 0, -7r/2 < 0 < 7r/2. The complete integral I(7r/2, a) is an integral of the modified
Bessel function Ko(x), that is,

(3.4) I(’n’/2, a) 2e I, Ko(x) dx.

We need a transformation in order to bring (3.3) into the standard form (1.1). The
appropriate change of variables is defined by

(3.5)

_1/2.2 1-1/cos 4, "
--1/2T/2 1 1/cos 0, rt

2 sin (4ff2)
,/cos 6

2 sin (0/2)
,/COS 0

and the integral (3.2) becomes

(3.6) I(O,a)- e a2/2 &b d’,
dff

where d4/d" =[(1 + ’2/2)(1 + 2/4)1/2]-1, which is holomorphic in a strip Ha in the
’-plane with 6 /.

Remark. It is important to note that the mapping (3.5) of the 4-interval into the

’-interval involves a square root " 2[sin2 (4/2)/cos &]1/2, where the sign of the
square root has the sign of 4. In this way " becomes a holomorphic function of 4 at

4 0. The same for r/and 0.
The standard form (1.1) is now achieved by writing

and Fa (oo) has the known expansion

(3.8)

1/2

e Ko(x) dx,-- Y --7,
n=o a

As=(_l)S
r(s+1/2)

2-’ r(t+)r(1/2) ,=0 2t,r(1/2)’.
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The asymptotic expansion as in (1.7) can now be given for a oo, uniform with respect
to r/ Ha (8 x/). The relation between r and the original variable 0 is given in
(3.5). Complex values of r/ correspond to complex values of 0. In fact, (3.5) defines
a conformal mapping between parts of the complex r/and 0 planes, and the asymptotic
expansion is valid for complex 0 in the image of Ha under this mapping. As in the
foregoing example, the coefficients Bs(r/) can be expressed in terms of hypergeometric
functions.

The expansion reads

1/. ea(,-1/cos 0) Bs(r/)a
I(0, a).- Fa(OO)P(2 sin 1/204a/cos O)+ 4-ra s--0 a

(3.9) as a co, uniform in 0 [-, ],
Bo(/)

cos (0/2)x/cos 0-cos2 0

sin 0

3.3. Incomplete beta function. This well-known function is given by

(3.10) /x(p, q)
1 t"-l(1 t)q-1 dt.

B(p,q)

We consider 0 <_-x _-< 1, p > 0, q > 0; however, extension to complex values is possible.
B(p, q) is Euler’s (complete) beta function

B(p, q)= Io t"-(1- t)q-1 dt
r(p)F(q)
F(p +q)

We consider the asymptotic expansion of lx (p, q) for large p (or q or both) uniformly
with respect to x [0, 1]. Since

(3.11) I(p, q)= 1-Ii_x(q, p),

we can consider p >_-q.
The incomplete beta function is a standard probability function. As special cases

it has the (negative) binomial distribution, Student’s distribution and the F-(variance-
ratio) distribution.

We start with the symmetric case p q, which is rather easy to handle compared
with the general situation.

3.3.1. The symmetric case p q a. A trivial transformation gives

(3.12) 4--a /x(P, q)= e ln[4t(1-t)] dt

B t(1- t)"

The next appropriate transformations are

-sr2 In [4t(1 t)],

-1/2r/2= In [4x(1- x)],

0 < < 1, sign (’) sign (t 1/2),
0 < x < 1, sign (n) sign (x 1/2).
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Then we have the standard form (1.1), with

Fa(rl) Ix(a,a) (-)/2I_’ e --a2/2ca() d,

4-a ()
1/2

--2/2)]1/2fa(C) =B(a, a------ [1/2sr2/(1-e

where the square root is positive for real values of its argument. Considered as a
function of the complex variable sr, fa () is holomorphic in Ha with 6 /r. By writing

4-a(rrla)’/2 a-1/2r(a +)
E c,a

B(a,a) r(a) s=o
a . x3,

where cs can be expressed in terms of Bernoulli polynomials (see Luke (1969, vol. I,
p. 33)), it follows that

Cs
fa ()’" 60(() E , a -+ ,

s=O a

60(’) [1/2"2/( 1 --e-2/2)]1/2 E
B(1/2) (21-) (1/2.2)s.

s=O s!

The coefficients in this expansion are generalized Bernoulli polynomials; see again
Luke (1969, vol. I, p. 18). In this case Fa(m) 1; hence, Ao 1, As =0 (s => 1). A
further analysis shows that all Bs(rt) are bounded functions of r/on (-, c).

3.3.2. The general case p >= q. Let us write in (3.10)

p=asin20, q=acos20, 0<=0
2

Then

(3.13) /(p, q)
B(p, q)

exp (a (sin2 0 In -[- cos2 0 In (1 t))
dt

t(1- t)"

The maximum of the integrand occurs at sin2 0, Hence, the transformation + sr

reads

1-t
+ cos2 O In,(3.14) __1/2.2 sin2 O In sin2 O cos O

where the sign of r equals the sign of t- sin2 0 (for real variables, for complex variables
it is defined by analytic continuation of the real case). A similar transformation holds
for x + rt if and r are replaced by x and r/, respectively. From (3.14) we obtain

d" sin2 0-r- t(1 t)

hence the representation of (3.13) in the standard form is

Fa(rt) I,,(p,q)()
1/2

f - e --agj2/2c,a() d,
(3.15) -1/2

{ exp [a (sin2 0 In sin2 0 + cos2 0 In cos2 0)] r cos 0 sin 0
()

B (p, q) sin 0 cos 0 sin2 0
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It follows, and this is well known, that the critical point r/=0 corresponds with
x sin2 0 p/(p + q). That is, when for large a p + q the parameter x crosses the
value p!(p + q), the function Ix (p, q) changes suddenly from values close to zero into
values close to 1.

It remains to show that fa() of (3.15) has the properties as supposed in 1 and
2. First we consider the st-part of it which is defined by

(3.16) 4,o(sr)
cos 0 sin 0

sin2 0

where r and t(’) are related by (3.14); sin2 0 corresponds with sr 0. At this point
bo(’) is regular and bo(0) 1. Due to the many-valuedness of the logarithms in (3.14),
we have other finite singularities in the st-plane. These singularities occur for
sin20exp(27rin) or (1-t)=cos20exp(27rim), n, m=+/-l, +/-2,... in the many-
sheeted t-plane. Corresponding r-values follow from (3.14)

2 2 2-5n 27tin sin 0, -Ssrm 27rim cos2 0.

These st-values have imaginary parts

+/-sin Ox/-’rrn, +/-cos 0 x/2rrm.

If p >-q, we have sin 0 _-> cos 0. Hence, b0(sr) is holomorphic in/-/8 with 6 cos 0/,
with cos 0= ",,/q/(p+q). It follows that 30, if q/(p+q)O for large a =p+q. We
can apply the methods of 2 if 3 is bounded away from zero. An important conclusion
is that, when p c, q should also grow. Otherwise the strip Ha will coincide with
since the singularities approach the origin sr 0 (the saddle point).

We proceed by supposing that p - c, q - c, such that q/(p + q) >- e > 0, where
e does not depend on p or q.

The remaining part of (3.15), that is, the part not including (3.16), can be expanded
in terms of the large parameter a p + q. By using the well-known Stirling approxima-
tions of the gamma function, we obtain

7
s=0 a

a -- oo,

with Co(0)= 1, cl(O)=2[1-1/sin20 COS
2 01]. Hence, the function f(’) satisfies the

requirements of 1 and 2; Fa() 1, and we can compute the functions Bs(rt)(s >- 1)
from

1- bo(n)
Bo(n)

with bo(rt) given in (3.16). The expansion

e -an2/2 Bs()(3.17t Fa(,) =Ix(p, q),P(4)+ ,,/---a ,o a

a p + q , is uniformly valid with respect to x [0, 1] as long as q/(p + q) >- e > 0
(for the case p _-> q; if q >_- p, we suppose that p/(p + q) >= e > 0).

It is not surprising that we cannot obtain a uniform expansion in this way. The
problem is to find an expansion for a =p +q- c, which is uniform with respect to
both x and 0, with x [0, 1], 0 [0, rr/2]. Thus there is one asymptotic variable (a)
and two nonasymptotic variables (x and 0). It is expected that to cover the whole
domain of interest in the x 0 space, it will be necessary to resort to a transcendental
function of two variables as approximant (see Olver (1975)).
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It is possible to treat the case p-, oo, q fixed, by using a method given by Erd61yi
(1974) (see also Temme (1976)). Let us write (3.10) in the form

-t q-1=1I_ e-Pttq-l[1-e 1 dt,Ix(p, q)
B(p, q) x

which satisfies (by adapting the notation) the requirements for obtaining the asymptotic
expansion for p-+ oo, uniformly valid in x e [0, 1]; q is a fixed parameter. We restrict
q to the interval (0, 1), but there is no loss of generality in this assumption. Erd61yi’s
expansion is of the form

[ ]1
_,O(3.18) Ix(p, q)"-B(p, q)

p (q’ p In x) Y As(q)
+ xp y Bs(x, q)

=o p s= P

where Q(a, z) is an incomplete gamma function (see next example). The construction
of the coefficients As(q) and Bs(x, q) is outlined in Erd61yi’s paper. Note that Q(a, z)
is a function of two variables. It is still an open problem how to modify (3.17) and
(3.18) in order to obtain an expansion for Ix(p, q) for p +oo, uniformly in x [0, 1]
and q ->_ e > 0.

3.4. Incomplete gamma functions. This important example is considered earlier
in Temme (1979). The present method gives the same asymptotic expansion. The
incomplete gamma functions are

1 ta-1P(a, x)=
r(a)

e- dt,
1 Ix ta-1 --tO(a, x)

F(a)
e dt.

The basic transformations for the integrals are applied on

by defining

ioX/aP(a, x) e a --a(--ln t+t--1)t--1 dt
F(a)

e

1/2.2= -In + t- 1, sign sr sign (t 1)

The result is

with

1/2’0 2 -In A + A 1, sign r/= sign (a 1), A
x
a

fa(()
e-aaa(2"rr/a)l/2 --ff-’" qbo(() Y, , qbo(() 7----F(a) t-1 s=oa

and the numbers ys are the well-known coefficients appearing in the expansion of the
reciprocal gamma function. For more details we refer to Temme (1979).
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The expansions are (note that Fa (co)= 1)

[s=o a B,(ar/)]aP(a, x)= P(n’/-)+
s=O a a

1 1 1 1 1 1
no(n) n(n) + )+ 3.

n -’ (a-) (- 2(-) n
Bs() are the same as -Cs() in our previous paper.

As mentioned in 2.4, the bounds given there can be sharpened. By using
Theorems 2 and 3, we obtain

[n(a, )1N (A + 1)-Cn e-an2 + H,+(a)[eaa-aF(a)D(a, x),

where K =1/2 for n =0, 1 for n >_- 1,

D(a, x) min (P(a, x), O(a, x)),

and H, (a) is the remainder in

C sup [(1 + A)IB(r)I], s 0, 1,...

F(a =eaa- l.y H,
s=O-;+ a

The numbers C, and bounds for H,,(a) are given in Temme (1979).

3.S. Pearson type IV probabil|ty tuner|on. We consider it in the form (see Fettis
(1976))

o

cosI(0, a, 3)=
--r/2

e de,

for large positive vMues of a r/2 < 0 < r/2;/3 is a real parameter. It is known that

rF(1 +2a)2-2z(1/2, , t)
F(l + a + ifl)F(l + a ifl)"

The maximum of the integrand occurs at O A := arctan y, with y =/3/a. The appropri-
ate transformations are-r2 Y(0 A) + In

cos & -1/2r/2 y(O X) + In
cos 0

COS A cos h

with sign " sign (- h), sign r/= sign (0- h). Hence, with a 2a, we obtain

with

Fa(r)
I(r/2, 0, [3)

e -ac:z/2fJa(f) d(,

L()
ea(vX+ln x) ()l/2db Cs(),

o(0) 1.(r)
cos A tan &-3’
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ON SOLUTIONS OF ELLIPTIC EQUATIONS SATISFYING
MIXED BOUNDARY CONDITIONS*

A. AZZAM? AND E. KREYSZIG"

Abstract. We consider the mixed boundary value problem for linear second order elliptic equations
in a plane domain lq whose boundary has corners, and obtain conditions sufficient for the solution to be
in C2+(), where 0< a < 1. This result means that under those conditions, solutions are as smooth as
they would be in the absence of corners, so that, in this sense, the present result is best possible.

1. Introduction. We shall be concerned with the mixed boundary value problem
for second order linear elliptic equations in a two-dimensional domain whose boundary
has corners. More specifically, we shall study the effect of these corners on the H/51der
smoothness of solutions. To motivate this investigation, we first give a general orienta-
tion about the development and present situation in this field, beginning with mixed
problems in domains with a smooth boundary and then turning to the case of domains
with corners on the boundary.

Early results on the regularity of solutions of boundary value problems concern
domains with a smooth boundary, first for the Laplace and Poisson equations and
corresponding Dirichlet and Neumann problems, and later for general second order
elliptic equations as well as general boundary conditions. In particular, the mixed
problem was first considered by Zaremba [54], and is often called Zaremba’s problem.
Further work on the mixed problem in domains with a smooth boundary up to about
1970 is reviewed by Miranda [32] (and a few additional references are given n [18]
and [30]), so that it will suffice to mention some of the major contributions during
that period and add an outline of some more recent basic results not yet included in
any monograph. Of course, we shall be able to select only a small number of articles
from the very extensive literature in the field.

Work by Signorini [41], almost contemporary with that of Zaremba, and similar
results by Keldysh and Sedov [24] concern the mixed problem for harmonic functions
in a half-plane. Slightly earlier than the latter two authors, Giraud [19] proposed a
method of solving the mixed problem by first converting it to a Neumann problem
on some Riemannian manifold. In 1949, Fichera [14] (cf. also [15]) proved a general
existence theorem by transforming the problem into a system of Riesz-Fischer
equations; this is known as Picone’s method and is also of interest in numerical
analysis. Direct methods of the calculus of variations were applied to the mixed
problem by Stampacchia [45], whose results are particularly important since they also
concern nonlinear equations. The existence of H61der continuous solutions was proved
by Miranda [31], using Schauder type estimates. The method of integral equations
was first applied successfully to the mixed problem by Vekua [47]. See also Muskhelish-
viii [33], whose references reflect the development of that method until about 1955.

Beginning with a paper by Schechter [40], some of the work on (interior and
boundary) regularity of solutions of the mixed problem is based on the Sobolev space
approach and the use of coercive quadratic forms. For the general idea and setting
(which also apply to other "non-Dirichlet problems"), we refer to Agmon [1]. An
important contribution specifically devoted to the mixed problem is the thesis by
Purmonen [37], which also contains numerous references. Purmonen’s work concerns
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rather general mixed problems for linear elliptic equations in n variables, and his
results include conditions sufficient for a priori regularity of strong solutions as well
as for the existence and some regularity properties of weak solutions. Subsequently,
Purmonen [38] studied the well-posedness of the two-dimensional mixed problem in
Sobolev spaces. Another approach is the conversion of mixed problems to Wiener-
Hopf type problems; this is known as Peetre’s method and has recently been extended
by Pryde [36].

It is clear that mixed problems in domains with smooth boundary are of great
interest in physics, and there also exists an extensive literature on corresponding
numerical methods. We cannot go into details, but want to mention that some of the
references on domains with corners given below also include the case of domains with
a smooth boundary; for further applications we refer to Sneddon [43] and a recent
paper by Wendland, Stephan and Hsiao [52] on harmonic functions in two variables,
in which two Fredholm equations resulting from the integral equation method are
solved constructively, using finite element functions augmented by singular functions,
an approach which would be difficult to extend to equations with variable coefficients,
as is known (cf. Grisvard [20, p. 215] and Kawohl [23]).

We now turn to boundary value problems for domains with corners on the
boundary. The interest in those problems and in regularity properties of corresponding
solutions has several sources. The earliest impetus came from conformal mapping and
boundary value problems for harmonic functions; see, for instance, Carleman [11],
Kellogg [25] or Warschawski [51]. More recent results of importance, pertaining to
the Laplace and Poisson equations in domains .with corners, are those by Fufaev [17],
Nikol’skii [34] and Volkov [49]. Just as in the case of a smooth boundary, in addition
to methods related to H61der classes, as employed in the present paper, there are
other approaches; we mention in particular Sobolev space methods as considered in
the reviews by Grisvard [20], [21], then Kondratiev’s extension [26] of the Sobolev-
Slobodeckii space method by Eskin [13] and Vigik [48] (cf. also [3]), furthermore
a function theoretic approach by Lewy [29] and his school (see, for instance, Wigley
[53]) and, finally, a recent method by Simon [42] based on geometric measure theory.

As a second source for the interest in regularity properties of solutions of boundary
value problems in domains with corners we mention physical applications. In fact, it
was recognized early that those investigations are important in connection with
practical problems in heat conduction, fluid flow and elasticity theory; examples can
be found in [12], [44] and other standard monographs. See also [43] and [52].

Thirdly, those problems play a role in numerical analysis, particularly in the study
of the accuracy of finite element and finite difference approximations, acceleration of
convergence, general convergence analysis, subtraction of singularities and other
numerical techniques. Here, in error estimates and other tasks, one often experiences
great difficulties caused by the presence of corners, since there may not exist an
adequate theory covering such cases. Moreover, in this area there are various traps
for the unwary; for a typical example, see [49, p. 157]. For the finite element method,
a general characterization of the situation is given by Strang and Fix [46, Chap. 8].
More details are discussed by Fix, Gulati and Wakott [16] as well as Babuska and
Aziz [9, Chaps. 8, 9]; seealso Babuska [8] and Babuska and Rosenzweig [10], who
use the weighted Sobolev space approach. For the finite difference method, conver-
gence in domains with nonsmooth boundary is studied in basic papers by Laasonen
[27], [28]. For a combination of that methQd with the integral equation method and
conformal mapping in the case of the two-dimensional Laplace equation, see
Papamichael and Symm [35]. In accelerating convergence, rather natural ideas seem



256 A. AZZAM AND E. KREYSZIG

to be the refinement of meshes near corners where convergence becomes poor and
the choice of a net that confines slow convergence to small neighborhoods of corners,
instead of "polluting" the whole domain; cf. Volkov [50] for finite differences, and
the recent work of Schatz and Wahlbin [39] for finite elements in the case of the
Poisson equation in the plane. Ref. [39] includes local estimates of convergence rates
up to the boundary, estimates of the effect of systematic refinements and calculation
procedures for stress intensity factors as well as the location of the maximum error.

Before we start on our actual problem, let us add a few words about the case of
a smooth boundary as compared to that of a boundary with corners. The smoothness
of solutions depends on that of the coefficients of the equation, of the boundary of
the domain and of the boundary data. It is well known that if in a domain II with
sufficiently smooth boundary, the regularity properties of the coefficients of the
equation and of the boundary data improve, so do the regularity properties on fl of
the solution of the first, second and third boundary value problems. This was first
shown for special equations (Laplace and Poisson) and later for general elliptic
equations; see Agmon, Douglis and Nirenberg [2]. However, the situation changes
drastically in the case of corners at the boundary. Then the smoothness of solutions
also depends on the interior angle at the corners. Roughly speaking, small angles are
favorable with respect to smoothness of solutions. In addition, there also exist "excep-
tional angles" for which the smoothness is "exceptionally good", that is, is better than
for values of the angle close to those exceptional ones. Our result will be typical in
that respect, since it will illustrate this general pattern. We shall find conditions
sufficient for the solutions to be as smooth as they would be in the absence of corners,
the other conditions remaining the same; hence our conclusion will be strongest possible.

Problem and main result. We shall consider linear elliptic equations of the form

2 2 2

(2.1/ Lu E Y aij(xlux,x, + , ai(xlux, + a(xlu =f(x)
i=1/’=1 i=1

in a plane domain II whose boundary 01) has corners. Here, x (x l, x2). We assume
that II is simply connected and bounded and L is uniformly elliptic in ft. The boundary
conditions are of mixed type; we write them in the form

(2.2) xl(x)u(x)+x2(x)u.(x)=xl(X)(x)+x2(x)(x) on Oil;

here, the subscript n denotes the outer normal derivative.
The following result in the "regular case" is well known. If 01) is smooth of class

C2+, where 0 < a < 1, and if
(A) aii, ai, a, f C (12), L uniformly elliptic in f,
(B) X1, & e C+(Ol2), X, O e

then

(2.3) u CZ+(l).

See Agmon, Douglis and Nirenberg [2].
We now turn to the case when 0II is not smooth, a case which we also considered

in [5] and [7]. Then [2] implies that in a compact subregion 1)1 of fi with positive
distance from the corner points, u is smooth as before. More precisely we have the
following. Without loss of generality we may assume that 0II has a single corner,
which is located at the origin x 0, the interior angle being y, 0 < y < 27r. Let F1 and
1-’2 denote the two arcs of Oil that form the corner at x O. Suppose that 012\{0} is
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smooth of class C2+. Let u be a solution of (2.1) satisfying the boundary conditions
(2.2). Further, assume that conditions (A) and

(B*)
x, C+(0n\{0}),

x, c+(f\{0}),
as well as

(C)
/’2 0, b 0 on

Xl 0, 0 0 on F2,

hold true. Then, by [2],

(2.4)

with fl as indicated before.

u c:+(n) f c(fi),

To characterize the smoothness of u near the corner point, we introduce

[all (0) a22(0) a2 (0)]1/2
(2.5) o arctan

a22(0) cot y a 12(0)

This is the angle obtained from y in the transformation of the equation

2 2

E E agi(O)u,,,x, 0

to normal form. In [7] we proved that, under assumptions (A), (B*), (C) and w < zr/2,
we have

/r \
(2.6) uC’(), u min2-:: )--e, 2

with arbitrarily small e > 0. Substantially improving that result, we shall now obtain
sufficient conditions in order that even (2.3) be valid; those conditions will concern
small angles as well as an exceptional angle (rr/4). Note well that (2.3) refers to the
"regular case" of a smooth boundary. Accordingly, despite the presence of corners,
our result to be obtained is as strong as that in the case of the absence of corners; in
that sense, this result is best possible.

Our main result can be stated as follows.
THEOREM 1. Let u be a bounded solution of (2.1), (2.2) in lq. Suppose that (A),

(B*), (C) hold true and o in (2.5) satisfies the condition
(D1) o < 7r/(4 + 2a)

or the condition
(D2) w zr/4.

Then

(2.7) u

From the statement involving (2.4), we conclude that it suffices to prove Theorem
1 in

U {x Ix fi, Ix l< ro}, ro > 0.

Furthermore, by [7] it is sufficient to consider the case of a circular sector and impose
the additional condition

ai,;(O) i], i, j 1, 2.
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Indeed, the transition from this special setting to the general case is the same as in
[7] (and is relatively simple), so that we need not reproduce it here.

At this point, we should notice that [7] concerns arbitrary n, whereas here we
take n 2 because later (near the end of the paper) we have to use a result by Volkov
which is known to hold for n 2 only. Actually, we need Volkov’s result only in
connection with condition (D2), so that the assertion of Theorem 1 under condition
(D1) could be proved for any n by an argument similar to the present one.

3. The ease of a sector. Let r, 0 be polar coordinates defined by xl r cos 0, x2
r sin 0 and consider the sector

’2,r {(r, 0)10< r <2r, 0< 0 <w},

where r const > 0. Let

FI"0=0, r<2r, F2:0=00, r<2m

A theorem analogous to Theorem 1 but referring to the present setting can be stated
as follows.

THEOREM 2. Let u be a bounded solution of the mixed boundary value problem
for the equation

(3.1) Lu=f in

with L as in (2.1) and a,(O) &, and assume that u satisfies the conditions

(3.2) (a) Ulrl 0, (b) u, lr2 0.

Suppose that (A) with f replaced by f2 and (D1) or (D2) hold. Then

(3.3) u e C2+

By what has been said, in order to obtain Theorem 1, it suffices to prove Theorem
2. The proof of the latter theorem will result from two lemmas.

In the first lemma, we obtain bounds for u and its first and second partial
derivatives as well as a statement on the HSlder smoothness of u. Here, Dku denotes
any kth partial derivative of u.

LEMMA 1. Under the assumptions of Theorem 2 we have in

a) [Du (x)l <= MrV,
(3.4) b) [Dku(x)l <-Mr-, k 1, 2,

c) u e C(),

where

e, 2+c

Proof. a) We consider in 2 the function

w(x) Mr cos a (00 0),

with u defined as in the lemma, h (zr- 26)/200 and 6 > 0 so small that h > u. Using
the method developed in [7], one can show that w may serve as a barrier function
for u, provided M is taken sufficiently large. In this way we obtain (3.4a).

b), c) From [5] it can be seen that in the case of the Dirichlet problem, the proof
of the statements corresponding to our present (3.4b) and (3.4c) depends mainly on
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the analog of our present (3.4a) and on a Schauder estimate of the form

Ilu 112+,-<- ,, I-Ilu IIo / Ilfll +
where *c 1 and F 01q fq all* is of class C2+a. Such an estimate also holds for the
mixed boundary value problem, the only difference being the absence of the last term.
In this way, following the general idea in [5], we obtain (3.4b) and (3.4c). This
completes the proof.

From (3.4c) it follows that Theorem 2 with condition (D1) holds. Finally, we must
prove Theorem 2 under condition (D2). If (D2) holds, then (3.4b) yields

[D2u(x)l<=Mr in fi
and (3.4c) gives

u C-(fi).

To prove Theorem 2 in the present case, we first investigate the nature of singular
behavior of the second derivatives of u near the corner point.

LEMMA 2. Let v be a solution of (3.1) in f2 satisfying (3.2), and suppose that
the assumptions of Theorem 2 hold true. Suppose further that in

[D2v(x)l <- Mlr-", 0_-<r/<l.

Let h C (f), where 1 > " >- rl and h (0) O. Then

(3.5) hD2v C (), /x min (a, z rt).

Proof. In 1 consider any two points Pj’(ri, 0i), j 1, 2. By abuse of notation,
we write h(Pi) for h(ri, 0) and so on. We must show that there exists a constant H >0
such that

(3.6) d (P1, P2)- [h (P,)Dv(P,) h (P)D;v(P)[ <-_ H.

Let 0 <-_ r2 _-<_ rl N ty, without restriction. If r2 N rl, then d(P1, P2) - rl, and from

]h(Pi)l <-_M2r;, j 1, 2,

we can obtain (3.6).
We consider the case r2 > 1/2rl. Let

2rl

This transformation maps

f0 {(r, O)11/2rl <= r < rl, 0 < 0 < 1/47r}
onto

’1 {(0, 0)11/40" 0 1/20" 0 < 0 <

where p r/. As in [6], it can be shown that in fa the function V(y)= v(y) satisfies

VlI +o<=M r 
Now, for any/. <_-a,

c2+,H2 (O2v) Ha, (/2 V) <= M4r-’,

where /2V denotes the partial derivative corresponding to D2v and H is the
H61der coefficient. Hence,

H (D2v <- Msr-’-..
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We now obtain (3.6) in the case r2 > 1/2rl as follows, writing 8 d(P1, P)"

[h(PI)Dv(P) h(P)Dv(P)[8-
<-Ih(P)l IDv(P1) Dev(P)IS-"
+ [D:zv(P2)[ {[h (Pa) h (P2)16-’}"/lh (P1) h (P2)[a-"/

< M2raMsr - +MIr]nM6(2M2r)x-g/

H.

This proves Lemma 2.
We can now prove Theorem 2 under assumption (D2). We remember that by

Lemma 1, under the assumptions of the theorem [with (D1) or (D2)] we have

u C-(fi)

and in

IOu(x)l Mr-,
as was stated above. Equation (3.1) can be written

2 2 2

(3.7) au f f- au E aiux, E E (aii ii)Ux,xi.
i=1 i=1 ]=1

Since [, a, age C (fi) and u e Ce- (fi), the first three expressions on the right-hand
side of (3.7) are of class C (). Using Lemma 2 with

we have

(a )u,, e C (fl).

Hence, f e C (fi). From this and [49, p. 128], it follows that u s C+-(fi). Using
this in the last term of (3.7) and applying again Lemma 2, with r a and 0, we
obtain (3.3). This completes the proof of Theorem 2.

From Theorem 2, our main result (Theorem 1) follows as indicated in 2.

Acknowledgment. We want to thank the referee for helpful comments, in par-
ticular, for bringing basic literature to our attention and suggesting it for inclusion in
the Introduction; this has led to a substantial improvement of the latter.
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LAGUERRE SERIES AS BOUNDARY VALUES*

AHMED I. ZAYEDt

Abstract. Let I denote the half-line (0, o) and let Q={(x,y)lx>O, y>0}. Define St
{ [ C(I), supxi Ix"(d"(x)/dx’)[<}. A topology is defined on $I by means of a countable family
of seminorms. It is shown that f St* (the dual space of S) if and only if f(x) ..n=o anUn (X) with an O(n’)
for some integer p, where {Un(x)}n=0 are Laguerre functions; Un(x) satisfies the Laguerre differential
equation xy"+ y’+(n +1/2-x/4)y =0. We use this result to construct a function f(x, y) such that, for a
continuous function fS, we have (i) f(x, y) is harmonic in Q" (ii) g(y)=limx_,O+f(x, y) is finite for
0 < y <" (iii) limy_,o f(x, y) f(x) (in the sense of S*). In addition, if we require that limx_,O f(x) c < c,
then supo____y<o [g(y)[ M < and limy_,o f(x, y) f(x), 0<=x < c. In fact, the convergence is uniform on
compact subsets of (0, o). The construction of f(x, y) uses Laguerre functions of the second kind, i.e.,
solutions of the Laguerre differential equation that vanish at -.

Condition (i) is weakened if f is an arbitrary element of

1. Introduction. The connection between trigonometric Fourier series and
boundary values of holomorphic and harmonic functions in the unit disk is very well
known. There is a vast literature dealing with various relations and aspects of this
subject. However, if one moves to the half-line (0, c), no parallel theory based on
series seems to exist. A natural orthonormal sequence of functions to use on the
half-line is Laguerre functions.

The only known (to me) attempt to study Hermite and Laguerre expansions in
analogy to ordinary Fourier series is the work of Muckenhoupt [3], [4], [5] and Walter
[9]. Among other things, Muckenhoupt derived a representation for the Poisson
integral f(x, y) of a function f(x) which belongs to a certain function space and for
which the Laguerre series expansion exists. He also showed that limy_.0 f(x, y)=f(x)
almost everywhere as well as in the mean, and that f(x, y) satisfies the second order
elliptic differential equation

d. +xd +(1-x)d o.

In [5] a notion of conjugacy was introduced by which one can define a conjugate
Poisson integral /Z(x, y) and hence a conjugate function/Z(x). Moreover, if(x, y) is
shown to satisfy the differential equation

L+xL+(1-x)L- + =0.

This notion of conjugacy, while not as decisive as the classical one, still has some
significant properties (see Vekua [7]).

One of the purposes of this paper is to extend some of Muckenhoupt’s results
to a wider class of functions. In fact, we shall be more interested in the case where
the boundary values f(x) are not given by a function but rather by a "generalized
function". More specifically, we shall confine ourselves to the cases where f(x) is in
the dual space S* of a certain testing-function space S1 that will be defined in the
following section.

* Received by the editors January 23, 1980, and in final revised form March 10, 1981. This work
formed part of the author’s Ph.D. dissertation at the University of Wisconsin, Milwaukee.

t Department of Mathematics, California Polytechnic State University, San Luis Obispo, California
93407.
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It should be pointed out that our approach has to differ considerably from
Muckenhoupt’s since pointwise convergence does not necessarily imply convergence
in the sense of S/*. Clearly, the straightforward approach of continuing series of
Laguerre functions to the complex plane fails because a series of aguerre functions
which may converge uniformly on the positive real axis, together with all its derivatives,
can diverge everywhere off that part of the axis. So it seems inevitable that one has
to approach the problem in an indirect way. We do this by introducing series of
Laguerre functions of the second kind {vn(z)} which are obtained from the analytic
representation of Laguerre functions {un(x)}. We shall show that these vn(z)’s have
the important property of being analytic in the complex plane cut along the positive
real axis, and their jumps across that part of the axis are the u(x)’s.

Naturally, one is led to considering the problem of characterizing the elements
of the space S/* in terms of their Laguerre coefficients. Indeed, this is a special case
of the general theory of expanding generalized functions in series of orthonormal
functions. Among those who have contributed to the development of this theory are
Korevaar [2], Zemanian [11] and Walter [8]. Although it is possible to find such a
characterization directly for the space S*, we shall use some of the already known
results proved by Zemanian 11].

Zemanian has given a characterization for the elements of a certain testing function
space A(R, I), which depends on the differential operator R and the interval/, in
terms of their expansions with respect to the eigenfunctions of the operator R. In a
later work [12] he showed that for the Hermite differential operator R and I (-c, o)
the space A*(R, (-o, m)) is actually the space of tempered distributions. Analogous
to Zemanian’s result we shall show that for the Laguerre differential operator R and
I (0, c) the space A*(R, (0, c)) is indeed the space

2. Definitions and notation. In this section we list some properties and formulas
pertaining to Laguerre polynomials and Laguerre functions that will be used later
(see Szeg6 [6]). The spaces A(R, I) and St are defined, and Zemanian’s main theorem
is cited for reference since it will be heavily used in the sequel.

Laguerre polynomials L’j(x) are defined by

X d +,),(2.1) L(x) e" (e-’x"
n! dx"

n -0, 1, 2,

with real a >- 1, and Laguerre functions u (x) are defined by

/,/! )
1/2

(2.2) u(x)=
r(n + c + 1) e-’/Zx/ZL’2(x )"

We will write u,(x) instead of u(x). It is known that L’(x) satisfies the differential
equation

(2.3)

while un (x) satisfies

d2 d )x -x2+ (a + 1.- x) -x + n L(x) O,

[ d d ( ,+ x ,)](2.4) Xx2+xx+ n-
2 4 - u(x)=O.
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Laguerre functions {u(x)}-_o form a complete orthonormal system on the
interval (0, oe); i.e., u(x)u,,(x) dx 6nm. Equivalently,

(2.5) fo e x Ln(X)L(x)dx
F(n+a+l)

6nm.n!

We also have the estimates

(2.6) L’2(x) 77
"-1/2 eX/2x-a/2-1/4n/2-1/4 cos 2(nx)

2
q- O(rt a/2-3/4)

for x > 0, and

(2.7) L(x) O(na), a =max
4’
a 0-<_x -<_o

(see Szeg6 [6, formulas (8.22.1) and (7.6.11)]).
Definition of the space A(R, I). Let I denote any open interval (a, b) on the real

line where a -oo, b oo are permitted, and let R denote a linear differential operator
of the form

R OoD"lOaD "2" D"vO,.,

where D d/dx, nk, k 1,..., u are positive integers and Ok are C-functions on I
and never equal to zero anywhere there. We also require that the Ok and r/k be such
that

R=O(-D)" (-D)n2oa(-D)n’Oo,

where 0k denotes the complex-conjugate function. Moreover, we assume that there
exists a sequence {An}n_-o of real numbers called the eigenvalues of R, and a sequence
{O,},oo=o of Coo-functions in L2(I) called the eigenfunctions of R, such that IAl oo as
n oo and RO, A,O,, n 0, 1, 2,. .. The zero function (zero a.e.) is not allowed
as an eigenfunction. We also assume that the {On}--o form a complete orthonormal
system on L

Now we construct a testing-function space A(R, 1) which depends on the choices
of/, R and {,}--o as follows. A consists of all functions &(x) that possess the following
three properties:

(i) b(x) is defined, complex-valued, and smooth on I; i.e., &(x) Coo(l).
(ii) For all k 0, 1, 2,. the quantity

b

(iii) For all n and k, (Rkb, 0n)= (0, RkOn).
It is easy to see that {11" Ilk} koo=o is a separating family of seminorms on a which is

used to define a locally convex topology on A. In fact, Zemanian proved, among
other things, that A equipped with this topology is a Fr6chet space. Through his proof
he showed that if {&,}=x converges in A, then {R ko,,}=l for each fixed k converges
uniformly on every open interval II whose closure is compact in L In addition to that,
for each fixed k, {Dk&m}m=l converges uniformly on f.

If R and ! are understood from the context we will write A instead of A(R, I)
for short. Now we summarize Zemanian’s main results in the following theorem.
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THEOREM 2.1. Let qb cA, fA* (the conjugate space of A), {an},_-o and {b,}=o
be sequences of complex numbers. Then

(i) b ,--o (b, 4,)6,, where the series converges in A.
(ii) 2,=o a,, converges in a if and only if Y,--o Ih, lZkla, 2 converges for every

nonnegative integer k.
(iii) f ,=o (f, 6,)6-, where the series converges in A*.
(iv) ,=o b,, converges in A* if and only if there exists a nonnegative integer q

such that Ea.o 1A.l-2"lb.I2 converges. Furthermore, iff 2,=o b,,,, then b,
(L 6.).

Definition of the space St. The space St where I (0, co) is defined as follows. St
consists of all functions b(x) with the following properties:

(i) b (x) is defined and smooth on I; i.e., b C(I).
(ii) sup ]xkD"c[ < oo for all k, n 0, 1, 2,. .

To define the topology in the space S, we introduce a countable system of norms

II llo-- sup IxD"4) I, p O, 1, 2,....

Evidently convergence of the sequence b, to b in this topology is equivalent to

Dbv-Db uniformly in every compact subset of I, k-0, 1, 2,... together with
Ix’Dqbvl <= C,q independent of u. Unlike the space A, the space St is independent of
the differential operator R. Zemanian [12] has shown that for the Hermite differential
operator the space A is actually the space S of rapidly decreasing functions.
Analogously, we will prove that for Laguerre differential operators the space A is,
indeed, the space St. Now we are able to state and prove our main theorem.

3. Characterization of the space S. This section is devoted to the proof of the
following theorem.

THEOREM 3.1. For the Laguerre differential operator R e/aD e-xD e/, I
(0, c), , un (x ), we have St A(R, I).

In general, St and A are different; e.g., if O, we have

R --X
-/2 eX/2Dx+1 e-XDx-/2 e x/2

2x a a+l
DxD +;

4 4x 2

then we have e St, but e-X C: A since (e-X/x 2) dx diverges.
To prove the theorem we need the following lemmas.
LEMMA 3.1.

(i) St is closed under R (k 0, 1, 2,. .); i.e. if qb St, then Rqb St.
(ii) St La(I).
(iii) (R4, tO)= (da, RO) ]:or all ok, St.
(iv) St

_
A.

Proof.
(i) First observe that R eX/ZD e-XxD ex/a xD2 +D x/4 + 1/2. By iteration, we

can write R 2k=Y=oP(x)D, where Pi(x) is a polynomial in x. Since St is a linear
space it suffices to show that St is closed under the operator x"D for p, q 0, 1, 2, .
But this follows immediately from the definition of St.

(ii) From the definition of SI it follows that SUpx,t Ixd(x)l M < oo for b St.
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Therefore, we have ](x)l -<M for all x (1, oo). Hence

Io i
M

sup I(x)lZ+ dxllllL+M2<.
xe(0,1] X

(iii) We have

Integration by parts together with (oo) 0 0(oo) yields (Re, 0) (, R0).
(iv) If e St, then Rk e St from (i) and Io IRk4912 dx < oe for all k follows from

(ii). This together with (iii) gives (iv). Q.E.D.
LEMMA 3.2. If A, then we have the following:

(i) x"A,p=0,1,2,....

,/4,
(ii) xx A; i.e., A is closed under the operator xD.

(iii) x q49 (") A for all q >-p.
(iv) & is bounded in (0,
Proof.

(i) From the relation

[(2n + 1)-x]Ln(x)= (n + 1)Ln+l(x)+ nLn_a(x),

after multiplying by e -x/2 and writing un (x)= e-X/:Ln (x) we obtain

(3.2) xun(x) (2n + 1)un(x)-(n + 1)Un+(X)-- nun-a(X).

Since A it follows from Theorem 2.1 parts (i) and (ii) that has the expansion
(x) =Yn__o (, Un)Un(X), where {(, un)}=o is a rapidly decreasing sequence; i.e.,
.,=o I(, un)lng< oo for all k 0, 1, 2,. .. Hence by (3.2) we get

x(x)=E(,u.)xu.(x)
o

(3.3) Y (, un)[(2n + 1)Un(X)-(n + 1)un+(x)-nUn-(x)]
o

(3.4) E bnun(x),
n=0

where bn (2n + 1)an na,_-(n + 1)an+l, an (, un), n 0, 1, 2, a_a 0. Clearly,
{bn}=o is also a rapidly decreasing sequence and consequently x& cA by Theorem
2.1 part (ii). Repeating the same argument yields xP A for p 1, 2,. .

(ii) From u, (x) e-X/2Ln (x) and the relation

dL,,(x)
(3.5) x=nLn(x)-nLn-(x)

dx
we obtain

dun(x) -x/:Z dLn(x) 1
dx

e
dx 2

u,(x)
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and hence

(3.6) x
clu. (x
dx

1
nu.(x)- nu.-(x)-z xu.(x).

Z

From (3.2) and (3.6) we get

dun(x) 1 1 n
(3.7) x

dx 2
(n + l)U,+l Un Un-1.

Using this relation, we write

db dun (x
.E E b.u. (x),(3.8) Xx= an(x)--x =n=0

where bn =1/2[nan-l-an-(n + 1)an+l]. Again, the sequence {bn} is rapidly decreasing
since {an} is, and it follows as in part (i) that x dd/dx c A. The validity of (3.8) follows
from Theorem 2.1 and the remark preceding it.

(iii) First, we show that x"b(")cA for all p 1, 2,.... We use an induction
argument on p. The fact that it is true for p 1 follows from part (ii).

Assume xP-lck("-l)cA. From (ii) we obtain x (d/dx)(x"-lck("-l))cA. On the
ther hand,

x (x"-6 x(x- + (p 1)x

which gives

For q >= p, we have xO4P)= xq--PxP (P) c A by part (i).
(iv) From the relation Ln(x) =1L,(t)dt+Ln(1), x > 1 and (3.5)one gets

Ln(x)=n I1xLn(t)-L"-l(t)t dt+Ln(1).

Then

(3.9) lun(x)l=le-X/zgn(x)l<-ne--/2 I1( Ign(t)l+]gn-l(t)l)t dt+e-X/2[gn(1)l’

but by formula (2.7) we have e-/[Ln(1)[ -A. Therefore,

I1 _,/2([Ln(t)[ + [Ln-l(t)[) dt +A[un(x)l <--_n e

1 -t/2(]Ln(t)[+[Ln-l(t) dt+A.n e

By the Schwarz inequality and the orthonormality of the system
we get

(3.0) lu(/l2 d +A, i.e.,un(x)=O(n)
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uniformly for x > 1. Once more, (2.7) gives us

(3.11) sup lu,,(x)l O(1).
O--<_x<=l

From Theorem 2.1 we have (x)=n=o (, un)un(x), where the series converges
uniformly on [e, w]; 0 < e < w. On the other hand,

(3.12) I(x)[ <= Y I(, un)llu,(x)l, O<=x <.
n=O

Then (3.10), (3.11), (3.12), and the fact that {1(, un)l}=o is a rapidly decreasing
sequence gives us the boundedness of

LEMMA 3.3. A
Proof. Let e A; we want to show that

sup IxOq)(x)l< Vk=0,1,2,....

It follows from Lemma 2 parts (i), (ii), (iii) and (iv) that IxP4,(q)l <--Cp for all p, q such
that 0 -< q -< p =< k. We show that ]xP ("l is bounded for 0 =< p < q _-< k by examining
this quantity in the two intervals (0, 1], (1, ce). First, for x e (1, oe), we have IxP(" <=
[xO eq[ < co. As for (0, 1], we consider the series expansion of ,

(x) Y, (, u,)u,(x).
n=O

Then, I(O)(x)[ -E=o I(, u.)llu(ff (x)l.
a+l(x) and IL:(x)l=Now we estimate [u(q(x)t, with the aid of dL’2(x)/dx =-L,-I

O(n), oz >=0 uniformly in [0, 1] (see (2.7)). Taking the qth derivative of un(x)=
e-X/2L, (x ), we obtain by Leibniz’s rule

(3.13)

But

q

(])(e -x/2)(]) ))(q-i)u (),, (x) 2 (L,, (x
i=0

(3.14)
d"-LT)
dx - (- 1)-" q- >L,n--(q--j)(X), n =q -j,

hence

dq-J
(3.15)

dxq_
L,(x) O(n q-i) Ix e [0, 1].

Consequently, by (3.13), (3.14) and (3.15), we get ]u(2(x)l<=A(q)O(nq+), and this
gives

[(’)(x)l<=A(q) E 1(, u,,)lO(nq/) <(x)
n=O

for all x e [0, 1], since {(, u,)}=o is a rapidly decreasing sequence.
Finally, for x e[0,1] we have Ix’(q)(x)l<-I(q)(x)l<, 0<=p<q, i.e.,

IxP(q)(x)[ < for all p, q 0, 1, 2,. , and x (0, oo). Q.E.D.
Now we turn to the proof of Theorem 3.1.
Proof of Theorem 3.1. Recall that we want to show that A Sx. By Lemma 3.1

we obtain Sz
___
A, and by Lemma 3.3 we obtain A c__ Sz. Therefore, we have S A as
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sets. What remains to be shown is that the two topologies are equivalent. Assume
that {Ov}= c St and Cv - 0 in $I as u - oo. We want to show that --> 0 in A, i.e.,

Io lRg4,(x)l dx --> 0

As indicated before R k is of the form R k 2k
Y’.i=o Pi(x)D i, where Pi(x) is a polynomial

in x. Hence a typical term of R kt is of the form x"()(x). Therefore, it suffices to
show that

- (x )l dx -,IX O 0

with p, q fixed. Since Cv-> 0 in $I, then ) --> 0 uniformly on every compact subset
of I and IxP4,(q)< Cpq independent of u. For x >= 1, we have Ix(q)<xP+)<=
C+,,, i.e., Ix%l C+,,Jx.

From the Lebesgue dominated convergence theorem and the fact that x(q) 0
in I, it follows that

a [X"O(q (x)I dx O and > 1.as a

As for Io [x" (q (x)l dx, we have

iIx%2(x)ia" dxO as,
since &) 0 uniformly on compact subsets of L Therefore, , 0 in A. Conversely,
let & 0 in A. We need to show that ) 0 uniformly on compact subsets of I for
given p, q, xP() (x)[ < Cpq independent of . That (), 0 uniformly on compact
subsets of I was proved by Zemanian [11]. We show only the second part in the
following steps"

(i) If p 0 q, then for each , we have ,(x) ,o a,u,(x), where

,-k (x)

a,n Cv(X)Un(X) dx c,(x) (_n)l dx

(-nl ) o (R(x))u"(x) dx,

Hence,

Thus

n0, k=1,2,3,...

]avl2<
1 12dx)ktu(x) },

as

n=O n=O /2

is independent of u.

(ii) Let ->0 in A and .(x)=Y.=oa.,nun(x). Then, as in the proof of Lemma
3.2, it can be easily shown that xP (q)v (x)= Y.=o b.,nu.(x), where b... is a finite linear
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combination of {av.n-i}j=,l, where ml and m2 depend on p and q only. Therefore,
since {av.n} is a rapidly decreasing sequence in n and uniformly bounded in v, then
so is {b.,} and this completes the proof.

4. The connection with the Hermite functions. The analogy between the results
of the preceding section and Zemanian’s results in the case of Hermite functions on
the one hand, and the relationship between Hermite and Laguerre functions on the
other, suggest connecting our results with Zemanian’s. This will be our goal in this
section.

We shall extend the generalized Laguerre functions from (0, c) to the whole real
line (-, ) and then use arguments similar to the ones given in 3 to establish that
connection. This approach was suggested by one of the referees.

One distinguishing feature between the results of 3 and those of this section is
the relative simplicity of the latter. This is due to the behavior of the test functions
at the endpoints of the interval ! in both cases. For example, if b cA(R, (0, )),
where R is the Laguerre differential operator, then, as we saw in 3, limx_, (x)= 0
but limx_,0+ (x) is not necessarily zero. On the contrary, if e A(R, (-, )), where
R is the Hermite differential operator, then from Zemanian’s results we evidently
have lim_oo (x) limx_,_oo (x) 0.

Now let us define

O(x)
L,(x) -1/2x

=D: e

where

Then we have

a>-l,

D: [F(n +a + 1)]
1/2

n!

where dm(x)= Ix[2+a dx. Let R d/dxe+((2a + 1)/x)d/dx-x2; then it is easy to
see that{(x2)}=o are eigenfunctions of R. In fact, we have

R(xz) -(4n + 2a +2)(xZ).

Also, for an even function defined on (-, ), we have formally

(x)=
n--0

if and only if

Throughout this section the space A will mean the space A(R,, (-, )) pro-
vided with the topology described in 2. The analogues of the space $I of 3 will be
the space Seven defined below.
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First, let us introduce the space S as follows. S consists of all C-functions in
(-00, 00) that are rapidly decreasing; i.e. for b(x)e S, we have SUpx(-,oo)IxPb(q)l < 00

for all nonnegative integers p and q.
The topology of S is the topology induced by the countable system of norms

IIb[Ik sup IxP4) (q) l, k =0, 1,2, 3,’.’.
x(-oo,o)

As is known, in this topology convergence of the sequence {b} to b is equivalent to
the following two conditions:

(i) For any compact subset K of the real line and any nonnegative integer p we
have 4 (p) -’) b () uniformly on K.

(ii) For any nonnegative integers p and q, there exists a constant Cm such that
]xb(q)[ =< C,q independent of v.

Now we define the space Seven as

Seven {( ( S and b is even}.

LEMMA 4.1. Seven __c A s.
Pro@ First let us observe that SevenL2(dm(x), (-00, 00)). Moreover, it is not

hard to see that, if 4 and are in Seven, then so are R sb and Rs0 and hence

Finally, straightforward calculations show that

[(Rs&)0- &(Rs0)] dm O,

i.e., Rs is self-adjoint, and this establishes our claim.
Now let us define the space Aeven as the space of all even functions in A The

space Sodd and the space A2dd are defined similarly.
LEMMA 4.2. The assertion thatA

_
S is equivalent to thefollowing three conditions.

If qb As, then
(a) b is bounded on (-00, 00);
(b) x)b
(c) xPrk (" A for all p O, 1, 2,. .
Proof. Recall that A __c_ S is equivalent to SUpx(-oo. IxPb (q)l < 00 for all nonnega-

tive integers p, q and all b e As. In fact, it suffices to show that supxej

where J (-00, -1) U (1, 00) since

sup [xP6()l <--- sup 16()[ < 0o.
xe[-1,1] xs[-1,1]

If p q, then from (c) and (a) it follows that SUpx(_,)IxPb (q)[ < 00. If p < q, then we
have SUpxj [xPb1 _-< SUpxj Ixqb ()1 < 00 by (a) and (c). Finally, if p > q, we put r p q
and choose a positive integer k such that r<2k. Thus, SUpxlxPbq)[
SUpxj [x rx qCb q[ <- SUpxj IX2kX qbq] < 00. The last inequality follows from (c), (a) and
repeated application of (b).

LEMMA 4.3. AS S.
Proof. We prove this assertion by proving the three conditions of the previous
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(a) Consider the series expansion of (x) in terms of (x2),

(x) Y. an(x2), where {an} is rapidly decreasing.
n=0

Hence

n=0

The validity of the last inequality follows from the fact that I(x2)[ =< 1 if a >- 0 and
[(x2)[ is polynomially bounded in n if -1 < a < 0.

(b) From the recurrence relation

xZD’’ (x z) (2n + a + 1)D:: (x2)- (n + 1)D:+--:+x (xZ)-(n + a)D_a’_x (x z)
we deduce that

2 2)x2(x)= E anx n(X bn’(x2),
n=0 n=0

where

bn (2n + o + l)an n an+l, a-1 0.
D

a,-1 (n+a+l)
D:+l

Clearly, {bn} is a rapidly decreasing sequence if and only if {an} is. Thus x2 e A.
(c) We show only that x& () e A, since the case xP) for p > 1 is proved by an

induction argument as in the proof of Lemma 3.2. The relation

d 2) 2 2)Xx ..,, (x 2n(x2) 2(n + ce
D-a n_a (x2) x (x
D

yields

d
X(1)= =0 a.x -x:(x2)

.=o
] b.: (x 2) x=,

where b. =2na.-2(n +I+a)(D:/D+)a.+I. Since the sequence {b.} is rapidly
decreasing and x2 A by part (b), it follows immediately that x1 eA.

THEOREM 4.1. Ae%en Seven.
Proof. Lemma 4.1 gives the inclusion Seven A which in turn gives Seven Aeen.

Similarly, Lemma 4.3 shows that A S, which implies that Aeen Seven, hence

Aeen Seven as sets. To prove the equivalence of the two topologies we use arguments
similar to those used in the proof of Theorem 3.1.

For the fact that the convergence in Sere, implies convergence in Aeen, see the
proof of Theorem 3.1. Conversely, let {} converge to zero in Aeen. Then {)}
converges to zero uniformly on compact subsets of the real line for any nonnegative
integer p (see Theorem 3.1).

To show that SUpx(-,)Ix")[ C. independent of u, we write

n=0

hence
P’q (t7- X

2

n=O

P,qwhere a,n is a finite linear combination of av,
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Since the operator R is self-adjoint, we can write

(-1)’
(4n + 2a + 2)’ (x’()’ R(x2))

(-1) pC(q)
(4n + 2a + 2)

(R -CP. (x2))

(-1)’ I(4n +2a-2)’ oo(xZ)R’(x%b’)) dm
for any positive integer k.

Thus by the Schwarz inequality one easily gets

,x dm -0p,q[2 < 2)2 ]R .)[2la,,,
(4n + 2a +

since xP(") converges to zero in As. Therefore

as v,

Ix"b (’)< y’=o la"’ [5: (x2)l<’n y’=o (4n + 2a + 2)k

The last series is independent of v, and this finishes the proof. Q.E.D.
In essence, what Theorem 4.1 says is that any function Seve, can be expanded

in terms of {(x2)} for any a >-1, and that the coefficients of the expansion form
a rapidly decreasing sequence of complex numbers. Now it is easy to see that if Soda
it can be expanded in terms of{x(x2)} for a > 1 with rapidly decreasing coefficients.

In particular, if c =-5, we have for Sere,

(x) E a.-2/ (x),
while if a 5, we have for 0 Soaa

where {an} and {bn} are rapidly decreasing sequences.
Now Zemanian’s result can easily be concluded from the fact that any function

in S can be written as the sum of two functions, one even and the other odd, as
well as the fact that

h2n(x)

h2n+l(X)

(-1)n2nn! -1/2 -1/2 2)
(2n ’-/’1/4 D ’n (X Aw.;1/2 (X2),

(--11"2{2"+a>/n 1n/21n/2 2) Bnln/2
{(2n + 1)i}1/2.1/4 D (x (x2),

where h,,(x) is the Hermite function and An and Bn are polynomially bounded in n.

5. Continuous functions of $ as boundary values. In this section, the use of
Fourier series of a function f defined on the unit circle to solve he Dirichlet problem
for the unit disk will be emulated for a function f defined on (0, oo) to solve the
following problem. Let Q be the upper right half-plane, i.e., Q {(x, y)lx > 0, y > 0},
and let f(x) S*z. We wish to find a function f(x, y) with the following properties:

(i) f(x, y) is harmonic in Q.
(ii) limx_.o+ f(x, y) is finite for 0 < y <
(iii) limy+0+ f(x, y) f(x) for 0 < x <
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Our solution may not be the most direct one, but it completes both our work and the
work of Muckenhoupt on developing the analogy between the theory of Fourier series
and that of Laguerre series. First we solve this problem when f(x) is a continuous
function; this can be easily extended to the case where f(x) is any element of S* with
compact support. However, the case where f(x) is an arbitrary element of S* requires
a new approach since there are two notions of convergence involved, pointwise
convergence and convergence in the sense of S/*, neither of which in general implies
the other. This case will be treated in the next section.

We have seen that each element of S/* has a Laguerre series expansion which
converges to it in the sense of St*, and the coefficients of the expansion form a slowly
increasing sequence of real numbers. Unfortunately, we cannot in general continue
this expansion to the complex plane since a series of Laguerre functions which may
converge (even uniformly) on the positive real axis can possibly diverge off that part
of the axis. To overcome this difficulty we introduce Laguerre functions of the second
kind { Vn(z)}. These are solutions of the Laguerre differential equation zV + V’ +
(n+1/2-z/4)Vn=O which vanish at -c. The definition of the Vn(z)’s and some of
their properties are given in the following lemma.

LEMMA 5.1. Let

e-t/2un(t)
Vn(z)=ez/2| dt, n O, 1 2,....

t--z

Then we have:
(i) Vn (z) is well defined and holomorphic in the complex plane cut along [0, c).
(ii) V, (z) satisfies the same differential equation as u, (z), i.e., (2.4).
(iii) limy_0 V, (x + iy) Vn (x iy)] 27riu, (x); x e [0, m).
Proof. First, observe that the definition makes sense since by the Schwarz

inequality we have

it_zl2 e ,(t) d e <c.

The proof of (i) and (ii) is straightforward and left to the reader.
(iii)

V(x +iy)- V(x-iy)=eX/a{eiy/a lo e -t/2un(t) dt_eiy/2 I? e-t/2un(t) }(t-z) (t-Y)
dt

=eX/2{fo e-’/2u,(t) { y } }(t- X)2 -I- y2 COS (2iy) + 2i(t- x) sin dt

2’i e x/2 cos e-/u,(t)P(t, z) dt

sin (Y/2) Io -t/Zu. }e (t)(t-x)P(t,z)dt
Y

where P(t, z) is the Poisson kernel for the upper half-plane. Since the limit of the
first integral is u,(x)exp (-x/2) and that of the second is zero, then taking the limit
of (5.1) as y - 0 yields the result.

DEFINITION. Since V,(z) satisfies the same differential equation as un(z) and
clearly un(z) and V, (z) are linearly independent, we call V,(z) a Laguerre function
of the second kind.
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THEOREM 5.1. Let f S*t be a continuous function. Then
(i) f has Laguerre series expansion f Y.n=o cnun, where the convergence is in the

sense of S*.
(ii) =o (ic,/2r) V,(z) converges pointwise in the plane cut along [0, oo).
(iii) Y.=o (icn/27r) V(z) converges uniformly in compact subsets of the cut plane.
(iv) E,o(ic,/2r)[V,(z)-V,()] converges in to a real harmonic function

f(x, y).
(v) lim_0 f(x, y)= f(x) pointwise; x (0, oo). Moreover, the convergence is uni-

form on compact subsets of (0, oo).
Proof.

(i) The coefficients c, given by cn (f, u,) are well defined, since u, e $ for all
n 0, 1, 2,.. . To show the convergence, we invoke Theorem 2.1 and write for any

(f, )= [, E (, u.)u. E (f, u.)(6, u.)= E c.(6, u.)<.
=0 =0 =0

The last series converges since by Theorem 2.1 {c},=o is a slowly increasing sequence,
i.e., c O(n) for some k, and {(&, u,)}=o is rapidly decreasing.

(ii)

(5 2) .Eo k2/V(z)=k] e o dt= ((t) u.(t))/t-z o

where O(t)= exp ((z- t)/2)/(t-z) S for z [0, ). But the series on the right-hand
side of (5.2) converges for the same reason as in (i).

(iii) Using the fact that Ru(x)=-nu(x), hence R*2u (--n)k+2un, We write
(except for a trivial modification when n 0)

(ic. (ic. (ic. R+2u."

EI= 2/(-n)+ (R+’

The last equality holds since R is self-adjoint. Clearly, the series= (ic/2)l/(-n)+ converges absolutely for sufficiently large k. We will show
that (R+2, u,) is uniformly bounded on compact subsets of the cut plane. From
these two facts the uniform convergence follows.

To show that (R+,u,) is uniformly bounded, we recall that R+=
i=o Pi(t)D i, where Di= di/dt and Pi(t) is a polynomial in t. Therefore, R+(t)

P(t, z) exp ((z t)/2)/(t- z)+4, where P(t, z) is a polynomial in and z.
Let K be any compact subset of the cut plane, =dist (K, [0, )) and M

supt0,),x (P(t, z) e/ e-t/4). Then we have

I(R+2ck(t) u(t))[ lIS P(t’ z) e/2 e-’/2u"(t)
(t__z)2k+4 dt

M Io -’/41 (t)ldtN62k+4 e u,,

M --t/2 2<= +----- e d u,(t) d 82k+4 < 00.
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(iv) This follows from part (iii) and part (i) of Lemma 5.1. We need only to show
that [(x, y) is real, but this follows from the relation

( e z/2 e /2
V(z)- V(e)= e ’/Zun(t)

t-z S-) dt

and the observation that the quantity in brackets is purely imaginary.
(v) This follows from part (iii) of Lemma 5.1 and the fact that the series=o c,u (x is Abel summable to f(x ). Q.E.D.
COROLLARY. If, in addition to the hypothesis of Theorem 5.1, lim_,o f(x) c < o,

then f(x, y) solves the following boundary value problem:
(i) f(x, y) is harmonic in Q.
(ii) limy_o/ f(x, y)= f(x) for 0 <-x < co, where f(O) means lim_,o/ f(x).

(iii) lim_,o f(x, y) is bounded for 0 <- y <
Proof. We need only to prove (iii). From (5.1) it is easy to see that

iCni?e-’/2un(t)[ y ]g(Y) oliO+ f(x, y)= .=o 2 -t- y2 2iy cos -+ 2it sin dt

is a continuous function of y which is bounded for 0 < e <- y < eo and limy_,o+ g(y) f(O).

6. The space $* as boundary values. In the previous section we considered the
case where the boundary values were given by continuous functions in Sz*. In fact,
f(x) does not have to be continuous for the proof to hold. Theorem 5.1 can be easily
proved for functions that are continuous almost everywhere. With no difficulty one
can also show that the results hold for any generalized function with compact support
in (0, oo). However, rather than extending the results to a larger class of functions we
shall consider the possibility of extending them to all of S*.

Needless to say, imitating the theory of trigonometric series naturally leads one
to look at the boundary behavior of the conjugate function (x, y) of f(x, y).

As for extending the results to all of S/*, one difficulty immediately arises; that
is, even uniform convergence on compact subsets of (0, o) does not, in general, imply
convergence in the sense of

As for the boundary behavior of the conjugate function, indeed, we have that
the mapping f_)z is continuous from LP to LP(1 <P< oo) and it is of weak type (1, 1)
(cf. [13, p. 239]). In addition, it is known that if f(O)L’(T),where T is the unit
circle, and if we associate with f(O) its Fourier series f(O) -oo=_ an e in, its Poisson
integral f(r,O)=,=_ooanrlnlei and its harmonic conjugate (r,O), then
limr_ )r(r, 0) (0) is not in general in L (T).

Analogously, if we take the conjugate function (x, y) of f(x, y) of Theorem 4.1,
one will easily find that limy_.0/Z(x, y) is not necessarily in

To overcome this difficulty, it seems inevitable that one has to alter the definition
of harmonic functions somewhat. More accurately, a solution will be found in the
space of generalized harmonic functions as introduced by Vekua [7].

We begin by borrowing and modifying Muckenhoupt’s conjugate functions [5]
to introduce f(x, y) and if(x, y) as follows:

(6.1) f(x, y)= E Cne-Yu.(x)
x>O, y>0, c,=O(nP).

-u (x)(6.2) Jr(x, Y)=- E Cne
n=l
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Some properties of f(x, y) and [(x, y) are given in the following lemma.
LEMMA 6.1. Let f(x, y) and (x, y) be given by (6.1) and (6.2). Then"

C(i) f(x, y) and (x, y) are well defined in Q, in fact, they are functions there.
(ii) They satisfy the elliptic partial differential equations

(6.3)

(6.4)

f.+Xfxx+fx+(-1/4)f=o,
1

(iii) They are related by the analogues of the Cauchy-Riemann equations"

(6.5) --e [e-/2x
Oy c3x

and

0____ _X/2xl/2 [eX/2f(6.6)
0y

-e c--
Proof. We prove the first part of (i) by showing that the defining series converge

uniformly on every compact subset of O.
Let K be any compact subset of O and 6 dist {K, [0, oo)}. Since lu, (x)l <-- 1 for

all x [0, oo) and n 0, 1, 2,..., then we have for any (x, y)e K

If(x, Y)I --< X Icn[ e

A similar argument applies to jZ(x, y). To prove the second part of (i) we use
(3.15) to obtain Id u (x)/dx l- p -0, 1, 2,, ,, and since [dq e-Y/dyq
O(n q/2), q 0, 1, 2,. it follows by the same argument as before that all the partial
derivatives of f(x, y) and j(x, y) exist.

(ii) and (iii) With the aid of (2.4) and the relations

du (x)n--1

dx

1
(x) ",/-’,/-u.(x).+ (1--X)Un-1

du.(x)

the reader should be able to finish the proof.
Now we are in a position to prove the following theorem.
THEORZM 6.1. Letf S* be given by f --o c,u. Then the function f(x, y) given

by (6.1) converges to f in the sense of S* as y 0/. The function (x, y) given by (6.2)
converges in the sense of S*I to a generalized function $’ (the conjugate generalized
function off) as y0+ where is defined by the series Y= c,u (x)n--1

Proof. We want to show that (f(., y), &)(f, ) as y-O+. First, observe that
for any fixed y > O, f(x, y) is in S*, since for every Sz we have

(6.7) (f(x, y),
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In fact, the series in (6.7) converges uniformly for y => 0 since I(un, )1 O(n-q) for
every positive integer q. Hence

](f(x, y), )-(f, (P)I= E c,,(u,. )(1-e
n=O

n=0

Therefore, we can take the limit as y --> 0/ under the summation sign to get I(f(x, y), )
([, )[-, 0 as y-,0/.

The proof for ](x, y) and ]r is exactly the same. Q.E.D.

Comments. The referee has kindly pointed out that the results of Lemma 5.1
and Theorem 5.1 rely on the fact that the second solution to the Laguerre differential
equation is also a second solution to the three-term recurrence relation, and has
indicated that the results can be extended to the case of the Jacobi polynomials.

Indeed, this is the case. In fact, the results have recently been extended by
G. Walter and the author and G. Walter and P. Nevai [10] to a large class of orthogonal
polynomials with relatively mild conditions on the weight function.

Acknowledgment. The author wishes to express his sincere gratitude to Professor
Gilbert Walter for his helpful suggestions. This work is a part of a Ph.D. dissertation
written under his supervision.
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CHARACTERIZATION OF CONTINUOUS SELECTIONS OF THE
METRIC PROJECTION FOR A CLASS OF WEAK

CHEBYSHEV SPACES*

MANFRED SOMMER’

Abstract. In this paper we study the problem of existence of continuous selections of the metric
projection for finite dimensional subspaces of C[a, b]. The problem of characterizing the spaces which
admit continuous selections from among the finite dimensional subspaces of C(X), X compact, has been
posed by Lazar-Morris-Wulbert. In the case that X =[a, b] partial solutions have been given by recent
results of Niirnberger and Sommer. In this paper we complete the studies on continuous selections for
finite dimensional subspaces of C[a, b] by characterizing also those spaces which have not yet been
considered in the above mentioned papers. Thus the problem of Lazar-Morris-Wulbert is solved in the
case that X [a, b ].

Introduction. Let X be a compact metric space, and let C(X) be the space of
all real-valued, continuous functions f on X under the uniform norm
Ilfl[ := sup {If(x)l:x X}. If G is an n-dimensional subspace of C(X), then for each
f C(X) we define Pc(f):= {go G :Ill- g0]l inf {Ill- gll: g G}} which is called the
set of best approximations of f from G. This defines a set-valued mapping Pc from
C(X) into 2 which is called the metric pro/ection onto G. A continuous mapping s
from C(X) onto G is called continuous selection for Pc (or, more briefly, continuous
selection) if s(f) Pc(f) for each f C(X).

Lazar-Morris-Wulbert [6] were the first to study the problem of existence of
continuous selections. They have characterized those one-dimensional subspaces of
C(X) which admit a continuous selection and have posed the problem of characterizing
the higher dimensional subspaces of C(X). This question which is relevant to the
convergence of algorithms for computing best approximations has also been posed in
the book of Holmes [3].

N/irnberger-Sommer [8] have studied this problem with new methods, by using
the theory of weak Chebyshev spaces. They have been able to establish the existence
of continuous selections for all elements of a special class of weak Chebyshev subspaces
of C[a, b].

In further papers N/irnberger and Sommer have extended their studies to other
classes of weak Chebyshev subspaces of C[a, b] [9], [10], [11] and also to the class
of those subspaces which fail to be weak Chebyshev [7]; e.g., they have shown in [9]
that there exists a continuous selection for Ps..k, where S,,.k is a space of spline functions
of degree rn with k fixed knots, if and only if k <- m + 1. Their results solve the problem
of Lazar-Morris-Wulbert for all finite dimensional subspaces G of C[a, b l, except
when G belongs to a special class of weak Chebyshev spaces which we will want to
denote by Z2, Z3, in the following (for definitions see 1).

In this paper we complete the studies on existence of continuous slections for
finite dimensional subspaces of C[a, b] by characterizing also those elements of
Z2n t_J Z3, which admit a continuous selection (Theorem 2.7 and Theorem 3.14). To
do this we first define a subclass of Z2, and show the nonexistence of a continuous
selection for all elements of (Z2, \,)LI Z3, by using a fundamental lemma of Lazar-
Morris-Wulbert. In contrast to this, for each G s, we are able to construct a

* Received by the editors April 18, 1979, and in revised form March 18, 1981.
t Institut fur Angewandte Mathematik der Universitiit Erlangen-N/irnberg Martensstrasse 3, 8520

Erlangen, Germany.
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continuous selection by modifying the methods of the construction established in [9]
and in [11], for a class of spline spaces and for a class of generalized spline spaces,
respectively. In both papers the construction essentially depends on the important
property that for each f C[a, b]. all best approximations coincide on a subinterval
of [a, b]. However, if G 2, this statement does not hold in general. Therefore, the
techniques in [11] do not apply directly and the situation here is much more complicated
than in that paper.

The construction of the selection is highly local and based on alternation properties
and certain uniqueness conditions.

In addition to these results we give a complete characterization of those weak
Chebyshev spaces which admit a continuous selection (Theorem 1.8). In this theorem
we summarize all results established by Niirnberger and Sommer.

Thus the problem of Lazar-Morris-Wulbert is completely solved in the case that
X=[a,b].

1. The main result. In the following, let G be always an n-dimensional subspace
of C[a, b ].

An important role is played in our studies by a very interesting class of finite
dimensional subspaces of C[a, b], the weak Chebyshev spaces.

DEFINITION 1.1. G is called a Haar space if each g s G has at most n 1 zeros
on [a, b]. G is called weak Chebyshev if each g G has at most n- 1 sign changes;
i.e., there do not exist points a<=xo<xa< .<x,,<=b such that g(xi)g(xi+a)<O for
i=0,...,n-1.

We denote the class of all n-dimensional weak Chebyshev subspaces of C[a, b]
by W,.

Recently, Niirnberger [7] has shown that all spaces G which fail to be weak
Chebyshev do not admit any continuous selection:

THEOREM 1.2. If G admits a continuous selection, then G W,.
Therefore, this result restricts our problem to the case that G W,. This case

requires a detailed knowledge of the properties of the elements of W,. To simplify
our considerations we divide W, into certain subclasses. At first we define the following
two subclasses of W,:

Y := {G W,:no nonzero g G vanishes on an interval},

Z, := {G e W,: G Y,}.

(Here and in the following we use the notation "interval" only for nondegenerate
intervals.)

The class Y has been studied by Niirnberger-Sommer [8] and Sommer [10].
Their results characterize those elements of Y, which admit continuous selections:

THEOREM 1.3. Let G Y,. Then the following conditions are equivalent: (1.1)
There exists a continuous selection. (1.2) Each nonzero g G has at most n distinct zeros.

There still remains the case that G Z,. This subclass of W, seems to be the
most interesting subclass of W,, since the spline spaces and also the continuously
composed Haar spaces belong to Z, (see [12]). We now want to divide Z, into three
further subclasses. To do this we first need a condition on zero intervals given by
Bartelt 1].

DEFINITION 1.4. We say that G satisfies condition (I) if there exists a 6 > 0 such
that if gG and g---0 on [c,d]c[a,b] where c<d and c,d{x:g(x)O}U{a,b},
then d c >- 6.
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If some G does not satisfy this condition, then there are elements of G having
arbitrarily small zero intervals (see [1]).

Moreover, we need the following notation: A point Xo[a,b] is said to be
vanishing (resp., nonvanishing) with respect to G if g(xo)= 0 for all g G (resp., if
there is a g G with g(xo) # 0).

In the following, the term "with respect to G" will be omitted. Then we define:
Z1, := {G Z," G satisfies condition (I) and all x [a, b] are nonvanishing},
Z2. := {G Z," G satisfies condition (I) and at least one x [a, b] is vanishing},
Z3 := {G Z," G does not satisfy condition (I)}.
Then Z. Zln [.J Z2 [-.J Z3n
In [11] we have studied the class Z 1. and have been able to characterize those

elements of Z.1 which admit continuous selections. To give this result and to establish
also a characterization of the elements of Z, we need the following property of the
elements of zl. J Z2n which we have shown in [12]"

LEMMA 1.5. The following statements hold:
(1.3) If G Z then there exists a minimal set of points (which we call knots)

a =Xo<X <’" <x b such that the spaces G[,,i/j are Haar spaces with
dimension hi.i+1 for 0,. ., s- 1.

(1.4) If G Z2, then there exists a minimal set of points (which we call knots again)
a xo < xl <" < x b such that the spaces G[t,,,/a are weak Chebyshev with
dimension ni.i+l, rti.i+l >=O, for i=0,... ,s-1. Furthermore, no nonzero ge
G][x,.x,+ll vanishes on a subinterval of [xi, Xi+l].

Statement (1.3) justifies the following natural convention"
DZFINXTION 1.6. An element G Z is called a generalized spline space.
The existence (resp., the nonexistence) of a continuous selection essentially

depends on the behavior of certain error functions f-go, fe C[a, b], goePo(f), in
certain subintervals [c, d] of [a, b]. One will see that if G sZ Z2 then these
subintervals will be exactly the knot-intervals [xi, xj] where the knots will be given by
Lemma 1.5. Because of this observation and, since we want to completely characterize
those weak Chebyshev spaces which admit continuous selections, we define a minimal
set of knots for each G Y, U Z3,, too.

We first need some definitions:
DEFINITION 1.7. We say that m zeros x l, x2,’", Xm (resp., m zero intervals

11 y 1, z 1],/2 Y2, z2], , Im y,, z,]) of a function f e C[a, b] are separated if
there exist m 1 points ti e (x, x/l) (resp., m 1 points ti (z, yi/l)) such that f(tg) 0
for 1, ., m-1.

Furthermore, we denote by Z(f) the set of the zeros of f, by bd A the boundary
of a set A and by [AI the number of the elements of A.

Then we set:
If G e Y,, then we define Xo := a and xl :- b and choose {x0, xl} as a minimal set

of knots. This is an immediate consequence of statement 1.4 of Lemma 1.5, since by
definition ofY, no nonzero g e G vanishes on a subinterval of [a, b].

If G Z3 then we distinguish two cases"

(i) There exists a g e G vanishing on two separated intervals. In this case we
define x0 := a, x := b and choose {x0, xl} as a minimal set of knots.

(ii) There does not exist any g e G vanishing on two separated intervals. In
Theorem 2.7 we will show the existence of a go e G such that go---0 on a subinterval
[c, d] of [a, b] and

Ibd Z(go)l->- dim {g G: g=-0 on [c, d]}+ 1.
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In this case we define Xo := a, x := c, x. := d, X3 := b and choose the set of these points
as a minimal set of knots.

It is easily verified that if G 6 Z3 then in general the above defined knots do not
guarantee the same properties as the knots of G, in case G Yn Z 1. Z2. However,
they are very helpful, summarizing all results on weak Chebyshev spaces and con-
tinuous selections in a characterization theorem.

We need some notation again" Let G W, and {xi}=o be a minimal set of knots
according to Lemma 1.5 and to the above definition, respectively. Then for each
i,/’ {0,. ., s}, </’, we set:

(ij := {g G" g 0 on [xi, x.]},
Gii ’-- Gl[x,.xil, nii := dim G ii.

mii := dim Gii,

Now we are in position to completely characterize those weak Chebyshev spaces
which admit continuous selections.

THEOREM 1.8. Let G W, and {xi}=o be a minimal set ofknots. Then the following
statements (1.5) and (1.6) are equivalent"
(1.5) There exists a continuous selection.

(i) No g G vanishes on two separated intervals;
(1.6) (ii) For all i, f {0,..., s}, <j, and each g ij, Ibd Z(g)l <- mii;

(iii) For each {0,.. , s 1} and each nonzero g G i’i+l, [Z(g)[ < ni,i+l.

In the following sections we will prove this theorem in the case that G
If G Y,, then the above theorem immediately follows from Theorem 1.3 by using
the above defined set of knots for G. One easily sees that in this case (1.6i) and (1.6ii)
are always satisfied. If G Z 1., then the above theorem immediately follows from
Theorem 3.1 in [11]. In that paper we have completely characterized those generalized
spline spaces which admit continuous selections. For such spaces condition (1.6iii)
always holds because of Lemma 1.5.

Before studying the case that G Z (_J Z 3n we first want to show by some examples
that none of the conditions (1.6i), (1.6ii), (1.6iii) can be omitted.

Example 1. Let gl, g2 e C[0, 4] be defined by

g(x) := [x -21 and g2(x) 0

-3

if x [0, 1],
if x [1, 3],
if x [3, 4].

Then G span {gl, g2}G W2. Furthermore G Z, since Y 2 is vanishing. Lemma
1.5 implies the existence of a minimal set of knots Xo 0, x--- 1, x2 3, x3 =4. Then
it is easily verified that conditions (1.6i) and (1.6iii) always hold, but condition (1.6ii)
fails, because Ibd Z(g2)l 2 and 12 "-span {g2}.

Example 2. Let ga, g2, g3 G C[0, 4] be defined by

0 ifxs[0,3], {1-x ifxs[0,1],
g(x) := g(x) :=

x-3 ifx[3,4], 0 ifx[1,4],
g3(x) := Icos (Tr/2)xl.

Then G span {g, g2, g3} W3. Furthermore G Z, since 1 and 3 are vanish-
ing. Lemma 1.5 implies the existence of a minimal set of knots x0 0, x 1, x2 3,
x3 4. Then it is easily verified that the conditions (1.6i) and (1.6ii) always hold, but
condition (1.6iii) fails, because G12=span {g3[[1,3]} and g3 has two distinct zeros on
[1,3].
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Example 3. Let gl, g2, g3 C[0, 4] be defined by

0 ifxe[0,3], {3-x ifx[0,3]
g(x) := g(x) :=

x 3 if x [3, 4], 0 if x [3, 4],

0 if x [0, 1],
g3(x) := -cos (0r/2)x if x e [1, 3],

0 if x [3, 4].

Then G span {gx, g2, g3} G W3. Furthermore G Z3, since 2 3 is vanishing. As
above, Lemma 1.5 yields a minimal of knots Xo 0, xl 1, x2 3, x3 =4. Then the
conditions (1.6ii) and (1.6iii) always hold, but condition (1.6i) fails, because g3 has
two separated zero intervals.

At this point we want to remark that if G Z2 then for all arguments which we
will use in the following we always need a minimal set of knots. It does not suffice
having a finite set of points such that G can be decomposed into weak Chebyshev
spaces according to Lemma 1.5. This we want to make clearer by the following example.

Example. Let g, g2 C[0, 4] be defined by

0 if x [0, 2],
g(x) := g2(x) := Isin (zr/2)xl.

x-2 if x [2, 4],

Then G=span {gx, g2} W).. Furthermore GZ, since 27 =2 is vanishing. Then
Lemma 1.5 implies the existence of a minimal set of knots Xo 0, X 2, x). 4 such
that the spaces Gi’/ are weak Chebyshev and no nonzero g Gi’i/ vanishes on a
subinterval of [xi, x+x] for i=0, 1. One easily verifies that condition (1.6iii) fails,
because G1 =span (glo,2} and g2 has two distinct zeros on [0, 2]. Therefore, by
Theorem 1.8 G does not admit any continuous selection. However, choosing the
points x0 0, xl 1, x2 2, x3 4 one can see that these points also decompose the
space G into the desired weak Chebyshev spaces. Furthermore, one easily verifies
that for these points all conditions (1.6) hold. Then by Theorem 1.8 we would obtain
a continuous selection for Pc. However, this conclusion does not hold, because the
set {0, 1, 2, 4} has four elements, while the preceding set of knots {0, 2, 4} has only
three elements. Therefore, the set {0, 1, 2, 4} is not a minimal set of knots.

2. Nonexistence of continuous selections for each element of Z. In this section
we will show the nonexistence of a continuous selection for Pc, in case G Z3 This
class is nonempty and it is not difficult to construct many elements (see Bartelt [1]).

To prove the nonexistence we need the following fundamental lemma established
by Lazar-Morris-Wulbert:

LEMMA 2.1. Let s be a continuous selection for Pc. If f C[a, b], Ilfll-1 and
0 P(f), then there is a goP(f) such that:

(i) for every x bd Z(P(f))fq f-(1) and every g P(f) there is a neighborhood
U of x for which go >= g on U, and

(ii) for every x bd Z(P(f)) (3 f-1(-1) and every g Pc(f) there is a neighborhood
V of x for which go <= g on V.

Here we set: Z(P(f)):= {x [a, b]: g(x) 0 for all g Pc(f)}. As defined in 1,
bd denotes the set of the boundary points. Furthermore, we need the following lemmas:

LEMMA 2.2 (Stockenberg [14]). Let G Wn. Then the following statements hold:
(2.1) If there is a g G with n separated, nonvanishing zeros Xl < x). <. < x,, then

g(x) 0 for all x with x <-xl and x >-x;
(2.2) No g G has more than n separated, nonvanishing zeros.
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LEMMA 2.3 (Sommer [12]). Let G Wn. Then ]:or every subinterval [c, d] of [a, b].
the space Gltc,a is weak Chebyshev with dimension m <-_ n.

Moreover, we need the following definition"
DEFINITION 2.4. A zero Xo of an f C[a, b] is said to be an isolated zero if there

is a neighborhood U of Xo such that [(x) 0 for each x U\{xo}. A zero Xo of f is
said to be a double zero if Xo is an isolated zero on (a, b) and f does not change sign
at Xo. A zero Xo of [ is said to be a simple zero if Xo is not a double zero of [ or if

Xo a or Xo b. We denote the set of all double zeros of f by Za(f) and by
the number of the zeros of f counting simple zeros as one zero and double zeros as
two zeros.

Furthermore, we set for two intervals I1 Ix1, y l], 12 Ix2,

11<12 if Yl <

[I1,12] := [yl, x2] if 11 < 12.

If 11, I2,’’ ", I,, are finitely many subintervals of [a, b] and G is a subspace of
C[a, b], then we define the space G[11, I2," ", In] by

G[Ix, I,.. ", I,,] := {g G g --- 0 on U 7=
We are now able to prove two lemmas on nonexistence. One will see that these

lemmas hold not only for a subclass of Z3,, but also for a more general subclass of Wn.
LEMMA 2.5. Let G W,. Let at least one function , G have two separated zero

intervals. Then there does not exist any continuous selection.
Proof. Lemma 2.2 shows that each g e G has at most n separated, nonvanishing

zeros. Therefore, it is easily verified the existence of finitely many subintervals
Ix < I <. < I,, of [a, b such that the following is satisfied: There exist two intervals
Ik, Ik+l {I1, I2," I,,} such that dim G[I1," , Im]l[I,,Ik+l] 1 and no g e
G[I1," .,I,,], g0 on [Ik, I+l], vanishes on a subinterval of [Ik, Ik+l]\(Z(G)
[Ik, Ik+l]) where Z(G) := {x e [a, b]: g(x)=0 for all geG} the set of all vanishing
zeros with respect to G.

We set ( := G[I1, Im]. Since G is weak Chebyshev, there exists a go e ( such
that go has exactly r >_-0 sign changes in [Ik, Ik+l] and no g e (0 has more than r sign
changes in this interval. We set [Igoll 1.

Without loss of generality we may assume that go changes sign only at zero
intervals. Since, by assumption, all zero intervals of go which are subsets of [I, Ik+l]
must be subsets of Z(G), there exist, therefore, r zero intervals Ji=[yi, z],
1,. , r, Ji c Z(G), of go such that [y0, Zo] := Ik <J1 <" <J, < Ik+l =: [Zr+l, Yr+l] and
go(zi-1 + e)go(zi + e)< O, i= 1,..., r for e >0 sufficiently small. Moreover let e >0
such that {y 1, y2, , Yr, Zr+ 1} f"l [Zi, Zi + 8 for 0, , r. Without loss of general-
ity we furthermore may assume that go(x) > 0 for each x e (Zo, Zo + e -and go(x) 0
for each X-[Zr+I--e, Zr+I). This implies that (--1)r+lgO(X)<O for each x e
[Zr+l--e, Zr+l).

We now construct a function f C[a, b] as ollows:
(a) f(x)=(-1) for each x [zi, zi+e], i=O," ,r and f(Zr+l)--(--1)r+l.
(b) On the intervals I1,’" ", Im as follows:l If dim GIt, nl -> 1, then it is easily

verified that there are n subintervals [u, v], 1,..., n of I1 such that we can
interpolate by the elements of GIz, at any nx tuple (wi, , w,) where w [ui, v] for

1, , nl. We set: f(u) I andf(v) -1 for 1,.. , nl,. We definer analogously
on the intervals I2,’’’, I,.

(c) max {-1 + go(x), -1} <=f(x) =< min {1 + go(x), 1} for each x e[a, hi.
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Then it follows that fir-011 Ill-poll-- 1. Since by Lemma 2.3 each space Oli is
weak Chebyshev with dimension ni for i= 1,..., m and f-0 has at least ni+ 1
alternating extreme points on L, in case ni >-1, it is easily verified that 0 is a best
approximation of f from GII, on Ii. Then Ilfll 1 implies that 0 e Pc(f), too. Since we
can interpolate at any nl-tuple (Wl, , wnl) where w lUg, v], all best approximations
of f from G must vanish identically on I1 and, analogously, on Ii for 2,..., m.
This implies that Po(f)= r. Furthermore 0, goPc(f) and Zo., Zr/l bd Z(Pc;(f)).

Now let g P,(f), gO on [Zo, Zr/l]. By definition of G and, since go does not
vanish identically on [z, z + e] for 0,..., r, the function g does also not vanish
identically on these intervals. Then it easily follows from the definitions of f and go
that g changes sign exactly r times on (Zo, Z,./l). Thus (-1)+Xg(x)<0 for each
X[Zr+l--e, Zr+l).

We now apply Lemma 2.1" If there exists a continuous selection, then there
would exist a g Pc(f) such that for z0 and go there is a neighborhood U of Zo for
which g>=go on U and for z+l and OeP6(f) there is a neighborhood V of Z+l for
which (--1)r+lg >__--0 on V. Since t >--go on U, the function g would be positive on
(Zo, Zo+ s] U. This would imply that (-1)’+1g <0 on [z,+l-s, z,+l) V as has been
shown above. But this is a contradiction to Lemma 2.1. This concludes the proof.

The next lemma studies the case that no g G vanishes on two separated intervals.
We first want to note that in 1 for any two points xi, xi e [a, b] the space Gi has
been defined by Gii {g G" g =-0 on [xi, xi]}.

LEMMA 2.6. Let G Wn. Let no g G vanish on two separated intervals. If there
exist two points xi, xi [a, b ], xi < x and a function (ii such that Ibd Z(ff)l ->- mii + 1,
then there does not exist any continuous selection.

Proof. Assume that there are two points x, xi[a, b] and a t e Gii such that

Ibd Z (t)[ >-- m + 1 (for notations see 1). Then we distinguish the following two cases.
First, there is an integer q such that Ibd Z (g)l <-- q for each g e Gg. Then we can proceed
exactly as in the proof of Lemma 3.3 in [11] to prove the nonexistence. Second, for
each integer p there exists a go (0 such that Ibd Z(gp)l>-_p. Then for each g e (0 we
denote the number of the sign changes of g in (a, x) by lg and the number of the sign
changes of g in (xi, b) by rg. Then it follows from Gi c G and G W, that Ig + rg <_- n 1.
We now choose a go e (0, []go[I I such that lgo + rgo _-> lg + rg for each g e (i. Let [x, x]
[xi, x] be the maximal zero interval of go (remember that go has only one zero interval).
Then we distinguish:

(i) There is an integer q such that Ibd Z(g)[ <-q for each g (. Then we may
conclude as in the first case.

(ii) For each integer p there exists a g (l such that [bd Z (gp)l >-- P.
This implies that gp has at least p- 2 separated zeros in [a, x)[J (Xl, b]. Then

Lemma 2.2 shows that at least p-2-n of these zeros are vanishing. Hence for each
integer p, p >_-n + 2, each g e G has at least p-n- 2 vanishing zeros with respect to
G in [a, x) [.J (Xl, b]. Since go vanishes identically only on the interval [x, Xl], by the
preceding arguments this function must have at least one double vanishing zero
2 (a, x) tA (Xl, b). Without loss of generality let > Xl.

We now only study the case that a <x <x < b, since the cases a xg and x b
follow analogously. Furthermore, we only study the case that x {x e [a, b]" go(X) < 0}
and xt {x [a, b ]: go(x) > 0}. This implies that go < 0 on [x 8, x) and go > 0 on
(xt, xt + 8] for 8 > 0 sufficiently small. Now we set r := Igo, s := rgo and m := r + s + 4.
Then the function go has exactly r sign changes at the points a 20 < 21 <" < 2r <
2+ X and exactly s sign changes at the points Xl 2r+ < 2+3 <" < 2,_ < 2,-1
b. Since 2 e Z(go) and 2 > x, there is an integer p e {r + 2, , m 2} such that
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2 e (zT,, i,+). We denote the points Y0,’ ’, Y,, 2, Yp+a, , m-1 by Zo, z," ", Zm.
Then 2 z,+a.

We now choose m-1 points tg(z, Z+l), i=0,..., m-l, i r+l, satisfying
g0(tg) 0 and we construct a function f e C[a, b] as follows"

(a) f(x)= 1 and f(x)= 1 for each x [x, tr+2];
(b) f(x) sgn go(tg) for each x e [zg, tg], O,. , m 1, r + 1, r + 2, p + 1;
(c) /(zp+l)=-sgn go(tp+l) and/(x)=sgn go(t,+) for each x [tp+l-e, tp+l+e]

where we choose e >0 such that z,+ < tp+l-e and t,+l+e < z,+2;
(d) On [xk, x]" If dim GlExk, x,3 nkl----> 1, then it is readily verified that there are

nkl subintervals [ui, vi], 1,..., ng of (xg, xt) such that we can interpolate
by the elements of Glxk, x,3 at any nl tuple (w,.. , wn,) where w e [ui, v]
for 1,..., nl. We set: f(ui)= 1 and f(vi)=-1 for, 1,..., nkt;

(e) max {-1 + go(x),-1}<--f(x) <--min {1 + g0(x), 1} for each x e[a, b].
Then it follows that IIf-011 [If-g01[ 1. Then using the same kind of arguments

as in the proof of Lemma 2.5 we can show that 0, g0 e Pc(f) and Pc(f) c G,l. Further-
more xg, XlebdZ(P(f)) and, since =z,+ is vanishing, it follows that 26
bd Z(P(f)), too.

Without loss of generality we may assume that f()=l. Then
bd Z(P(f)) fl f-1(1). Now we apply Lemma 2.1" If there exists a continuous selection,
then there would exist a g Pc(f) such that for x and go there is a neighborhood U
of xt for which gl go on U and for 2= Zp+l and OP(f) there is a neighborhood
V of for which gl 0 on V.

Since gl->_g0O on (x1, xt+8)for (3>0 sufficiently small, the function gl does
not vanish on a subinterval of [xt, b]. Then gl -0 on V implies that eZa(g).
Furthermore, it immediately follows from the definition of f that gog >--0 on [zi, tg]
for O, .., m 1, r + 1, p + 1 and gogx >- 0 on [tp+l 8, tp+l -[- 8 ]. Then it is easily
verified that for all sufficiently large positive numbers c the function go + cgl does not
vanish on a subinterval of [a,x]U[xl, b] and has at least as many sign changes in
(a, x) and on (x, t,) (_J (t,/x, b), respectively, as go. In addition to this it follows from
the definition of f that gl <--0 on [z,, t,] U [tp+-e, t,+l + e]. Hence for sufficiently large
c > O, go + cga has at least two sign changes in (t,, t,+l) and, therefore, it follows that
/go+cg + rgo+cg ->- 2 + lg + rgo. However, since go + cg Gk, this contradicts our assump-
tion that lg + rg >-_ lg + rg for each g Gl. Hence there may not exist such a g. This
concludes the proof.

Using the preceding lemmas we are now able to prove the nonexistence of
continuous selections for Pc, in case G e Z3.

THEOREM 2.7. Let G Z3 Then there does not exist any continuous selection.
Proof. We distinguish two possibilities. First, there exists a function - G vanish-

ing on two separated intervals. Then the statement follows from Lemma 2.5.
Second, there does not exist any g G vanishing on two separated intervals. Then

we will show that there exist two points xi, xi [a, b], x < xi and a Gii such that
Ibd Z()l->- mj + 1.

We assume to the contrary that for any choice of x, xi [a, b], xi < xi and each
g e O., [bd Z(g)[ <- mgi. Then it is easily verified that the statements of [11, Lemma 2.1]
hold. Using that lemma we show that for each integer there is a g G vanishing on
an interval I [xi, yg] such that either a <Xl < x2 <’" < b or a < ya < y2 <’’" < b. Let
h e G have the zero interval/’1 [2a, )1]. Since G Z there is a hz e G having a
zero interval/’2 [2z, Tz] such that Tz )2 < 1/2()1 1), Furthermore h2 : h 1, since each
g e G has at most one zero interval. Let, without loss of generality, )71 < )72. By a
repeated application of the preceding argument, for each fixed integer m we findby
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rearrangingm functions gi G such that each gi vanishes on Ii [xi, yi] and yl < Y2
< y, < b. Then using Lemma 2.1 in [11] we obtain m functions G satisfying
g on [y, b and g =-- 0 on [a, yi]. Then y < y2 <" < y, implies that these functions

must be linearly independent. This we can do for each integer m. Therefore, we get
a contradiction of our assumption that G is finite dimensional. Thus we have shown
that there must exist two points x, x[a, b], x <xi and a G such that [bd Z()I >_-

mi + 1. Then the statement of this theorem follows from Lemma 2.6.
Remark. If for each G Z3 we choose such a set of knots as we have defined

in 1, then the proof of Theorem 1.8 immediately follows from Theorem 2.7.

3. Characterization oi continuous selections lot the elements oi Z. In this
section we will characterize those elements of Z2 which admit continuous selections.

We first remember that by Lemma 1.5 for each G Z there exists a minimal
set of knots {xg}._-0 such that the spaces Gi’i+l are weak Chebyshev and no nonzero
g Gi’i+l vanishes on a subinterval of [x, Xi+I] for 0, , s 1.

Using such sets of knots we define the subclass 2 of Z2 by
Z2, := {G Z2" (i) No g G vanishes on two separated intervals;

(if) for all i,j {0,..., s}, < j, and each g (gi, [bd Z (g)l--< mgi;

(iii) for each {0,.. , s 1} and each nonzero g ai’j+l, [Z(g)[ < ni.i+l}o
Then we can show the nonexistence of a continuous selection for each element
\2
LEMMA 3.1. Let G Z \. Then there does not exist any continuous selection.

Proofi Let G Z\2. If condition (i) or condition (if) of the definition of
fails, then the statement of this lemma immediately follows from Lemma 2.5 and
Lemma 2.6 respectively. Therefore, we have only yet to consider the case that there
is a k {0,..., s-1} and a nonzero go Gk’k+l such that go has at least /’/k.k+l
distinct zeros on [Xk, Xk+l]. Furthermore, Lemma 1.5 shows that G’+ is weak
Chebyshev with dimension nk.k+. Thus we have got the same situation as in [10] and
we can proceed exactly as in that paper to show the nonexistence of a continuous
selection.

"2
This result implies that we have only yet to consider the case that G Z,. In this

case we are able to show the existence of a continuous selection. To construct such
a selection we first need some lemmas.

LEMMA 3.2. Let G Z Then for all i, ] {0,. , s}, < ], the ollowing statements
hold"
(3.1) Gi is weak Chebyshev with dimension mi.

(3.2) For each gl tii there is a 1 G such that 1 g on [xi, b] and =-0 on [a, x.].
(3.3) For each gg. ii there is a G such that g2 on [a, xi] and =-0 on [xi, b].
This lemma can be proved analogously to [12, Lemma 4.3].

LEMMA 3.3 (Jones-Karlovtiz [4]). The following statements are equivalent"
(3.4) G W,.
(3.5) Given a to < t < < t,_ < t, b there exists a nonzero g G such that

(-1)ig(x) >-_ O, t_<x <ti, 1,..., n.
In the following, let Z(G) be again the set of all vanishing zeros with respect to

G. Then the definition of Z2 shows that for each G Z this set is nonempty.
In addition to this we show the following property"
LEMMA 3.4. Let G,. Then Z(G)=[], ] with

Proof. We distinguish two possibilities. First, Z(.G.)= {}. Then the statement
trivially holds. Second, there are at least two points x, Z(G). Assume that there
is a G and a yo (, ) such that (y0) 0. We tlistinguish once more:
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(i) Let vanish on an interval [xk, xi] where xk, xi bd Z() U {a, b}. Then (yo)
~20 implies that x > yo or xi < yo. Without loss of generality let xi < yo. Since G

Lemma 3.2 shows the existence of a go e G such that go on [xi, b] and go=-0 on
[a, xi]. Furthermore, (oi is weak Chebyshev with dimension mo _-> 1. Let $ < tl < t2 <

< t,,oi_l < b be points where $ max {, xs-d if < b and xs-1 if b. Then,
since no g Go vanishes on two separated intervals and all zero intervals of the elements
of Goi are knot intervals, by Lemma 3.3 there is a go e Go having exactly mo- 1 sign
changes at the points tp, p 1,..., mo- 1. This implies that Ibd Z(o)l--> mo. Since
o oi, it follows that fro =- 0 on [a, xj] where xj -_> x. Assume that xi >. xg. Then go oi,
because x bd Z(go). This implies that moi< mo. Thus we have shown the existence
of a o e (oi satisfying Ibd Z(o)1 >-- moi >_- moi + 1. But this contradicts our assumption
that G e Z This proves that x. x. Since yo> xi, it follows that >x, too. Then
because of eZ(G) the function o has a further separated zero at . This implies
that Ibd Z(o)l--> moi + 1 and contradicts again our assumption that G e 22,. Thus we
have shown that g =- 0 on [, ].

(ii) Let not vanish on an interval. We set: xv max {Xl’X-<_ }. In (i) we have
shown that each g e G which vanishes on a subinterval of [a, b] must in particular
vanish on [2, ]. Then, since all zero intervals of the elements of G are knot intervals
and the set of the knots is minimal, it immediately follows from the preceding argument
that <_- Xp+l. This means that [2, ]c [x, x+l]. Since does not vanish on an interval,
it follows that dim Gp’p+I

tlp,p+l ---> 1. We now choose rtp.p+l 1 points < zl <" <
z,.,+,-1 <. Then Lemma 2.3 and Lemma 3.3 imply the existence of a nonzero
goeG"’"+’ such that go has np,p+l--1 zeros with sign changes at zg for i=
1," ,np,p+a- 1. Furthermore g0(7) g0(]) 0, because , e Z(G). But this contra-
dicts our assumption that G e Z Hence there may only exist such functions g e G
which vanish on intervals. Then it follows from (i) that each g e G must vanish on
[, ]]. Thus Z(G) has to be a subinterval of [a, b]. This concludes the proof.

The preceding lemma shows that only the cases that Z(G) {} or Z(G) [, c]
are possible. To study these both cases we need for each f C[a, b] certain best
approximations g Pc (f).

DEFINITION 3.5. If f C[a, b], then gP(f) is called an alternation element
(AE) of f if there exist n + 1 points a <_- to < t <. < t <_- b such that e (-1)g(f g)(ti)
[If- ill, 0, ., n, e +/- 1. Such points are called alternating extreme points of f- g.

Jones-Karlovitz [4] have completely characterized those spaces which admit for
each f C[a, b] at least one AE g Pc(f). They have shown that this property is
equivalent to weak Chebyshev:

THEOREM 3.6. The following statements are equivalent"
(3.6) G W,.
(3.7) For each f C[a, b] there exists at least one AE g Pc(f).

In the following this theorem will play an important role in constructing continuous
selections (see also [8], [9] and [11]). We first study the case that Z(G)=[,]
with < .

"2LEMMA 3.7. Let G Z and Z(G)= [, fr] with < c. Then there exists a con-
tinuous selection.

Proof. Let f C[a, b] and goP(f) arbitrary. Then by Lemma 3.4 there is an
interval [xp, xp+l] such that [, ] [xo, xp+l]. This implies that g go on [xo, Xp+l] for
all g Pc(f). By virtue of this we can proceed exactly as in the proof of Lemma 3.7
in 11 to construct a continuous selection by starting in [xo, Xp/].

Hence there still remains the case that Z(G)= {}. This is more difficult than the
above studied case, since in general there is no interval on which all best approximations
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coincide. But we are able to show the existence of a knot interval on which all AEs
of f from G coincide.

In the following we may assume that < b and Ix,, xp/l). We first show an
interpolation property.

"2LEMMA 3.8. Let G Z,. Let n points a <- yl <" "< Yn <- b be given satisfying
{y 1, , yn} and Y-,s < xi < Y-o,+1, 1,.. , s 1 (for n rlis 0 and l’lOi q- 1

n + 1 the first (resp., the second) inequality is omitted). Then for any n real numbers
{zi}il there exists exactly one go G with go(yi)= zi for 1,..., n.

Proof. Let any go G be given such that go(yi)--O for i= 1,..., n. Then the
lemma is proved if we can show that go---0. However, this proof follows directly from
the proof of [11, Lemma 2.3] and, therefore, we get the desired statement. Using that
proof we have only to note that, by the proof of Lemma 3.4, for each g G vanishing
on an interval 1 the point belongs to L Furthermore, note that each point yi is
nonvanishing, because {y 1, ’, y}.

The next lemma gives a result on the numbers of zeros of a function having no
zero intervals.

LEMMA 3.9. LetG Z Then for each go G having no zero intervals thefollowing
statements hold"
(3.8) IZ(go)l <--
(3.9) IZ*(go)[ <= n + 1 if 5 Za(go) and IZ*(go)l <- n if 5: Za(go).

Proof. We first want to remember that Za(go) is the set of the double zeros and
[Z*(go)l the number of the zeros of go counting multiplicities.

The first portion of this lemma follows directly from the proof of [11, Lemma
2.3]. To prove the second portion we assume that there is a go e G having no zero
intervals such that ; e Za(go) and ]Z*(g0)[->n + 2. By using [12, Theorem 3.1] it is
easily verified that for each O, , s 1, p 1, p, G i’i+x is even a Haar space
with dimension ng,+. Furthermore, since G eZ,, it follows that IZ(g)l<=n,+ for
each nonzero g e Gg’i+ 1, p- 1, p.

Now we show by induction on the number of the knots that the preceding
assumption does not hold. First, let s 2. This means that there is only one knot
x e (a, b). Without loss of generality we may assume that 2 <x. The other case
follows analogously. Then IZ(g)l -< n12-1 for each g e G, since G1 is a Haar space,
and IZ(g)[ <- no1 for each g e G1. This implies that IZ(g)l <- no1-1 for each g e G1

on [a, xl]\{}. Then it follows from [5, Theorem 4.2, p. 23] that IZ*(g)l<=n2 1 for
each g G12 and, using the arguments of that theorem, it is easily verified that
IZ*(g)l--< no1-1 for each g G1 on [a, Xl]\{;}. Now let Zl," ’, z, be zeros of go on
[a, b]\{;} where z Zi+l, in case z Za(go). Then the preceding arguments imply that
z,_,12 <Xl < Z,o1/1. However, using the proof of [11, Lemma 2.5] and Lemma 3.8, it
follows that go 0. But this contradicts our assumption on go. Let the statement be
true for s knots.

Now given s + 1 knots we choose again n zeros z1,’", zn of go on [a, b]\{}
where z z+l if z e Za(go). Then each space G ii, ] < s, has at most s knots x,. xj.

Therefore, we may apply the assumption to these spaces and obtain the inequality
zn_,, < x < Z,o,+l, 1,. , s- 1 (here we have to note that at most nij- 1 of these
zeros belong to [xi, x.]). As above it follows that go 0. This contradicts our assumption
that go does not vanish on an interval. Thus we have shown that IZ*(go)l <--n + 1 if
2 Za(go). The other statement of this lemma can be proved analogously.

In order to prove that all AEs of f coincide on an interval, we need the following
lemma established by Niirnberger-Sommer [8]"



CONTINUOUS SELECTIONS OF THE METRIC PROJECTION 291

LEMMA 3.10. Let G Wn and f C[a, b ]. If go, (,o are two AEs off, then at least
one of the following statement holds:
(3.10) The function go-(,o has at least n + 1 distinct zeros;
(3.11) The function go- o has at least n + 2 zeros, counting multiplicities.

’2LEMMA 3.11. Let G Z and f C[a, b ]. If go, ,o are two AEs of f, then go- ,o
vanishes on an interval I which contains the point .

Proof. The preceding lemma shows that IZ(go- o)[ >-- n + 1 (resp., [Z*(go- (,o)1 >--
n + 2). Then Lemma 3.9 implies that go- o must have a zero interval and the desired
statement follows from Lemma 3.4.

Using this lemma we are able to show the following:
LEMMA 3.12. Let G ,2 and f C[a, b ]. Then there is a subinterval I of [a, b

such that go ,o on I ]:or all AEs go, o o) [.
Proof. Remember that we always assume that Y [xp, xp+l). Then it follows from

Lemma 3.11 that we have yet to consider only the case that ? > a. We distinguish
two possibilities. First, Y (xp, xo+l). By Lemma 3.11 any two AEs go, o coincide on
an interval I such that ? L Since Y (xo, xp+l) and all zero intervals of the elements
of G are knot intervals, it follows that [xp, xp+l]cI and, therefore, all AEs of f
coincide on [xp,

Second, Y xp. If there is exactly one AE of f, then the statement is trivially
satisfied and if there are exactly two AEs of 1, then the statement follows directly
from Lemma 3.11. Hence, there still remains the case that there are at least three
AEs of f. Let A(f)= {g Pc(f):g is an AE of f}. Without loss of generality we may
assume that OA(f). Furthermore, let Z(A(f))={x[a,b]:g(x)=O for each g
A(]’)}. Then, since a7 Z(G), it follows that Y Z(A(f)). We now assume that Z(A(]:))
does not contain any subinterval of [a, b]. Then using Lemma 3.11 there must exist
three AEs 0, go, go of f such that go=0 on [xp-1, 7] and go=0 on [Y, xp+l], however
go 0 on [Y, xp/] and go 0 on [xo-1, Y]. Furthermore, Lemma 3.11 shows the existence
of an interval I on which go go. Without loss of generality we may assume that
/ faT, Xm]. Then it follows that go go---0 on [Y, xp+l] and this contradicts our assump-
tion that Z(A (f)) does not contain any subinterval of [a, b ]. This concludes the proof.

Thus we have shown the interesting property that all AEs of coincide on a
subinterval of [a, b]. Unfortunately, for the set of all best approximations of 1, an
analogous result is not given in general, as we will show by the following example.

Example. Let gl, g2 C[-1, 1] be defined by

0 ifx[-1 0],
gl(x) := g2(x) :=

x if x [0, 1],

Then G span {gl, g2} W2. Furthermore G 2, and x 0 is the only knot of G.
Then the function f, defined by f(x) := 21xl 1 has exactly one AE go =- 0 for approxima-
tion from G and it is easily verified that Pc (f) {a 1gl + azg:z 0 <= a + a2 <= 2, 0 <= a: <- 2}.
But this implies that there does not exist any subinterval of [-1, 1] on which all
g Pc(f) coincide.

Thus given any G 2 it is not true in general that all best approximations of f
from G coincide on some interval. This shows an essential difference between the
class 2 and the subclass ’, of Z which we have defined in [11] because for each
G V all best approximations of f from G always coincide on some interval. However,

"2to construct a continuous selection for Pc, in case G Z the statement of Lemma
.12 is strongly enough.

"2LEMMA .1. Let G Z. Then there exists a continuous selection.
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Proof. Let f C[a, b] and go A(f) arbitrary where as above A(f) is the set of
all AEs of f. We furthermore may assume that Y < b. Then Y Ix,, x,+l). The case
Y b follows analogously. We distinguish two possibilities. First, Y (x,, x,+l). Then
Lemma 3.11 shows that all g A(f) coincide on Ix,, x,+l] and starting in
with the function go we construct a best approximation s(f) of f step by step exactly
as in the proof of Lemma 3.7 in [11]. To prove the continuity of this selection we
can proceed again as in the proof of that lemma.

Second, Y x,. This is more complicated than the first case. We construct again
a best approximation s(f) step by step analogously to the construction established
in [11]:

(i) Local approximation" If dim Go, => 1, then we approximate f-go in Ix,, b]
by Go,. Since by Lemma 3.2 Go, is weak Chebyshev, Theorem 3.6 guarantees the
existence of a local AE gl Po,(f-go) (for definition of local AEs see [11]). Then
f-go-gl has at least mop + 1 local alternating extreme points in Ix,, b]. Furthermore:

II/’- go- g,llra,,<. Ill-- goll<,,,,. -< Ill-- goll,

Ill-- go-- glllrx,,.,, <- lit’- go-OIIt,,,,.,, <= lit’- goll.

This implies that go + gl Pc(f). If Go. {0}, then we define the function g by gl 0.
(ii) Uniquenes of the local AEs on [x., xo/ 1]: We will now show for approximation

in Ix., b] that any two AEs g, gX Pdoo(f- go) are the same on Ix., x.+], i.e., g gl
on Ix., xo+l]. We assume to the contrary that gl g on Ix., x.+]. Since gx gx on
[a, Xp] and G e 2, the function gl-g has no zero interval in [x., b]. Then Lemma
3.6 in [11] shows that [Z*(g-gl)l<-mo.+ 1 on [xv, b] and, since G e.,2, it follows
that [Z(gl-gl)l<-mo. on Ix., b] (to use Lemma 3.6 in [11] we must note that
2 x. (x., b]). But this contradicts the statements of Lemma 3.10. This implies that
gl gl on Ixo, x.+l].

(iii) We show that if o A(f), o go, and P.o(f-o) is a local AE for
approximation in [xo, b], then o+ffl go+g1 on Ix., x./l]. Lemma 3.11 shows the
existence of a subinterval 1 of [a, b] such that d I and go o on L We distinguish
two cases:

If Ix.-1, x.] L then d 1 implies that Ix., xo+l] c L First, we will show that f- go
and f-o have at least mop + 1 alternating extreme points in [xo, b]. We assume to
the contrary that f-go has at most mop such points in Ixo, b]. Since go A(f), the
function f-go has at least n + 1 alternating extreme points in [a, b]. Now it is easily
verified that n mop + nov (remember that/’/op dim G"). Then it follows from our
assumption that f- go must have at least nov + 1 alternating extreme points in [a, xo e
for e > 0 sufficiently small. Then, since d x. and, therefore, each x [a, x.- e] is
nonvanishing, we can apply the proof of Lemma 2.5 in [11] to fl..-3 and to the
space 0 G"la,x._ and can show the existence of a subinterval/ of [a, x.- e] on
which all g e Pd (fl a.o-a) coincide. Then it is easily verified that go[ a,.-a e Pd(fl ta,x.-?)
and, furthermore, for each g e Pc(f) the function gla,x.-a belongs to Pd(fla.x.-a).
This implies.that all g e P(f) coincide on/’. Since go, oA(f) Pc(f), it follows that
go o on I. However, this implies that/" c[a, x._a], because go .o on [x.-1, x.].
Then the function go-o has at least two separated zero intervals I and Ix., x.+a]
which contradicts our assumption that G 22.

Thus we have shown that f- go f- go- 0 and f-o f-o 0 have at least
mop + 1 alternating extreme points in [x., b]. This implies that 0 e Go. is an AE for
approximation of f-go and f-o in Ixo, b by Goo. In (ii) we have shown that any two
AEs ga, gl Pdo.(f- go) are the same on Ix., x.+l]. Then, using this and the preceding
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arguments, it immediately follows that g, =-0 on [xp, Xp+l] and, analogously, , ---0 on
[xp, Xp+l] where 1 Po,(f- o) is a local AE for approximation in [xp, b]. This implies
that go + g, go o o+ , on [xp, Xp+l].

If [X,-l, xp]c/, then go-o Gp-l.p. Then Lemma 3.2 implies that the function
go, defined by

J go- o on Exp, b],go
0 on [a, xp],

belongs to Gop. By definition, the functions f-go-g, and f-o-l=
f-go-(-go +o+ ,) have mop + 1 local alternating extreme points in [xp, b]. Then
the function g, := 1 go e Gop is also a local AE of f- go for approximation in [xp, b].
Since according to (ii) all of these local AEs coincide on [xp, xp/], it follows that, , o ,- go + o on [xp, xp+]. This proves that o+ , go + g on [xp, xp+].

(iv) This method will be continued in [Xp+l, b as follows" If dim Go,p/1 -> 1, then
we approximate l-go-gl in [xp+,, b] by Go,p+,. Then Theorem 3.6 guarantees the
existence of a local AE g2 e Po.,+,(f-go-g,). We can proceed exactly as in the proof
of (ii) and (iii) above to show that all of these AEs coincide on [xp/, xp/2] and that
go + gl + g2 o + , + 2 on [xp, xp+2] for any choice of go, o, go + g,, o+ ,. Further-
more, it follows that go+g,+g2eP(f). If Go.p+, ={0}, then we define g2 by g2-=0.

(v) We continue this method up to the last interval [xs-1, b].
(vi) We use the same kind of arguments as in (i) to (v) for the interval [a, xp].
Thus we obtain a function

s(f) g_p + g_p+, +... + g-1 + go + g, +"" + gs-p Pc(f),

where for each e{1,..., p} g-iP8o+l_,.s(f-go-g-1 g-i+) is a local AE for
approximation in [a, xp+x-i] and for each G {1, S --p} gi

Po.o+,-l(f-go-gx gi-,) is a local AE for approximation in [xp+i-,, b]. As we
have shown above, this selection is independent of the choice of the AE go and of
the functions g-1 + go, ", g-p+, +" + go, go + gl, go +" + gs--p. Now we can
proceed as in the proof of Lemma 3.7 in [11] to prove the continuity of this selection.
This concludes the proof.

Thus using Lemma 3.1 and Lemma 3.13 we get a complete characterization of
those elements of Z, which admit a continuous selection.

THEOREM 3.14. Let G Z2 Then there exists a continuous selection if and only
ifG2

If G Z], then, using the definition of ,2, the proof of Theorem 1.8 follows
directly from the preceding theorem. Thus the problem posed by Lazar-Morris-
Wulbert is completely solved in the case that X [a, b ].

Acknowledgment, I thank the referees for many helpful comments about the
rewriting of this paper.
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STRANGE EVALUATIONS OF HYPERGEOMETRIC SERIES*

IRA GESSELt AND DENNIS STANTON

Abstract. Many evaluations of terminating hypergeometric series at arguments other than are given.
Some are equivalent to some unpublished work of Gosper, while others are new. In particular, two new
evaluations of 7F6’s with four parameters are stated. The main technique is a change of variables formula
which is equivalent to the Lagrange inversion formula. A new proof of Whipple’s transformation of a very
well poised 7F6 into a Saalschiitzian 4F3 is a corollary.

1. Introduction. In 1836 K/immer [14] compiled a list of quadratic transforma-
tions for 2Fl’s. Using Gauss’s evaluation of 2F1(1), he was able to evaluate some 2F’s
whose arguments were not 1. Goursat [12] used the same idea for third, fourth and
sixth degree transformations of certain 2F’s. Recently, some evaluations for the
generalized hypergeometric functions have been found which did not use this tech-
nique. G. Andrews found [1, eq. (1.12)]

(1.1) [ -n,n+3a, a ] IO’3F2 3a/2,(3a+l)/2
43- (3N)!(a+I)N

N! (3a + 1)3v’

n 0 (mod 3),

n=3N.

In a letter to R. Askey, R. Gosper gave a list of such mysterious-looking evaluations,
for example,

(1.2) F4[ 2a, 2b, l-2b, l + 2a/3, -n ] (a+),,(a+l),,
a-b+l,a+b+1/2, Za/3,1+Za+Zn 1/4 =(a+b+-,,--b-l),,’

a, b, a+-b, 1+2a/3, -n
5F4

2a + 1- 2b, 2b, 2a/3, 1 + a + n/2

0,

4_] (2N)! (a + 1)N2-2N

N!(a-b+l)s(b+1/2)u’

n odd,

n =2N,

(1.4) 3F2[1/2+3a, 1/2-a,-n 43_] (1/2-a),(1/2+a),

(1.5)
1 + 3a, 1 3a, n ]] (1 + a),(1 a)n

3Fz ,-1-3n 1/4(-)

(1.6)
2a, 1 a, n ] ((n + 3)/2)n(n + 1)(2a + 1)

3F2 2a+2,-a-1/2-3n/2 I1 =(l+1/2(n+2a+l))(2a+n+l)"

(Even though the argument in (1.6) is 1, it does not fit into the known 3F2(1) summation
theorems.) Gosper also gave many 2F1 evaluations with one free parameter.
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Although Gosper did not assume that the series terminate, we are concerned
here only with the terminating cases. Thus in (1.4) and (1.5) the 3F2’s terminate after
n + 1 terms. The ambiguity in these series can be removed by reversing them, but we
do not do so.

Besides showing (1.1), (1.4) and (1.5), we extend (1.2), (1.3) and (1.6) to

(1.7)

7F6[ 2a, 2b, 1 2b, 1 + 2a/3, a + d + n + 1/2, a d, n

a b +1, a + b + , 2a/3, 2d 2n, 2d+1, 1+2a + 2n

(2a + 1)2,, (b + d +1/2).(d-b +
(2d + 1)2n (a + b + )n(a b + 1),’

a,b,a+1/2-b, 1+2a/3, 1-2d, 2a+2d+n, -n ]7F6
2a + l 2b, 2b, 2a/3, a + d + 1/2,1_ d_ n/2,1+ a + n/2

1

t o,
(b + d)u(d b + a + 1/2)u(2N)! (a + 1)u 2_2u
(b + )u(a + d + 1/2)v(d)uN! (a b + 1)u

n odd,

n=2N,

(1.9) F2[-sb+s+l,b-1,-n 1 ] (l+s+sn),,b(n+l)
b + 1, + s(b

The 7F6’s in (1.7) and (1.8) have a curious property similar to the well-poised condition.
Instead of just adding a numerator parameter to a denominator parameter, one of
them is doubled first. In (1.7) the first three pairs give a constant 2a + 2, whereas the
last three pairs give 2a + 1. The middle pair (1 + 2a/3, 2a/3) can give either 2a + 1
or 2a + 2. These series are also Saalschiitzian (balanced).

We organize this paper in the following way. In 2 we introduce our two methods
of evaluation and discuss their relevance to some early work of Bailey. The first
method--factorization of polynomials--gives (1.1) and many 2F1 evaluations in 3.
The second method is a change of variables formula of Jacobi, and is explained in

4. We give many examples of this method (including (1.2)-(1.9)) in 5.

2. Methods of evaluation. G. Andrews and R. Gosper used unconventional
techniques to find (1.1)-(1.6). Gosper (see [11]) used a splitting function to tear apart
individual terms of the series and produce new series. He used the symbolic manipula-
tion program MACSYMA to find the right splitting functions. Andrews [1] inverted
the "Bailey transform" [1, Lemma 3], which was equivalent to finding the inverse of
a certain lower triangular matrix. Our methods are very simple: equating coefficients
in power series expansions. They are also variations on Bailey’s first published paper
[2]. In [2] he considered the following problem: Given integers A and/x with A > 0
and/x 0, for what values of c1, ’, at, pl, ", Os, A and p can the coefficient of
x in

(2.1)
....[ol, ar Ax ]f(X) (1--X)P,.Ps[pl, p (1- x)"

be written as a quotient of gamma functions? (We use the notation (f(x)[x ’) for this
coefficient.) Clearly (f(x)lx can be expressed as a terminating hypergeometric series.
Bailey relied upon the known summation theorems to find such examples. For example,
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Saalschiitz’s theorem gives [2, (4.12)]

(2.2)

(l_x)_a3Fz[a/2, (1 + a)/2, 1 +a-b-c
l+a-b,l+a-c

=3F
l+a-b, l+a-c

Whipple’s [15] quadratic transformation for a well poised F. Bailey listed the
transformations he obtained in this way. Later, Bailey [3] multiplied these transforma-
tions by (1-x) and equated coefficients of x . The results were transformations for
series (mostly evaluated at 1) which implied the known summation theorems. However
Bailey did not consider

(I) special factorizations of f(x)
or

(II) products of two transformations.
We use these two methods.

It is possible that Bailey considered (I) much too special to be of interest. However
he knew that (II) could lead to interesting results. For example, by multiplying Euler’s
transformation by itself [4, p. 56], he derived the Saalschiitzian 4F3 transformation.
To use this method on (2.2), an expansion in terms of -4x/(1-x)2 instead of x is
needed. Otherwise double sums would occur in (f(x)fz(x)lx"). We accomplish this
new expansion by using a change of variables formula equivalent to the Lagrange
inversion formula.

Motivated by (2.2), Bailey did prove Whipple’s transformation [16, (5.4)]. In fact
he showed how to boost evaluations into transformations of series of higher order
[16, 4]. It is a special case of the Bailey transform. We would like to thank the
referee for pointing this out to us.

3. Factorizations. We try to factor, or otherwise manipulate, the function f(x)
given in (2.1). In a sense this is trivial, so that we do not expect deep results. Rather
than give the long list of transformations obtained in this way, we give only the most
interesting examples.

For the bulk of this section we concentrate on r 1 and s 0 in (2.1). First, to
show (1.1), we take A 1 and/x 2 so that

(3.1)
f(x) (1 x)P+za ((1 x)Z-Ax)-’,

(--P)n 3F2[ -n, n -p, a((x)[x)
n! [-p/2,(1-p)/2

For A=-3, f(x)=(1-x)’+2(1 +x +x2) (1-- X)P+3a(1-- X)-a, SO

(-p 3a),nF3[ -n/3, (1- n)/3, (2- n)/3, a ]n! (l+p+3a-n)/3,(2+p+3a-n)/3,(3+p+3a-n)/3 1

(3.2) (-p)n
n

3F2
-n,n p,a

-p/2, (l-p)/2
-]
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If p =-3a, (3.2) implies (1.1). We can also derive other evaluations from (3.2), for
example, p 1- 3a gives

n! (3a-1)/2,(3a)/2 - k!

(a)k
k!’

n=3k+2,

n=3k+l,

n =3k.

p+2a X)-2aWe can also try other values of A. If A =-4, f(x)= (1-x (1+ and
(f(x)lx") aFl(- 1). From (3.1) we would get the transformation [4, p. 33] taking any
aF1 1) into a 3F2(1). By writingf(x) (1 x2)-2a (1 X)P+4a (1 X2)p+aa (1 + X)-P-4,
we could give two other 3F2(1) forms.

For A =-2,/(x)= (1-x)p+2(1 +x2)-a, which gives a transformation of a 3F2(1/2)
into a 3F2(-1). No new evaluations come from this case or by writing f(x)=
(1--X)P+3a(1 +x)a(1--X4)-a.

)p+2a X2)-a )p+2a X3)-a.For A=-I, f(x)=(1-x (l-x+ =(1-x (l+x)(l+ This
leads to transformations, if p =-2a or p =-a, but no new interesting evaluations.

We give a few more examples.
If r 1, s =0, A 1,/x 3 and A =-, then

and

f(x)= (1 x)p+3((1 x)3 + Zx)- (1 x)p+3(1 + 2x)-2’(1-x/4)-’,

(3.4) (f(x)lx,)=(-p),4_f:;,3[-n, (n-p)/2, (n-p+ 1)/2, a ]n! -p/3, (l-p)/3, (2-p)/3
1

If p =-3a, we also have

(a)n [(3.5) (f(x)lx")=. 4-"aF1
-n, 2a ]a_n+l

I-8,

so

(3.6)
(3a)n 3F2[-n, (n+3a)/2, (n+3a+l)/22 [1] (a)n 4_n2Fl[ -n, 2a I-8]n! a +-, a + -a-n + l

If a =-n-1/2, Vandermonde’s theorem (aFl(1)) implies- -8] =(-27)"(3.7) aF1 -?n
Gosper gives a aFl() evaluation equivalent to (3.7). We can also use Vandermonde’s
theorem and a limit to evaluate the zF(-8) if a =-n + 1/2, -n + 32- or -n +:
(3.8) 2Fx[-n,-2n+- ] (-3n+1!,,4"; -8 [() +1/2(1/2) ], n >1

(3.9) 2F[-n’-2n+-l -8] (-3n+2),,4"=
). (1/2),, [(- -),, + 1/2(- 1/2),, ], n -> I,
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2Fl[-n,[ -2n +} ]] (-3n +4)n4
(3 10) .8=- (_ ). (_ 32_). [(--) +(n/3 )( -}),n-l], n

As a related example, put h=2, Ix=3, A= and p=-3a so that f(x)=
(1-4x)-a(1 +x/2)-2a. Instead of (3.6), we have for (f(x)[x")

(3.11) 2 1 =(-2) (2a)2F1 I--8n! a +-, a +3 n! 1-2a-n

Putting a -n/2 + , n/2 + 3, n/2 , n/2- , n/2 -- and applying Vander-
monde’s theorem in (3.11), we have

(312) 2Fl[-n, n/2 + ] (3n-1)/2
2 -8 2" 3 cos (nzr/2 + zr/6),

(3.13) 2F1[ -n’ -n/2_ + 1/2 --8] 33/2-’( 1)/2 1 + 2
(1/2)n/2
()n/2-1

n odd,

n >- 2, even,

(3 14) 2F[-n’ -n/2- ] 33n/2

4 --8 =(--1)n/2

5 n + 1’
n even,

"/ ](3.15) 2Fl[-n, - 2-3
--8 (-- 1)(n+l)/23(3n+l)/2n+2 n odd,

(3 16) 2F[-n’-n/2--} ] (n+l)/2 5"3(3n+1)/2
z -8 =(-1) (n+2)(n+4)’

nodd.

Because the series in (3.12)-(3.16) are terminating, these 2F(-8) evaluations
8 9can be stated as 2F1 evaluations at -s, 9, s, 9 or 9. Special cases of (1.1) or (3.3) give

2F1(43-) evaluations.The arguments equivalent to -] are , 4, 41-, -1/2 and -3. We give three
transformations for these arguments which are similar in spirit to (3.6) and (3.11).

Put A 1, Ix =-2, A= and p 0 so that

f(x) (1 x(1 x)2) (1 3x)-2 (1 1/4x)-.
Equating (f(x)lx> we have

(3.17) 9n3F2
-2n/3 (1-2n)/3 (2-2n)/3

1 =2F1 1 a n-n+1/2,1-a-n
For A 3, tx 2, A 2 and p =-2a,

f(x) ((1 x)2- 2x3) (1 x/3)-2(1 4x/3)-a,
(3.18)

33F2
-n/3 (1 n)/3 (2-n)/3

1 =2F 1 2a na +21- 1-2a-n
Finally, if 3, Ix 3, A =-1 and p -3a,

f(x)--((1--X)3q-X3) (1-3x q- 3X2)-a,

(3.19) (3a)"3F2[ (l-n)/3,a+1/2, a+_}(2-n)/3 1]=--3"2Fl(a)"n, [-n/2,1_a_n(l-n)/2 ].
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From (3.17), (3.18) and (3.19) many 2F1 evaluations can be given.
We have not given the transformations which involve two series, neither of which

is evaluated at 1. It is conceivable that the above evaluations could be used with these
transformations to find even stranger evaluations. Also, we were unable to use Dixon’s,
Watson’s, Whipple’s or Saalschfitz’s theorem to evaluate the 3Fz(1)’s and find new
evaluations.

Instead of putting r 1 and s 0 in (2.1) for [(x), we could try using higher
values of r and s with special values of a1,’", ar, Pl,’" ", Ps. Bailey had already
considered this [3, p. 500] by expanding (1 x) in powers of x/(1 x)r+l. For example,

leads to

[a,a+1/2 -4x )2a2FIL2a+l (Z)2]=(1-x

(3.20) (-P)n4F3[ a,a+1/2,-n,n-p 1] (-2a-p)n=n 2a +1, -p/2, (1-p)/2
[3, (3.42)]

and

(1-2x)zFl[a’a+1/2 4x(1-x)]
leads to

(3.21)

(1-p)n(2+p), [ a, a +1/2, -n, l +p ]niii 4F3 2a,(Z+p-n)/2,(3+p-n)/2
1

(-l+2a-p)
n [3, (3.43)].

Andrews [1, (4.4)] proved (3.21) by the Bailey transform.
A related evaluation that Bailey did not explicitly state is

(3.22) (-P)--------4F3[a’-a’-n/2’ (1-n)/2 l]=1/2[(-a-P)"+n! , l +p-n, -p

It follows from

(3 23) 2Fll ]4(-1) =1/2[(1-x +(l-x)-]

or by putting/3 -a in [3, (4.11)]. In 5 we indicate a generalization of this procedure
using (5.12).

4. Change of variables. If f(x)=i=_majX is a (formal) Laurent series, its
residue is defined to be Resf(x)=a_l. Thus (f(x)[xn) Resf(x)/x +1. Note that
Res f’(x) is always zero.

THFORFM 1. Let G(x) i=_m aiX and h(x) i=l bix i, where bl # 0. Then

Res G(h(x))h’(x)= Res G(x).

Proof. Since both sides are linear in G, it is sufficient to take G(x) x ". If m -1,
then

Res h’(x)h’(x)=
m+l

ResEhm+l(x)]’=O.
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For m =-1, let h(x)= blXf(X). Then

h’(x)
Res h(x)

l+f’(x)]Res 1 + Res [log f(x)] 1
x f(x)_l

(Since f(0)= 1, log f(x) has a power series expansion.)
This theorem and its proof are due to Jacobi [13]..In this important but little-

known paper, Jacobi also gave the multivariable generalization, which is equivalent
to Good’s [10] multivariable Lagrange inversion formula.

The various forms of the Lagrange inversion formula are easily proved from the
theorem. For example, we have the following proposition.

PROPOSITION 1. Let f and g be power series with f(O)= 0 and g(O) 0 satisfying

then for n, k > O,

(,)

f(x)=xg(f(x)).

(f (x)lx) _k (g (x)lx_).
n

Pro@ We have

(gn(x)lxn-) Res g(x)/x-+- Res g((x))f(x)f-+(x)

lxfkRes f-(x)f’(x)/x (x)[x- fk (x )lx

Bromwich [5, pp. 159-160], who referred to Jacobi [13], gave a similar proof of
(.), but did not explicitly state the change of variables formula.

We give an application of the change of variables formula (Theorem 1) to
identities.

THEOREM 2. Suppose A(x), B(x), C(x) and D(x) are power series whose
coefficients of x are A, Bk, Ck and D, respectively. Suppose

(1 -x)-"A(x/(1 --X)B+I) B(x),

(1 +/3x)(1 x)-’C(x/(1 x)+a) D(x).

If n( + 1)= 1-a-y, then

Proof. Clearly we have

i BkDn-l AkCn-k.
k --o k =0

B(x)D(x)/x n+l (1 +/3x)(1-x)--VA(x/(1-x)+l)C(x/(1--X)13+l)/x n+l

If h(x)= x/(1-x)+1, (h’(x)= (1 +/3x)/(1-x)+2) and n(/3 + 1) 1-a -% we obtain

B(x)D(x)/x "+1 a(h(x))C(h(x))h’(x)/[h(x)]"+.
The residue of the left-hand side is Y--0 BD,_. Theorem 1 implies that the residue
of the right-hand side is k=0 AkCn_. [-]

In 5 we will be taking the transformations that Bailey had found for our A(x)
and B(x) in Theorem 2. In this case h(x)=x/(1-x)/ and/3 + 1 z/A. However
any transformation of this type gives a transformation between a C(x) and a D(x),
as in Theorem 2. We give a general form of this companion transformation.
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PROPOSITION 2. Suppose A(x) Yk=0 A,x’, B(x) Y=0 B,x’ and

Then

where

(1 -x)-A(x/(1-x)+1) B(x).

(1 + x)(1-x)--IC(x/(1 -x)+1) D(x),

C, A,(a + ( + 1)k) and D, B,(a + ( + 1)k).

Proof. Apply aI+( + l)xd/dx to (1-x)-A(x/(1-x)+l)=B(x). 71
According to this proposition, the companion transformation of (2.2) is

(4.1)

__x)_a_13F2[(1 -t- a)/2, (2 + a)/2, 1 + a -b -c
(1 +

l+a-b,l+a-c

a,l+a/2, b,c
--4F3 a/2, l+a-b, l+a-c Ix].

We can check that (x/(1-x)2)’=(1 /x)/(1-x)3, so that the necessary 1 +x factor is
correct in (4.1). Bailey had given (4.1) previously by equating coefficients [4, p. 97].

5. Change of variables---examples. As our first example we prove Whipple’s
transformation [4, (4.3(4))], which takes a very well poised 7F6(1) into a Saalschiitzian
(balanced) 4F3(1).

From the well poised 3F2 quadratic transformation (2.2) we can put

(5.1)
A (a/2)k ((1 + a)/2) (1 + a -b -c)(-4)’/k! (1 + a b)(1 + a -c),

B, (a),(b),(c),/k! (1 + a b)(1 + a -c)k,

1 and a a in Theorem 2. The companion transformation (4.1) (with d, e and
replacing a, b and c) allows

Ck ((1 + d)/2) ((2 + d)/2) (1 + d-e -f),(-4)’/k! (1 + d- e)k(1 + d-f),,

D (d)(1 + d/2),(e)k(f)/k! (d/2)(1 + d- e)(1 + d-f)

and 3’ d + 1 in Theorem 2. Thus, putting 2n -a- d, Theorem 2 implies

(5.2)

a, l+a/2, b,c,e+a+n,f+a+n,-n
7F6 a/2, 1+a-b, 1+a-c, 1-e-n, 1-f-n,a+n+l

(a+l)n(a+e+f+n)n [l+a-b-c,e+a+n,f+a+n,-n 1].ii2i?) 4F3
l+a-b, l+a-c,e+f+a+n

This is Whipple’s theorem.
It is interesting to ask which theorem we would obtain by inverting only one of

(2.2) or (4.1). If we set c 1 + a- b, then (2.2) reduces to the binomial theorem and
we are using only (4.1). Then (5.2) becomes the very well poised 5F4(1) evaluation.
Similarly, for (2.2) we specialize (5.2) by [ 1 + d-e 1-a-2n- e. Again the very
well poised 5F4(1) is the result. This is just multiplying (2.2) by (1 + x)(1-x)-d-a/x n+x

and using the change of variables formula.



STRANGE EVALUATIONS OF HYPERGEOMETRIC SERIES 303

Next we complete the same steps on Bailey’s [2, (4.05)] cubic transformation of
a 3F2;

(5.3)

2

[ a,a+1/2, a+
(1 x)-3a3F2

(3a + b + 1)/2, (3a b + 2)/2
-27x ]4(1 x)3

3F2[(3 3a, b,l-b 1/4]a +b+1)/2, (3a-b+2)/2

whose companion is

(5.4)

2c+-,c+-,c+l -27x ](l + 2x)(1- x)-l-3C3F2
(3c + d + l)/2, (3c d + 2)/2 4(- ----)3J

4F3[ 3c, 1+ c, d,l-d 1/4]c, (3c + d + 1)/2, (3c d + 2)/2

This time putting c =-a-n gives

3a, b,l-b,l+a,(l+n+3a-d)/2,(n+3a+d)/2,-n 1]7F6 (3a + b + 1)/2, (3a b + 2)/2, 1 + 3a + 2n, a, 1 n d, d n

(3a + 1)2n(- 1)
(d)n(1-d) 3F2[ n, (1 + n + 3a d)/2, (n + 3a + d)/2 ](3a+b+l)/2,(3a-b+2)/2

1

The 3F2 in (5.5) can be evaluated by Saalschfitz’s theorem. After relabeling the
parameters, the 7F6(1) evaluation that we have is (1.7). Gosper’s special case (1.2)
occurs if we consider only one transformation, either (5.3) or (5.4).

Bailey’s other cubic transformation [2, (4.06)]

(5.6) [ a,a+1/2, a+- 27x2 ] [3a’b’3a-b+1/2 4x](1-x)-3a3F2 b+1/2,3a-b+l 4(1_x)3 =3F
2b, 6a-2b+l

can be paired with

(5.7)

+x/2)(l_x)__aFz[C +1/2, c +-}, c + 1 27x 2
](1

d + 21-, 3c- d + 1 4(-i _-)3j

F [3c, l+2c, d, 3c-d+1/2 4x]4 3[ 2C, 2d, 6c- 2d + 1

to obtain (1.8). In the change of variables h(x)= X(1--X)-3/2, SO that the resulting
sum is zero for odd powers of x(1-x)-3/. Again Gosper’s (1.3) comes by inverting
either transformation alone.

It is not necessary to pair up a transformation with its companion. We may use
any two transformations to which the same change of variables can be applied. We
could combine (4.1) with Gauss’s quadratic transformation

(5.8) (l_x)_2e2Fl[e, d
(1_x)2 =2F1 d+1/2 x2
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(5.9)

If a =-2e- 2n, we have

9F8e, e/2 + 1, e d + 1/2, n/2, (1 n)/2, (b + n)/2 + e,
l e/2, d +1/2, e + l + n/2, e +1/2+ n/2, (2-b-n)

(b+n+l)/2+e,(c+n)/2+e,(c+n+l)/2+e ](1-b-n)/2, (2-c-n)/2, (1-c-n)
1

_-(l+2e)"(1-2e-2n-b-c)"4F3[d,-n,b+2e+n,c+2e+n 1].(b),(c), 2d, 1/2 + e, b + c + 2e + n

The 9Fs in (5.9) is very well poised. Evidently there are many such transformations.
We can also find transformations for series not evaluated at 1. For example,

we could pair up (5.4) with any transformation which takes a power series at
-27x/4(1-x) to a power series at Ax, A 1/4. One such transformation is

3F2[a/3, (a + 1)/3, (a + 2)/3
(a+l)/2,(a+2)/2 4(1-x) 3

(l-x)

which is easily proved by Lagrange inversion. We now give another such transformation
which has 3 parameters. A special case of it will be a nice generalization of (5.10).

We begin with the identity

(5.11) y (_ 1)
(-a-(s- 1)k),_ (-a-sk),b

=o (n-k)! k!(b+k)
(sb-a),
(b +1).

which is just a partial fraction expansion. It is clear that (5.11) is equivalent to

(5.12) (1- x)’
(- a sk)’b )s-1]k [1, sb a ], k!(b+k)

[-x(1-x --2F1 b+l Ix.

For s =-2, we have a 2-parameter extension of (5.10)

(5.13) (1-x)-’aF3[ a/3, (a +1)/3, (a+2)/3, b -27x ] [1, a-2ba/2, (a + 1)/2, b + 1 4Sc-)3j 2F1 b -}- 1

So (5.4) and (5.13) give (a =-3-3n, e =-b- n),

(5.14)
n’(i7--i(3c+ 1).(e + 1).

4F3[ -n, e, (1 + 3c + n)/2, (3c + n)/2 ]e+1,(1+3c+d)/2,(1+3c-d)/2
1

[ 3c, d,l-d,l+c,e,-n 1/4].--6F5 (3c-d+2)/2, (3c+d+l)/2, c, l+3c-2e, -n

We have written the -n parameters in the 6F5 only to indicate that the sum terminates
after n + 1 terms. If e =-n, (5.14) reduces to (1.2). The 4F3 is again Saalschiitzian
(balanced).

We can derive (1.9) from (5.12). The companion to (5.12) is

(1 sx)(1 x)’-1 ., (- a sk),, b___, a + (s 1)k
[_ x(1 x)S-’]k, k! b+k a

(5.15)

[1, sb-a,l+a/(s-l) x].3F2 b + 1, a/(s 1)
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Inverting (5.15) gives

a/(s 1), b +1, 1- a sn a(b + n)

Fields and Luke [7] had previously given (5.16). If a s- 1 in (5.15), the 3F2 becomes
a 2F1 to which we can apply Euler’s transformation

(1-sx)(1-x)s-2Z(1-s-sk)’ b .(k+l).[-x(1-x)S-1]’, k! b+k
(5.17)

[b-sb+s,b-1 1(1 x)b-sb+s-22F
b + 1

x

Inverting (5.17) gives (1.9), after s has been replaced by s + 1.
We could obtain still more evaluations from (5.12) by multiplying by a power of

(1-x) and equating coefficients. The right-hand side yields a 3F2(1), which can be
evaluated in special cases. We leave it to the interested reader to write out these
identities.

We have not yet shown (1.4) and (1.5). These two evaluations follow from

(l-x)2 =2F1 1_
2 2

We could not find (5.18) stated as such in the literature. However, it is a version of
the triple angle formula for cosines. If we multiply (5.18) by x-"-2(1-x)-an-2(1-3x)
and change variables, the result is (1.5). Applying Euler’s transformation to (5.18)
yields

(5.19)
27x(1-x)"],,, [1/2- 3 a’l 1/2 + 3a -]-; F1

Inverting (5.19) gives (1.4).
In an analogous way we can use a transformation for algebraic functions given

by Bailey [2, (4.21)],

(5.20) [a,a+1/2] 4x 3
] [3a, 3a+1/214gx](1-x)-2a2F1

2a + 1 27(--x):] =2Eli 6a + 1

to obtain

[ 3a+1/2,3a+l,-n ] {0, n3N,
(5.21) 3F2 6a + 1,-n/3 + 2a + 1

(-)N(-)N
n=3N.

(l+2a)N(--2a)N

The companion formula to (5.20) also gives (5.21), which is equivalent to (1.1).
Many 2F1 evaluations with one parameter also can be obtained from the change

of variables formula. We give a few examples which involve factorizations.
First take

so that

1 + 27x/(1--X)3"-" (1 -[- 2X)2(1--X/4)/(1--X)3,

(1 + 2X)[1 + 27X/(1 X)3]a (1 --x)3n-lx-n-1
(1 + 2x)Za+1(1--X/4)a(1--X)3’-3’-1X-’-1.
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We find the residue of both sides, using the change of variables h(x)= x/(1-x)3 on
the left. The residue of the right-hand side is a single sum if either a =-5 or a n -7.
The results are

In fact, the a =-5 case explains why many special evaluations have a numerator
parameter of 1/2. (Another reason is the integral representation in terms of cosines and
sines.) Also (5.23) is related to (3.12): the terminating parameter of (5.23) is the
nonterminating parameter of (3.12).

A more exotic factorization is

1 + 27x2(1 -x)/64(1- 9x/8)2= (1-3x/4)3/(1- 9x/8)2.

With the change of variables h(x)= x(1-x)1/2(1-9x/8)-1, the above process admits
either a -2/3 or a (n 1)/2, yielding

(5.24) 2Fa[-n’n/2+l ] I 0,

(-3)-, n 2N even,

n odd,

(5.25)

n odd,

2F1 (n + 3)/2 n 2N even.

This type of factorization can be found by looking at the arguments of the cubic
transformations for a .F1 given in the Bateman project [6, p. 114]. The above example
comes from (40).

We give a final example of change of variables. Gosper has given a number of
4F3(1@8) evaluations with one parameter. In every case there is a numerator parameter
which is one greater than a denominator parameter, for example -a and 1-a. We
give a 4F3(-27) evaluation which is similar in spirit.

We take the factorization

(5.26) 1 +8x/3(1-x)3=(1 +3x2)(1-x/3)/(1-x)3.
--rt--1

If we raise (5.26) to the ath power, multiply by (l+2x)(1-x)3n-lx change
variables with h(x) x/(1-x)3 and put a n -1/2, the result is

22

](5 27) 4F3 -- n, -n/2 (1 n)/2, 3n/7 (- 8)
_,_},z1__3n/7 -27 =l-9n"

The pair (-3n/7, -3n/7) comes about because of the 1 + 2x term needed in the
change of variables. Two coefficients are then added together to find the residue.
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6. Open problems. Of the evaluations given on Gosper’s list, only one evaluation
with more than one parameter remains unproven. It is

[ a +1/2, a, b, l-b, c, (2a + 1)/3-c, a/2 +1
7F6L1/2, (2a b + 3)/3, (2a + b + 2)/3, 3c, 2a + 1 3c, a/2

1

2F((2a b + 3)/3)F((2a + b + a/3)r(c + 1/2r(c + ])
(6.1) x/g r((2a + 2)/3)r(2a/3 + 1)r(c -(b + 2)/3)F(c + (b + 1)/3)

F((2a + 2)/3- c)F(2a/3-c + 1) sin (b + 1)7r/3
r((2a -b)/3-c + )r((2a + b + 2)/3- c)

An attractive terminating version of (6.1) is with c =-n,

((2a + 2)/3)(2a/3 + 1), ((1 + b)/3),((2- b)/3)
(6.2) 7F6[c -n]=

((2a b)/3 + 1) ((2a + b + 2)/3), (]), (1/2),
Again we assume that the 7F6 terminates after n + 1 terms. This 7F6 has a very strange
property similar to the 7F6’s in (1.7) and (1.8). Instead of doubling, tripling is needed!
This prescription does not hold for a + 1/2, a, 1/2 parameters. It would be reasonable to
hope that a sF4 version of (6.2) arises by inverting a quartic transformation of a 3Fa.
A nice 5F4 version is

(6.3) 5F4[ a+1/2’a’-n’(2a+l)/3+n’a/2+l ] ((2a+2)/3)(2a/3+l)
5, -3n, 2a +1+ 3n, a/2

9

An iteration of (2.2) is

(6.4) (I-x)-3F[ a/g’a/e+1/2’a/4+1/41/2, 3a/4 + 1/4
-161 (1 +1):](11)4

3F[a’a+1/2’a/g+1/41-x11/2,3a/4+ 1/4

Because of the a, a + 1/2, 1/2 terms and the tripling (note that the cubic transformation
(5.6) involved doubling), we could hope that (6.4) is somehow related to (6.3). We
were unable to show this.

If a -+ oo in (6.2), we recover (1.4). Because n occurs in four places in (6.3), two
Lagrange inversions (possibly involving (5.18)) might be indicated.

Gosper gives two 2Fl’s which we could not show"

()()

[-n,-n+1/4 ] (-})2. (2)(6.6) 2FIL 2n + 4
9- 91- (34_)n (..)17.

With Lagrange inversion it is easy to translate (6.5) and (6.6) into expansions about
certain 2Fl’S with no parameters, but we could not verify these.

Very little is known about q-analogues. The factorization method does not work,
but something replaces it. Andrews [1, (4.7)] has a q-analogue of (1.1) which is
equivalent to

[ ] (a6x3;q3)m(x;q)m 3(6.7) 3b2 a,a3x,Wa,q/xw2a q; q (-5gi q3)(a3x q)o’
w 1.

We are considering (6.7) as a formal power series in x. It is the q-analogue of
(1- X)-3a(1 + 3x/(1--X)2] (1-- X3)-a.
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Carlitz has found a q-analogue of (2.2), and it is not hard to write down a
q-analogue of (4.1). Since the q-analogue of Whipple’s theorem is known (Watson’s
theorem), a q-analogue of the change of variables could exist. This, in turn, may be
related to the q-Lagrange inversion of Garsia [8] or Gessel [9].

Acknowledgment. We would like to thank R. Wm. Gosper, Jr., for access to his
list of evaluations.
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THE RECURSION FORMULAS
FOR ORTHOGONAL POLYNOMIALS IN n VARIABLES*

M. A. KOWALSKD

Abstract. In this paper we introduce a very promising matrix-vector notation for orthogonal poly-
nomials in n variables. This enables us to prove some new properties of the related recursion formulas.

1. Introduction. Let P0, P1,’" be a sequence of orthogonal polynomials in one
real variable. We assume that Pk is of kth degree. It is well known that for {Pk} the
following three-term recurrence relation holds:

(1.1) Pt+l(X)=(dlx +ek)P(x)+flP-l(X), k =0, 1,.

where P-I(X) 0.
The applications of this formula are very important both in theory and in

computational practice. For instance, the availability of coefficients d, e, f, k-
0, 1,..., allows us to simplify many numerical algorithms.

This paper deals with the corresponding relations for orthogonal polynomials in
n variables (see [1], [2]). We propose to use a notation closely related to that of the
scalar case. Its simplicity gives more insight into the subject and leads to some new
results. Since the recursion derived here is not unique for n > 1, we point out a way
of standardizing it. Some illustrative examples are also provided.

2. Preliminaries. Let II be a vector space of all polynomials with real coefficients
in n real variables and let H k be its subspace of polynomials whose total degree in n
variables is not larger than k.

A real-valued bilinear functional (.,.) is said to be a quasi-inner product in 1-I
if and only if

(t, u)= (1, tu) for any t, u e 1-I.
For instance (2.1) is valid for any inner product expressible in the form

(L g)= J(x)g(x)w(x) dx,

where w is a weight function on R n.
A sequence S of polynomials is called orthogonal (orthonormal) if and only if

for any two elements t, u from S the alternative

(t, u)= 0 if u,

(t,u)0 (=1) ift=u
holds.

The sequence of monomials x lx if X inn, il + i2 +" + i, O, k is a basis of
It ’., therefore (see [3])

(n+k)dim II= ri
i=0 k

where r (n+-l) is the number of monomials in this basis whose degree is equal to
k.

* Received by the editors May 27, 1980, and in revised form May 1, 1981.
Institute of Informatics, University of Warsaw P.K.iN. 8p. 850, 00-901 Warsaw, Poland.
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Let a basis in II be denoted by {p/},r=d,=, each polynomial is of the degree
indicated by its upper subscript. We define

P, (x [P’; (x ), P (x ), P(x)],
x-P()=E,()lx(x)l I(x)]

where x =(x,x=,. ,x)eR , k =0, 1,....
The following useful result holds (see [1]).
THEOREM 1 g {p.m,rk {O.m,rkk =,i= 1, k=,i= are two orthonormal bases in H,, then

br each k there exists ark X rk matrix Mg satisfying

2) MgM I (unit matrix).

Conversely, i {Q’kC6.i=t is an orthonormal basis in H, and 1), 2) hold, then
{pm,rg=6.= is an orthonormal basis too.

Proof. For specified k, the polynomial P can be expressed in the form

k rt

ij i.
lOjl

Since P is orthogonal to every polynomial o degree lower than , m i must vanish
or ( . Hence M (m).

Our assumptions imply that

()- ()Z m)m} Z mit mi ts Z mit mis <Qt, Os )= (P, P> ij.
t=l s,t=l s,t=l

(Here, aq is Kronecker’s delta.)
Observe that orthonormality of polynomials P is equivalent to identity 2). This

proves the theorem.
Let the notation A" x j mean that A is an x j matrix.

3. The reeursion tormulas.
rkmTHEOREM 2. If lF 26.i=1 is an orthogonal basis in H then there exist matrices

1 k k k-1 k+l k k+l k k+l k-1A.x+ B..xn,"
such that

(3.1)

(3.2) Pg+ DxPg +EPk +FkP-
k 0, 1,’". (P-1 0, Co Fo 0.) Furthermore, ff relations (3.1) and (3.2) hold then

(3.3) rank Ag rk:+l

(3.4) rank Dg rn+1,
(3.5) DAk =I,

(3.6) E -DgBk, F -DkC.

Proof. For specified i, ], k the polynomial xP, being an element of H nk+l, can be
written in the form

k+l r
x,P E E a,tPt,

s=0 t=l

fork=O, 1,...



RECURSION FORMULAS FOR ORTHOGONAL POLYNOMIALS 311

where as, <x,P, pst)/<PSt, P). By (2.1)we get

as, <P, x,Pt /<P, Pt >.
Since xiP is a polynomial of degree s + 1 andP is orthogonal to every polynomial

of degree <k, as, vanishes for s-<_ k- 1. We see that the relation (3.1) is strictly an
expansion of each xiP with respect to the basis /=o.= described in the matrix
form; so the matrices A, B, C are unique.

/Let k -> 0 be an arbitrary integer. We now prove that rankA r Assume to
the contrary, that any r/ rows of A are linearly dependent. From (3.1) it follows
that any set of r+ polynomial coefficients of is linearly dependent with respect
to 1-I On the other hand, it is easy to verify that

(3.7) II k+l lin (1-I k" iP k,x ,i=l,...,n,j=l,...,r),

where the right-hand side denotes the vector space spanned by the polynomials xiP[,
1,. , n, ] 1,. ., r, and all elements of H k.. Thus we obtain the contradiction.
By (3.3), columns of the matrixA are linearly independent. Hence we can choose

as D any matrix D such that DAk I. Then we put E =-DBk, F =-DCk and
(3.2) holds.

Substituting c-k in (3.2) for the right-hand side of (3.1) we get

(I DkAk)fik+l (Ek + DkBk)fik --(Fk + DkCk)fik-1 O,

from which (3.5) and (3.6) follow.
By virtue of Silvester’s theorem (see [3]) the identities (3.3) and (3.5) imply (3.4).

This completes the proof.
Since the recursion formula (3.2) yields an algorithm for calculating Pk (x) we give

special attention to it. From our considerations it follows immediately that to determine
all possible recursion formulas (3.2) it is enough to specify for each k the class of all
matrices Dk such that DkAk L In the case n 1, i.e., for orthogonal polynomials in
one variable, the formulas (3.1) and (3.2) are equivalent and can be reduced to (1.1).
We now discuss the more interesting case n > 1. Due to (3.3) and [4, Thm. (4.5)], Ak
can be represented in the form

(3.8)

where Ek diag (t(1k), ,(k)x ,,(k) > (k) > > ^k
Or. ), O1 =o2 =’’’=Or.>0 are the singular values of
k+l k+lAk and Uk" nrk nrk Vk r, r, are orthogonal matrices. This yields the following

corollary.
k+lCOROLLARY. Let Xk be any r k+l. (nrk r, matrix and Vk, Zk, Uk come from

(3.8). Then the factorization

states all possible choices of matrix Dk.
Hence we can standardize (3.2) specifying Xk for each k. In particular putting

Xk 0, k 0, 1,..., we obtain Dk A--the generalized inverse of
Let us consider any two orthonormal bases of the space II., say ’tri k=,i=l and

{Oi },rk=,/=. We denote the matrix coefficients of formulas (3.1) introduced by these
bases as Ak, Bk, Ck and A’k, B k, C, respectively.

THEORSM 3. The singular values of matrices Ak and A’, Bk and B’, Ck and C’
respectively are identical.
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Proof. In view of Theorem 1 there exist orthogonal matrices Mk such that
Mk0k, k 0, 1,.... Using (3.1) we now get

XMktk AkMk+lOk+X +BkMkOk + CkMk-x (k-1.

On the other hand we have

xMkOk NkX--k,

where Nk is an orthogonal nr x nrk,, matrix of the following structure"

k-0,1,...

Hence A, NAkMk+I,B’k NBkMk, C’k NCkMk-1 and the theorem follows.
We now come back to a problem of standardization of formulas (3.2). We suppose

the assumption of Theorem 2 holds. Let, for fixed k, the integers i, ],..., denote
the indices of linearly independent rows of matrix Ak. Recall that the number of such
rows is rk+xn If we additionally assume that Dk has nonvanishing columns with indices
exactly equal to i, j,..., then Dk is unique. It follows from (3.2) that, generally, in
order to construct/Sk+1 from/Sk and/k-1 it is necessary to compute r+1 ((n + 1)rk + r-1

coefficients of the matrices Dk, Ek, Fk. Nevertheless, taking Ok with the minimal
number rk+ln of nonvanishing columns it is sufficient to determine only r + rn +
k-1r such coefficients.

PROPERTY 1. If
1

(n+k)(n+k-1)(3.9) n(n 1)<
k + 1

holds and Dk has only r k+l. nonvanishing columns then Fk O.
Proof. Assume to the contrary that Pk+l DkxPk + EkPk. Taking the quasi-inner

product of p-i and all polynomials appearing in both vector sides of this identity
we obtain 0 Dkl, where

and

[<P, x,Pf-’ " >],(3.1o) fi,, >,..., <Pr, x,P-1

Let

i=l,...,n,

We have DkM--0. Since all nonvanishing columns of Dk are linearly independent
k+lthe matrix M has at least r vanishing rows.

We now prove that
k-1(3.11) rankM r, for i= 1,..., n.
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rk-1

Indeed, zj"= aj/Xgi 0 implies
rk--I

P, X a 0 for 1,. r
i=1

which is possible if and only if a 0, ] 1, k-r Hence all columns of Mi are
linearly independent, i.e., (3.11) holds.

From (3.11) it follows that M has at least nr- nonvanishing rows. So we have
k+l k-1proved that the nrr- matrix M consists of at least r +nr rows. Hence

k+l k-I kr + nr <--nrn, which contradicts (3.9).
For the specific choice of rk/l integers indicating the nonzero columns of Dk we

can give the following stronger result.
PROPERTY 2. If among r k+" nonvanishing columns of matrix Dk there appear

successively the (i 1)r,k + lth to the irk,th, where <- n, then no column of Fk vanishes.
Proof. Let us assume that there is a zero column of Fk, say the/th. Proceeding

as in the proof of the previous property we get by (3.2) that Dk 0. The linear
independence of all nonvanishing columns of Dk and their distribution imply that
il--" O. Hence, according to (3.10), xiP-1 is orthogonal to each P, ] 1,..., r,
which is not possible.

Observe that distributions of nonvanishing columns of matrix Dk described
in this property are admissible. This follows from a linear independence of the
corresponding rows of Ak.

PROPERTY 3. If Ck arises from (3.1), then"
(1) For every 1,. , rk there is a ] {1,... n} such that (Ck)i+(-l)r# O. ((C)

denotes the/th row of matrix Ck..)
(2) No column of C vanishes.
Proof. (1) If (Ck)i+(j_l)r, 0 for every ] 1,’’’, n, then (3.1) yields

xjPi =(A)i+(j_l)rPk+l + (Bk)i+(j_l)r.Pk, j= 1,..., n.

Hence (p/k, xip-l)= 0 for ] 1,..., n, l= 1,..., rk- which contradicts (3.7).
(2) The matrix Fk corresponding to an arbitrary Dk which appears in Property

2 consists of nonvanishing columns. On the other hand Fk =-DgCk. These facts can
simultaneously hold if and only if no column of Ck vanishes.

4. Examples.
(I) Let Pki(xl, x2)= Tk-i+l (xl)T/-l(X2), k =0, 1,’’’, i= 1,.’’, k + 1, where the

Tl are the Chebyshev polynomials of the first kind (see [5]). Polynomials {p/k} are
orthogonal over the region [-1, 1] x [-1, 1] = R E with respect to the weight function
(1- x)-/2(1-x)-1/2. One can easily verify that

Pk+ DkxPg + FkPk-1,

where

2

Dk

0

2 0 0

2ul 2(1-ul)

2Uk-2 2(1- U,-2)
0 2

0 2
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1
0

u-i
-1
0

Uk-2- 1 --Uk-2

0
-1

and ul, uz," , u,-z are arbitrary real numbers. (k 2, 3,. .). In order to obtain the
simplest structure of these matrices we put u uz u,-z 0 or 1.

(II) Let Pi(xl, x2)=H,-i+(xl)Hi-a(xz), k =0, 1,. ., 1,. , k + 1, where Hi
are the Hermite polynomials (see [5]). Polynomials {P} are orthogonal over R2 with
respect to the weight function exp (-x-x). It is easy to verify that/3 Dz,-z where

2 0 4 0 -4 0
0 0 0 2 0 0
0 0 2 0 0 0"
0 -4 0 4 0 2

Hence for this specific choice of matrix D2 we have Ez F2 0.
D,/3,3(III) Let Pi (xl, xz) ,-,.i+l"t’v (xl, xz), k 0, 1, i= 1, k + 1, where

are the Koornwinder polynomials (see [6]). Polynomials {P} are orthogonal over a
region bounded by two lines 1-xl+x2=0, l+xl+x2=0 and by the parabola
4X2=0 with respect to the weight function (1-xl+xz)’(1+xl+xz)(xi-4x2)v,
(a,/3, y > 0, a + y + > 0,/3 + y + > 0). From formulas derived in [7] it follows that
a standardization of (3.2) corresponding to the requirement that Dk has zero columns
between the (k + 2)nd and the (2k + 1)th leads to a very simple and sparse structure
of matrices Dk, Ek, Fk"

-1
1 0

1
X X

X X
XXX

X

X
X X

XXX

X

X
0
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However, if we assume that Dk has columns of zeros between the 2nd and the (k + 1)th
then the resulting matrices Dk, Ek, Fk are not sparse. Therefore the first standardization
can be of greater practical interest.

Acknowledgments. I am greatly indebted to Prof. Stanislaw Turski and Mrs.
Jolanta Sokolnicka for help during the preparation of this paper.
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ORTHOGONALITY AND RECURSION FORMULAS FOR
POLYNOMIALS IN n VARIABLES*

M. A. KOWALSKI?

Abstract. In this paper we obtain a necessary and sufficient condition for a sequence of polynomials
in n variables to be orthogo.nal. A .comparison criterion of orthogonality for these polynomials is also
established. In conclusion an integral representation for a corresponding quasi-inner product is given.

1. Introduction. In 1935 J. Favard [1] gave, using a suitable recursion formula,
a sufficient (and necessary) condition for a sequence of polynomials in one real variable
to. be orthogonal with respect to an integral inner product. In our paper a generalization
of this result to the multivariate case is presented. We specify all recursion formulas
for polynomials in n variables (in the sense of [2, Thm. 2]) which imply orthogonality.
We introduce the comparison criterion of orthogonality for sequences of polynomials.
Using this criterion we give an integral representation for a corresponding quasi-inner
product.

2. Main results. Let M1, ME, , Mn be any matrices with identical dimensions;
we shall use the symbol bp (block permutation) to denote the operation

M1

bp ([MIIMEI’’" IM,,])=

Further we use the same notation and terminology as in [2].
The following theorem is a generalization of a well-known result for polynomials

in one variable (see [3, Thms. 4.1, 4.4, pp. 18-22]).
THEOREM 1 Let {pki’r P # 0 be an arbitrary sequence in the space II.k=,i=l,

Then the [ollowing statements are equivalent:
1) There exist a bilinear functional (., )" II I-I v" --> R and numbers Mki 0 such

that
<P,P> <1, kPP> M66i.

2) For each k 0, 1,. there exist matrices Ag, Bg, Ck such that
k+l(a) rankAk r,

(b) x-- AP+x +Bfi + Ckfi-l, fi-1 O,

and for an arbitrary sequence of matrices Do, Da, such that D,Ak I the recursion

(c) I0 [1], I.+a D. bp (IjCf+I), j O, 1,...

produces diagonal and nonsingular matrices 1i.

Proof. 2)::), 1). First we prove that for k 0, 1,... the polynomial coefficients
of/Sk are linearly independent with respect to 1-I-1 (1-I= {0}). We use induction on
k. The case k 0 is an easy consequence of the assumption P 0. Suppose now that
for some k => 0 the polynomial coefficients of P are linearly independent with respect
to H nk- 1. This yields

1-I k +1 lin (k, II),
* Received by the editors May 27, 1980, and in revised form May 1, 1981.
? Institute of Informatics, University of Warsaw P.K.iN. 8p. 850, 00-901 Warsaw, Poland.
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where the right-hand side denotes the vector space spanned by the coefficients of xPk
and the elements of II. On the other hand, assumptions (a), (b) imply that

lin (A ,/k+ 1, II) lin (k, II k),
where A, is a nonsingular rk x rk matrix consisting of linearly independent rows of
the matrix A. So we have

lin (A ’kfik + l, II ) I-[ k +

This and the nonsingularity of the matrix A, proves that the polynomial coefficients
of/+1 are linearly independent with respect to II k..

This result means that {pk.,r’, .t k=.= forms a basis of the space II. Hence the linear
functional

tk0 k(2.1) l(Pi)=px0, k=0,1,..., i=l,".,r,,

is well defined on II. We show that

(2.2) (PP) klijMki,

where Mki 0, k, 0, 1, 1, , r k, ] 1, , r,. For convenience we intro-
duce an operator w which maps any polynomial matrix m (mij(x)) onto a real matrix
(m)=(l(mii)). It is clear that has the following property: For any polynomial
matrices ml, m2 and any real matrices sl, s2 such that slml + m2sz is well defined, we
have

(saml + m2s2) Sl,(ml)+,.,(m2)s2.

The condition (2.2) takes the form

(2.3) (/Sk/Sf) k diag Mki.

To prove (2.3) we first verify that (/5k/5)= 0 for k # l.
Induction on k. In the case k 0 this result immediately follows from (2.1).

Suppose now that (/5i/5f) 0 for 0 <_- <_- k and/" > i. Hence for >_- k + 1 we have

.(fik+lPf -((D:-: + EkP: +Fk/5_1)/3r)
me(-Py)

D bp (’(/3k-r))
D bp ((k(Alfi,+l + Blfil + Cfil-)T))

D: bp

which for > k + 1 concludes the induction step and for k + 1 gives

(2.4) (Pk+lP+I) Dk bp

Thus, according to (c), we obtain (fifiT)= 61I which proves (2.3) and (2.2). Now it
is evident that the equality

(r, s)= l(rs), r, s rI7

defines the quasi-inner product fulfilling the requirements of 1).
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1) => 2). Relations (a), (b) and the existence of a matrix Dk such that DkAk I,
k -0, 1,.. , has been proved in [2]. For the linear functional

1
l(r) 0(1, r), r

we have (PP) r,, where Ik diag Mki/Mol and is defined as in the first part
of the proof. Observe that the relation (2.4) remains true. This gives (c) and completes
the proof.

In order to obtain a similar result for the case when (.,.) is an inner product in
1-I, it is necessary to change slightly an assumption made in 2), namely, that the
matrices Ij should be positive definite and not merely non singular.

For convenience by {okoo,rkik=d,i=l {qi}i=l we mean that

q=Q, q2=Q, q3=Q, ..., qi+r,-l=Qk, ....
Let IX be a measure on the &field of Borel sets in R n. Then L2(R n, Ix) will denote

the space of all ix-measurable functions f:R"- R such that the function 2 is ix-
integrable. Further two functions which are equal for ix for almost all x R" are
considered to be the same. By the norm IIf[12 of an element f from L:z(g", ix) we mean
the quantity

It is well known that L2(R , ix) is a Hilbert space with the inner product

(f, g)= IR,.fg dix.

THEOREM 2 (Comparison criterion of orthogonality). Suppose"
1) {O/k}’rk=d,= {qi}i= is an orthogonal polynomial sequence in L2(R Ix).

rkoo,r2) tt’ tk=d,=l {P}i=I is a polynomial sequence satisfying the second condition
of Theorem 1.

Let

qi , Copj, i= 1, 2,....
j=l

E
i=1

then there exists a function p L2(R ", Ix), p 0 and numbers m 0 such that

I’(2.6) PPjO dix omi, i, ] 1, 2, ,
R

and conversely, the existence o0 eL(R, ) satisfying (2.6) implies (2.5).
Pro@ Suciency. By Theorem 1 there exist a linear functional on and a

corresponding quasi-inner product {. ,. such that

(2.7) (P, Pi)= l(pPi)= 3om, i, j 1, 2,...,

where m # 0. Assume without loss of generality that l(p) 1. We now prove that
is continuous with respect to the norm I1" I1=, Let w be an arbitrary polynomial. Define

d(w) min {dim n lw
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We can express w in the form

(2.8)
d(w)

W aiqi.
i=1

Now let C be an x c matrix such that

(2.9) qi E Cijpj, i= 1, 2,....

The above sum is only formally infinite because

Cj=0 forj>d(qi), i=1,2,....

From identities (2.8), (2.9) and this observation it follows that

(2.1 O) w Ciia
/=1

By the orthonormality of polynomials q we obtain

d(w)

(2.11) E a Ilwll.
i=1

Write now

d(w)

(2.12) ai= E Ciiai,
i=1

Using (2.10) and (2.12) for/’ 1, we get

I/(w)[ [all Cilai.
i=l

Applying Schwarz’s inequality and (2.11) we obtain

j=l, 2,....

i=I

va(w) Cjq this inequality becomes an equality. Hence we have proved thatFor w z.,]=

i=1

Due to (2.5) this gives the continuity of the functional I.
We use now the Hahn-Banach theorem (see [4, pp. 62-63]) to obtain a continuous

functional L on Lz(R", ) as an extension of I. By virtue of the Riesz theorem (see
[4, pp. 249-250]) there exists a unique function p L2(R", I.) such that

Hence

In" PiPiP 8iimi.

This completes the first part of the proof.
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Necessity. The linear functional L on L2(R",/x) defined by the equation

L(f) IR.fp
has the norm IlL[I= I[PlI2. On the other hand, proceeding as in the first part of the
proof, we can verify that

i=1

where is the restriction of L to II. So

i=1

The proof is complete.
Observe that the coefficients Qi are completely determined by the recursion

formulas for the polynomials P and O.
TheOReM 3 Let {p,,rI=d,=a be a basis in the space H, satisfying the identities

(2.13) xP AP++BP + CP-x, k O, 1,. , Co O, P_ 0

for suitable matrices A, Bk, C. Then there exist a nondecreasing function with
infinitely many points of increase and polynomials {O}’=d.i= such that"

(i) [ Of(x1,..., x,)O(x,..., x,) d6(Xl). d(x,)= 618i,
aR

(ii) for matrices Gii such that 0i 2=o Ggifii we have

I1 i 11 < 2- + lG0o[, 1, 2," ", f 0, 1," ".

Proo[. Let polynomials O in n variables be defined by the recursion

(2.14) (k+l dkx--- +f(g-1, k 0, 1,..., fo 0, (_ 0

and let

(2.15) (, Y. G,ifii, O, 1,....
i=0

(Since the polynomials P form a basis in II, the matrices G exist and are uniquely
determined.) Substituting (2.15) into (2.14) we get

k+l k k-1

Gk+l,iPi--dk 2 xGki-fii+fk Y Gk-I,IP].
i=o /=0 i=0

Note that for any matrix M such that the product MP is well defined we have

xl//--fi. [M]-fii,
where [M] is the n-block matrix of the form

[M]

MI 0
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This and (2.13) lead to the equality

k+l k k., G.+l,ji dk . [G,jl(Aii+ + Biff’i + Ci_i_) +f G_,ii, k=0,1,"..
j=o j=o j=o

If Gst, for s < 0, < 0 or > s, are interpreted to be zero matrices, we can rewrite this
relation in the form

So

k+l k+l

Y G+.P Y {d,([G,i_]Ai_ +[Gki]B +[G,,+]G+)+.h.G-.}P,
/=o j=o

k=0,1,...

G+l,i d([G.i_]Ai_ +[G]B + [Gk,j+]C+) +/G_l,i,

k-0,1,"’, ]=0,1,"’,k+1.

This yields

( )max Iloo, ll, k=O, 1 "’.-<- 31Idyll O<--_l<=kmax (max (llAtll, IIB,II, IIGII))/ll11
O<=l<=p
p=k,k-1

(Here and everywhere below, II" II- I1" I1. In the last inequality we use IIMII- II[M]II for
any matrix M.) Let A 3 maxo<__/<__ (max (lle/ll, IIBII, IIC/ll)), k -0, 1,,, ,, We have
proved that

max(2.16) 0<_-,<_-k+lmax Ila+,,lll <(lldlla /1111)
O<=l<=p
p=k,k-1

We now prove that polynomials Q can be chosen to be orthonormal with respect
to an integral inner product and to satisfy the inequality

1

Let {a}k_-, {/}% be real sequences satisfying (a_/)/a 1, k 2, 3," ", 3/1 0.
Consider polynomials in one variable produced by the formula

ql+l(y) Ol+lyql(y)--’yl+ql_(y), 1=0, 1,..., y e R,
(2.17)

q_l(y) 0, q0(Y) 1.

By Favard’s theorem there exists a nondecreasing function with infinitely many
points of increase such that

In qk(y)q(y) d&(y)=, k, I= 0, 1,. ..
(The integral is considered with respect to the Lebesgue-Stieltjes measure introduced
by the function .) This yields that the sequence of polynomials

koo,r0 t{i .k=l,i 1--’{qil(Xl)qi:z(X2)’’" qi.(Xn)} k =O,il+i2+"’+in k

is orthonormal with respect to the inner product
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Let o/k+l(Xl,.’’, x,)=q;l(x:t)’’’ q;,.,(x,) be a given polynomial of degree k + 1 from
the sequence Q. Since j1+]2 +’ +], k + 1, there exists s e {1,. , n} such that
j ->_ [(k + 1)/n] ([y] the smallest integer >_-y). Using (2.17) for =j- 1 we get

0, +" (x, x,, o,xO, (x, x,.,)-’,/O- (Xl,’’’, x),

where indices t, u are such that

O"(xt , x,.,) 0, -’-’ (x, x,,)
q_,.(x)

and

O- x,., x,,) 0, -’- x, x,.,)
q(Xs)

Thus, matrices dk, fk in the formula

0k+l dkX---k -I- fkOk-1, k O, 1,"

can be chosen so that they have exactly one nonvanishing element in each row and
these elements of d, f are contained in the sets {a+l, a,..., a r+)/,} and
{3’+, y," ’, 3r+)/,1 }, respectively. Let S {i eWI [(i + 1)/n] p}. We now define
positive numbers a;, 3’; by the recursions

1 a;_
/’=2, 3,. ,a < min, a; < min

isl 8Ai s 8(1+

’]/1 0, /’; , /’=2,3,.
Oj-I

It is easy to verify that this definition guarantees us

oli_ "Y 1
a,>O, =1, O<a<za_,

Oi
i=2,3,...

1
k=0, 1,....

So for matrices dk, fk we have

1
IIdll <- r+/,, II/11 <- k 0,---87

Thus

Finally, according to (2.16), we get

1
max IIG+,.,II< max IIG/II

Olk+l o<__l<_p
p=k,k-I

k=0,1,...

which gives

max IIG,II < 2-+*JGool, k=l, 2,....

This completes the proof of the theorem.
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Our next result states an integral representation for the quasi-inner product
appearing in Theorem 1.

THEOREM 4. Let {pki’rktk=d.i=l be a polynomial sequence satiffying the second
condition o[ Theorem 1. Then there exists a nondecreasing function ck with infinitely
many points o1 increase and a function p: R R such that

(2.18) IR,,p 2 db(Xl)""" db(x,) <,
(2.19) IR kPi Pj P d4(xl)" dck(x,) 6ktSijMki,

whereMk, #0, k,/=0, 1,..., i= 1,..., r, ]= 1,..., r/.
Proofi Consider a function b and polynomials {Qkk =d,/= obtained by Theorem

3. From Theorem 2 it follows that in order to establish (2.18), (2.19) it is enough to
verify the condition

Y IIG,oll <
i=0

where IIG,oll . is the spectral norm of G,o. By (ii) we get

o(n+i_l)2_2(i_ll[aool2=o =o

<_-1oo1=2"+ Y
i=0

as claimed. [1

Compare this result with that of Shohat [5] for polynomials in one variable (see
also [3, p. 75]).

The subject will be continued in our next paper.
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PROJECTION FORMULAS AND A NEW PROOF OF THE ADDITION
FORMULA FOR THE JACOBI POLYNOMIALS*

THOMAS P. LAINEt

Abstract. A new projection formula is used to give short proofs of the addition formulas for the Jacobi
and Gegenbauer polynomials. A discrete analogue of the projection formula is also given.

1. Introduction. Since Koornwinder’s original group-theoretic derivation of the
addition formula for the Jacobi polynomials [6], several other proofs have been given,
including two analytic ones [7], [8]. However, because of the importance of Koorn-
winder’s addition theorem and because work still remains to be done in finding addition
theorems for orthogonal polynomials, another analytic proof seems worthwhile. The
relatively short proof given here uses essentially just Bateman’s bilinear sum and a
new "projection" formula for the Jacobi polynomials. As an intermediate step in the
proof, we also use a corollary of the-projection formula to give a new proof of the
Gegenbauer addition theorem.

The Jacobi polynomials R’)(x)(a,>-l) are orthogonal on the interval
(- 1, 1) with respect to the weight function (1 x) (1 + x), and are normalized by
R(ff’) (1)= 1. In terms of the hypergeometric function, they are given by

(1.1) R(’(x)=F(-n,n+a++l a + 1" 1/2(l-x))

The degenerate integrated Jacobi addition formula [7, (4.9)] is

(x 1)(k+l/2(X + 1)’-l/2R +’+l’t+k-ln-k (x)

2+t(n k)! F(a + 1 + k +/)F(/3 + 1 + n l)
n rc1/2)r( + 1/2)r(. + 1 + n)

(1.2) (x + 1)+(x 1) + i41-x r cos b

R7-t3-1’t+k-l) (2r2-1)r2+k-l+t (1 r2)--1

R(t_-tt/2"t-t/2)(cosc)(sinc)tdd)dr O<=l<-k<-n, c >/3 >-.
Formula (1.2), although simpler, is equivalent to the Jacobi addition theorem [7,
(4.14)] by virtue of Bateman’s bilinear sum,

(1 +xy(1.3) R’t (x)R’(y) E b,(x + y)gR’\
k=0

where the bk, are defined when y 1"

(1.4) R’(x) b,,(x + l).
k=0

For applying (1.3) on the left-hand side of (1.2) and (1.4) on the right-hand side gives
(cf. [7]) an equivalent integrated version of the addition theorem. It therefore suffices
to prove (1.2).

* Received by the editors July 12, 1979, and in revised form March 30, 1981.
t Department of Mathematics, University of Alabama, University, Alabama 35486. Current address

198 Seventh Avenue, Brooklyn, New York 11215.

324



JACOBI POLYNOMIAL FORMULA 325

In the classical Gegenbauer case a =/3, the degenerate integrated addition
theorem is much simpler:

(.5)

(y2 1)/2R(+,+._ (y)
2k(n -k)! F(/3 + 1 + k) I0 y2

n tr()r(t +1/2) [Y + i41- cos 4]

Rt3-1/2,t3-1/2) (cos b)(sin

The cases k 0 of (1.2) and k 0 of (1.5) are called the Jacobi and Gegenbauer
Laplace representations, respectively. In [1], Askey showed that the Jacobi Laplace
representation may be obtained by applying the projection formula

(l-x)" 2’-OF(c+l) (1).y)/R,O(y)(y_x),_o_/,,(1.6)
(1 + x)"+t+l

R 2’t (x)
F(/3 + 1)F(a -/3) (1 + y

dy,

a >/3, to the Gegenbauer Laplace representation and then making a change of
variables. The integral (1.6) is in turn a consequence of Bateman’s integral

F(c +/z) fl )’*-F(1.7) F(a’b;c+lx;X)=F(c)F()Jo yC-(1 y (a,b;c’xy)dy, c,>0,

the Pfaff transformation formula

( x)(1.8) F(a,b" c;x)=(1-x)-’F a,c-b" c;

and (1.1). See [2].
This suggests that (1.2) could be obtained for 0-< <= k <-n from (1.5) in much

the same way, by means of a generalization of (1.6). This is in fact the case, and in
2 we derive the required projection formula from Bateman’s integral. In 3, we

apply a quadratic transformation to a special case of the projection formula to obtain
(1.5), and then complete the proof of the Jacobi addition theorem by applying the
general projection formula to (1.5) to obtain (1.2). Finally, in 4 we find discrete
analogues of the projection formula, which give projection formulas for the Hahn
orthogonal polynomials.

2. Projection formulas. Let be a nonnegative integer, and replace a, b, c, /x

and y in (1.7) by a + l, b + l, c + l,/z + and 1- y, respectively, to obtain

F(a + l, b + l; c + p. +2/; x)

-F(c +/z +21)
F(c + l)F(/x + 1) Io y’*+/-(1 y)C+l-XF(a + l, b + I; c + l; x(1 y)) dy.

Now, by termwise differentiation,

d
F(a,b;c;x(1-y)=

dy
(a)l(b)l

x (-1)lF(a + l, b + 1; c + 1; x(1 y)).
(C)l

Hence, (2.1) may be rewritten as

(2.2)
x F(a + 1, b + 1; c + tx + 21; x)

r(c +/x + 21)(-1)/+ I01-’(C-7/ 7 -(-ii’’i; yt.+,-l(1_ y)c+/-e dl
dylF(a, b; c; x(1- y)) dy.
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Integrating by parts, we have

dy,+-l(l_ y)C+-i F(a, b" c" x(1 y)) dydy
(2.3)

dl )c+l(-1) [y"+-a(1 y -]F(a" b. c. x(- y)) dy,
dy

since, with/, c > 0, the integrated terms vanish. But, by [3, (17), p. 102],

d
(2.4) dy---r[y+-l(1- y)C+l-]= (tz)lyu-l(1- y)-F(-l, c + tx + l-1; ia,; y).

Hence, using (2.2)-(2.4) and replacing y by 1-y gives

xlF(a + l, b + l; c + l. +2/; x)

F(c + + 2/) Io y-(1 y)"-aF(-/, c +/ + l- 1;/.; 1 y)(2.5) =F(c)F(lz)(a)l(b)
F(a,b;c;xy) dy, c,/z>0, I=0,1,2,...,

which is a generalization of (1.7).
Since the projection formula we need to go between (1.5) and (1.2) would

generalize (1.6) instead, we continue as in the derivation of (1.6) from (1.7) in [2].
Apply (1.8) to the F(a + l, b + l; c + I + 2/; x) and F(a, b; c; xt) in (2.5), replace c -b
by c, and let

x s(1-z)

to obtain
c+tx+/--1z

)_,F(a+l,b+l.+l’c+lx+21"z)(1-z

F(c + x + 2/)(-1) s

)c/.- (z s(’ r(clr(.(al; (-s

( (z-s))F -l, c+ +l-l; ; =]F(a, b; c; s) ds.

Letting a=k-n-l, b=n+k-l+2fl+l, c=+k-l+l and=a- and using
(1.1) gives

(1-x)+ (++"+-(x)
(1 +x)O+-+R"-

2-O+F( + 1+ k +/)
r( + 1 + k -/)r( )(k n l)( + 1 + n l)

(.7
[ )+-

)
(1 Y)..(y-x --R-- ’(l+y _

+ (y) dy,

which is the required generalization of (1.6).

x-1 z(1-s)’
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Formula (2.7) could also have been proved directly, by expanding the function

(l+y)(1-x) ]’

interchanging summation and integration, applying (1.6) to evaluate the resulting
integrals and then using Saalschutz’s theorem [3, (3), p. 188].

Formulas (2.5) and (2.6) appear to be new; in particular, they are not consequences
of Erd61yi’s generalizations of Bateman’s integral [4].

3. Proof of the addition theorems. A corollary of (2.5) may be used to prove
(1.5). Let b c and/x c- b in (2.5), and use

F(a,b;b;xy)=(1-xy)-’,
to obtain

(3.1)

xF(a + I, b + 1; c + 2/; x)

F(c + 2/) fl b-y (l-y) (1-xy) F(-l,c+l-1;c-b; l-y) dy,
F(b+l)F(c-b)(a)l

c>b>0, /=0,1,2,....

This is a generalization of Euler’s integral [3, (10), p. 59], to which (3.1) reduces when

Now let c 2b, x =4z(1 + z)-2, y (1-cos ) in (3.1) to obtain

(4z)
z)Zt+,F(a + I, b + I; 2b +21; 4z/(1 + z)2)

(1 +

F(2b + 2/)
(sin

F(b + l)F(b)(a)2b-
(1 + z + 2z cos 4)

F(-l, 2b+l-1;b;(l+cos)) db.

Using the quadratic transformation

F a+l,b+l;2b+21;(l+z (l_-TF a+l, 2b-a+l;b+-+l;z2,1

which follows from [3, (24), p. 64] and (1.8), this becomes

(4z) ( 1 Z
2

)(1 z2)a+F a+l, 2b-a+l;b+-+l; z2 1

F(2b + 2/)
(sin b)2b-l[1 + z 2 + 2z cos b]

F(b + l)r(b)(a)22-1

( 1 )F -t, 2b + 1; b; (1 +cos b) db.
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Then letting a -n, b =/3 + 1/2, and z (y 1)(y + 1)-1 gives

(y2 1)l/2R(13+l,13+l)n_l (Y)

F(2/3 + 1 + 2/)
F(/3 + 1/2 +/)F(/3 + 1/2)(-n)t2

[y + i/1 y2 cos ]nRI-1/’-1/ (-cos )(sin )0 d,

which, apart from an application of Legendre’s duplication lormula [3, (11), p. 4] and
the relation R-/’-/(-cos ) (-1)R-/’-/(cos ), is (1.5).

This may also be considered a proof of the Gegenbauer addition theorem itself
since it is a consequence of (1.5) and Bateman’s bilinear sum.

Fogmula (1.2) now follows easily. Replace k by k- in (1.5), and apply (1.9) to
get

(x 1)(g+/2(x + 1)(k-l)/2R(+k+l’o+k-l)n-k (x)
2-O+k (n --k)t F(a + 1 + k + 1)

n r()r(o + )r(a -)( + + n -l)l

)-+++(-)/ )__XR__,+_l)(i y)o+-o/ (l+xz(y_x(i x)+-I>/2 (I + y

(l+y)(1-x))
(Y +i41-y cos6)"R (cos @)(sin@ d@dy.

This becomes (1.2) after the same change of variables,

, (- y)( + x)
( + y)(-x)’

as made in [I].

4. Discrete analogues. Gasper [5] found the discrete analogue of Bateman’s
integral,

(4.1) ,Fa[-x, a,S] (x)(c),(,)x_,,Fa I-y, a, b;]c+, y=o y (c+) c,d

where

3Fz[-n, a, b ] (--n)k(a)k(b)k
c,d;

Bateman’s integral is a limit case of (4.1)" replace x, y and d by Nx, Ny and -N,
respectively, and let N oo to obtain (1.7) with xy replaced with y.

Since the Hahn polynomials Qn (x; a,/3, N) are given for a,/3 >-1 by

(4.2) O,,(x; a, ,N)=3F2[-x, n +a+ + l, -n.]a+l,-N

(4.1) gives a projection formula for the Hahn polynomials. The Q,,(x;a, , N) are
othogonal with respect to a measure which has jumps at x 0, 1, , N of magnitudes

(a + 1)x(/3 + 1)N-x
p(x" a, , N) /-

\x/ (a+’/3+2)u
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Gasper also obtained the discrete analogue of (1.6) by applying

c,d (d),, c, l+b-d-n

to (4.1); (4.3) is a discrete analogue of (1.8) (let b =Nx, d =N, and let Nc) and
follows from the b c case of (4.1).

Formulas (2.5) and (2.6) similarly have discrete analogues. In fact, a formula
which gives (2.5) in the same limit as used to obtain (1.7) from (4.1) can be written
down almost immediately:

(a)l(b)l(--X)l [--X + 1, a + I, b +
(c ;)---t(dil 3-2 [ c +/z + 21, d + ;]

(4.4)
x (c)y(/z)x_Y3F2 -1, c+p.+l-l, tx+x-y; 3F2

-y,a,

y=O y c + lx ), lz, c + lz + x c, d

/=0, 1,2,....

Of course, the case l= 0 of (4.4) is (4.1), and when (4.2) is used in (4.4) it becomes
a projection formula for the Hahn polynomials. The discrete analogue of (2.6) follows
from (4.4) by means of (4.3), just as (2.6) follows from (2.5) by means of (1.8); we
omit the details.

Formula (4.4) is perhaps most easily proven by series manipulations. If $ rep-
resents the sum on the right-hand side of (4.4), then

where the last equality follows from (4.1) with replaced with/z +]. Hence, using
Vandermonde’s theorem, we have

S E i (-5-1)i(c + tz + l- 1)i(--x),(a)k(b),
/=0 k=O ]!(C +tx)i+kk!(d)k.

(--X)(a)k(b)k
F(-l" +c +l 1" c + +k" 1)

(-x)(a)(b)(k- l+ 1)

Finally, since (k + 1)/= 0 if k 0, 1, , l- 1, we can let k p + in the last sum
to get

x- (--X)p+(a)p+l(b)p+l(p + 1)/
S=E

=o (p + l)t(c + )+(d)+l
which, after some simplification, is (4.4).

Formula [2.10] of [5] may be generalized in the same way.
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A HURWITZ MATRIX IS TOTALLY POSITIVE*

J. H. B. KEMPERMAN?

Abstract. If the real polynomial f(w)=Y.0 djw
-i with do>0 has all its zeros in Re (w)<0, then the

infinite matrix H with elements H,j d2j-i is totally positive. As a consequence, a real polynomial Y’-i biwi
has at least M max (tro, trl) zeros in each half plane Re (w) < 0 and Re (w) > 0, where ro and trl denote
the number of changes of sign in {b2j} and {b2i_l}, respectively, disregarding zero terms.

1. Main results. In this paper all polynomials have real coefficients. Let

(1.1) f(w) dow + dlw

be a fixed polynomial of degree n. We may and will assume that do > 0. If f has all
its zeros in the open left half plane Re (w)< 0 then f is called a Hurwitz polynomial.
This is because of a well-known criterion due to Hurwitz (see [1] and [3]) stating that
f(w) 0 throughout Re (w) _-> 0 if and only if

(1.2) A1 >0, A2>0 "’’, A >0.

The zp are defined by

(1.3) Ap det (d2,-,; i, j 1,..., p).

Here and below, we take dj 0 when ] < 0 or j > n. For instance, A1 =dl and

dl d3 d5
A2

dl d3
A3-- do dE d4

do dE
0 dl d3

Also note that An dnAn_l. Every Hurwitz polynomial f of degree n satisfies

(1.4) dj>0 forj=0,1,...,n,

since f is a product of linear factors ax + b and quadratic factors px2+ qx + r, each
with positive coefficients. It is known (see [1, p. 196]) that, in the presence of (1.4),
f is already a Hurwitz polynomial when Azj > 0 for 2 --<_ 2/’ --<_ n and also when A2j+x > 0
for 3 <_-- 2j + 1 <_-- n.

THEOREM 1. Let f be a Hurwitz polynomial. Then the associated (infinite) "Hur-
witz matrix"

(1.5) H (Hi,j; i, ] Z) with Hi,j d2j-i

is totally positive.
Here Z is the set of all integers. The total positivity of H is defined by the

condition that

( il, i2, it:,) >=O(1.6) H
h, 2,

for each choice of the integer p > 0 and the integers ir and/’s such that

(1.7) i<i2<’"<ip and

* Received by the editors May 28, 1980. This research was supported in part by the National Science
Foundation.

" Department of Mathematics, University of Rochester, Rochester, New York 14627.
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We further use the standard notation

H(il,j1,/’2,
i2,"""

,,/.viv) det (Hira

for a subdeterminant of H. Because of (1.7), it has its rows in the same order as H,
and similarly for the columns.

Remark 1. After this paper was submitted, we learned that Theorem 1 is actually
due to B. A. Asner [6]; his proof is more involved, though it starts along similar lines.

Remark 2. The total positivity of H (d2i-i) carries over to the case where f has
all its zeros in the closed left half plane Re (w)<=0, (while do>0): apply Theorem 1
to the Hurwitz polynomial (z)= f(z + e) and then let e $ 0.

Observe that condition (1.2) for a Hurwitz polynomial can be written as

1,2,’’’,P)>Av=H 1,2, ,p
for p 1, 2,. ., n.

If p > n then Av 0 due to a column of zeros.
The following result gives a more precise description of the class of nonzero

subdeterminants of H (d2.-i).
THEOREM 2. Let f be a Hurwitz polynomial and let H be the associated Hurwitz

matrix H= (d2j-/) as in (1.5). Let further ir and jr (r= 1,..., p) be given integers
satisfying (1.7). Then in order that

(1.8) il, i2,’" iv) >0H
jl, j2, ,iv

it is necessary and sufficient that all the diagonal elements d2h-i, (r= 1,..., p) are
positive, equivalently, that

(1.9) O<--2]r--ir<--n for r= l,. ,p.

If (1.9) fails to holc then the determinant of (1.6) is identically zero.
Comments. Note that condition (1.9) of Theorem 2 depends only on the indices

ir, fr and not on the values d. themselves. The special case p 2, il =/’1 =/" and
i2 =/’2 --/’ + 1 yields that each Hurwitz polynomial [ satisfies

(1.10) dj/dj-l z" dj+2/dj+l when O<-] <=n -1.

Thus, d]/d]_l is a decreasing function of j as long as/’ remains of the same parity
(even or odd). It follows that there exist integers s and with 0-<_s-<_(n- 1)/2 and

1 <_- _-< (n 1) /2 and such that

and

d2i >= d2i-1 for ] S, d2i <-- d2-1 for ] > s

d2i+ > d2i for ] <- t, d2.+l -< d2. for j > t.

Consequently, if f is a Hurwitz polynomial then the corresponding sequence of
coefficients {d.} is increasing for ]-<min(2s, 2t+l); it is decreasing for /’=>
max (2s + 1, 2t + 2); and in the intermediate range it has a DUDUDU. type of
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behavior (D down; U up). For example,

(3w2+w+3)4

81 w 8 + 108w7 + 378w6 + 336w + 595w4 + 336w3 + 378w2 + 108w + 81

is a Hurwitz polynomial with the behavior UUUDUDUDDD for the coefficients dj
between d_ 0 and dn/1 d9 0. In a forthcoming paper [7], this up-down behavior
of {dj} will be used to prove for any probability measure/z on {0, 1, 2} with/z({1}) > 0
that, for n sufficiently large, the self-convolution zn =z z ,..., z is unimodal
over the full range [0, 2hi.

It is useful to associate to the polynomial (1.1) also the infinite matrix

P (Pia d-l; i, j Z).

One has Hi,. d2i-g Pg,2j. Thus, the inequality (1.6) refers to a special subdeterminant
of the matrix P, namely, one with columns of even index only.

It is well known (see [4, Ch. 8]) that P itself is totally positive if and only if the
polynomial (1.1) has all its zeros on the negative real axis (-oe, 0]. A more precise
result due to Schoenberg (see [4, p. 397]) states that the polynomial (1.1), with d0>0
and d, > 0, has all its zeros in the sector

larg zl >= zrr/(n + r- 1)

about the negative real axis as soon as

( i, i2, i) O,P
j,j2, ,je

whenever p r and (1.7) hold. Here, r is a fixed positive integer. This result is sharp
in the sense that there exist examples where the polynomial f has a zero on the
boundary arg z r/(n + r- 1).

2. k simple lower bound on the number o[ zeros in hl plane, ff b,..., b
is a sequence o real numbers, then by V[b,. ., b] we shall denote the number of
changes o sign in the sequence which results from b, b2," , b by deleting all zero
terms. By V+[bx, b] we denote the largest possible number o sign changes in
any sequence obtained from ha, b2,’ ’, b by replacing each zero term by a nonzero
number (such as -1 or + 1). For instance, V+[1, 0, 1, 0] 3 and V+[1, 0, 1, 0, 0, -1]
5.

Using Theorem 1, we shall prove the ollowing result. Here

(2.1) (w) a0w" + aw"- +. + a,, a0 # 0

is a polynomial o degree n with real coefficients. Let urther

(2.2)
0-0 V[ao, a2, a4,"’’, a2[n/23],

0"1 Vial, a3, as,’ , a2[(n-1)/2]+1].

THEOREM 3. The polynomial o has at least

(2.3) M max (0"0, o"a)

zeros in the open left half plane Re (w)< 0 (counting multiplicities) and also at least
M zeros in the open right half plane Re (w)> 0.
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COROLLARY. Let

(2.4)
4-

tr0 V [ao, a2, a4,’ ’, a2[n/23],
+

rl g+[aa, a3, as," ",

Then the polynomial q has at least
+(2.5) M+= max (r, r

zeros in the closed half plane Re (w)<-0 and also at least M+ zeros in Re (w)_>0.
More precisely, this assertion holds relative to at least one way of assigning each of the
purely imaginary zeros to one of the two half planes (counting each zero according to

its multiplicity).
Proof ol: corollary. Perturbing the zero coefficients a. in (2.1) by a small amount

+of suitable sign, one arrives at a polynomial q with 0 tro and 1 trl. It follows
from Theorem 3 that ff has at least M+ zeros in Re (w)< 0 and also at least M+ zeros
in Re (w) > 0. The assertion now follows by the continuity of the zeros as a function
of the coefficients (see [5, p. 4)].

For a good understanding, let n_, no and n+ denote the number of zeros (counting
multiplicities) of (w) in Re (w)<0, Re (w)=0 and Re (w)>0, respectively; thus
n_ + no + n+ n. Theorem 3 asserts that

(2.6) min (n_, n+)>_-max (cro, trl),

and the corollary yields that

(2.7) 4-max min [n_+hno, n++(1-h)no]->_max (cry, tr ).

In particular,
4-(2.8) if n+>-n_+no then n_ + no >- max (tr, tr ).

These assertions are most interesting in a situation where no is somehow known to
be small.

As an illustration of Theorem 3, if the sequence {a2.} of even coefficients has
tro= 5 changes of sign, then it follows that q (w)has at least 5 zeros in Re (w)< 0 and
also at least 5 zeros in Re (w)> 0, irrespective of the behavior of the sequence {a2i+}
of odd coefficients.

This curious result is somewhat opposed to the Descartes rule of signs, which
states that the number of real and positive zeros of q(w) (counting multiplicities) is
equal to tr- 2h, where 2h denotes an even nonnegative integer, while

(2.9) cr V[ao, al, a2, an-a,

denotes the total number of changes of sign in {aj} disregarding zeros.
Observe from (2.4) that

(2.10) tr <= tro <-_ In/Z], 0-<trx <-[(n 1)/2].

Moreover, every pair of integers tro, trl satisfying (2.10) can easily be realized by a
suitable choice of the coefficients azj and a2i+. In that sense ro and trx do not
"influence" each other. However, if the total number r of changes of sign in {aj} is
known, then there is some influence. For, if 0 < tr < n then it is impossible that both
tro= 0 and trl 0. The following theorem gives a precise description of all the possible
combinations of tro, try, and tr when the a. are nonzero.



A HURWITZ MATRIX IS TOTALLY POSITIVE 335

DEFINITION. Let Sn denote the collection of all triplets (0-0, 0-1, 0-) of nonnegative
integers which can be realized as in (2.2) and (2.9) by a suitable choice of the nonzero
coefficients ao, al,’’’ ,an-l, an. One might as well restrict the aj to aj{-1, +1},
]=0, 1,..., n.

THEOREM 4. Let 0-0, O-a, 0- and n be nonnegative integers, n > O. Then one has

(2.11) (0-0, 0"1, 0") Sn

if and only if all of the following are true:

(i) 0"o<-n/2 and 0"1<--(n-1)/2;
(ii) 0"0 <-- 0" and 0"1 0";

(iii) 0"o+0"<=n and 0"1+0"-<n;
(iv) if n is even then 0"- 0"0 is even;
(v) if 0"0 0 and 0"1 0 then either 0" 0 or 0" n.

Observe that (ii) and (iii) yield that, for every triplet in

max (0"0, 0"1)<----0" -< n- max (0"0, o"a).

Equivalently, (2.11) implies that

(2.12) I0"-n/2[<-n/2-max (0"0, 0"1).

It also follows from Theorem 4 that Sk c Sn U {(0, 0, k)} if 1 <_-k <_-n and either n is.
odd or k is even.

It would also be interesting to determine the precise structure of the collection
S, of all triplets (0"o, 0"1, 0") which can be realized by some choice of ao, a 1,’’ ",

this time allowing that a. 0. Clearly, Sk c S c S when 1 <_-k <-n; in particular,
(0, 0, k) S for all 0 _-< k <-n. Also of interest would be the set of possible triplets

0"1,0") as in (2.4), (2.9).

3. ProoI oI Theorems 1 and 2. We shall need the following result, to be proved
below.

LEMMA 1. Let f be a given Hurwitz polynomial of degree n >- 1 as in (1.1). Then
there exist a unique Hurwitz polynomial

(3.1) fl(W) d’ow n-1 + d’l w n-z +" "+ d’n_2w+d

of degree n 1 and a unique constant c such that

(3.2) dzi+l di
and

(3.3) d2i d’2i- + cdi
for any integerj. Here di =0 when j <0 orj>-n. Note that do dl >0 and

=do/dl>O(3.4) c =do

Proof of Theorems 1 and 2. The proof will be by induction with respect to n.
Suppose first that n 0, in which case do> 0 and d. 0 for/’ # 0. Let p->_ 1, ir and fi
be as in (1.7) and put

(3.5) A =det Hiras d2js-ir;
s= 1," ,p

One has A 0 unless each row contains at least one nonzero element, that is, unless
to each row index ir there corresponds a column index js with 2]s ir 0. By (1.7) this
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means that ir 2/’, r 1,’’ ", p, which is precisely condition (1.9) (with n 0). And
in this same case A d > 0.

All assertions are trivially true when p 1. Let n->_ 1 and p->_ 2 be fixed and
suppose the assertions of Theorems 1 and 2 hold when n is replaced by n 1. Further,
let f be a Hurwitz polynomial of degree n as in (1.1).

We now apply Lemma 1. From the induction assumption, the matrix

H’ (H’i,i di-i, i, j Z)

satisfies all the assertions of Theorems 1 and 2, provided n is replaced by n- 1 and
di by d. Introducing

c if is even,
(3.6) c(i)=

0 if is odd,

Z, we see from (3.2) and (3.3) that

Hi d2j-i-- d2i-i-1 + c(i)d’2i-i Hi+l,j + c(i)H’i,i.

Consequently, the determinant (3.5) equals

r=I.., p)(3 7) A det Hir+l,js + c(ir)H’it,is s=l,...,p

We are still assuming (1.7); in particular, it-1 + 1 <=ir for r= 2,..., p. Thus the i’r
{it, ir + 1}, r 1, p, always satisfy i < i& < <., =...=tp. Moreover, we know from the
induction assumption that the matrix H’= (HI,i) is totally positive. Therefore, expand-
ing the determinant in (3.7) in powers of c, one sees immediately that >= 0, showing
that H (Hi,j) is totally positive.

In order that A>0, it is at least necessary that (1.9) holds. For, if ever it> 2fr,
then also ir + 1 > 2jr. If ever 2fl- ir > n, then 2it- ir > 2fr- (L + 1) > n 1. In each case
one has A 0, by (3.7) and the induction assumption.

Conversely, suppose that (1.9) holds. From (3.6), (3.7) and the induction assump-
tion, in showing that A > 0 it suffices to prove that i’r {ir, ir + 1}, r-- 1," , p, can be
found in such a way that

(3.8) 0 < 2/’r i’r <= n 1 for r 1, p,

and that further i] < i <. < i’ It is also necessary that i’ L + 1 each time that ipo

is odd.
" it,In fact, let us choose r--ir q-1 unless ir 2/’r in which case we choose i’

r= 1,..., p. Then (3.8) is an immediate consequence of (1.9). Next consider the
inequality i’ i + 1. If notr-X < with 1 < r --<_ p. This inequality is obvious when i’
then i’r ir 2/’r and

lr--1 <it--- + 1 < 2jr + 1 < 2(j 1) + 1 i’r1=

This completes the proof of Theorems 1 and 2. [3
Remark 3. If n 2m + 1 is odd, then in the induction from n to n 1, one could

also use the fact that f(w) (w + a)f(w) with a > 0 and fl as a Hurwitz polynomial
of degree n- 1 as in (3.1). Hence, d d + ad_l and Hii, H’i.i + aHi+.i; for all
and j.

Proof ofLemma 1. Take c do/d; thus c O. Further define

(3.9) d&. d2j+l, d’2-1 d2i- cdzi+a,

for each integer j. Then d} =0 if j <0 or j>-n; in particular, d’a do-cda =0.
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It suffices to show that the resulting polynomial fl(w) in (3.1) is a Hurwitz
polynomial of degree n- 1. This fact is actually implicit in the literature and is the
underlying idea behind the Routh algorithm (see [1, pp. 157,204]).

In view of Hurwitz’s criterion (1.2) applied to fl instead of f, it would be sufficient
’>0 p=l n-1 whereto show that Ap

p’=det H,j=d._i;j=l,...,p
Thus, it suffices to show that

Ap dA,_, p =2, 3, , n,

with Ap as in (1.3). This is easily seen by starting with the determinant Ap, subtracting
c times the first row from the second row, c times the third row from the fourth, and
so on. See [1, p. 169] for related results.

4. Proof of Theorems 3 and 4. In the proof of Theorem 3 we will need the
following result due to Gantmacher and Krein [2]; see also Karlin [4, p. 223].

LEMMA 2. Suppose Q (Qii) is a totally positive k m matrix. Let Cl," ", Cm be
real numbers and define

(4.1) bi Oi,ici for 1,.. , k.

The/,/

(4.2) V[bl, b2, bk] <- V[Cl, c2,’’’, Cm].

Proof of Theorem 3. Let n_ and n+ denote the number of zeros of q(w) (counting
multiplicities) with Re (w) < 0 and Re (w) > 0, respectively. It suffices to show that

(4.3) n+>-_tro and n+>_-crx.

For, afterwards, applying (4.3) to q3 (w) q (-w) (which polynomial has precisely the
sa.me values ro and trx) it also follows that n_ >-tro and n_ >_-trl. For brevity, let q n/.

One can factorize o (w) as

(4.4) q w .f w g(w ),

where

f(w) dow n-q + dl W "-q-1 +" + d,,_q

has all its zeros in Re (w)<-0, while

g(w) CoW + ex wq-l+. + eq

has all its zeros in Re (w)> 0. Comparing (2.1) and (4.4), one has

q

(4.5) a. dj-iei, j O, 1,’.., n,
i=o

provided di 0 when ] < 0 or/’ > n -q. In particular,
q

(4.6) a2. Y. dEi-iei for ] 0, 1,..., [n/2]
i=0
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and
q+l

(4.7) a2i-1 d2i-iei-1
i=1

for j= 1, 2,..., [(n +1)/2].

Since f has all its zeros in the closed half plane Re (w) -< 0, we have, from Theorem
1 and remarks following it, that the matrix

H (Hid d2i-i; i, j Z)

is totally positive. It follows from Lemma 2 and (4.6) that

Oo V[ao, a2, a2[n/21] V[eo, el,’’’, eq] q.

Similarly, (4.7) yields that 1 -<-q.
By the way, since g(-w) is a Hurwitz polynomial of degree q it has all its

coefficients positive so that V[eo, el,’" ", eq] q.
Proof of Theorem 4. Let En denote the collection of all 2"+ sequences

e-----(eo, el,"

of length n + 1 with ei {-1, +1}. To each e in E, we associate the numbers

0"0-- V[80, 82,’’ ", 82[n/2]],

0"1 V[81, 83," ", 82[(n-1)/2]+1],
cr V[eo, el," e,-x, e,].

We will say that this triplet (tro, rx, r) corresponds to the sequence e and also that e
is a realization of this triplet.

The set S, is defined as the collection of all triplets which correspond to at least
one sequence e in E,. One easily verifies Theorem 4 in the special case n 1. Namely,
$1 consists of the two triplets (0, 0, 0) and (0, 0, 1). These are realized by (++) and
(+-), respectively. Similarly, $2 consists of the three triplets (0, 0, 0), (0, 0, 2) and
(1, 0, 1). These are realized by (+++), (+-+) and (-++), respectively. The triplet
(1, 0, 1) also has a realization which ends with a change of sign, namely, (++-).

The proof of Theorem 4 uses an induction on n. To enable the induction to
proceed, we will prove a little more, namely, the additional validity of the following
two assertions.

ASSERTION (A). Suppose n is odd and let (O’o, 0"1, 0") Sn be realized by e
(8o, 81,’" ", 8n-1, 8n) in ,. Then e must end with a stay (e, 8n-1) or a change of
sign (e, e,-1) depending on whether the difference tr-tro is even or odd, respectively.

ASSERTION (B). Suppose n is even. Then (tro, rl, r) S, possesses a realization
8 (co," en-1, en) in Z, ending with a stay if and only if o’1 + cr < n. Similarly, this
same tripletpossesses a realization in Z, ending with a change ofsign ifand only ifcra < o’.

We now begin with the main body of the proof.
Necessity. Consider a sequence e =(co, el,’", e) in , with corresponding

triplet (ro, Crl, r).
The necessity of the properties (i) and (ii) of Theorem 4 is obvious. As to property

(v), if ro=0 and O’1--0 then e2 eo and e2j+l el for all/’, so that either r=0 or
tr n, depending on whether or not eo e. In this special case Assertions (A) and
(B) are easily verified.
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Let us introduce the quantities

1
1 <-_ <-_ n/2,

if E2i-2E2i O,
:i= 0 otherwise,

1 if e2]-le2]+1<0,
r/] 0 otherwise,

1 <= ] <-(n 1)/2,

1 if ek-lek<0,
rk 0 otherwise,

l<=k<-n.

For instance, ’, 0 or 1 depending on whether the given sequence e ends with a stay
or a change of sign, respectively. Clearly,

In/2] [(n-1)/2]

,o 2 ,, = Y, , =.Y, .
i=1 ]=1 k=l

Also observe that

0 implies :i 0,
sr2i_l + sr2i 1 implies :i 1,

2 implies 0.

Thus (sr2_l + r2i + :) can only take the values 0 or 2. If n is odd then

[n/21

O" "[" 0-0 E (’2i--1 "[- 2i -1- :i) -[-.’n,
i=1

hence, 0- + 0-0 <- 2[n/2] + 1 n. Moreover, r, 0 or 1 depending on whether 0- + 0-0 is
even or odd, respectively; equivalently, o- 0-0 is even or odd, respectively. This proves
Assertion (A).

If n is even then the above term r, is missing so that 0- + 0-0 -< 2[n/2] n. In this
same case, 0- + 0-0 and thus 0-- 0-0 is even which proves the necessity of property (iv)
of Theorem 4.

If n is even then

[(n-1)/23

O" q- O" E (’2j -1- ’2j+ -+- ’0j) - ’1 "1- ’n,
j=l

where (sr2] + r2]+1 + r/i) can take only the values 0 and 2. Thus, 0- + 0-1 <-- 2[(n 1)]+ 2 n.
The inequality 0- + 0-1-<-n with n odd follows in a similar way, proving the necessity
of (iii).

If n is even then 0- + 0-1 n is only possible when st1 & 1. Thus & 0 implies
that 0-1 + 0- < n, which is part of Assertion (B).

Similarly, if n is even then

[(n--1)/2]

17"- O’1 E (’2j "t- ’2j+ 1--"Y/j)-" ’1 q- ’n 0.
j=l

Here, the equality sign is only possible when rl r, 0. In particular, r, 1 implies
that 0"1 < 0". This establishes the necessity part of Assertion (B).

Sufficiency. It remains to prove that the stated conditions (i)-(v) are also sufficient
for a triplet (0"0, 0"1, 0") to belong to S. We must also prove the existence part of
Assertion (B). The proof is by induction with respect to n. Let n >_-2 be fixed and
assume that Theorem 4 as well as Assertion (B) is true when n is replaced by n- 1;
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(Assertion (A) has been proved already). In particular, a triplet (ro, rl, r) is realized
by at least one e (eo,’"’, e,-1) in En-1 as soon as it satisfies properties (i)-(v) with
n replaced by n 1.

Consider a fixed triplet (ro, or1, r) of nonnegative integers satisfying (i)-(v) of
Theorem 4. We must shove that it can be realized by some e (eo,"’’, e,-1, e) in
Z,. In the case that n is even and rl + r < n we must also show that this realization
can be chosen such that ’, 0, that is, en-1 e, (this in view of Assertion (B)). Similarly,
if n is even and rl < r there must exist a realization with e,-1 e.

We have already treated the case that ro o"1 0; thus, assume that ro + rl _-> 1.
Let us first consider the case ro + rl 1. To begin with let ro 0 and o-1 1 so that
l_<_tr__<n-1.

If n 2m is even then tr ro r is even, by (iv), thus tr 2h with 1 <-_ h m 1.
Hence, the triplet on hand is (0, 1, 2h) and it can be realized in E by choosing e2- 1
for all/’, further ei-1 =-1 for/’ 1,..., h and e2i-1 +1 for] h + 1, , m. Observe
that -0 in this case. One can also attain that ’ 1, namely, by choosing e2(-/1
-1 for/" 1,..., h and e- +1, otherwise.

Next, consider the case ro 0, rl i with n 2m + 1 odd. One has 1 <_- tr _-< n 1
2m. If r 2h 1 isodd (1 _-< h _<- m) then a realization in E of (ro, trl, tr) (0, 1, 2h 1)
is obtained by choosing e(,-.+l -1,/" -0, 1, , h- 1, and eg- +1, otherwise. If
tr 2h is even (1 -<_ h -< m) then choose e2-1 -1,/’ 1, ., h, and eg +1, otherwise.

Next, suppose that ro i and trl 0. The case with n 2m + 1 odd can be reduced
to the previous case by means of the transformation

(4.8) E E2m+l-i for 0, 1,. , 2m + 1.

For, the sequence e in E, is a realization of the triplet (x, y, z) if and only if the
transformed sequence e’ in E, is a realization of the triplet (y, x, z).

Finally, consider the case tr0 1, trl- 0 with n- 2m even. Then r-tro tr-1
is even, by (iv), so that r 2h 1 with 1 <_- h _-< m. A realization in E, of (1, 0, 2h 1)
with ’ =0 is given by e2. =-1 if/’ =0, 1,..., h-1 and ei +1, otherwise. A realiz-
ation with ’, 1 is given by e 2(,_i 1 if/" 0, 1, , h 1 and ei + 1, otherwise.

It remains to consider the case tro + or1 _-> 2. Suppose first that n 2m is even so
that r-tro is even, by (iv). Since tYl (/’/ 1)/2 one has

(n rl r) + (r rl) n 2rl > 0.

Thus, either O"1-1- O" < gl or o"1 < o’.

Consider the case O’1 "" O" < n. Suppose first that ro 0. One easily verifies that
the triplet (ro, rl, r) (0, or1, r) satisfies (i)-(v) with n replaced by n 1 (in particular,
rl <-[(n- 1)/2]= (n-2)/2), so that (0, rl, r)e $-1 from the induction assumption.
But r=r-ro is even while n-1 is odd. Hence, by Assertion (A), every
(e0," en-2, en-1) in En_ realizing (0, O"1, O’) satisfies e,-2 e,-1. Choosing e, en-1
one arrives at a realization of (0, trl, tr) in E, which ends with a stay, in agreement
with Assertion (B).

Next, suppose ro -> 1 while still n 2m and ro + O’1 < tI. One easily verifies that
(fro- 1, trl, cr) S-1. Here r-(tro- 1) is odd, hence, from (A), every realization
(e0,""", en-2, en-1) in E,-1 of the latter triplet has e,-1 and en-2 Of opposite sign.
Choosing en en-1, one obtains a realization in E, of (o, trl, tr) which ends with a
stay, again in agreement with (B).

Further consider the case n =2m with rl<tr. Suppose first that tro=0.
Then (0, trl, tr-1) eS,_l with (tr-1)-tro-tr-1 odd. It has a realization
(e0,""", en-2, en-1) in E-I necessarily with e-i and en-2 of opposite sign, by.A).
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Choosing e, en-2, one obtains a realization in X, of (0, trx, tr) ending with a change
of sign, in agreement with (B).

Next, let n 2m, tra <tr and tr0>_- 1. Then (tro- 1, tra, tr- 1) S,-1. Here (tr- 1)-
(tro-1) tr-tro is even, hence, by (A), each realization (co,""’, e,-2, e,_x) in
of the latter triplet has e,-2 e,_. Choosing e, =-e,_, one obtains a realization in
X, of (tr0, trl, tr) ending with a change of sign, in agreement with (B).

Let us now turn to the case where n 2m + 1 is odd, still assuming that tro + tr _-> 2,
In view of the transformation (4.8), one may as well assume that trx _-> tro, thus tr -> 1.

Suppose r-tro is even. Then one easily verifies that (tro, trl-1, o’) S,-1, (in
particular, tro+ tr <_- n 1 2m since tro + tr is even). Here n 1 is even while trx- 1 <
Consequently, by (B), the triplet (tro,r-l, cr) is realized by at least one
(Co," en-2, en-1) in X,_a having en-2 and e,_x of opposite sign. Choosing e,
one obtains a realization in , of (tr0, try, tr).

Finally, consider the case that n 2m + 1, trl _-> 1 while tr- tro is odd, thus
Then (tro, trl 1, tr 1) S,_x with (tr 1) + (tr 1) < n 1 and n 1 even. By (B),
the latter triplet is realized by some (Co,’" ", en-2, e,,-) in X,_ with en-2 en-1.
Choosing e, =-e,_x, one obtains a realization in , of (tro, trx, tr).

Remark 4. Implicit in the above proof is a well-defined construction for obtaining
a realization in X, of a given triplet (ro, tra, tr) in S,, that is, a triplet of nonnegative
integers satisfying (i)-(v) of Theorem 4. For instance, the triplet (3, 2, 5) belongs to
$8 and has tra+ tr < n 8. It is first reduced to (2, 2, 5) $7, then to (2, 1, 4) $6, then
to (1, 1, 4) S5, then to (1, 0, 3) $4, leading to the realization (-+-++--++) in X8
of (3, 2, 5) such that e7 e8.
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PERIODIC SOLUTIONS OF HAMILTONIAN SYSTEMS: A SURVEY*

PAUL H. RABINOWITZ’

Dedicated to Michael Golomb

Abstract. Recent contributions to the study of periodic solutions of Hamiltonian systems of ordinary
differential equations are surveyed and their relationship to some earlier results is also considered.

Introduction. Hamiltonian systems of ordinary differential equations model the
motion of a discrete mechanical system. During the past few years there has been a
considerable amount of progress in the study of periodic solutions of such systems, with
many new ideas and methods of solution being introduced. The purpose of this paper
is to survey these recent developments and their connection with some earlier results.
In particular, the main results that have been obtained will be stated and an indication
will be given of their proofs. A few open questions will also be mentioned.

Let p, q e " and H’2n- be differentiable. An autonomous Hamiltonian
system has the form

8H 8H
(0.1) i0 q-- (P, q), 4 op-7-(P, q),

where denotes d/dt. This system can be represented more concisely as

(HS) z" Hz (z)

where z (p, q) and (g -oY), being the identity matrix in [". Also of interest is the
forced analogue of (HS)

(FHS) =Hz(t, z),

where H depends explicitly on in a time periodic fashion.
There are many types of questions, both local and global, that have been studied

for (HS) and (FHS). One set of questions has been motivated by the fact that H is an
integral of the motion for (HS), i.e. if z(t) satisfies (HS), H(z(t)) is independent of t.
Thus one can seek solutions of (HS) having prescribed energy and ask what geometrical
properties must an energy surface possess in order for there to exist periodic orbits of
(HS) on it. Multiplicity questions are also natural: how many geometrically distinct
periodic solutions can there be on a given energy level. Other questions of interest are
the existence of solutions of (HS) having a prescribed period and of (FHS) having the
given period of forcing. In the setting of (FHS) one can also study the existence of
subharmonic solutions, i.e., solutions having a period which is an integer multiple of
the period of forcing. Concerning local questions, perturbations of equilibrium or
periodic solutions lead to problems of continuation and bifurcation.

The underlying theme in the recent treatment of these problems has been the use
of the calculus of variations in finding solutions as critical points of a functional. There
have been approaches to (HS) and (FHS) from three main directions: (i) differential
geometrynobtaining solutions as geodesics in an appropriate metric; (ii) the direct
methods of the calculus of variations---obtaining solutions by minimax arguments from
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of Naval Research under Contract N00014-76-C-0300 and by the U.S. Army under contract DAAG29-80-
C-0041.
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indefinite functionals; (iii) convex analysis and optimization theorymobtaining sol-
utions for convex H using tools such as the Legendre transformation to simplify the
problem.

We will mainly concern ourselves with the existence of periodic solutions of (HS)
and (FHS) in the large. However, to add perspective some local results also will be
mentioned. This will be done in 1. Global results will be described in 2.

1. Local results. This section is concerned with some local results for (HS) and
(FHS). The early work in this direction had an analytical flavor while the more recent
research makes essential use of topological arguments.

We begin with a study of (HS). To normalize matters, let H(0)= 0. We further
assume Hz(O)= 0, so z--0 is a solution of (HS). The question of interest then is the
existence of time periodic solutions of (HS) which are small in amplitude. An old result
of Lyapunov [1]mthe Lyapunov center theoremuapplies to this situation:

THEOREM 1.1. Suppose H is twice continuously differentiable near O, Hz(O)= O,
and the spectrum ofCHzz(O), tr(CHzz(O)) {+il, ", +/- i,,}, where j is real, 1 <-j <- n.
If srj/srl is not an integer for 1, then (HS) possesses a one-parameterfamily ofperiodic
solutions zs(t) whose periods T(s)- 2zr/srl as s - O.

Actually, Lyapunov looked at a more general situation than (HS). After some
simplifications, the proof of Theorem 1.1 can be reduced to the implicit function
theorem. If further "nonresonance" assumptions are made on the numbers ’, (HS)
possesses n distinct one-parameter families of solutions near z 0. Thus, if H(z)> 0
for small z 0, these curves of solutions will pierce H-(c) for small c > 0 and H-(c)
contains n geometrically distinct periodic solutions of (HS). Many attempts were made
to obtain similar results without having to impose nonresonance or irrationality
assumptions on {’i}. See, e.g., Gordon [2] for such a partial result. No major successes
were achieved, however, until 1973, when A. Weinstein [3] proved:

THEOREM 1.2. Suppose H is twice continuously differentiable near O, Hz(O)= O,
and Hzz(O) is positive definite. Then for all sufficiently small c > 0, (HS) possesses n
geometrically distinct periodic solutions on H-(c).

Other versions of the result permit the assumption on Hzz(O) to be weakened
somewhat [3], [4]. Weinstein’s original proof of Theorem 1.2 relies on tools from the
theory of Lagrangian manifolds. Moser [4] presents a simpler proof using a variant of
the method of Lyapunov-Schmidt to reduce the problem to that of finding critical
points of a C function on S2"-, the function being invariant under a fixed-point-free
S action. A standard minimax theorem then provides n geometrically distinct critical
points. Other results on perturbation of periodic solutions can be found in Bottkol [5]
and Weinstein [6].

It is interesting to note that Theorem 1.2 can be interpreted as the S version, in
its setting, of a bifurcation theorem involving functionals with a 7/ symmetry due to
B6hme [7] and Marino [8]. They proved that if E is a real Hilbert space andf C(E, )
with f even, f’(u)=Lu +H(u),L being linear and H(u)=o(llull) at u =0, then if

tr(L) is an isolated eigenvalue of multiplicity n, the equation f’(u) Au has, for each
sufficiently small r>0, at least n distinct pairs of solutions (A,+/-u) with Ilull=r
near (/.t, 0). (Here f’(u) denotes the Fr6chet derivative of f. Using the duality between
E and E’, it can be interpreted as a mapping of E to E.) The work of Bfhme and
Marino motivated Fadell and the author to study the existence of solutions to f’(u) Au
as a function of A for A near/x [9]. Applying these ideas to (HS) where S symmetries
occur in a natural fashion when one is seeking period.ic solutions, we considered
solutions of (HS) near a bifurcation point as a function of the period [10] and showed:
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THEOREM 1.3. SupposeHis twice continuously differentiable near 0 andHz (0) O.
Let g2, EE2, where Ea and E2 are invariant subspaces for the flow given by

(1.4) v Hzz(O)w.

Suppose all solutions of (1.4) with initial data in Ex are Tperiodic, no solutions of (1.4)
with initial data in E2\{0} are Tperiodic, and there are no equilibrium solutions of (1.4)
in El\{0}. If the signature 2 of the quadratic form (H (0)r, ), E is nonsingular,
then either (i) every neighborhood of z 0 contains T periodic solutions of (HS) or (ii)
there are a pair of integers k, m >-_ 0 such that k + m >-_ [u[ and left and right neighborhoods
l, r OfTin such thatfor all h l (resp. r), (HS) possesses at least k (resp. m) distinct
nontrivial h periodic solutions.

The proof of Theorem 1.3 is related to that of Theorem 1.2 sketched above. To
begin, one seeks solutions of (HS) in an infinite dimensional space of periodic functions.
The method of Lyapunov-Schmidt reduces the problem to a finite-dimensional one,
and a minimax argument relying on an S symmetry inherent in the problem gives the
solutions as critical points of a variational formulation of (HS). The minimax construc-
tion of the critical points here is more subtle than in [4] due to the fact that there is no
analogue of the energy surface constraint of Theorem 1.2 here so one is working in a
neighborhood of 0 rather than on a compact manifold. A special case of Theorem 1.3
was obtained independently by Chow and Mallet-Paret [11].

We conclude this section by stating a local theorem concerning the existence of
subharmonic solutions of (FHS) due to Birkhott and Lewis 12]-[14]. Some preliminary
remarks are necessary. If H is smooth near z 0, H(t, 0)= 0 and Hz(t, 0)=0, then
H(t, z) Q(t, z) + R (t, z) where Q is quadratic in z and R (t, z) o (Iz 12) at z 0. If the
Floquet exponents for the linear Hamiltonian system corresponding to (2 are purely
imaginary, Floquet theory and the Hamiltonian character of (FHS) permit canonical
changes of dependent variables so that the transformed problem has a time-.indepen-
dent quadratic part of the form

2

(1.5) Y. hi
pi + q._2

i=1 2

(see Arnold [15]). Thus we can assume Q= Q(z) and has the form (1.5). Let A=
(h 1, ", An) and let k be a multiindex, k (kl, ", kn) 7/n. Set Ikl- ka /. / k and
(A, k)-- i= Aiki. If H is C4 with respect to z near 0 and (A, k),g7/for all [kl <_-4, then
there exists a canonical change of variables which transforms H into the Birkhott
normal form

(1.6) O(z)+ , aii(pi +q Pi +q _[..o([z[4)
/,/= 2 2

at z 0 (see [15] or Siegel-Moser [16]). Now we can state:
THEOREM 1.7. Suppose H is C4 near 0 and periodic in with H(t,z)=

Q(z)+R(t, z), Q as in (1.5) and R(t, z) o(Izl=) at z =0. If (A, k)Z for all [kl_-<4
and det (aij) 0 in (1.6), then (FHS) possesses a sequence ofsubharmonic solutions (Zk)
with arbitrarily large minimal periods.

Above det (aij) denotes the determinant of the matrix (agi). There is also a variant
of Theorem 1.7 for (HS) [17]. A proof of Theorem 1.7 but in the setting of maps
can be found in Moser [18]. A less general version of Theorem 1.7 in the above setting
is proved in Harris [17].
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2. Global results. In this section the existence in the large of periodic solutions
of (HS) and (FHS) will be studied. Our presentation will be roughly chronological. The
first work we know of in a global setting is due to Seifert [19], who considered
Hamiltonians consisting of the sum of a kinetic and a potential energy term. He
essentially proved:

THEOREM 2.1. LetH(p, q) .i,i= aii(q)Pipi + V(q), where a, V C2(", I), the
matrix (ai(q)) is uniformly positive definite in @ {q 1 V(q)< 1} and V satisfies
(V) is C2 diffeomorphic to the unit ball in .
(V2) is a manifold.
Then there exist points q*, Q* , T> O, and a solution (p(t), q(t)) o] (HS) such that
(p(0), q(0)) (0, q*), (p(T), q(T)) (0, Q*), and q(t) @ for 0 < < T.

Thus Theorem 2.1 gives us a solution whose motion begins and ends on the
boundary of the potential well . Seifert actually assumed real analyticity for ai and
V, but C: suffices for his arguments. Observing that H is even in p, a 2T periodic
solution of (HS) on H-(1) can be constructed by extending q as an even function and
p as an odd function about 0 and T.

The existence of periodic solutions having a prescribed mean potential energy was
studied by Berger [20] for a class of second order Hamiltonian systems which have a
less general potential energy term than given above.

Theorem 2.1 was generalized by A. Weinstein [21] who permitted a wider class
of kinetic energy terms"

THEOREM 2.2. Suppose H(p, q) K(p, q) + V(q), where K C2(2n, ), V E

C2(2", ), V satisfies (V), (V2) and K satisfies
(K) K is even and strictly convex in p for each q .
(K2) K(0, q) =0 andK(p,q) as Ip]-o uniformlyforq.
Then the conclusions of Theorem 2.1 obtain.

Seifert used ideas from differential geometry to prove Theorem 2.1. Roughly
speaking he found the solution as a geodesic for a Riemannian metric (called the Jacobi
metric) associated with the kinetic energy term in his Hamiltonian. Weinstein used a
similar argument in his setting, the Riemannian metric being replaced by a Finsler
metric associated with the more general K. Due to the fact that the metric degenerates
on 059, an approximation argument and a priori bounds which keep the approximate
period away from 0 and o are required in both cases.

Weinstein goes on in [21] to prove a result for general Hamiltonian systems:
THEOREM 2.3. Suppose H C2(2n, ) and H-(1) is a manifold which bounds a

compact convex region in 2. Then (HS) possesses a periodic solution on H-(1).
The proof of Theorem 2.3 involves a clever application of Theorem 2.2. A new

Hamiltonian on 4, is constructed which satisfies the hypotheses of Theorem 2.2 (with
n replaced by 2n) and for which solutions of the type given in Theorem 2.2 correspond
to periodic solutions of (HS) on H- (1).

Simultaneous to Weinstein’s work on Theorem 2.3, this author also was studying
(HS), but from a totally different point of view, and obtained the following somewhat
more general result [22]"

THEOREM 2.4. Suppose H C(2", ) and H-(1) is a manifold which bounds a
compactstar-shaped region in 2, i.e., there is a 2n such that, with as origin, H-(1)
is radially diffeomorphic to S2-. Then (HS) possesses a periodic solution on H-1(1).

To describe the approach taken to (HS) in [22], observe first that the period of
any periodic solution on H-l(1) is not known a priori. It is convenient to rescale the
time variable and replace (HS) by

(2.5) z" AHz (z),
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where we now seek a 27r periodic function z and a nonzero scalar A (essentially the
unknown period) such that the pair satisfy (2.5). The idea now is to use the calculus of
variations to find a solution of (2.5). Let (., ")nJ denote the inner product of two vectors
in Ri. Formally a critical point z of the action integral

(2.6)

subject to the constraint

2,-

A(z)= Io (p’ dl)n. dt,

(2.7)
2rr

H(z) dt 1,

has (2.5) as its Euler equation, h appearing as a Lagrange multiplier due to (2.7).
Moreover since z satisfies (2.5), H(z(t))=-c, a constant, and by (2.7), c 1.

It seems to be a difficult matter to make these heuristics precise in a direct fashion.
Instead a finite dimensional approximation argument, looking for solutions in the class
of trignometric polynomials, was used in [22]. Observe that A(z) and the constraint
are invariant if z(t) is replaced by z(t + O) for 0 [0, 2zr]; i.e., the problem possesses
an S symmetry. Thus by employing an index theory for such S actions [10] and
minimax arguments, critical points can be obtained for an approximating finite
dimensional problem. Appropriate bounds for approximate solutions and their associ-
ated Lagrange multipliers allow one to pass to a limit and solve (2.5).

An interesting geometrical result concerning the relation between the period and
H-l(1) that comes up in the course of the proof of Theorem 2.4 is the following:

THEOREM 2.8. Suppose H C(Rz", ) is homogeneous of degree two and positive
for z O. Let r and R denote respectively the radii of the smallest inscribed and largest
circumscribed sphere for H-l([0, 1]). Then (HS) has a Tperiodic solution on H-(1) with
1/2r2 <-_ T <-_ 1/2R a

The bounds obtained in Theorem 2.8 play a role in the proof of Theorem 2.4. We
depart from our chronological development for a moment to mention the following
result which was motivated by Weinstein’s Theorem 2.2:

THEOREM 2.9 [23]. Suppose H(p, q) K(p, q)+ V(q), where K C2(2n, ), V
C(, ), V satisfies (V)-(V2), and K satisfies (K2) and

(K3) (p, Kv(p,q)),,>O forpO.

Then (HS) possesses a periodic solution on H-l(1).
Thus Theorem 2.9 replaces the convexity hypothesis (Kx) by the "starshaped"

assumption (K3). The proof of Theorem 2.9 is based on that of Theorem 2.4, the bounds
required here being somewhat more difficult to obtain. Theorems 2.1, 2.2, 2.4 and 2.9
all give sufficient geometrical conditions under which (HS) possesses periodic orbits on
H-(1). Just how general an energy surface one can take and still be guaranteed the
existence of periodic orbits of (HS) on it remains an open question. See, e.g., [24] for
some conjectures in this direction.

Our discussion up to this point has only dealt with global results for (HS) when
the energy is prescribed. In [22] a study also was begun of the existence of periodic
solutions of (HS) when the period is prescribed. The simplest such case treated in [22]
is

THEOREM 2.10. Suppose H C1(2n, ) and satisfies
(Hx) H(z)>-O.
(H) H(z) o(Izl at z O.



348 P.H. RABINOWITZ

(H3) There are constants r > 0 and Ix > 2 such that, for all ]z[> r,

0< till(z) <- (z, H(z)),.

Then for any T > 0, (HS) has a nonconstant Tperiodic solution.
A few remarks about this theorem are in order. First interatin the inequality in

(H) shows there are constants a, ae > 0 such that

(.) H(z) >- a,lzl
for all z e Rl’; i.e., H rows at a "superquadratic" rate as Izl-+ co. Likewise (H) implies
H(z) -+ 0 as Iz[ -- 0 at a superquadratic rate.

The proof of Theorem 2.10 is in the same spirit as that of Theorem 2.4. Suppose
for convenience we seek a 2rr periodic solution of (HS). Then any critical point of

2rr

(2.12) I(z) A(z)- J0 H(z) dt

in the class of 2r periodic functions is a solution of (HS). To obtain a critical point of
/, one proceeds as in Theorem 2.4 with three main differences: (i) no constraint is
involved here; (ii) a minimax argument is given based on (H)-(H) which avoids the
use of symmetries and the index theory of [10]; (iii) an additional difficulty is encoun-
tered here due to the presence of the trivial solution z--0. To overcome (iii), a
comparison argument is employed which shows I(z)> 0 for the solution constructed.
Hence (Ha) and (2.12) imply z is nonconstant.

In research subsequent to [22], Benci and the author obtained a critical point
theorem for indefinite functionals [25] which can be used to bypass the finite
dimensional approximation arguments of [22] and get a critical point of (2.12) directly
in the Sobolev space (W1/’ ($))". See also Ekeland [26] who gave a direct proof of
a special case of Theorem 2.10.

Several variants of Theorem 2.10 were also proved in [22] including one for (FHS).
We will return to this result later when we discuss subharmonics for (FHS). Also
discussed in [22] were some results for second order Hamiltonian systems:

(2.13) q + V(t, q)=O,

where q ", for forced or free V which satisfy hypotheses like (H1)-(H3).
Although in its setting Theorem 2.10 guarantees a nonconstant solution of period

T of (HS) for all T > 0, nothing is implied concerning the existence of a solution having
minimal period T. We suspect that (H1)-(H3) are sufficient to give solutions of (HS) of
minimal period T for any T > 0. However if (H)-(H) are dropped, one cannot expect
this to be the case. Indeed, suppose n 1 and consider H(z)= g(Izl), where g e
C(, I). Setting p + iq, the corresponding Hamiltonian system can be written in
complex form as

(2.14) : 2ig’(l’12)ff.
Thus r(t)= r0 exp [2ig’(][2)t], so if T is the minimal period of r(t), T =< -a.
Consequently g’_-> 1 implies T-< 27r.

On the other hand, if one is not interested in solutions having minimal periods,
one can do much better than Theorem 2.10, namely:

THEOREM 2.15 [44]. Suppose H eCl(2n,) and satisfies (H3) and H(z)<-_
aalzl +a4. Then for all T, R >0, (HS) has a solution z of period T and satisfying
[Izll,o > g.
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Thus one can obtain arbitrarily large T periodic solutions (which as the above
example shows may not have minimal period T). The proof of Theorem 2.15 is more
complicated than that of Theorem 2.10, the structure given by (H1)-(H2) being replaced
by the S invariance of I(z) as was employed in the proof of Theorem 2.4.

One final remark about the proof of Theorem 2.10: Although it appears to be
rather different from Theorem 2.4, the two are closely related and in fact Theorem
2.10 can be used to give a short elementary proof of Theorem 2.4 [27].

At this point in the development of the theory, the convex analysts make their
appearance. F. Clarke [28], [29] gave a new and simpler proof of Theorem 2.3. In
addition he weakened the smoothness assumptions on H to merely convexity and
continuity, so (HS) becomes an inclusion rather than an equation. However in our
description here, we prefer to stay in the classical framework. Part of Clarke’s idea is
to employ a Legendre transformation to convert the problem to a simpler one. Unlike
the usual situation in mechanics, he uses a Legendre transformation in all variables.
Equation (HS) can be written as

(2.16) -. Hz (z

with, in the setting of Theorem 2.3, H globally convex via a trick of [21] or [22]. Thus
Hz is monotone. In essence, Clarke inverts Hz in (2.16), transforming it to

(2.17) z H7-x (-z’).

This new equation in which z" is taken to be the independent variable can be given a
variational formulation for which a solution can be obtained as a minimum of the
corresponding functional.

As another consequence of these ideas, Clarke and Ekeland [30] studied a
situation complementary to that of Theorem 2.10 in which H is "subquadratic" at 0
and ; i.e.,

(H4) n(z)lz1-2-, 0 as Izl-,

and

(Hs) n(z)lzl-=-, o as Izl-* 0.

They proved
THEOREM 2.18. Suppose H C(", ), H is convex with H(O)=O, Hz(O)=0,

and satisfies (H4)-(Hs). Then for all T > 0, (HS) has a solution having minimalperiod T.
The minimality of T is a consequence of the characterization of the solution as a

minimum of a variational problem. This theorem is the only result we know of in the
context of general Hamiltonian systems which obtains information on minimal periods.
See also Berger [20] or [31] for results on second order Hamiltonian systems.

In a further application of Legendre transformation ideas in conjunction with
minimax arguments and the index theory of [10], Ekeland and Lasry proved a nice
result which furnishes a partial globalization of Weinstein’s bifurcation theorem
(Theorem 1.2). Let Bo denote a Euclidean ball of radius p.

THEOREM 2.19. Suppose H C(R2n, R) and H-l(1) is a manifold which bounds
a compact convex domain 12. If there are positive numbers r and R < /-r such that
Br c lq BR, then H-(1) contains at least n geometrically distinct periodic solutions of
(HS).

Whether or not the restriction on the shape of 12 is essential remains an open
question. Likewise, nothing is known about the number of periodic solutions of (HS)
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in the settings of Theorems 2.1, 2.2 and 2.9. Also of interest are the number of solutions
of (HS) having a given minimal period. No progress seems to have been made in this
direction.

In addition to Theorem 2.18, there have been a considerable number of results
obtained for subquadratic Hamiltonian systems, both autonomous and forced, satisfy-
ing variants of (H4) and (Hs). We will not go into detail here but they include works
by Benci [32]-[34], Benci and Rabinowitz [25], Brezis and Coron [35], and Coron [36].
Also Amann [37] and Amann and Zehnder [38]-[39] have studied problems which lie
on the border between sub- and superquadratic, namely Hamiltonian systems which
are quadratic near 0 and but have different signatures. Using a global Lyapunov-
Schmidt reduction, minimax arguments and index theories, they obtain many existence
and multiplicity results for (HS) and (FHS). Some earlier special cases were obtained
by D. Clark [40].

Next we shall describe a contribution to subharmonic solutions of (FHS). As was
mentioned earlier, a variant of Theorem 2.10 for (FHS) was given in [22]. It turns out
that under the same hypotheses much more is true:

THEOREM 2.20 [41]. Suppose H C(R2", R) and satisfies
(H6) There is a constant T > 0 such that H(t + T, z) H(t, z) for all , z .
(HT) There are constants a, >0 such thatfor Izl>/5, [Hz(t, z)l <-a(z, H(t, z)),,
and (H)-(H3) with respect to z. Then, ]’or each k , (FHS) possesses a kT periodic
solution z(t). Moreover infinitely many of the [unctions z are distinct.

The proof of this result follows from the abstract critical point, theorem of [25]
combined with some bounds for the critical points and a simple indirect argument
showing infinitely many must be distinct. Theorem 2.20 can be viewed as a global
relative of the Birkhoff-Lewis theorem, where (H3) plays the role of the condition on
the quartic part ofH in Theorem 1.7. In fact one can prove a local variation on Theorem
1.7 using (H3) and Theorem 2.20 as a tool. Clarke and Ekeland [42] have also obtained
a result on subharmonics for second order forced Hamiltonian systems (2.13) with
convex subquadratic V(q). See also [41] for another subquadratic case.

Our final result is a recent theorem of Gluck and Ziller [43] concerning the fixed
energy case of (HS) which extends Theorem 2.2.

THEOREM 2.21. Suppose H(p, q) K(p, q) + V(q), where K C2(R2n, ), V
C2(Rn, g), K satisfies (K1)-(K2), and V satisfies
(V3) {q n V(q) <- 1} is compact and nonempty
and (V2). Then (HS) possesses a periodic solution on H-l(1).

The proof of Theorem 2.21 follows the geometrical approach of [19] and [21]
together with some further topological ideas.

In conclusion, it should be mentioned that one of the main sources of inspiration
for the development of Hamiltonian mechanics was the field of celestial mechanics. In
this field, unlike the situations described above, one encounters Hamiltonians which
possess singularities. We believe celestial mechanics is a very interesting and possibly
fertile proving ground for the further development of the ideas and methods described
in this survey.
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Abstract. It is shown that many of the asymptotic properties of the Fisher model for population genetics
and population ecology can also be derived for a class of models in which time is discrete and space may or may
not be discrete. This allows one to discuss the behavior of models in which the data consist of occasional counts
on survey tracts, as well as that of computer models.

1. Introduction. The purpose of this work is to present some techniques by which
results on long-term behavior previously obtained for continuous models in population
genetics and population ecology can be shown to apply to a larger class of models in
which the time and space variables are allowed to be discrete. Such an extension is
useful for several reasons. In the first place it usually is impractical to measure more
than finitely many (and often relatively few) aggregate quantities. For instance, one can
measure the populations of various species or genotypes in a few census tracts from time
to time, but one cannot measure (or possibly even define) the population densities at all
points at all times.

Secondly, any deterministic model must rely on the assumption that the inevitable
random events found in nature are averaged out. This is much more likely to be true of
aggregates over relatively large space-time domains than of limits such as population
densities in a continuous space.

Lastly, computations for continuous models are usually done by approximating
them with discrete ones. On the other hand, continuous models often appear as
approximations to discrete ones. (See, e.g., [2], [38], [39].) It is useful to know that all
these models have the same qualitative large-time behavior.

We shall deal only with models which are deterministic, and in which the indepen-
dent variable is a scalar. Both of these restrictions are serious ones. We shall briefly
discuss the possibility of applying our results to stochastic models at the end of 4.

The fact that the independent variable must be scalar-valued prevents the consid-
eration of any very sophisticated interactions with the environment, other species, or
other age classes. In particular, we consider species with nonoverlapping generations,
and this naturally introduces a discrete time interval, the generation time.

The most frequently used model for studying the spread of a mutant or a new
population in a homogeneous environment is the Fisher equation

(1.1) O--U-U= DAu +f(u).
3t

This equation in one dimension was introduced by R. A. Fisher [15] as a model for
the spread of an advantageous form (allele) of a single gene in a population of diploid
individuals. It is assumed that there are only two allelic forms A and a of the gene under
study. The function u(t, x) represents the gene fraction, that is, the ratio of the number
of A alleles to the number of A and a alleles at the time in the population near the
point x.

Fisher found that when f(u) u(1 u) there is a constant c* with the property that,
when Icl>-_c *, (1.1) has a traveling wave solution u(t, x) W(x -ct) with speed c, while

* Received by the editors November 12, 1980, and in revised form February 24, 1981.
School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455. This research was

partly supported by the National Science Foundation under grant MCS-7812182. Part of the work was done
while the author was a visitor at the University of Queensland.
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for Icl< c* there is no such wave. He conjectured that the minimal wave speed c* is also
the speed at which a newly arrived advantageous allele spreads into an established
population.

Kolmogoroff, Petrowsky, and Piscounoff 1-31] proved this conjecture in the one-
dimensional case where u(0, x) is 0 for x < 0 and 1 for x > 0 provided f(0) (1) 0 and

f is concave.
The Fisher equation (1.1) is also used as a model for the spread of a population

when u is interpreted as a population density.
In this work we shall consider discrete time models of the form

(1.2) u,,+l=O[u,,],

where un (x) represents the gene fraction or population density at time n at the point x
of the habitat and Q is an operator on a certain set of functions on the habitat. The
habitat may be one-, two-, or three-dimensional. It may be discrete, in which case x
ranges over a discrete set of niches (census tracts).

The model (1.2) is deterministic in the sense that un+l is uniquely determined by u,.
We continue to assume that u is scalar-valued and that the habitat is homogeneous. We
shall confine our attention to propagation phenomena and shall not be concerned with
clines [8], [14], [16], [17], [21], [38], [46].

We shall show that a few biologically reasonable hypotheses about Q permit us to
derive results of the Fisher and Kolmogoroff-Petrowsky-Piscounoff types for this class
of models. More specifically, we shall show that for each unit vector there is a wave
speed c*() with the property that, in an asymptotic sense, a new mutant.or population
which is initially confined to a bounded set spreads like the solution of a wave equation
whose plane wave solutions with normals : have the speeds c*(). Under some
additional conditions we also show that (1.2) has a nonincreasing traveling wave
solution u(x) W(x .-nc) when c => c*() and not when c < c*(:).

Equation (1.1) implies (1.2) when Q[v] is defined to be the solution at some
generation time - of the initial value problem for (1.1) with initial values v(x).
Therefore our results generalize the one-dimensional results of Fisher [15],
Kolmogoroff, Petrowsky, and Piscounoff [31], Kanel’ [25], [26], Kametaka [24], and
Aronson and Weinberger [4], as well as the multidimensional results of Aronson and
Weinberger [5] for the rotationally symmetric model (1.1).

Translational invariance (homogeneity) does not imply rotational invariance (iso-
tropy). Because prevailing winds and other phenomena can produce preferred direc-
tions, the analogue of (1.1) without rotational symmetry is also of interest. In this case
the operator DA in (1.1) is replaced by an elliptic operator of the form

Y’. aii
OxiOx]

+

_
bi Ox---

This problem can again be put into the form (1.2) by defining Q[v] to be the solution at
time - of the initial value problem with initial values v(x). We can, in fact allow for
seasonal variation by permitting the coefficients and f to be periodic functions of of
period -.

Since the migrational behavior can be affected by the genotype [41] or by the
population density [2], [3], [19], it is also of interest to consider the problem in which the
coefficients aij and bi in the above operator depend upon u. This problem can again be
converted to the form (1.2) and treated by our methods.
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Our results also generalize work by Diekmann [10], [11], Diekmann and Kaper
[12], Thieme [48], [49] and the author [53], [54] on one-dimensional and rotationally
symmetric discrete time models of the form (1.2) where Q is a nonlinear integral
operator.

We have not been able to generalize the more delicate results on convergence in
shape obtained by Kolmogoroff, Petrowsky, and Piscounoff [31 ], Kanel’ [25], [26], Fife
and McLeod [13], Bramson [7], and Uchiyama [50], [51], which show that for the
one-dimensional Fisher equation the width of the transition layer between the high and
low parts of a spreading pulse remains bounded and which approximate the space-time
path of this layer.

The results presented here can also be applied to certain models for the spread of
epidemics [1], [10], [11], [28], [29], [37], [47], [56].

Some examples of biological models are given in 2. A precise statement of the
hypotheses on the recursion operator Q is in 3. Section 4 introduces our mathematical
tools. In 5 we show that the rather small set (3.1) of hypotheses leads to a wave speed
c*() for disturbances which depend only on the single variable x. , where : is any unit
vector.

We state our results in 6. Essentially these are that, in an asymptotic sense, an
initially confined disturbance is propagated along the ray cone which corresponds to the
wave speed c*(), and that there are plane wave solutions of the form W(x. -nc)
exactly when c->c*(:). The remainder of the paper is devoted to proofs of these
theorems, together with some examples and counterexamples.

Our results show that a rather large class which contains both continuous and
discrete models is robust with respect to qualitative asymptotic behavior. This robust-
ness means, of course, that a very crude model can give correct predictions about the
asymptotic behavior of an ecological system. The other side of the coin of robustness, of
course, is that a model which is found to predict such behavior correctly may be far from
being a good model for predicting other phenomena.

2. Some models in population genetics and population growth. To obtain an
example of a recursion of the form (1.2), we consider the so-called stepping stone model
[27], [30], [35], [40], [45] in population genetics. We classify the individuals of a certain
diploid population according to their genotypes with respect to a single gene locus,
which occurs in two allelic (that is, variant) forms, which we label A and a. There are
then three genotypes: the homozygotes AA and aa, and the heterozygote Aa.

The habitat is either naturally or arbitrarily divided into discrete regions or niches.
The population which lives in any one niche during the nonmigratory part of a life cycle
is called a deme. We suppose that the generations are nonoverlapping, and that
members of different demes do not mix or interact except during a brief period of
migration at the end of the life cycle. Migration moves the individuals to new niches, so
that it changes the memberships of the various demes. Just after migration the
individuals form gametes and die. The individuals are assumed to be monoecious (that
is, hermaphroditic). The gametes mate at random to form the new generation of
diploids.

The ratio of the number of alleles of type A to the total number of alleles of types A
and a in a certain deme is called its gene fraction. Let un (i) denote the gene fraction in
the newly born individuals of the nth generation in the ith deme.

The Hardy-Weinberg law states that the ratios of the numbers of newly born
individuals of genotypes AA, aA, and aa, respectively, are un(i)2:2un(i)
(1-u,(i)): (1-u,(i))2. These individuals undergo various hazards during.the growth
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cycle, and we assume that their abilities to survive these hazards depend only on their
genotypes with respect to the gene under consideration. If the fitnesses (that is, survival
rates to the migration stage) of the three genotypes have the ratios 1 + si" 1" 1 + tri,

then the ratios of the numbers of survivors at the time of migration are
(1 + oi)un (i)2 2un (i)(1 u, (i)): (1 + si)(1 u, (i)):. We suppose that the total number of
individuals in the ith deme who survive to migrate is a fixed carrying capacity pi, which
does not depend upon the genotypic makeup of the population. We further suppose
that a fraction lii of the population of each genotype in the ith deme migrates to become
part of deme f. (Of course the fraction I, remains in the ith deme.) Under our
assumptions the gene fraction U+l(j) born in the jth deme in the next generation is
equal to the gene fraction in the/’th deme after migration. It is given by the formula

(2.1) u+a(f) miigi(un(i)),

where

(2.2)
2(1 + si)u 2 + 2u(1 u)

gi (/g)
2[(1 + s)u 2 + 2u(1 u) + (1 + o-i)(1 /.,/)2]

is the gene fraction of the ith deme just before the migration and

liiPi(2.3) mii k likpk

is the fraction of those individuals who are in the ]th deme after the migration who came
from the ith niche.

Thus the function {u(i): 1, 2,...} satisfies a recursion of the form (1.2) with

(2.4) O[u](f) rnigi(u(i)).

In the present work we will only deal with a homogeneous habitat. By this we mean
that all the niches are identical, that they are obtained by applying the elements of a
group of translations to any one niche, and that the migration function lii depends only
on the translation which takes the ith niche into the fth niche.

Suppose, for instance, that the organisms are living in a plane Y2. This plane is
divided into the squares {(x, y)l(k-21-)h <-x.<(k +1/2)h, (l-1/2)h <_-y <(/+1/2)h; k, l=
0, + 1, +2, .} of side h, which are the niches. We label each niche by the coordinates of
its center, which are integral multiples of h. Then we can think of the habitat as the set of
points of Y 2 whose coordinates are integral multiples of h. We shall usually write these
centers as vectors x. Y( can be obtained from any one niche by applying all translations
by two-vectors whose components are multiples of h.

The fact that is homogeneous means that the fitnesses s and tr and the adult
population p are the same for all the niches, and the migration function lij depends only
on the vector difference xi- xj between the centers of the niches. For the moment we
also assume that s, tr, and p do not depend on u, so that they are constants. Since

Y Y (x x) Y (x) E lio
k k

because all the individuals in niche Xo must go somewhere, (2.3) becomes

mii lii m (xi x]).
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Thus the operator O in the recursion (1.2) is

(2.5) O[u](x) , m(x y)g(u(y)),

where Y.x e m (x) 1 and

(2.6) g(u)

We see that

(2.7) g(u)-u

2su +u
1 -- S/,/2 if- or(1 u)a"

u(1- u)[su -r(1- u)]
1 q- SU

2 "]- O’(1 b/)2

The definition of u shows that we must only consider functions u(x) such that
0-< u-< 1. It is easily seen that g increases from 0 to 1 as u increases from 0 to 1.
Therefore Q[u] again has values on the interval [0, 1].

We see from (2.7) that there are three possible behaviors of the function g:
(i) If s > 0 > tr, the AA homozygotes are the most fit and the aa homozygotes are

the least fit, and

(2.8) g(u)>u for0<u<l.

This is called the heterozygote intermediate case. (Note that if s < 0 < cr, then g(u) < u.
We can reduce this to the above case by replacing the variable u by 1 u, which amounts
to interchanging the labels A and a.)

(ii) If s and cr are both negative, the heterozygote is more fit than either of the
homozygotes, and we refer to this as the heterozygote superior case. (2.7) shows that this
case is characterized by the fact that

>u for0<u <7rl,
(2.9) g(u)

<u forTrl<u<l,

where

(2.10) 7r
s-k-o"

(iii) When s and r are positive, we speak of the heterozygote inferior case. Here

<u for0<u<Tr0,
(2.11) g(u)

>u forTr0<u<l,

where 7r0 is given by the same formula (2.10) as
There is, of course, no particular reason why the fitnesses 1 + s and 1 + cr should not

depend upon u, that is, upon the composition of the competing population. As long as p
is constant, we still obtain (2.5) and (2.6). The formula (2.7) shows that even when s and
o- depend upon u, it is true that in the heterozygote intermediate case s > 0 > o- the
inequality (2.8) is satisfied.

However, the following example shows that the inequalities (2.8), (2.9), and (2.11)
do not characterize the three cases when s and r depend upon u.

Example 2.1. When s e(1-u)(2+sin k’rru), or= 2eu, where e is any positive
constant below , the system is heterozygote inferior, but for k 1 the corresponding g
has the property (2.8), for k 2 it has the property (2.9) with 7r -, and for larger k the
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function g- u has arbitrarily many sign changes. By multiplying sin kTru by (--1) k and
making e negative, one obtains a similar example for the heterozygote superior case.

The population size p before the migration may also depend on the genetic
composition of the population and hence on u. Then (2.3) shows that in a homogeneous
habitat mii is a function of u(xi) as well as of xj-xi. More generally, the migration
pattern may depend upon genotype, as may the fertility.

If we assume no further selection after migration, one can hope to predict the
numbers IA (x y, u) ofA gametes and la (X y, U) of a gametes produced in the niche at
x by the deme born at y if its initial gene fraction is u. In this case we obtain the recursion
(1.2) with the operator

(2.12) O[u](x) Eg lA(X y, u (y))

E[/a(x Y, u(y)) + la(X y, u (y))]"

If there is nonrandom mating, the new gene fraction is a function of the right-hand side.
The above model can be modified in various other ways. The niches may consist of

parallelograms, hexagons, or other regions instead of squares. We can consider the
limiting case of very small regions, so that un (x) becomes a function of the continuous
variable x and the formula (2.5) for Q is replaced by

Q[u](x) I2 m(x y)g(u(y)) dy.

If m (x) depends only on the Euclidean distance Ix I, the habitat is isotropic (rotationally
symmetric). This case was treated in previous works [11], [12], [48], [49], [53], [54]. A
discrete habitat cannot be rotationally symmetric1, and therefore we need to treat
nonisotropic operators Q here. Because of such factors as prevailing winds and the
position of the sun, the migration may well be nonisotropic even in a continuous
homogeneous habitat.

A continuous analogue of the more general operator (2.12) can also be obtained by
replacing the sums by integrals.

Fisher’s equation (1.1) can be obtained from the recursion (1.2) with Q defined by
(2.5) by taking a suitable limit in which both the size of the niches and the length of the
time step approach zero.

On the other hand, if we define un(x)= u(m’, x), where u(t, x) is a solution of
Fisher’s equation (1.1), then un satisfies the recursion (1.2) where Q[v](x) is defined to
be u(’, x) with u(t, x) the solution of the initial value problem

(2.14) DAu +[(u), u(O, x)= v(x).
Ot

This remark remains true when D and f are periodic functions of of period -, so that
seasonal variations in the rates of migration and selection can be taken into account.
Nonisotropy in the migration can be put into the model by replacing the Laplace
operator by a more general second order elliptic operator, whose coefficients are

independent of x but may depend periodically on t. In fact, these coefficients and, in
particular, the diffusion constant D in (2.14), may also depend on u.

Rotational symmetry in the natural habitat can be destroyed by aggregating over a discrete set of
niches. For example, if the population density in t is (x: + y2)4, which is radially symmetric, the population
in a square of side h centered at (ih, jh) is a polynomial in i: + j2 plus a multiple of i:/.2, so that it is not invariant
under rotations about the origin.
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All the above models involve various assumptions which may or may not be
satisfied. One can think of the recursion (1.2) itself as the model. It says that the gene
fraction of each deme of one generation is uniquely determined by the set of all gene
fractions of the preceding generation. If the niches are not too small relative to the
maximum distance of migration, Q[u](x) only depends on the values of u at a few
nearby niches, and the operator Q can be determined experimentally by varying these
values and watching the outcome.

The major assumption inherent in the class of models (1.2) is that the number of
individuals born in each deme is so large that the numbers of individuals of the three
genotypes who survive to adulthood do not depend upon the sizes of the initial
populations but only on their gene fraction. It is this assumption which allows us to work
with a scalar-valued rather than a vector-valued dependent variable.

One must, of course, also assume that all the external influences on growth,
selection, and migration remain the same for all generations.

Recursions of the form (1.2) can serve as models for many other biological
processes. We may for example consider the population growth of a single migrating
species with synchronized nonoverlapping generations. Let the habitat again consist of
the plane 2 divided into squares centered at (ih, jh), and let un(x) represent the size of
the population which is in the square centered at x at a certain part of the life cycle of the
nth generation. If one assumes that as far as interaction with the species under
consideration is concerned, the rest of the world does not change in time, one obtains a
model of the form (1.2) where Q may be measured experimentally.

If un (x) is the number of individuals in the square centered at x just after migration,
these individuals produce g(u) new individuals and die, where g(u) is a function whose
graph is called the reproduction curve [44]. A fraction m (y x) of these new individuals
migrates to y. Thus one obtains the model (2.5). One can again obtain space limits such
as (2.13) by letting the size of the squares approach zero and partial differential
equations like the Fisher equation (1.1) by letting both the square size and the length of
the life cycle approach zero.

In all the above models we have made the assumption of determinism. That is, we
assume that Un-t- is completely determined by the function u, the assignment being
given by the operator O. In nature things are, of course, not that simple, and the map
from un to u/ is more likely to be a Markov process. That is, given the function un, one
has a probability distribution for the function U/l.

It may, however, happen that, if u is known, one can say with probability one that
un+l(x) lies in a certain interval [v-(x), v+(x)] for each value of x. The function v-(x)
and v/(x) are determined by u, and hence are given by applying two operators O- and
O/ to un. Thus, instead of the recursion (1.2), we are led to the "interval statement"

O-[u]<-_ un+, <-_ O+[u].

We shall show in 4 that if the operators Q- and Q/ have some of the properties
mentioned in this section, the theorems of 6 will give information about the behavior
of u for large n.

3. Formulation of the problem. In this section we shall formulate a mathematical
model which contains many of the models discussed in the preceding section as special
cases.

Since we wish to treat spaces of one, two, and three dimensions, we shall work in a
general Euclidean space N Of N dimensions. We shall often identify a point of N
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with the vector from the origin to this point, so that we can speak of the vector sum of
two points and of the point ax where a is a scalar.

DEFINITION. A habitat is defined to be a set of points inN with the following
property: Ifx and y are in , then x + y and x y are also in Y. This property implies that
the origin 0 is in . (In fact, is a group under addition.)

In order to avoid trivialities we shall assume that N is actually the dimension of
That is, we suppose that there is no unit vector which is orthogonal to all of 3f. We also
suppose that N _-> 1 so that contains a point other than the origin. Since it contains all
multiples of this point, is unbounded.

In all our applications the dependent variable u has only nonnegative values. If u is
a gene fraction, its values lie on the interval [0, 1]. A population size will normally vary
between 0 and some large upper bound zr+, but this upper bound can conceivably be

DEFINITION. B is the set of continuous functions defined on N with values on the
interval [0, zr+] or, if

For any y in g the translation operator

u(x)- u(x y)

is defined.
Our basic evolution law is the recursion

where un and Un+l are elements of B and Q is a given operator on B. The properties of
the model are the properties of Q.

Since we always deal with nonnegative quantities, we assume that Q[0] >_-0.

The homogeneity of the habitat is equivalent to the assumption that O commutes
with any translation. That is, Q[T[u]]- T[Q[u]] for all u in B.

A constant function a is clearly translation invariant. That is, Tva -a for all y.
Consequently, TQ[a Q[a for all y, which means that Q[a is again a constant. This
simply states that in a homogeneous habitat the effects of migration cancel when u is
constant. Thus, the properties of the model in the absence of migration can be found by
looking at what Q does to constant functions.

Because xem(x) 1 in the model (2.5), wesee that Q[a]= g(a) there. We shall
therefore require the function Q[a to have properties like those of the function g. In
the genetics model with constant p, g is given by (2.6) and as long as the fitnesses are
independent of u we have the three possibilities (2.8), (2.9) and (2.11). We can cover all
three by saying that there are constants 7to and rl with 0 _-< zro < zrl -< 1 such that

<a for a (0, r0),
O[a] >a for

<a for a e (rl, 1).

Then ro= 0, rl 1 give the heterozygote intermediate case, fro=0, rl e (0, 1) the
heterozygote superior case, and ro e (0, 1), ra 1 the heterozygote inferior case. In the
absence of migration, ra is a stable equilibrium point and fro is an unstable one.

Example 2.1 shows that when the fitnesses vary with u these correspondences may
no longer apply, and the function g(u)-u may have more sign changes. We shall
formulate our hypotheses so that we can also treat these cases by only requiring that
Q[a]>a in some interval (ro, rr) with Q[ro] ’o and Q[rl] 7/’1. There may be
more than one such interval.
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The above properties of O[c ], with 1 replaced by some upper limit 7r+, also include
any reproduction curves g(a). In this case 0 is a critical population size below which
the population tends to decrease to 0 and 7ra is a carrying capacity, to which the
population size tends in the absence of migration. For some populations g(u)- u may
have more than two sign changes so that there are two or more stable equilibria. See
[33], [34] for an example of such a population.

We shall also assume that increasing u everywhere in one generation increases u
everywhere in the next one. More precisely, if u(x)>= v(x) for all x, then O[u](x)>=
O[v](x) for all x. In the case of the model (2.5), this means that the function g(u) is
nondecreasing. This is certainly true of the function (2.6) when s and r do not depend
upon u and 1 + s and 1 + tr are positive.

The operator (2.12) has the above property if the number IA(x y, u) of A gametes
produced at x by the deme at y is an increasing function of the gene fraction u at y while
the number la of a gametes is decreasing in u. This is a plausible property, although one
can certainly think of migratory behavior in which it is violated.

In the model (2.5) for population growth we shall assume that the reproduction
curve is nonincreasing. This excludes the case of a humped reproduction curve, which
even in the absence of migration leads to oscillations [42], [52] and sometimes to chaos
[23], [32], [36]. A more complicated population growth model can be treated as long as
an increase in un (i) results in increased migration to every deme.

In addition to these assumptions we shall require O[u to behave continuously with
respect to changes in u. We summarize these basic hypotheses:

(i) O[u]B for all u B.
(ii) Q[Ty[u]] Ty[Q[u]] for all u B, y .
(iii) There are constants 0 _-< 7ro < wa <-- 7r+ such that

(3.1) O[a]>a for

(iv) u -<_ v implies that O[u]<= Q[v].
(v) un u as n eo uniformly on each bounded subset of g implies that

Q[u,,](x) Q[u](x) for each x .
The operator Q will be understood to satisfy these conditions throughout the

remainder of this work.
As we shall see, these hypotheses suffice to define wave speeds and to determine

the large-time behavior of solutions u, which for n 0 are less than 7ra and vanish
outside a bounded set. If we wish to consider cases where u0 is at least 7rl at some points,
we need some further hypotheses about the action of Q on such functions. We first
assume that

(3.2) Q[c] < c for c e (r,, r+) if r < r+.

The following hypothesis is a generalized form of a strong maximum principle.

(3.3)

There are two convex subsets Ka and K2 of r at a positive distance
from each other and an e which is positive if 7ra < 7r+ and 0 if 7rl +
with the property that, if u -< 7rl + e on and u < 7ra on either Ka or K2,
then Q[u](0) < 7rl.

This hypothesis excludes, of course, the trivial case of no migration at all.
Finally we may wish to restrict the range of migration of any individual. In any

biologically realistic model this range is finite, which implies that there is a constant b
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such that

(3.4) u(x) 0 for Ix]--< b :=> Q[u](0) 0.

This condition implies that Q[0] 0, so that it excludes mutation into the allele A
in the genetic model and spontaneous generation in the population model.

In order to allow Q to be the solution operator of (1.1), which permits a small
leakage to infinity in a finite time, we can make the following weaker form of this
hypothesis.

There is a nonincreasing function h(s) defined for s ->0 such that (i) if, for
some unit vector and any sufficiently small positive fl, u(x)>- for
x" <- 0, then Q[u] >-_ flh(x. ) for all x with x. : _>- 0; (ii) to each integer

(3.5) m and each a (0, 7rl) there correspond a positive integer km and a
constant /, such that if u,/ Q[u,] and if, for some unit vector
Uo(X)=0 for x.-->0, then u(x)<-_[h(x./km)]k for
Moreover, h (m)=0.

If (3.4) is valid, this hypothesis clearly holds with h(s)=-O and/ rob. When Q is
the solution at the period time z of Fisher’s equation (1.1) with D(t)O and f(v, t)
bounded above and below by constant multiples of v, one can let h be a multiple of

-1/2

erfc[S{IoD(t) dt} ] and km=2m.

If we allow mutation to the allele A or spontaneous generation so that Q[0] > 0, we
do not need any restriction on migration, provided we assume the technical condition
that there is a positive constant q such that

(3.6) y < Q[y] < for 3’ [0, /), Q[/] /.

In order to establish the existence of traveling waves (Theorem 6.6) we shall need
the following compactness property:

Every sequence vn of functions in B with vn _-< 7rl has a subsequence vn,
(3.7) such that the sequence O[vn,] converges uniformly on every bounded

subset of .
We are given an initial function Uo in B and we shall be interested in predicting the

behavior for large n of the sequence of functions u(x) which is determined by the
recursion

U.+l=O[u].

We shall also be interested in traveling wave solutions of this recursion. By this we
mean solutions of the form

u.(x) W(x -nc),

where W is a nonconstant function of one variable, s is a fixed unit vector (the normal to
the waves), and c is a parameter called the wave speed. The function W(s) needs only to
be defined at those values of s which are of the form x. -nc with x in and
n=0,1,2,....

We note that the operator (2 is easily extended to an operator on the set/ of
continuous functions on all of Y with values in [0, zr+] by means of the definition

(3.8) t[u](xo) Q[T-xo[U]](O) VXoU.
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The function T-xo[U] on the right is to be interpreted as the restriction of the function
u(x Xo) to . Because of the translation invariance (3.1.ii), the restriction of O[u] to
coincides with the function obtained by applying (2 to the restriction of u to , so that (
is indeed an extension of (2. It is easily verified that if (2 has any of the properties (3.1),
(’3.2), (3.3), (3.4), (3.5), or (3.6), the same is true of the extension ( when is replaced
by u.

For this reason there is no harm in thinking of as u except in the last two
theorems, Theorems 6.5 and 6.6, in which further assumptions about (2 are made which
do not necessarily extend to (. In particular, the property (3.7) need not be preserved
by this extension.

4. Two basic propositions. In this section we shall state and prove some pro-
positions which will be used in our proofs. The first of these is a comparison principle.

PROPOSITION 4.1. (comparison principle) LetR be an operatorfrom B to B which is
order preserving in the sense that

(4.1) v >-_ w=)>R[v]>-R[w].

If the sequence vn satisfies the inequalities

(4.2) Vn+l>-R[v]

while the sequence w satisfies
(4.3) wn+l <- R[w,],

and if Vo >-_ Wo, then v, >- wn ]:or all n.

Proof. Suppose that v, => w,. Then by (4.2), (4.1) and (4.3)

v,+l >-R[vn]>-R[w.] >- wn+l.

Thus the proposition is proved by induction.
PROPOSITION 4.2. Let R have the order-preserving property (4.1), and suppose that

R[wo]_>- Wo. If the sequence w is defined by the recursion

w+l=R[w,],

then w,+ >- w for all n.

Proof. Let v Wn+l. Then v0>_-w0, and the statement follows from Proposition
4.1.

Proposition 4.1 can often be used to obtain a robustness result for a stochastic
model. Suppose that the evolution u, --> un/l is a Markov process which is bounded by
two deterministic processes in the sense that the inequalities (2.15) are satisfied with
probability one, and suppose that Q/ and Q- are order preserving operators.

We see from Proposition 4.1 that if the sequences u and u, are defined by
+u.+a=O-[u.], u.+=O [u.],

and if Uo -<_ Uo_-< Uo, then

-< < +
Un bln Un

for all n.
If the operators (2- and Q/ satisfy the hypotheses (3.1) and possibly some of the

other hypotheses of 3, then the theorems of 6 can be combined with these
inequalities to give information about the behavior of the random sequence u, for large
n. In particular, one can sometimes determine the qualitative behavior of un without
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knowing much about the probability distribution of the Markov process. Such a result
can be interpreted as a statement of robustness.

5. The wave speed. In this section we shall define a wave speed c*() correspond-
ing to any operator Q which satisfies the hypotheses (3.1). The name wave speed will be
justified by the theorems which are stated in the next section. For the moment, c*() will
be defined as a scalar-valued function of unit vectors . We can think of c*(:) as the
speed of plane waves whose normal is in the direction :.

In order to define c* we begin by choosing a function q(s) of one real variable with
the properties

(i) is continuous and nonincreasing,

(5.1) (ii) q(-)(r0, rl),

(iii) q(s) 0 for s => 0.

For any real number c and any unit vector c we define the operator

(5.2) Rc,e[a](s)--max {q (s), O[a(x. + s + c)](0)}

on continuous functions of one real variable a (s) with 0 =< a -<_ rl. Here the maximum
just means the larger of two numbers for each s. The function a(x. + s + c) is to be
regarded as a function of x in with :, s, and c fixed.

We shall suppose that O has the properties (3.1). Then Rc,e still has the property

(5.3) Rc,[a]> a for a (or0, 7ra)

and the order preserving property (3.1.iv).
We now define a sequence an(c, c; s) by the recursion

(5.4) an+a=R,[an], ao q.

We begin by establishing some simple properties of this sequence.

LEMMA 5.1. The sequence an(c, c; s) is nondecreasing in n, nonincreasing in s and
c, and continuous in c, c, and s.

Proo] Because ao , it is clear that R,[ao]>-ao. Therefore Proposition 4.2
implies that an is nondecreasing in n.

We shall prove the other properties by induction. Suppose that an is nonincreasing
in s and c. Then if c’=< c and s’=< s,

an+l(C’, ; S’) max { (s’), O[a(c’, ; x" + s’+ c’)](0)}.

Since s’ -< s and c’ =< c, q (s’) ->- q (s) and an (c’, ; x’ : + s’ + c’) => an (c, c; x" + s + c). The
order preserving property of Q shows that

an+(c’, ; s’)>= an+(c, ; s).

Since a0(c, ; s) 0 (s), which is nonincreasing in c and s, all the an are nonincreasing in
c and s by induction.

Finally, let (c, ,s) be any sequence which converges to (c, , s) as u-.
Suppose that an is continuous in all its variables. Then aN (x. + s + c) converges to
a,(x. , + s + c) uniformly for x in any bounded subset of Y(, and q (s) converges to q (s).
We see from the property (3.1v) that a+(c, ; s) converges to an/(c, c; s); that is,
an+l is continuous.

Because a0 q(s), which is continuous, the continuity of all the an follows by
induction, and the lemma is proved.
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We remark that since O may only be defined on continuous functions, the
continuity of the an as functions of s is needed in order that the recursion (5.4) really
define the sequence an.

We now consider the limits of an at s +c.
LEMMA 5.2. Define the sequence of constants an and /" by the recursions

(5.5) an+’=O[an]’ Tn+l=O[Tn]’

o= (-o), /o= 0.

Then an increases to 7rl as n oo, y" increases to the smallest nonnegative solution / of the
equation ,r/= Q[,], and for all n, c, and

(5.6) an(c, ;-oo)=an, an(c, c; +00)=3,,,

Proof. Bythe property (3.1iii) O[a0] > a0, while by (3.1i) Q[yo]-> y0. Therefore by
Proposition 4.2 the sequences an and y" are nondecreasing. By Proposition 4.1,
yn =< fro < an =< rrl. Therefore an has a limit if, which may be +m if rrl +c and yn has a
limit

If c < 7rl, then Q[ci] > c by (3.1iii) and by (3.1v) an+l Q[an]> c7 for sufficiently
large n. This contradicts the fact that an is nondecreasing, and we conclude that c

To prove the limit properties of an we again use induction. The statement (5.6) is
certainly true for n 0. Suppose that an (c, :; -)=an. Then the sequence

uk(x)=-an(c, ; x" -k +c)

converges to an as k eo, uniformly on bounded subsets of g. Therefore by (3.1v)

lim Q[a’(c, : x.-k +c)]=Q[an]=an+l.

Because an+l O:0 (p, we find that

lim an+l(c, ; -k) On+1.
kcx

Since an+l is nonincreasing in s, we conclude that

an+l(C, ; --OO)=On+l.

The same argument with k replaced by-k shows that an+l(C, :; +c3)=’yn. Thus, (5.6) is
established by induction, and the lemma is proved.

It follows from Lemma 5.1 that the sequence an increases to a limit function
a(c, ; s) as n goes to infinity and that a(c, ; s) is nonincreasing in s and in c. Because
an(c, ; s)<-an(c, ;-o)=an Trl, we find that a --<rl. Lemma 5.2 shows that

a (c, :; -c)= 7rl.

(If 7/’1 -[-00, a may have the value +oo on an interval.)
The value a(c, se; +oe) may or may not be 7r1. Since a is nonincreasing in s,

a(c, so; +oo)=Trl if and only if a -= rrx. We give a criterion to determine whether or not
this is the case.

LEMMA 5.3. The value a (c, ; +oe) 7rl if and only if there is an n such that

(5.7) an (c, ; O) > q (-oo).

Proof. If a(c, ; -[-00)’-- 7rl, then a(c, :; s) "/7’1 for all s, and in particular for s 0.
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Because rrl > q(-m) and an(c, so; 0) converges to a(c, so; 0), there must be an n
such that (5.7) is valid.

Suppose, on the other hand that (5.7) holds for n no. Because an and q are
nonincreasing, q 0 for s -> 0, and q -< q (-m), it follows from the continuity of an and q
that there is a positive constant 6 such that

ano(C, ; s + 6) >= q(s) ao(c, ; s)
for all s.

Suppose that for some k > 0

(5.8)

Then

a,o+ (c, ; s + 6) >- a(c, ; s).

ano+k+a(c, so; s + 6) max {ano(C, ; s + 6), O[ano+k(c, ; x" + s + 6 + c)](0)}

>-max {q (s), Olaf(c, ; x. + s + c)](0)}

=atc+l(C,;s),

because ano++ -> ano. Thus we have established the inequality (5.8) by induction. We
let k to see that

a(c, ; s + 6) >- a(c, ; s)

for all s. Since 6 > 0 and a is nonincreasing in s, it follows that a is independent of s.
Since a(c, so;-ec)=rr, we conclude that a(c, so; s)= ra for all s, and the lemma is
proved.

We now observe that since al(0, s;-)=aa>q(-o), there must be a non-
negative constant t= t(sc) such that

al(0, :;-t) > q(-).

Then since qff-t) <_- q (-), aa (0, :; -t) (2[q (x. : t)](0), and

a(-t, :; 0) max { (0), O[q(x"- t)](0)} max {0, aa(0, ; -t)} > q (-c).

Thus, by Lemma 5.3, a(-t, :; +o)=zrx. Hence a(c, ; +c)=r for c <--t.
We now define

(5.9) c*() sup {cla(c, :; +)=Tr}.
If a(c, , +c)=zrl for all c, we set c*(:)= +o.

Since a(c, ; s) is the limit of a nondecreasing family of continuous functions, it is a
lower semicontinuous function of c, :, and s. Lemma 5.3 shows that a(c, c; +)=zrl if
and only if a (c, :; 0) > q (-), and the lower semicontinuity of a shows that the set of
(c, :) where this is valid is open. This fact has two consequences’

ProPOSITION 5.1. a(c, :; +)=ra if and only if c < c*() and c*() is a lower
semicontinuous function of .

The sequence an depends upon the choice of the function (s). Consequently c*()
appears to depend upon this choice. The following lemma shows that this is not the case.

LEMMA 5.4. Let (s) be any continuous nonincreasing function of s with the
properties

(5.10) q3(--OO) E (T/’O, ’W1), q(S) 0 for S >= 0.

Define the sequence (c, ;s) by the recursion

(5.11) 3n/a(s) max {(s), O[dn(x’+s+c)](O)}, d0(s) q3 (s),
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so that n increases to a nonincreasing limit function
(c, :; +c)=a(c, :; +m).

Proof. Define the sequence of constants cn by the recursion

(c, ; s). Then

a.+ o[a. ], ao , (-).
Then cn increases to zrl, and because ((--00)<"/’/" there is an integer no such that
C,o>O (-oo). By Lemma 5.2, no(C, :; -oe)=C,o. Therefore if no _-> 1 there is a t(c, )
such that

(5.12) ,o(C, ; -t) > ( (-).

Because d,o and 0 =ao are nonincreasing in s and q 0 for s >_-0, it follows that

(5.13) ,o(C, ; s t) > ( (s).

Since d, is nondecreasing in n, n+l(C, ; S t) >= ,o(C, :; s t) -> q3(s) for n -> no, and
hence

d,o+k+(C, ; S t) max {no(C, ; s t), Q[no+k(C, ; x" + s + c)](0)}

-->max {q (s), Q[no+k (c, ; x’ : + s + c)](0)}

Rc.e[gt.o+k(c, ; s t)](s)

for k >_- 0. We now see from (5.13) and Proposition 4.1 that dno+k(C, ; S t) >- ak(C, ; S)
for k _-> 0. By letting k - c and then sm we obtain the inequality

(c, ; +)>=a(c, ; +).

We now use the same proof with the roles of q and q3 reversed to obtain the
opposite inequality. Therefore d(c, ; +m)=a(c, :; +m), which proves the lemma.

Lemma 5.4 shows that the definition (5.9) gives the same value of c*() when a is
replaced by , so that c* does not depend on the choice of the function q.

It is important to know the behavior of a as s +c when c->c*(:).
PROPOSITION 5.2.

lima (c, ; s) -< 7ro

uniformly in c andon every set oftheform {(c, )[c >_- c*(:), c*(:) -<_ C, where Cis
a constant.

Proof. We have shown in the proof of Lemma 5.4 that for any (c, :) there exist no
and such that the inequality (5.12) is valid, and that this inequality implies that

(5.14) o+k(C, j; s--t)>=ak(C, ; S).

Because o is continuous in c and :, the inequality (5.12) is valid in a neighborhood
of (c, so). The set {(c, :)lc c*(:) _-< C, [s[ 1} is bounded, and it is closed because c*(:) is
lower semicontinuous. We cover it with finitely many of the neighborhoods and take the
largest of the no and the smallest of the to obtain the inequality (5.12) and hence (5.14)
for all (c, :) on this set. By Lemma 5.3 d,o+k (c*(sc), so; 0) <_-- q3 (--az). We set s-t in (5.14)
to see that if c c*(:) <_- C

a (c, ; t) _-< q3 (-).

Since ak is nonincreasing in c, this inequality is valid whenever c -> c*() and c*() =< C.
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We let k - eo to see that there is a such that

a(c, so; s)_-<q3(-oo) for s>-_t

when c _-> c*() and c*() _-< C.
We now recall that q3(-oe) is any number in the interval (zro, zrl). In particular it

may be chosen arbitrarily close to 7to. Since a is nonnegative and nondecreasing, the
statement of the proposition follows.

Proposition 5.2 implies that for c >-c*(), a(c, ; +eo)<_-zro. The following lemma
gives more precise information.

LEMMA 5.5. If 7rl is finite, then for any c and the limit a(c, ; +ee) satisfies the
equation

Proof. Suppose that

a(c, j; +oo)= O[a (c, ; +oo)].

O[a (c, :; oo)]>a (c, so; oo).

By continuity there is a number fl such that

fl < a c, :; oo)<O[fl].
Choose a continuous nonincreasing function O(s) such that

0(s) {fl fr s-<--l,
0 for s _-> 0.

For each positive integer k one can find nk so that

a,,k(c, j; k)>-_.

Then

Hence

ank(c,;s)>-O(s-k).

a(c, ; s) >-- am,+l(C ; s) >- O[O(x" + s + c k)](0).

We let k oo and use (3.1.v) to see that a(c, ; s) >= Q[B] for all s. This contradicts the
condition a(c, ; oo)<Q[fl]. We conclude that Q[a(c, so; oo)]-<a (c, ; oo).

Suppose now that

We choose/ so that

O[a(c, so; oe)]<a (c, ;

O[#]<a(c, :; oo)</ <
Since 77"1 is finite, we can choose a continuous nonincreasing function (s) such that

{rl fors-<-l,
/,(s) =./ for s _--> O.

We can now choose s so that a(c, ; sa)<-. Then

an(C, ; s)<--a(c, ,f; s)<=6(s 1--s)

for all n. Hence

a,+(c, ; s) =<max {q(s), O[,(x.+s+c- 1 s](O)}.
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We let n oe and then soo to see that a(c, )=Q[/], which contradicts the
condition Q[/] < a (c, q; c).

We have shown that Q[a (c, :; oe)] can be neither larger nor smaller than a(c,
which proves the lemma.

Remark. When rl is finite and g is discrete, then a (c, :; x. : + s + c) is automat-
ically a continuous function of x in and the sequence an(c, ; x + s + c) converges
to it uniformly on bounded sets. In this case the lemma follows immediately if we let
n oe and then soo in (5.4).

While each an(c, :;s) is continuous in c, :, and s, Lemma 5.3 shows that the limit
function a(c, ; s) is discontinuous in c at c c*(:). Moreover, a may also be dis-
continuous in s. Consider, for example, the operator

O[u](s) u(s + 1)[2- u(s + 1)3+ u(s- 1)[2- u(s- 1)3

on
It is obvious from the definition that

a(c, 1; s)=O forc=>l, s>=0.

Moreover, because

O[u](s + 1)-> }u(s)[2- u (s)] > u(s) when u (s) < 1/2,

we find that if q(s)> 0 for s < 0,

a(1, 1; s)_>-1/2 for s < O.

Thus the function a (1, 1;s) has a jump at s 0.
It is easily seen that a(c, 1; s)--- 1 for c < 1, so that c*(1)= 1 in this example.
Of course, since a(c, ; s) is lower semicontinuous and nonincreasing in c and in s,

it is continuous from the right in c and in s.
The following three properties of the wave speed give an intuitive feeling for this

function. Their proofs are obvious.
PROPOSITION 5.3. If C*() is the wave speed corresponding to the operator Q, then

the wave speed corresponding to the operator TyQ is c*(:) + y. :.
PROPOSITION 5.4. If O has the property that ]’or some [0, ro]

u(x) <-_ 6 for Ixl < b implies O[u](0)_-< 6,

then

c*()<=b forall.
PROI’OSITION 5.5. Let 01 and 02 be two operators with the properties (3.1), where

7to and 7rl are replaced by 7r(o1, 7r]1 for 01 and by 7r(o2, 7r]2 ]:or 02. Letc () be the wave
speed corresponding to 0. If ’/7’(02) "/7"(01) < "/7"]1) "/7"2) and

IIEU] <- I2[U]

]:or all continuous [unctions u on with values on [0, 7r]1) then

c()<-c()

for all .
6. Statement of the theorems. For the convenience of the reader we shall state our

results in this section. The proofs will be presented in the subsequent sections.
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For any set V of vectors in 9N we define

(6.1) nV={va+v2+’’ "+v, lvi6 V for] 1,... ,n}.

It is easily seen that if V is convex, then

nV {nv Iv e V}.

We denote the unit sphere {: Nl)sl 1} by SN-1.
We shall show that, in an asymptotic sense, c*(:) is a propagation speed for

arbitrary initial distrubances.
We define the convex set

(6.2) y= {x e lx. #--< c*($)v e sU-}.

If c*() were a true propagation speed, so that u 0 for x. so-<0 implied that
Q[u] 0 for x. sc_-< c*(), but not that Q[u] 0 for x. so-< c when c < c*(), then it
would follow that, if the initial disturbance u0 is concentrated at the origin, the
support of Ul Q[uo] is . More generally it would follow that if u, is defined by the
recursion U,+l=Q[u,], the support of u, is n6e+supp(uo). (Note that n9=
{xlx" <-- nc*(sc)V( e sN-1}.)

Our first two theorems say that this property is approximately true when n is large.
The first theorem says that if the support of Uo is bounded, then at time n very little
disturbance lies far beyond n5, while the second theorem states that the disturbance at
time n fills most of n0.

In all the theorems the sequence u, of functions in B is a solution of the recursion
U,+l Q[u,], and O satisfies the hypotheses (3.1).

THEOREM 6.1. Suppose that the set defined by (6.2) is bounded and not empty z.
Let ’ be any open set which contains . Suppose that Uo 0 outside a bounded set. If
Uo < rrl or if Uo < 7r+ and O satisfies the additional hypotheses (3.2), (3.3) and one of the
hypotheses (3.4), (3.5), or (3.6), then

(6.3) lim sup max u, (x) -<_ 7to.
n9

If 5 is empty and c* is bounded, (6.3) holds when the maximum is over the whole
space .

Note that if ro 0, the statements say that the limit is 0.
THEOREM 6.2. Suppose that the interior of5 is not empty and let 5f" be any closed

bounded subset of the interior of 5. For any tr > fro there exist a radius r with the property
that if uo(x) >=tr on a ball of radius r and if un+l O[u,], then

(6.4) lim inf min u (x) >= rr1.

If Uo <- a < rr+ and if Q satisfies the additional hypothesis (3.2), then

(6.5) lim min u,(x)= lim max u,(x)= 7rl.

The next two theorems show how to estimate the wave speed in some cases.

2 For the analogous results when 5e is unbounded or when is empty but c* is unbounded see [55].
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THEOREM 6.3. Ifm (x, dx is a bounded nonnegative measure on gwith the property
that for all continuous u with 0

(6.6)

then

O[u](x) <= I u(x y)m(y, dy),

(6.7) c*(s) =< inf
1
log f e"X’m(x, dx)

>o/x

THEOREM 6.4. Suppose that l(x, dx) is a bounded nonnegative measure on with
the properties that

l(x, dx) > 1

and that there is a positive e such that for all continuous u with 0 <= u <= e

Then is not empty and

(6.8)

O[u](x) >= f u(x y)l(y, dy).

1
c*(:) _-> inf log | e"X’l(x, dx),

>o/Z

where the right-hand side is +oe if the integral on the right diverges for all positive
If the measure is not concentrated on any hyperplane x constant, then has

interior points, and the radius r in Theorem 6.2 can be chosen so that it does not depend
upon r.

We note the following immediate corollary of Theorems 6.3 and 6.4.
COROLLARY. /f the nonnegative bounded measure m(x, dx) satisfies (6.6) when

0 <- u <- 7rl and iffor every positive 6 there is a positive e such that

(6.9) O[u](x)>=(i-6) I u(x-y)m(y, dy) when O<=u<=e,

then

(6.10) C*(sc) inf
1 f "X’me (x, dx)

t>o/X

for all unit vectors .
The hypotheses of Theorem 6.4 and the corollary imply that zr0 0. This condition

is also need for the last two theorems.
THEOREM 6.5. (hairtrigger effect) Let 0 and satisfy the hypotheses of Theorem 6.4

and suppose that the support of contains a set 7g# of vectors in with the property that any
bounded subset of is contained in a translate of the set n kVfor some integer n. Then if Uo
is not identically zero on and " is as in Theorem 2,

(6.11) liminf min Un(X)"17"l.

This theorem states that r in Theorem 6.2 may be chosen to be arbitrarily small,
regardless of the value of r.
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The last theorem asserts the existence of a traveling wave of speed c with normal :
whenever c >= c*(:). We again require r0 to be 0 and we need the property (3.7).

THEOREM 6.6. Suppose that r0=0 and that, in addition to (3.1), Q has the
compactness property (3.7). Then if c >-_c*(), there is a nonincreasing function W(s)
which is defined for all s of the form x. - nc with x in and n an integer such that
the sequence un(x)=W(x’-nc) satisfies the recursion (1.2), W(-c)=l, and
w(+o)=o.

7. The rate of propagation. (Proof of Theorem 6.1) We shall use the construction
of 5 in order to prove Theorem 6.1. We begin with an easy lemma.

LEMMA 7.1. Suppose 0 <= Uo(X) <--_ a < vrl, and that for some finite collection of unit
vectors 1, , there is a p such that for each

Uo(X) 0 for x. i P 1.

For a positive e define the set

={xlx’ji <--c*(gji)+e, 1,’’’, K}

Then, if un is the solution of the recursion

(7.2) lim sup max un (x) -< zro.
n-c xn

Proof. We choose a function q(s) with the properties (5.1) and the additional
property

0(s)=a fors

Then

(7.3) Uo(X) <-_ q9 (x, i p) for 1,.. , g.

We define the sequence an(C*(i), i; S) by the recursion (5.4). Then the sequence

vn (x) an (c*(i), i; x"

satisfies the recursion

Vn+I(X) =max {q(x" i-(n + 1)c*(2ji)-p), l[Vn](X)}>= l[Vn](X),

while (7.3) shows that Vo(X) >-_ Uo(X).
Proposition 4.1 implies that

Un (X) <- On(X)= an (c*(,i), i X" i nc*(i) p)
(7.4)

<- a(c*(ji), ,fi x" Ci nc*(i)- p)

for allnandfori-1,...,K.
If x nd/, then x. i > n(c*(i)+ e) for some i. Because a is nonincreasing in s, we

find that

(7.5) max un _-< max a(c*(i), ji;ne-p).
C: nd& <= K

The statement of the lemma now follows from Proposition 5.2.
In order to use Lemma 5.1 we need to show that there is a set of the form (7.1)

inside 5e’.
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LEMMA 7.2. If is bounded and nonempty, and if the open set’ contains , then
there is a set of the form (7.1) such that

Proof. We begin with the well-known fact [6, 27] that a bounded convex set ow
can be approximated by an open convex polyhedron

P={xlx’ <b, a 1,... ,L}

in the sense that if 5e lies in the interior of ow’, there is a P such that 5" c p c 5’. Because
ow is bounded, it lies in the interior of a closed ball Bn, and we may choose P so that its
closure lies in the interior of Bn.

Because oW lies in P, its intersection with each half-space {xlx’rh >= b,} is empty.
Because of the definition (6.2) of 5e and because ow Bn, we can write this fact in the
form

Cq [B C {xlx" n >- b, x. <- c*() + } (R)].

Because of the presence of the set Bn, each of the sets in brackets is closed and
bounded. Helly’s theorem (the finite intersection property) (see, e.g., [6, p. 3]) states
that there is a finite collection of the sets in brackets whose intersection is empty. That is,
there are unit vectors lc, ’, K=a and positive numbers 1, ", 6Ka such that

B {x[x" i c*(i) + 6i, j 1,..., K} {xlx, n <

It follows that

B {xlx" c*()+ 6, i= ,..., K, , ,... ,}= P.

Because the closure of P lies in the interior of B and all the sets involved are
convex, it follows that the set in braces is a subset of P. If we let 1,"" ", be an
ordering of the vectors i and e min 6i we find that the set defined by (7.1)
lies in P.

Because P ’, we have ’. It obvious that = , so the lemma is proved.
If Uo < 1 and u0 0 outside a bounded set, then because Uo is continuous there is

an a S(o, 1) such that UoNa. Thus the statement (6.3) of Theorem 6.1 is an
immediate consequence of Lemmas 7.1 and 7.2 in this case.

Suppose now only that Uo is less than + and vanishes outside a bounded set, and
that the hypotheses (3.2) and (3.3) are valid. Because u0 is continuous there is a
u Ira, +) such that Uo N u.

If we define the sequence of constants u, by the recursion U,+l O[u,], uo u, this
sequence decreases to and there is an integer mo which depends only on u such that

UmoN 1 + e, where el is the constant in (3.3). By Proposition 4.1,

Un 1 + 81 for n mo.

We recall the nondecreasing sequence y, defined in (5.5). We wish to show that
u, y, and

lim Un(X)= ’n

for all n. Suppose this is true for some value of n. Then u.+a _-> y+l.
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Assume that there is a positive 6 and a sequence Xk with IXkl such that

u,+(x) >- y,+ + .
By taking a subsequence if necessary, we may assume that Xk/IXkl converges to a unit
vector r/. Choose a nonincreasing continuous function O(s) such that ()=y, and

u, (x <- e,(x ).

Then

In particular,

u,+(y) -< O[e,(x. n)](y) O[6(x.n + y. n)](0).

u,+(x) <-_ Q[O(x n +x n)](0).

Since Xk "rl oe, the sequence of functions q,(x. rt + xk’ rt) converges to y, uni-
formly on bounded sets. Thus by (3.1.v),

lim sup U,+l(Xg) _<-

contrary to the assumption that U,,+I(Xk) >- y,, + 6. We conclude that u,,+(x) converges
to y,+a as ]xl oo. Since Uo 3’o 0 outside a bounded set, we have shown by induction
that

lim un(x)=y, forn->_0.

Since yn =< zro < r, we see that Umo(X) < zrl outside a bounded set, whose diameter
we call D.

Suppose that for some ml> mo there is a point Y such that u,.l(Y) -> 7r. By
(3.3) and the translation invariance of Q, there must be vectors xl in K1 and y in

K2 such that u.,1-(Y +xa)=> 7rl and u.,l_a(Y + yl)=> zrl. By the same reasoning, there
must be x2 in K and y2 in K2 such that u.,-2($ +x + x2) => ra and u.,-2($ + yl + y2) =>
7r. Proceeding in this way, we find that U.,o(Y + xl + x2 +" + x.,1-.,o) -> 7r and
U,o(Y + ya +" "+ Y,---,o) --> r where Xi K and yi K2.

Because K1 and K2 are convex, (m mo)-(xx +" + x.,-.,o) K1 and (m
mo)-l(Yl+"" + Y.-.,o) K2. If d is the positive distance from K to K2, then the
distance from $ + xl +.. + x,.-.,o to + yl+" + Y-,-.o is a least (ma- mo)d.
Consequently, we must have (ml-mo)d <=D. Thus we find that if we choose

D
m mo++l,

then

(7.6) u,l < 7/’1.

Because u., is continuous and its limit superior at infinity is at most 7to, there is an
a (fro, ’t) such that u,l <-a.

If the condition (3.4) is valid, (6.3) now follows from applying Lemmas 7.1 and
7.2 to the sequence u,/,.

If (3.6) holds, the sequence yn is strictly increasing. We recall that u, y, as
[xl az, that aml+l(C*(), ; +t::X3)= ’Ym+t > "Ym, and that Urtlx(X) a < Q[a]<-_a(c*(),
so;-c). It follows that there are k and p such that

Uml (X)<--_a,.,,+k(C*(), ,; X .--mxc*()--p)
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and hence by Proposition 4.2 that

u,,(x) <- a,,+t,(c*(), ; x - nc*()-p)

<-_ a(c*(), ; x -nc*()-p)

for n => m. Thus we obtain (7.4) and the rest of the proof proceeds as before.
Finally suppose that (3.5) is valid. We see from (3.5i) that if q(s)= a for s-<-1

then for a sufficiently small/3

a(c*(),;s)>=h(s+c*()+l) for s_-> -c*()- 1.

Since a is nonincreasing, we have for any So> max {0,-c*(:)}

a(c*(), ; s)>=[3h(so+c*()) for s<-so-1.
If h(so+c*())<= 1, then by (3.5.i)

a2(c*(), ; s) >- [3h(so + c*())h(s + c*()- So + 1)

>- [3h(so + c*(:)): for s =< 2s0- 1.

By continuing in this manner and setting So (s + 1)/k, we find that

(7.7) a, (c* (,), ’" s)>= ][h(S+l+kc*(’))l’k
for all unit vectors : as long as h((s + 1 + kc*())/k) <- 1, and s > max {0, -kc*(:)}.

From (3.5.ii) and the fact that Uo 0 for ]xl => r we see that

Um(X + r) <- Bh for X rr1.

Thus (7.7) shows that there is a constant E such that for every :
(7.8) u.(x) <- a. (c*(:) " x.-kc*- r- 1) for x. : > E.

Since k,,, >- 1,

at,,,(c*(), :;-oo)-> OEc] > c ->

Since a is nonincreasing in s, and continuous in c and :, we can find a O so that for
any given set q,.. , :c of unit vectors

u,,(x) <= a,, l(C*(i)’ i;X’i--[)
for x. i/ and 1,. , K. By (7.8) this inequality then holds for all x.

Proposition 4.1 now shows that

<= a(c*(i), i; x i l’c*(i)dr- mlc*(i)--p),

as in (7.4), and (6.3) follows from the remainder of the proof of Lemma 7.1 and from
Lemma 7.2.

If c* is bounded and 5e is empty, let sea, :2u be the unit vectors in the
coordinate directions and their negatives. We have the representation

o,o= f"] {XlX i <=C*(i)+ e, l, 2N, x <-c’*()+ e}
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of ow as an intersection of closed bounded sets. Since 5" is empty, Helly’s theorem
(the finite intersection property) shows that there are finitely many unit vectors
:2N/1, ’, :c and a positive e such that the intersection of the halfspaces {xlx" i
c*(i)+e}, i= 1,.. ",K is empty. Then for each y in RN there is an such that
Y i > C*(i) "" E. We take any x, set y n -1x and insert the resulting inequality into
(7.4). Since a is nonincreasing in s, we find that for every x in

u,,(x) <- max a(c*(ji), ji; en-p),

and the last statement of Theorem 6.1 follows from Proposition 5.2.
Thus Theorem 6.1 is proved.
Remark. When the dimension N is one, the argument of Lemma 7.1 gives the

slightly stronger version of (6.3)

limsup max un(x)-<Tr0.
o--->oo d S/’ >=

The statement (6.3) of Theorem 6.1 is still valid when 5 is unbounded, provided
6e’ satisfies slightly stronger conditions. The proof can be found elsewhere [55].

The following example shows that the set 5 may, indeed, be empty.
Example 7.1. Let O[v] be u(1, x), where u is the solution of the initial value

problem (2.14) and

f(u)=u(1-u)(u-).
Phase plane analysis (see, e.g., [5]) shows that c*(:)< 0 for all :, so that 5 is empty.
The results of [5] also show that if 0_-< u _-< 1 and u 1, then v approaches zero as
t-.oe. In particular, un(x)= v(n, x) approaches zero as n

We also present an example to show that extra conditions such as (3.3) and (3.4),
(3.5) or (3.6) are needed to keep initial data which lie above r from propagating at
a speed higher than c*(:).

Example 7.2. Let N 1 and let be the set of integers. Define

O[u](x) =q(u(x))+[4q(1/4)- 1] E (4q(J))-’P(U(x-k)),
k=l

where

q(u)={2u-3uz+2u3,+

and

{0,p(u)=
(u-- 1/2<-_u <- l.

Here fro 0, r g, 7r+ 1.
Since p 0 for u < 1/2= 37"1, we see that c*(+l) 0. However, if

we have

(7.9)

I" 43-’ forx=0,
Uo(X

0 otherwise,

Ul(k) =[4q(1/4)- 1]p(1/4)[4q(41-)]- for k >0.
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Because q"< 0 for u < 1/2, we see that q(u)->_ 4q(1/4)u for u -<_1/4. Consequently, if un(k)<-1/4
for n <k, then un+l(k)>-4q(1/4)un(k). Starting with the values (7.9) at n 1, we find that

uk(k) >--_ [4q (1/4)- 1]p ()[4q (1/4)]-1

for all positive k. Thus an impulse of magnitude at least 1/4 concentrated at 0 is
propagated with a speed at least equal to 1, so that Theorem 6.1 is not valid.

It is not known whether this phenomenon can also occur when u0 <-_ 7rl.

8. Convergence to the equilibrium value. (Proof of Theorem 6.2). According to
the hypotheses of Theorem 6.2 6e has at least one interior point yo. Then

yo" : < c*(:)

for all unit vectors .
If u,,(x) satisfies the recursion u/l O[u,] and if we define the sequence

v (x) u (x + nyo),

then vn satisfies the recursion

vn+=T-,oO[V,].

By Proposition 5.3 T_,oO has the wave speed c*(:)-yo" : in the direction . Thus,
the introduction of moving coordinates replaces O by T_,oO, c*() by c*()-yo" :,
and the set 6e by its translate by -yo. We then also translate 6e" by -yo. It is easily
seen that Theorem 6.2 for vn in terms of T_,oO implies Theorem 6.2 for un in terms
of O.

Consequently we shall assume without loss of generality that x 0 is an interior
point of 6e, so that

c*(’) > 0

for all unit vectors .
We now note that Theorem 6.2 is strengthened when 6e" is enlarged. We add to

" a closed neighborhood of the origin which also lies in the interior of 6e. Because
6e is convex, we may replace this union by its convex hull and still obtain a closed
bounded set in the interior of 6e. It is well known that a closed bounded convex set
may be approximated by a larger closed convex set whose boundary is analytic, has
positive Gaussian curvature, and lies within an arbitrarily small distance of the original
set (see [6, 27]). Consequently we shall assume without loss of generality that 6e" is
a closed bounded subset o] the interior o] whose boundary is analytic and has positive
Gaussian curvature, and x 0 is an interior point o] ".

We define the distance function

D(x)=inf d>0 x
D(0) 0, so that 6e"= {xlD(x)<- 1}, and the boundary of 6e" has the polar coordinate
representation Ixl 1/D(x/Ixl). We also define the vector field

1
r(x) Igrad D(x)l grad D(x).

Because the boundary of 6" is analytic and has positive Gaussian curvature, D(x)
and -(x) are analytic for x 0. Moreover, D(x) is positive homogeneous of degree
one and r(x) is positive homogeneous of degree zero. In fact, ’(x) is the unit outward
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normal vector at that boundary point of 6e" which lies on the ray from the origin
through x.

Because the boundary of 6e" has positive curvature, the implicit function theorem
shows that the equation D(x)r(x)= : can be inverted, and that the inverse function
x tr() is analytic for s # 0. Since Ir(x)l 1, D(x) I:l. Hence, if I1 , () lies on
the boundary of ". It is the unique boundary point at which the unit outward normal
is .

The support function of " is defined for ]] 1 by

S() max x. .
It is easily seen that this maximum is attained at x (). Thus, S()= . (), so
that B() is analytic.

Because of the definition of S() and the homogeneity of D(x),

x.
D(x)S()

for x # 0. Hence

D(x) max
I1= S()’

with equality when : r(x).
We suppose that " contains a ball of radius p and lies in a ball of radius R,

both centered at the origin. Then

O --< $() --< R for I[ 1,

R- p

Because 6e" lies in the interior of 6e, there is a positive constant e such that the
dilatation (1 + e)Se" still lies in the interior of 6e. It follows that

(l+e)S(sC)<c*(s) forl[ 1.

We shall begin the proof of Theorem 6.2 by constructing a comparison function
which will force un to be uniformly positive on the set n (1 + e)6e". This comparison
function will be constructed out of the functions an (c, :; s) which were defined in 5.

We first choose some a (r0, zrl) and a smooth nonincreasing function 0(s) with
the properties (5.1) and the additional property

o(s)=a fors<=-l.

The family of nonincreasing functions an((1 + e)S(), ; s) is defined by the recursion
(5.4) with c (1 + e)S(s). Since this c is less than c*(sc), an((1 + e)S(), ; s) increases
to the constant 7r as n--> oo. Because an((1 +e)S(sC), so; 0) is continuous in :, Dini’s
theorem [9, p. 106] shows that the convergence is uniform on the bounded set 1:1 1.
Therefore there is an integer no such that

(8.1) an((l+e)S($),sc;0)>a forn->n0, ]scl 1.

We wish to construct an N-dimensional comparison function of bounded support
by patching together functions of one variable. For this purpose we shall first approxi-
mate an((1 + e)S(), ,; s) by a function which is constant for small s and zero for large
s. We begin by constructing a family of operators Qk on B in the following manner.
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Let st(s) be a smooth nonincreasing function of one variable with the properties

1 for s-<_,
(8.2) r(s)

0 for s -> 1.

For any u in B define

(8.3) Ok[u](y) O[u(x + y)r()] (0),

where y is fixed and the argument of Q is considered as a function of x. We state the
properties of this family of operators as a lemma.

LEMMA 8.1. The family Ok takes B into itself and has the following properties.
(i) Ok has the properties (3.1.i), (3.1.ii), (3.1.iv) and (3.1.v).
(ii) For each u in B, the sequence Ok[u] is nondecreasing in k and converges to

O[u] as k m.
(iii) Ok[u](xo) depends only on the values of u in the ball of radius k centered at

Xo. That is, if u (x) v (x) for Ix Xo[ <- k, then

O[u](xo) O[v](xo).

Proof. Property (iii) is obvious from the definition. Property (i) follows immedi-
ately from the definition and the fact that O satisfies (3.1). Property (ii) follows from
the fact that for each fixed y the sequen.ce u (x + y)’(Ix I/k) increases to u (x + y)
uniformly on each bounded set as k oe together with (3.1.iv) and (3.1.v).

We now define the sequence a k). (c, sc’, s) by means of the recursion
k (C," s) max {q (s), Ok[ak)(x’+S+C)](O)},an+l

(8.4)
ao(c, ; s)=q,(s).

Proposition 4.2 and the proof of Lemma 5.1 show that a)((l+e)S(sC), sO;s) is
continuous in and s, nonincreasing in s, and nondecreasing in n. By Lemma 8.1,
ak)((1, +e)S(), ’, s)increases to a,((l+e)S(),se’, s) as k. Since all these func-
tions are continuous, Dini’s theorem states that the convergence is uniform on any
bounded set of (sc, s). In particular, we see from (8.1) that there is an integer ko such
that

(8.5) a(k),o ((1 + e)S(), ; O) > a for I1 1.

We define the sequence a(k)n of constants by the recursion
(k) (nk)On+l Ok[o ],

(8.6)
Co a o(s) for s <_--1.

Then a (k)n is nondecreasing in k and converges to an, which is defined by the recursion
an+ O[an], ao a, as k

By replacing the operator O by min {O[u], rr,-r(zr,-u)} with r positive and
small if necessary, we assume without loss of generality that 0[/3]< Era for

(k) for all k. We choose koThen an is strictly increasing. In particular, ano+, > ano--> a no
so large that in addition to (8.5) the inequality

(ko) > (ko)(8.7) a no+ > ano a no

is satisfied.
The advantage of a(k)n over an is that it is constant for large s and for small s.
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LEMMA 8.2. a(k)n is increasing in n and for each n

(8.8)
fors<-l-n[ko+c],a)(c’;s)=

0 fors>-n[ko-c].

Proof. We note that, if Qk[a]<--a, the proof of Proposition 4.2 shows that a (k)n < ce

for all n. On the other hand, by (3.1iii) Q[a]> a, so that an > a for n _-> 1. In particular
ano > a. Therefore we see from (8.7) that Qko[a]> a and then from Proposition 4.2
that a ()n is increasing in n.

It is easily seen from the property (iii) of Lemma 8.1 and the fact that a n(k) --> a > q
that if (8.8) holds for n, it also holds for n + 1. Since a(og) (c, so; s) q(s), about which
we have assumed that (8.8) with n 0 is valid, the lemma is proved.

Since a (ko) _<_ ten -< zrl, and a(k) is nondecreasing in n, the limit

(ko)(8.10) a (o) lim a

exists. The proof of Lemma 5.3 shows that because of (8.5)

(8.11) lim a()((1 +e)S(sC), " s)=-a(

The inequality (8.5) also implies that

a(k((l+e)S(),sC’s)>q(s)n forn>no.=

Therefore the recursion (8.4) becomes
(ko)

an+l ((1 + e)S(), ; s)
(8.12)

=O,o[a(k)(x.sC+s+(1 +e)S(sC))](O) for n >no, Isc[ 1

We shall need the following lemma, in which we replace the variable s by
t= s/S().

LEMMA 8.3. There is an integer nl > no such that
(8.13)

(ko)
an1 ((1 q- 8)S(), ; S()t) > a (k)

no ((l+e)S(sc’), ;S(’)t) fort6,[sc] ]’1 1.

Proof. We see from (8.7), (8.11), and Dini’s theorem that there is an integer
n > no such that

(ko (1 + e)S() so; noko > a noanl

(o is nonincreasing in s, it follows that the same inequality holds forBecause a nl
(ko)(ko <a the inequality (8.13) is then valids<-_nokoR/p. Sincep_<-S()_-<R and ano no

when <= noko/p. When >- noko/p, then S(sC’)t >- noko and because c (1 + e)S(’) >0
we see from (8.8) that the right-hand side of (8.13) is zero. Thus (8.13) is true
for all t.

We recall that the ratio x. sc/S(sc) is homogeneous of degree zero in sc and takes
on its maximum value D(x) when sc is equal to the unit vector r(x). Moreover, S(sC)
is positive and analytic for #0. Then Taylor’s theorem shows that x.sc/S(sC)
D(x)+O(Is-r(x)]2) for sc near r(x). By looking at the bounded set [sol 1, Ix[-<_ 1 and
using the homogeneity in x, we find that there is a constant m such that

x.sC(8.14) -() >=D(x)- mlxl I:-(x)[= for [sol 1.
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The function r(x) is smooth for x # 0 and homogeneous of degree zero. Therefore
if x and y are any two nonzero points in N

r
Y X_Ir(X r(y )l [r <-_ M -]

for some constant M. But

x y x.y--[- 2 1
Ixl [yl EIx- y -(Ixl-[y1)23 Ix[ lyl’

so that

i-1/2 -1/2(8.15) [’r(x)
We now choose a constant A which satisfies

-1 -1(8.16) A>p= +nl[kop + 1 +e]+(nl no)kop-l+2mMZp -le-l(nl no)Zko2,

and define the comparison sequence

(8.17)
(ko)en(x)=a, ((1 +e)S(r(x)), r(x); S(r(x))[D(x)-A-(1 +1/2e)n]),

n =0, 1,2,....

We recall that r(x) is the unit outward normal to 9’’ at the boundary point on the
ray from the origin through x. Because O <_-S <_-R and c =(1 +e)S, (8.8) shows that

-1 -1(ko forD(x)<A p nl[kop +l+e]+n(l+e),O nl(8.18) e,(x)
0 forD(x)>=A+nl[kop-l-l-e]+n(l+1/2e).

-1Since R-1lxl =<D(x)=<p Ix[, we see from (8.16) that e, a(k)t near x 0, so that e,
is continuous, and e, vanishes outside a bounded set. The most important property
of e, is given by the following lemma. As usual, we define Q,o to be the rth iterate
of the operator Qko.

LEMMA 8.4. If A satisfies the inequality (8.16), then the sequence e,(x) satisfies
the inequality

-,--O[e,] forn=O, 1 2,...(8.19) e,+,l_,O <_- Oko
Proof. Since e, is obtained from eo by replacing" A by A + (1 + 1/2e)n, which is at

least as large as A, it is sufficient to prove (8.19) for n 0.
Because D(x)<= Ixl/p, we see from (8.18) that if

-1]Xol <---- p{A p n l[kop -1 + 1 + e ]}- (n no)ko,
(ko) for Ix Xo[<(nl no)ko Because of the definition (8.3) of Ok wethen eo(x) a,1

find that for such Xo

(ko) > (ko) > _,,o(XO)O"’-"[eo](Xo) a2,,_,o an1 enlko

so that (8.19) with n 0 is true.
We now consider a point x0 where

(8.20) [Xo] > p{A p n l[kop + 1 + e ]}- (n no)ko,

and let x be any point such that

]X Xol <-_ (n no)ko.
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We then see from (8.15) and (8.16) that

mlxl Jr(x)- z(xo)l2 <-1/2e.
The latter, together with (8.14), shows that

1D(x)<X Z(Xo) + e forlx-xo[<(n-no)ko.
s((xo)) -(o) is nonincreasing in s, it follows that when Xo satisfies (8.20),Since a

rx.r(Xo) 1 ])()( (I + e)S((x), r(x); S(r(x)))[;(-o -A+ eeo(x >- a

for Ix -Xol <- (n l- no)ko.

We now use the inequality (8.13) to see that
(ko)eo(x)>=a,o ((1 + e)S(r(Xo)), r(Xo); x "r(Xo)-(A-1/2 e)S(r(Xo))

for [x Xo[ <- (n no)ko.

Since Xo" r(Xo)= S(r(Xo))D(xo), it follows from the order-preserving property of Oko
and the recursion (8.12) that

Oo-" [eo](Xo) >= a, ((1 + e)S(r(Xo)), ’(Xo); Xo r(xo)

(A -e)S(’(Xo))-(n-no)(1 +e)S(r(Xo))
(ko)-->_a., ((1 + e)S(r(Xo)), Z(Xo); S(r(Xo)[D(xo)-A-(n-no)(1 +e)]

e,,-,o (Xo).

We have established the inequality (8.19) for all points Xo, and, if we replace A
by A + (1 + 1/2e)n, for all n, so that the lemma is proved.

Next we show that if Uo is uniformly positive on a sufficiently large ball, then the
sequence e, can be used as a comparison sequence.

LEMMA 8.5. For any r (fro, r) there are a radius r and an integer l such that,
i[uo(x)>=cr on the ball {xl ]x]<=r} and i[u,+=O[u,], then

ut(x) >- eo(x) for l -< < l + n no.

Proof. Define the sequence of constants/x, by the recursion

.+ O[z.], o r.

Then tx, increases to zr. Choose an integer l such that
(ko) > eo(x).(8.21) tx > a,

We use a nonnegative smooth function ’(s) with the properties (8.2) to define
the one parameter family of functions v (). by the recursion

(r) Q[t) (r) ], l)(or)(x)_.O.(]_).On+l

By (3.1.v), v) (x) increases to/z as ro, and by Dini’s theorem the convergence is
uniform on bounded sets. Because of the inequality (8.21) there is a value ro of r such
that

v!r), >=e0 forl <=l<l+n-no
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on the bounded set where e0> 0. Since v is nonnegative, these inequalities then
hold for all x.

Since vg’ =0 for Ixl>-_r and vg’ -<tr, Proposition 4.1 shows that if u0>-_tr for
Ix <- r, then Ul 1)Ir’r) eo for l <- -<_ l, + nl- no, which proves the lemma.

We now show that if u0 => tr on a ball of radius r, then for all sufficiently large
n the function un is uniformly positive on a large set.

LEMMA 8.6. Suppose that, for some tr (0, fro) and some 2 in u, Uo(X)>=tr for
Ix 2[ <- r=. Then for all sufficiently large n

(ko) whenD(x) < (1 +1/4e)n.(8.22) UtI(X) O R1

Proof. Since Q[u] >- Qko[U] for all u, we see from Lemma 8.5, (8.19), and Proposi-
tion 4.1 applied to the operator QT,-" that for O<=q <nl-no and j>=0

By (8.18)

(8.23) (ko)u.(x)>-a.
-1 -1forD(x-)<=A-p -n[kop +l+e]+(n-l-n)(l+1/2e).

We note that

(x-Z). :< x. -.(8 24) D(x-/)=max =max +max =D(x)+D(-Y).
[=1 S() Il =1 S()

That is, the function D is subadditive. Hence if D(x) (1 + e)n and n is suciently
large, the condition on D(x-) in (8.23) is satisfied, which proves the lemma.

We have shown that, if Uo > on a ball of radius r, then when n is large u, is
uniformly greater than 0 on the set (1 + e)n". We shall now show that this fact
implies that u, is arbitrarily near 1 on the set n".

LEMMA 8.7. Suppose that Uo(X) (o, ) on a ball Ix- r. Then for any
positive there is an n such that if mn and D(x)m, then u(x)-.

Proof. Because the sequence
converges to 1, there is an integer n2 such that a, >-6.

Let the sequence w(r), be defined by the recursion

(r). O[W)], Wr)(x) ([xl/r)Wn+
(r)where is a smooth nonnegative function with the properties (8.2). Then w, (0)

converges to a, as r . Hence there is an ? such that

Proposition 4.1 and the translation invariance of O now show that if u, (x) a on the
ball ]x x[ F, then

(8.25)

Because of the subadditivity (8.24), and the bound D(x) Ixl/p, the inequalities
D(x)n +n2 and Ix-x1] ? imply that

D(x 2) D(x) +D(x X l) + D(-2)

n + + +

When n is sufficiently large, say n g na- n2, this inequality implies the condition in
o} >a for Ix Xl] <F, and the inequality (8.25) follows.(8.23). Therefore u,(x)ga,,
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Thus when n+n2>-_n and D(Xl)<=n+n2, we have un+n2(xl)>-rl -& This is the
statement of the lemma with m n + nz.

Equation (6.4) is an immediate consequence of this lemma. Equation (6.5) is an
immediate consequence of (6.4), (3.2), and Proposition 4.1. Thus, Theorem 6.2 is
proved.

The following example of Fujita [18] shows that the radius r in Theorem 6.2
must, in general, depend upon

Example 8.1. Let O[u](x)=v(x, 1), where v(x,t) is the solution of the N-
dimensional Fisher equation

Ov
--=av+f(v)

with the initial values v (x, 0) u (x). If f(0) f(1) 0 and 0 <f(v) <- v 4, the hypotheses
(3.1), (3.3) and (3.5) are valid with ro 0, ’1 ’+ 1. The function

w(x, t) [6(t + 1)]-1/3 e -Ixle/4(t+l)

satisfies the differential inequality Wt ’ AW "-f(w). It follows from the maximum prin-
ciple for parabolic equations [43, Thm. 3.10] that if u(x0) w(x, 0), then un(x)<=
w(x, n). Thus un does not approach 7rl and, in fact, goes to zero. The explanation is
that for each tr the set where u0 >- o- does not contain a sufficiently large ball. We
conclude that r > 2llog 61/3o’11/2, which approaches infinity as tr goes to 0.

The-following variant of Theorem 6.2 gives a condition under which r does not
need to vary with tr. It will be used in the proof of Theorem 6.4.

LEMMA 8.8. Suppose that Q satisfies the conditions of Theorem 6.2 and that it
has the additional property that

(8.26) Q[pu]>=pQ[u]

for every constant p with 0 <= p <-_ 1. Then there is a fixed radius r such that Theorem
6.2 is valid when r is replaced by r for any positive

Proof. Theorem 6.2 was proved by showing that when Uo-_> (r on a ball of radius
or, then a translate of some Uo lies above the first member eo of a sequence with the
properties (8.18) and (8.19).

The additional property (8.26) shows that once one has constructed such a
sequence, the sequence pen with 19 (0, 1) again satisfies (8.19) and (8.18) with the

(o) replaced by the positive constant pa (ko)positive constant an1 nl

Let e0 0 outside the ball I/I-<- r, Then if uo is uniformly positive in a ball Ix 21-<r
of radius r, there is a positive p such that

Uo(X) >= peo(x 2).

Proposition 5.1 then shows that

Um(nl-no)(X) >-- pem(n-n2)(X 2) for rn ->_ 0.

Because of (8.19) it follows that there is an mo such that for Umo(nl-no)>o on a ball
of radius r, where (r =pce

The proof of Lemma 8.6 still gives (8.22) for sufficiently large n, and the proof
of Theorem 6.2 is finished as above.

9. Bounds tor the wave speed, (Proof of Theorems 6.3 and 6.4). Theorems 6.3
and 6.4 will follow from Proposition 5.5 when we determine the wave speed of the
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comparison operator

(9.1) M[u](x)--min {, Ieu(x- y)m(y, dy)}.
Here m is a nonnegative measure on Y with the properties Ie m (x, dx) < eo and

(9.2) Ie re(x, dx) > 1,

and/3 is any positive constant or +oe. (In the latter case, M is linear.) M is defined
on the set of continuous nonnegative functions. It has the properties (3.1) with ro 0
and rl =/3, so that its wave speed 6"() is defined. We shall obtain a formula for this
wave speed.

LFMMA 9.1. For each unit vector the wave speed 6"() ofMis given by the formula

(9.3) 6*(,)=,>oinf {1 I ""m }-log e (x, dx)

which is independent of.
Moreover the set

{xlx. <-_ e*(:)v s-}
is not empty, and its interior is empty if and only if the measure m is concentrated on
a hyperplane x. constant.

Proof. Consider a fixed unit vector . For every/x > 0. define

(9.4) (/x) =1log I e"’’m(x’ dx)

with (/z)= + if the integral on the right diverges.
For any/x such that (/x) is finite, consider the function of one variable

w(s) min {/3, e-"S}.

Then w (s) < e -,s, and hence

M[w(x tj + s + (/x))](0) -< 1 e--Y+s+’t’))m(Y’ dy)

--e

because of the definition (9.4) of (/z). The definition (9.1) of M also shows that
M[w(x + s + dp(p))] _<_ ft. Consequently

m[w (x tj + s + dP(lx ))](O) --<_ w (s ).

If (s) is any function with the properties (5.1) such that q(s)<_- w(s), then also

max {q (s), m[w (x se + s + dP(Iz ))](O)} _--< w (s ).

Therefore if the sequence a, ((/x), so; s) is defined by the recursion (5.4), Proposition
4.1 shows that a, _-< w for all n. Hence a(dP(lz), tj; s) <- w(s). It follows that a((/z),
so; +)= 0. We conclude that

(9.5) 6"() <- (/z)

for all positive/z, so that inf () provides an upper bound for the wave speed 6*.
We now wish to show that the infimum of () is equal to 6*. We shall assume

for the moment that the measure m vanishes outside a ball Ix <--b. Then (/x) is
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analytic in/x. We define the function

(9.6) x Cem(x, dx)
()-- (/z)’= eX.m(x dx)

Differentiation shows that

(9.7) ’(/x) e I[x" " O(tz )]2e"X’m (x, dx) >= O,

so that is nondecreasing. Moreover by (9.6)

(9.8) ’(tz) I__ [0 ],

so that

(9.9) (/z 2’)’ =/x0’ -> 0.

We see from the definition (9.4) and the condition (9.2) that (/x)o +ee as
decreases to zero, while 0(/x) remains bounded as/x 0 because the support of m is
bounded. Then (9.8) shows that is decreasing near/z 0, and (9.9) shows that ’changes its sign at most once.

It is easily seen that if

K sup {x’ sC[x e supp rn },

where supp rn is the support of m, then

(9.10)
lim (/x) lim (/z) K.

Moreover,

(/x) K +-- log e (x, dx)+ m(x, dx)
[d, $j<K =K

and the first integral approaches zero as /z oe. Consequently, there are two
possibilities"

(a) If

m(x’ dx)--> 1’

then q(tz)K _-> O(/x) for all/z. is nonincreasing by (9.8), and

inf O(tz) (oo) K (oo).
tx>O

(b) If

re(x, dx)< 1,

then (/z) <K for all sufficiently large/x. Hence there is a/x * > 0 such that ’ < 0 for
</x* and ’>- 0 for/ >/x*. Then

(9.11) inf (z) (/x*) O(x*),
ix>0
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and by (9.8)

(9.12) cP(/z) > (/z) for < *.

For the case (a) we define * +, so that (9.11) and (9.12) are also valid for case
(a).

We now choose any/x (0,/z*), and introduce a positive parameter 3’ which is
so small that the integral

e ’y’* cos 3’y. :m (y, dy)

is positive. We define the constant

1 -1 i e "y’ sin 3"y. :m (y, dy)
(9.13) z =-tan ,y.e

y e cos 3’y. sCm (y, dy)"

Clearly,

lim z ff(/x).
-,/--* 0

We suppose that 3" is so small that

(9.14) y(b + Izl) < r,

where m (x, dx) 0 for Ix[ -> b.
For any e such that 0 < e -<_/ we define the function

e e -’’s sin 3"s for 0 < s <
v(s) =t0 elsewhere.

Then

M[v(x.+s + z)](0)=min {/3, I v(-y. :+s +z)re(y, dy)}.
When 0 <- s <= r/3’ and lY[ <- b, (9.14) implies that -zr/3" <= y. : + s + z <- 2zr/3’ so that

v(-y. + s + z) >= e e -’(-y’e+s+z) sin 3’(-y + s + z).

We then see from the definition (9.13) of z that for 0<s < r/3"

M[v(x + s + z)]>=min {, el e sin 3"(-y. + s + z) re(y, dy)}
=min{,e-’Zsec3"zle .lj cos 3"y" m(y, dy)v(s)}.

As 3" goes to zero, the coefficient of v(s) approaches e "[’(")-’(’)], which is greater
than 1 because x < *. Since v _-< e -<_/, we find that when 3" is sufficiently small,

(9.15) M[v(x + s + z)]>_- v(s)

for 0 <= s <-zr/3". Since v vanishes outside this interval, this inequality is valid for all s.
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-1The function v attains its maximum at a unique point g =3’ tan-1 (y/tx). We
define the function

(s)
vsq-

which clearly has the properties (5.1).
Moreover,

for s <- --+ L
3’

for s--> ---+ L
3"

q (s) max { v (s t)

Therefore (9.15) shows that

M[p(x + s + z)](0) >_-max { v(s t)

For any c < z we define the sequence an(c, ; s) by the recursion (5.4) with O replaced
by M. Then

a(c, so; s) max {p (s), M[(x. + s + c)]} >- max { (s), (s + c z)}

p(s +c-z)= ao(c, ; s +c-z).

Proposition 4.1 now shows that an+l(C, ; s)>=an(c, ; s+c-z), so that a(c, ; s) >-

a(c, ; s +c-z). Since a is nonincreasing and c-z <0, this implies that a is a
constant. Therefore the inequality c < z implies that c < ?*().

We conclude that when 3’ is sufficiently small, z -<_ ?*(c). Taking the limit of z as

3" decreases to 0, we find that when Ix < Ix

e*() >_- g,(g).

We recall that as Ix increases to Ix*, 0(ix) increases to the infimum of
Thus we have shown that when the measure rn has bounded support,

(9.16) ?*()-> inf

If m does not have bounded support we choose a nonincreasing function " with
the properties (8.2) and approximate m by the nonnegative measure

m (x,

which has bounded support. Clearly the sequence of measures mk increases to m and
for all sufficiently large k the measure mk has the property (9.2). We define the
operatorM and the function (ix) by replacing m by m in the definitions (9.1) and
(9.4) and let ? (:) be the wave speed of M. Obviously, M>-Mk. Therefore by
Proposition 5.5 ?*(:) _-> ? (:), so that by (9.16)

(9.17)

for all k. The right-hand side is nondecreasing in k, and its limit again provides a
lower bound for t?*(:).
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Suppose that p is any number which is above this limit. That is, suppose that

p > inf k (/z)
,>o

for all k. Thenthe sets

are nonempty, and Sk contains Sk+l. When k is so large that mk satisfies (9.2),
Ok (0)= +c, so that Sk is closed.

If x. s is not bounded above on the support of m, we see from (9.10) that for
sufficiently large k the set Sk is bounded above. We then see from Helly’s theorem
(the finite intersection property) that the intersection So of all the Sk is not empty.
Since Ok converges to O, we see that O(tz) <= p for/z Soo; so that inf =< p.

We conclude that if x. : is not bounded above on the support of m,

(9.18) inf
ix>0

If, on the other hand, x. : is bounded above on the support of m, then for all
sufficiently large k, sup {x. :]x supp mk} K which is independent of k. There are
then two possibilities"

If

m(x, dx)<l,

then by the argument we have used earlier inf (I)k =< inf (I) < (I)() K (I)k () for large
k. Therefore we may carry out the above argument when

(9.19) inf k < p <K

to reach the conclusion (9.18).
When

for all k

re(x, dx)>= 1,
o=K

we easily see that (/x)_->K and (o)= K. If there were a p which satisfies (9.19),
the same argument would lead to the conclusion that inf () _-< p, which is incompat-
ible with (9.19) since inf =K. Therefore (9.19) leads to a contradiction, and we
conclude that

lim inf (I)k (/z) K inf (I).
k-o /x>O tx>O

We have thus proved (9.18) in all cases.
The formula (9.3) now follows from (9.5), (9.17) and (9.18). Note that our proof

is valid even when
To prove that is not empty we again begin by considering the case where m

has bounded support. We define the "drift velocity"

xm(x, dx)
(9.20) V

m(x, dx)

We note that for any unit vector
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We recall that there is a * (0, az] such that t?*(sc)= ff(/x*). Since (9.7) shows
that is nondecreasing, we conclude that

(9.21) V. -<_ 6"()
for all . This shows that V lies in 5e so that Y is not empty.

If the support of m is not concentrated on a plane normal to , then (9.7) shows
that q, is strictly increasing so that

(9.22) V. : < c*().

If the support of m is not contained in any plane, this inequality is valid for all : so
that .V is an interior point of

If the support of m is unbounded, we again define the measure mk=
of bounded support and choose k so large that mk > 1. If the support of m does not
lie in any plane, we choose k so large that the same is true of mk. We let

xmt, (x, dx)
Vk mk(x, dx)

Then by the above arguments

for all :, so that is not empty. If the support of mk is not concentrated on any plane,
then

<

for all , so that Vk is an interior point of
The formula (9.3) shows that if the support of rn lies in the plane x. sCo A, then

t?*(sCo) A and t?*(-sCo)=-A. Therefore 9 again lies in the plane x. :o A, so that
cannot have interior points.
We have thus proved all the statements of the lemma.
Theorem 6.3 is now an immediate consequence of Lemma 9.1 and Proposition

5.5 with Q Q and Q2 M where/3 zr.
The first two parts of Theorem 6.4 follow from Lemma 9.1 and Proposition 5.5

with Q2 Q and Q1 M where m is replaced by and/3 by e in the definition (9.1)
of M. We must, of course, use the observation that increasing the function c* enlarges
the set O.

To prove the last statement of Theorem 6.4 we first note that the definition (9.1)
implies that M[pu]>-pM[u] when p is any constant such that 0_-<p-<_l. Thus M
satisfies the conditions of Lemma 8.8. Because Q->_ M, Lemma 8.8 implies that if Uo
is uniformly positive on a ball of radius r, then u >_- 1/2e on a set nS" when n is sufficiently
large. In particular, there is an m0 such that U,,o -> e on a ball of radius r/, so that
the proof of Lemma 8.6 still implies (8.22). The remainder of the proof of Theorem
6.2 then yields the last part of Theorem 6.4.

If, as in the corollary, the same measure m gives both the upper bound (6.6) and
the lower bound (6.9) for arbitrarily small 6, then the linear operator M given by
(9.1) with/3 oo is the Fr6chet derivative of Q at u 0 in the space C[] of continuous
functions with the maximum norm.

For example if Q[v] is again the value u(z, x) of the solution u of (2.14) with
u(O, x) v(x), its Fr6chet derivative M[v] is the solution at of the corresponding
problem in which f(u) is replaced by f’(O)u. The maximum principle for parabolic
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equations [43, Thm. 3.6.10] shows that if f(u)<-f’(O)u for u >=0, then (5.7) and (6.9)
are valid with m(x, dx)= Cv--N/2 exp [f’(O)--lxl/4-]dx where Cv is a known con-
stant. The formula (6.10) gives c*= 2f’(0)r, which becomes the usual wave speed
for the Fisher equation [15], [31] when r is set equal to 1.

In the case of various integral operators the formula (6.10) has been found by
Aronson [1], Diekmann [10], [11], Diekmann and Kaper [12], Thieme [48], [49] and
the author [53], [54]. In a different context it was discovered by Hammersley [22].

In fact, as far as I know, the only explicit formula for an asymptotic speed which
does not come from the corollary is one given by Hadeler and Rothe [20] for the
Fisher equation in which f(u) is a cubic polynomial.

The following example shows that the Fr6chet derivative of Q at u 0 need not
satisfy the inequality (6.9) for arbitrarily small 8, even if it satisfies (6.6).

Example 9.1. Let N 1, {0, 1,...}. Define

Q[u](k) sinh 1 e -lil(1-e-lilu(k-i)),

which satisfies the hypotheses (3.1) with o =0, + 1. The Fr6chet derivative
at u 0 is easily found to be

M[u](k)=sinh 1 E Ile-u(k

and the bound (6.6) is a consequence of the fact that the second derivative of the
function 1- e -t is negative.

Let e > 0, 8 (0, 1), and u(j)= eSio. Then

Q[u](k)-(1-8)M[u](k)=sinh 1 e-(1-(1-)elk[-e-i),
which is negative for all suciently large values of ]k[. Thus the inequality (6.9) is
not true for any positive value of e.

10. The hairtrigger effect. (Proof of Theorem 6.5). The proof of Theorem 6.5
is based on the simple observation that when u and are nonnegative

(We define the sum V + W f two sets of vectors by

g + W {v + lv e V, e W}.)

We see from (10.1) and Proposition 4.1 that, if u+ O[u] and O satisfies the
inequality O[u]I u(x-y)l(y, dy) for 0Nu Ne, then

supp (u) supp (u0)+ n supp (1).

Suppose that mo is so large that the support of eo, the function defined by (8.17), lies
in the interior of a translate of m0 supp (l). Then if Uo0 there are a 0 e (0, 1] and
an in R such that Umo(X--)Oeo(X). Since M[ou]oM[u] for 0e[0, 1], the
proof of Lemma 8.8 gives Theorem 6.5.

The following example shows that the extra condition in Theorem 6.5 is needed
to produce the hairtrigger.

Example 10.1. If N 1, {0, 1, 2,...}, and

O[u](x u(x [- u(x l]+u(x +[- u(x + 1],
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Q satisfies the hypotheses of Theorem 6.4 with zro 0, /’1 1, E "-21- and
l(x, dx) [(x ) + (x + )]

where 3 is the usual Dirac measure. The set n supp (l) consists of those points whose
coordinates are integers of the same parity as n. Hence the hypotheses of Theorem
6.5 are not satisfied. In fact, if Uo(X)= 1 for x 0 and 0 elsewhere, u,(x)= 0 when
n + x is odd. However, if Uo is positive at two points of opposite parities, and in
particular, at two adjacent points, the above argument leads to the conclusion of
Theorem 6.4.

Example 10.2. If {0, +1, +/-2,...},

Q[u]=1/2u(x- 1)+1/2u(x)[2-u(x)]+1/2u(x + I)
and

1/2[8(x 1)+ 6(x) + 6(x + 1)],

the hypotheses of Theorem 6.5 are satisfied with e , Zro- 0 and zr-- 1. However
if g is the whole real line the hypotheses of Theorem 6.4 are satisfied but those of
Theorem 6.5 are not. In fact, if Uo(X) is positive for -< x < and zero elsewhere,
u, (x) is zero when x lies at distance at least 1/4 from any integer, so that the statement
of Theorem 6.5 is not valid for this O.

Thus while the hypotheses of Theorems 6.1 to 6.4 are preserved when Q
is extended from to Y, the same need not be true of the extra hypothesis in
Theorem 6.5.

11. The exislenee o[ traveling waves. (Proof of Theorem 6.6). We choose a
function q with the properties 5.1. For each positive integer k we define the sequence
a,(c, , k; s) by the recursion

a,+l(C, , k" s) max{k-a q(s), O[a,(c, , k; x. + s + c](0)},
(11.1)

ao(c, ,f, k; s)= k-(s).
As in 5, we find that a, (c, , k; s) is nonincreasing in c, k, and s and n0ndecreasing

in n. As n --)oo it converges to a limit function a(c, , k; s), which is nonincreasing in
c, k, and s. By Proposition 5.2

lim a(c, , k; s)= r,

(11.2)
lim a(c, , k; s)=0 for c->c*(:).

We now use the additional property (3.7)" Every sequence O[v,] with v,-<r
has a subsequence O[v,,] which converges uniformly on each bounded subset of

Then for any given real number there is a sequence n such that the sequence
Q[a,,(c, , k; x., + + c)](y) converges uniformly for y on bounded subsets of
Since the sequence a, is nonincreasing in n and O is order preserving, it follows that
the whole sequence O[a,(c, , k; x.+t+c)](y) converges uniformly on bounded
sets. Because of the translation invariance of O, (11.1) then shows that for each the
sequence a,(c, , k; y. + t) converges to a(c, , k; y. + t), uniformly for y in any
bounded subset of . In particular, a(c, j, k; y. tj + t) is a continuous function of y
on 0%

Furthermore, because of the continuity property (3.1v) of O we may now take
limits in (11.1) to see that

(11 3) a(c, , k" s) max {k -1q(s), O[a(c,,k; x.+s+c)](O)}.
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We choose yoeW such that yo’>0. For every integer and any c>=c*() we
define the sequence

(11.4) K,(t) 1/2[a(c, :, k;/yo" )+ a(c, , k; (l + 1)yo’ )].

Then K,(l) is nonincreasing in l, Kk(-oe)= 7ri, and Kk(+m)= 0. Since a decreases
from rrl to 0 as s goes from -oe to

K(l)-K(l- 1)= 1/2[a(c, :, k; (1 + 1)yo )-a(c, , k; (l- 1)yo :)]_-< 5rrl.

Consequently there is an integer, which we call l, such that

(11 5) -Tr<=K(lk)<=r.
We now consider the sequence a (c, sc, k; x. s + lyo" :), k 1, 2,....
Because of the equation (11.3) and the hypothesis (3.7) there is a subsequence

k of the integers such that a(c, , k; x. s + l,yo" s) converges uniformly for x on
bounded subsets of to a function W(x. ) defined on . This subsequenee has a
subsequenee k such that a(c, ,, k x s + lyo" s + c) also converges uniformly on
bounded subsets of to a function W(x. s +c). (Of course, if c is of the form z.
for some z in gg, W(x. j + c) is already defined and the convergence is implied by
the convergence of the previous sequence, but c need not be of this form.) We take
further subsequenees to get uniform convergence on bounded subsets of gE of

(m)a(c, s, k x. s + l,-; yo" s + mc) to a function W(x. s + mc) for any (positive or
negative) integer m. By taking a diagonal sequence k, we obtain simultaneous
convergence for all m. Because the convergence is uniform on bounded subsets of
we may take limits in the equation (11.3)with k=ki and s=y.j+Ic,yo.sC-(n+ 1)c
to find that

(11.6) W(y.,-(n + 1)c)=O[W(x.j-nc)](y).

Thus u,(x) W(x .sC-nc) is a traveling wave solution of the reeursion u,+ O[u,l.
The definition (11.4) shows that the sequence K,(I,) converges to 1/2[W(0)+

W(yo" s)] >= W(yo" so). By (11.5) this quantity must be at most 1/4cry. Theorem 6.2 proves
that W(-)= r, and therefore W is not constant. Because the functions a are
nonincreasing in s, the same is true of W(s). Therefore W(s) has a limit as s - o. By
letting n-->- in (11.6) we see that W(o)= O[W(oo)]. Therefore W() is a fixed
point of O whose value is below r. Hence it must be 0. This proves Theorem 6.6.

Remarks. 1. If is a discrete set and r is finite, the extra condition (3.7) is
automatically satisfied. If has limit points and r is finite, the condition is normally
verified by showing that the set of functions {O[u][u B} is equieontinuous and
applying Aseoli’s theorem.

2. The set of points of the form x.+ mc where W(s) is defined may depend
upon : and c. As an example, let be the set of points with integral coordinates in
the plane . If q, s, and c are all integral multiples of a fixed real number p, then
the set of points of the form x. s + mc lies in the discrete set of integral multiples of
p, while if the ratio of two of these three numbers is irrational, the set of points of
the form x. s + mc is dense on the real line.

If there is a y in such that y. : rc for some integer r, then increasing n by r
in the function W(x. s- nc) translates the function by y. If there is no y in gg such
that y. : is an integral multiple of c, then the arguments of W(x.j-nc) for two
different values of n are all different. However, the evolution of the noninereasing
function W(x. s- nc) with increasing n will still have the general appearance of a
traveling wave.
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3. The uniform convergence on bounded subsets of W does not imply that the
limit functions a and W are continuous functions of s.

For example, let W be the set of points with integral coordinates in 2 and

O[U] U(X1 + 1, X2-- 2)[2- U(X1 -[" 1, X2-- 2)].

It is easy to see that c*(:) -:1 + 2:2, that if q(s) >0 for s <0

and that for c c*(:)

1
a(c*(), k; s)=

0
for s < 0,
for s => 0,

1 for s <0,
W(s)=

0 fors>=0.

Note that if :2/:1 is irrational, there is a sequence x such that x. decreases to zero.
However, [x[ is unbounded so that the sequence x does not lie in any bounded set
and does not have a convergent subsequence.

4. It is known [13], [25], [26] that in the heterozygote inferior case of Fisher’s
equation (1.1) there is a monotone traveling wave when c- c*, but not, in general,
for c > c*. Thus the statement of Theorem 6.6 can be false if the condition 7to 0 is
dropped. We do not know whether a monotone traveling wave always exists for
c c*(:) when this condition is dropped.
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GLOBAL SMOOTH SOLUTIONS TO THE INITIAL-BOUNDARY
VALUE PROBLEM FOR THE EQUATIONS OF

ONE-DIMENSIONAL NONLINEAR THERMOVISCOELASTICITY*

C. M. DAFERMOS

Dedicated to Michael Golomb

Abstract. The system of balance laws of mass, momentum and energy for a class of one-dimensional
thermoviscoelastic materials is considered, and the existence of globally defined smooth thermomechanical
processes is established.

1. Introduction. This article is concerned with the problem of existence of globally
defined smooth thermomechanical processes in one-dimensional nonlinear thermo-
viscoelasticity.

The referential (Lagrangian) form of the conservation laws of mass, momentum
and energy for one-dimensional materials with reference density P0-- is

ut-vx:O,

(.) v’--x--O’

e.+- O]x + qx-O,

while the second law of thermodynamics is expressed by the Clausius-Duhem inequal-
ity

Here u, v, e, o, , 0 and q denote deformation gradient, velocity, internal energy, stress,
specific entropy, temperature and heat flux, in that order. Note that u, e and 0 may only
take positive values.

For one-dimensional, homogeneous, thermoviscoelastic materials, internal energy,
stress, entropy and heat flux are given by the constitutive relations

(1.3) e:O(u,O), o:6(u,O,vx), /:(u,0), q=O(u,O,Ox),
which, in order to comply with (1.2), must satisfy

(1.4)
6 ( u’ O’ O) /u( u’ O )’ l ( u’ O -/( u’ O )’
[6(u,O,w)--6(u,O,O)]w>_O, gl(u,O,g)g<_O,

where q=e-0 is the Helmholtz free energy.
We consider here a body with reference configuration the interval [0, 1] whose

endpoints are stress-free and thermally insulated, that is,

q(O,t)-q(1,t):O, t>_O,

*Received by the editors September 25, 1981. This research was supported by the Science Research
Council of Great Britain, the National Science Foundation under grants MCS-79-05774-02, CME 80-23824,
and the U. S. Army under contract ARO-DAAG-29-79-C-0161.

*Lefschetz Center for Dynamical Systems, Division of Applied Mathematics, Brown University, Provi-
dence, Rhode Island 02912.
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and we prescribe the initial values of deformation gradient, velocity and temperature:

(1.6) u(,0)-u0( ), v(x,O)-%(x), O(x,O)-Oo( ), 0_<x_<l.

The question is whether the combined dissipative effects of viscosity and thermal
diffusion may counterbalance the destabilizing influence of nonlinearity and thus
induce the existence of globally defined smooth solutions to the initial-boundary value
problem (1.1), (1.5), (1.6).

When the material is an ideal, linearly viscous gas with constant specific heats, i.e.,

(1.7) e--cO o- -R
0 + l

Vx 0
u u

q - U

Kazhikhov [5] establishes the existence of globally defined smooth solutions to (1.1),
(1.5), (1.6) by analysis which depends crucially upon the specific form of the constitu-
tive relations (1.7). On the other hand, Dafermos and Hsiao [4] consider (1.1), (1.5),
(1.6) for a fairly general class of solidlike linearly viscous materials,

(1.8) e--O(u,O), o---fi(u,O)+vx, q-l(u,O,Ox),
in which shear viscosity/u is inversely proportional to density and, consequently, its
dissipative effect is so weak at high density that existence of global solutions is to be
expected only when the initial energy is not too large. Furthermore, the approach in [4]
requires growth conditions on ,p, and which are not met, for example, when the heat
flux satisfies Fourier’s law with thermal conductivity that varies with temperature.

To overcome the above limitations we consider here the problem of existence of
solutions to (1.1), (1.5), (1.6) for linearly viscous materials

(1.9) e-P.(u,O), o--O(u,O)+(u)vx, q--(u,O)O
where the viscosity (u)u is uniformly positive, that is,

Unfortunately, our techniques cannot handle the situation where viscosity varies with
temperature.

We assume that O(u,O), p(u,O), (u) and ,(u,O) are twice continuously differen-
tiable on 0 < u<, 0 <_ 0< z and are interrelated by

(1.11) O.u( u, O ) -( u, O ) + Oo( u, O ),
so as to comply with (1.4). Furthermore, we require that the elastic part of the stress be
compressive at high density and tensile at low density, at any temperature; i.e., there
are 0< fi_< U< such that

p(u,O)>_O, 0<u<a, 0_<0<,
(1.12)

p(u,O)<_O, <u<, 0_<0<.

Employing an idea of Andrews [2], we show that, as a consequence of (1.10) and (1.12),
the deformation gradient is a priori confined in a bounded interval 0<ff<u(x, t)< U
and hence no restrictions are necessary on the behavior of O(u,O), fi(u,O), (u,O) at
u--0 / and u-z. As regards growth with respect to temperature, we assume that for
any 0<if< U< there are positive constants u,x0 and N, possibly depending upon ff
and,/or U, such that, for any ff< u< U, 0 _< 0< ,
(1.13) (u,0)_>0, u<_.o(u,O)<_N(1 / 0’/3),
(1.14) u(u,O)l<N(1 +0+/3), IPo(u,O)]<_N(1 +0/3),



ONE-DIMENSIONAL NONLINEAR VISCOELASTICITY 399

(1.15) Xo<--.(u,O)<-N, ]u(u,O)l<--N, Io(u,O)]<_N, Iuu(u,O)l<_N.
The above growth rates are by no means maximal. At the expense of routine complica-
tions in the analysis, 1/2 in (1.13), (1.14) may be replaced by any r<. The slower the
growth rate of (u,O), the faster the growth rate of p(u,O) that can be handled by our
techniques. Moreover, if specific heat and/or heat conductivity grow with temperature,
say o(u,O)>_,(1 +0’) and/or (u,O)>_Xo(! +0), then higher growth rates of (u,O)
and p( u, 0) may be tolerated.

As in [4], the solution to (1.1), (1.5), (1.6) will be sought in the space of H61der
continuous functions. C[0, 1] denotes the Banach space of functions on [0, 1] which are
uniformly H61der continuous with exponent a, while C’/2(Qr) stands for the Banach
space of functions on Qr= [0,1] [0, T] which are uniformly H61der continuous with
exponents a in x and a/2 in t. The existence theorem reads:

TrEOREM 1.1. Consider the initial-boundary value problem (1.1), (1.5), (1.6) under
conditions (1.9)-(1.15). Assume that Uo(X), U’o(X), Vo(X), v6(x), V’o’(X), Oo(x), Od(x),
O’(x) are all in C[0, and Uo(X)> O, Oo(X) > O, 0 <_x <_ 1. Furthermore, let the initial
data be compatible with the boundary conditions (1.5) at (0, O) and (1,0). Then there exists
a unique solution { u(x, t), v(x, t), O(x, t) } on [0, 0, oe) such that for every T>0 the
functions u, ux, ut, Uxt, v, vx, vt, Vxx, O, 0, 0t, Ox_are all in C’/2(Qr) and utt, vt, Oxt are
in L2(Qr). Moreover, O(x,t)>O, <u(x,t)< U, for 0_<x_< 1, 0_<t< oe, where and
are positive constants depending on the initial data.

The theorem can be proved by the procedure devised in [4]; namely, solutions to
(1.1), (1.5), (1.6) are visualized as fixed points of a map P on the Banach space of
functions {U(x,t), V(x,t), 19(x, t)} with U, V, V, 19,19 in C/3,1/6(Qr) and existence is
established by means of the Leray-Schauder fixed point theorem. The map P carries
{U(x, t), V(x, t), 19(x, t) } into the solution of a complicated linear "parabolic" system
obtained by linearizing (1.1) about {U(x,t), V(x,t), 19(x,t)}. By virtue of the smooth-
ing action of linear parabolic systems, P is completely continuous and its range is
contained in the set of functions {u(x,t), v(x,t), O(x,t)} with u,ux, ut, Uxt, v,v, vt,

Vxx, 0,0, 0t, Oxx in C’’"/2(Qr). The construction of P and the precise statements and
proofs of its aforementioned properties are presented in [4] and need not be repeated
here. What remains to be done in order to complete the list of requirements for the
application of the Leray-Schauder fixed point theorem is to show that any possible
fixed point of P, i.e., any solution { u(x, t), v(x, t), 0(x, t))__ of (1.1), (1.5), (1.6) satisfies
the admissibility conditions 0(x, t)> 0, 0< if< u(x, t) < U and is contained in an a
priori bounded set of @. The object of this paper is to establish these a priori bounds,
under the current assumptions (1.9)-(1.15).

The conservation laws of momentum and energy may be visualized as diffusion
equations for velocity and temperature. The difficulty lies in that these equations
contain coupling terms of superlinear growth, albeit lower order, which may induce
finite time blow-up of solutions. One may control the effect of such terms by means of
interpolation inequalities, provided that a basic set of a priori bounds is already
available. The bounds on total momentum and total energy were employed for that
purpose in [4]. In order to improve the results of [4] we establish here an additional
estimate (cf. (2.17)) which is motivated by the second law of thermodynamics and
embodies the dissipative effects of viscosity and thermal diffusion.

The same techniques work and an identical existence theorem obtains when only
one end of the body is stress-free while the other is fixed, say o(0, t)- O, v(1, t)= O. On
the other hand, when both ends are fixed, i.e., v(O, t)= v(1, t)=O, a priori bounds on
the deformation gradient are only known [6] in the ideal gas case (1.7) so further
investigation is required.
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Since we are not assuming that/(u, 0) is monotone in u, it would be of interest to
determine the asymptotic behavior of solutions, as oe. This has already been done
by Andrews and Ball [3] in the framework of (isothermal) viscoelasticity.

2. Derivation of a priori estimates. Superimposing, if necessary, a trivial rigid
motion, we normalize the initial data so that

(2.1) foto(x)dx-O.
Throughout this section { u(x, t), )(x, t), 0(x, t)} will denote a fixed solution of

(1.1), (1.5), (1.6) on [0, 0, oe) in the function class indicated in Theorem 1.1.
Integrating (1.1) over [0, 1] [0, and using the boundary conditions (1.5) we

obtain the conservation laws of total momentum and energy:

,(x,)x= ,o(X)x-O, 0_<<,

(. ’e(,l+g (, = (,0+7( -eo, 0<.

Substituting o from (1.9) we may write (1.1) in the form

(.4 +(,,0- [(l]x,
while combining ( 1.1) with (1.1) and using (1.9), (1.11) and 1.1) we obtain

(.5 00(, 00+ 00(,,0- (-[(, 00] .
Applying the maximum principle on (2.5), recalling that 0o(X) > 0, 0 x 1, one

deduces
Pooso 2.1.

(a.) 0(x,)>o, 0x, o<.
Our next objective is to derive bounds on the deformation gradient. Using (1.1)1

we rewrite (2.4) as

(a. ,+(,01=(,,
where

(2.8) 3)(u)
def .(w)dw.

By virtue of (1.10), /l/(u) is a strictly increasing function which maps (0, oc) onto
(-, ).

PROPOSITION 2.2. We have

(2.9) <u(x,t)<U, 0_<x_< 1, 0_<t< oe,

where

(2.10)
g-3r- 3 min fi, minuo(.) 2Eo

[0, 1]

U-r- 2f/ max{/),maxuo(.)} +2o
[0,1l
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Proof. The following argument is based on an idea of Andrews [2]. We integrate
(2.7) over [0,y] [s, z], 0_<y_< 1, 0_<s<z, and use the boundary condition (1.5)1 to get

(2.11) 3l(u(y,z))--3l(u(y,s))+ p(y,t)dt+ v(x,z)dx- v(x,s)dx.

By (2.3), (2.2) and (1.13),

(2.12) fov ]2<lfo’V2(X,t)dx<Eo 0_<t<dx

In particular, (2.10) and (2.12) imply u0(x) U, 0 _< x _< 1. Thus, if u(x, t) is
violated on [0, 0, ), there are 0 and y [0, such that u(x, t) , for 0 _< x _< 1,
0_<t’, but u(y,’)-.

Now either u(y,t)f, 0_<tr, or u(y,t)fi for O<_st<_" but u(y,s)-. In the
former case we apply (2.11) with s-0 and use (1.12) and (2.12) to infer

(2.13) (u(y, )) 37/(u0(y))- v/Eo,
while in the latter case (2.11) together with (1.12) and (2.12) yield

 2.14 5e0.
In either case, by (2.10), (u(y,z))() wch is a contradiction to u(y,z)-.
This shows u(x,t), Ox 1, Ot.

The proof of u(x, t) U, 0 x 1, 0 is quite silar.
We now fix T0 and restrict our solution to the rectangle Qr[0, 1][0, T]. In

the sequel, A will denote a generic constant wch may depend at most on T, 0, , r0,
N and upper bounds of the C[0, 1] norm of u0, u, 0, , ’, 0, 0, 0’. Our principal
objective is to show that (u(x, t), (x, t), O(x, t)) is a priori bounded in the Banach
space referred to in the Introduction, that is"

PROPOSITION 2.3. e hae

(2.15) [[v[[c’/,’/(Q)A, l[vllcl/.’/(Q)A,

The proof of Proposition 2.3 will be partitioned into several steps.
The first observation is that, in view of (2.3) and (1.13),

(2.16) max ,t)dx<A.
[0, T]

We now proceed to get estimates which are motivated by the second law of
thermodynamics and embody the dissipative character of viscosity and thermal diffu-
sion.

LEMMA 2.1. We have

-4/30x2(2.17 0 dxdt<_A,

(2.18) f07"f0 0 8/3 dxdt<_ A,

(2.19) formax 05/3( t) dt <_ A.
[o. 1]
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(2.22)
(2.23)
where

Proof. We define

(2.20) /( u, 0 ) =fo-1/300( u, )d

and note that, on account of (1.13),

(2.21) II(u,O)l<_2N(1 +0).
After a short calculation, using (1.11), we deduce

&(u,O)-O-/%(u,O),
Iu(u,O)-O/%( u, O)-( u, O),

(2.24) d(u,O)
def 2 foo-Thus, setting H(x,t)-I2I(u(x,t), O(x,t)), multiplying (2.5) by 0-1/ and using (2.22),

(2.23), we get

(2.25) Ht+J(u,O)vx-O-’/3(u)V2x-O-/3[(u,O)Ox]x-O.
Integrating (2.25) over [0, 1] [0, T], integrating by parts with respect to x and recalling
the boundary condition (1.5)2 we obtain

fofo fo’fo’T l(u)O_l/3.vdxdt +5 (u’O)Om/3Ofdxdt
(2.26)

’.(x, V)dx- .(x,O)dx + 6(u,O)vxdxdt.

By virtue of (2.24) and (1.14), }O{u,O)l2N{l +0) so, using (1.10), (2.9), (1.15),
(2.16), and the Cauchy-Schwarz inequality, we deduce

oU -1 T 10 -1 /3 dxdt + o 0 dxdt
(2.27)

A+4N;l T O/adxdt+o_ O_l/3v,dxdt"

On the other hand, by (2.16) and the Cauchy-Schwarz inequality,

max 0 ., t) dt
[O,l]

A+g o

whence

(2.29) 4N2-’frfloT/3dxdt<A+
"0 K0foTfo 0 -4/30x2 dxdt.

Combining (2.27) with (2.29) we arrive at (2.17), and then (2.28) yields (2.18) and
(2.19). []

Remark. Identity (2.26) should be compared with

fo’  x(2.30)
r ,f(u)O_lvxdxdt+ (u,O)O dxdt= ,T)dx-
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To get (2.30) multiply (2.5) by 0- and then integrate over [0, 1][0, T], noting that
0-00-0,/0-]u. In contrast to (2.26), (2.30) yields estimates independent of T and
consequently it is expected to play a key role in any investigation of the asymptotic
behavior of solutions. On the other hand, (2.30) is inadequate for our present purposes
because the term 0-20x2 is homogeneous and cannot be used to reduce the degree of
superlinear terms.

As a corollary of Lemma 2.1 we have
LEMMA 2.2.

2(2.31) v; dxdt<_ A.

Proof. We multiply (2.4) by v, integrate over [0, 1] [0, T], integrate by parts with
respect to x and recall the boundary condition (1.5) to get

foV2(x,r)dx/forfo 2- ( u ) v; dxdt

fo foTfolvo(x)dx + (u,O)vxdxdt(2.32) --<_ a +2.oV +2 O )

from which (2.31) follows with the help of (1.10), (2.9), (1.14) and (2.18). []

In the following lemmas we employ the bounds obtained thus far in order to
estimate by interpolation the square integral of various derivatives of the solution in
terms of low powers of

def f01(2.33) Y- max O(x,t)dx,
[0, rl

def f01 2(2.34) Z- max ,;x(X,t)dx.
[0, r]

To prepare the ground note that by (2.16) and Schwarz’s inequality,

3 fo 2(x,t)lOx(X,t)ldx<A/Agl/2, 0_<y_<l,(2.35)

whence

(2.36) max 0_<A +AY1/3.
Qr

Similarly, combining

(2.37) v2(y,t)<flv2(x,t)dx+2 IVx(X,t)llvxx(X,t)ldx,0
with the standard interpolation estimate (e.g., [1, 3])

(2.38) f0 V2x(X,t)dx <- 108folv2(x,t)dx+432 lv2(x,t)dx

and using (2.3), one obtains

(2.39) maxlvxl<-A+AZ3/8.
Qr

0_<y_< 1,

(x,t) xVx
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LEMMA 2.3.

(2.40) max u(x,t)dx<_A -+- AY1/9.
[0, T]

Proof. We multiply (2.7) by 3)(u)- v and integrate over [0, [0, ], 0 t_< T,
thus obtaining

(2.41)
(u(x’t))-v(x’t)JZdx- (u(x))-v(x)]2dx

By virtue of (1.14), (2.8), and (2.9),

(2.42)

Similarly, using (1.14) and applying Schwarz’s inequality,

(2.43) _<Nfo’(l +maxOS/3(.,,)}fol[3(u(x,,)) -v(x,,r)]2dxd,r
[o, 1]

+N(I +maxO’/3}fo’folO-a/3OZxdxdr.Qr

(2.44)

(2.45)

Proof. Define

Combining (2.41) with (2.42), (2.43), applying Gronwall’s inequality and taking account
of (2.3), (2.17), (2.36) and (2.19), we arrive at (2.40). ]

LEMMA 2.4.
y<_A+AZ3/4

(2.46) )( U, 0
de__f fo0# ( U, d,

set Q(x,t)-O(u(x,t),O(x,t)), multiply (2.5) by Qt and integrate over [0, 1]X[0,t],
0< t_< T. After an integration by parts with respect to x we obtain

Note that

(2.48)

fo’fo{O.oOt+Oovx-vZ}Q,dxdm+ #OxQx,dxd-O.

Qxt- #Ox + O,Vxx + Ou,VUx+ .uxO
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We estimate each term in (2.47) using (1.13), (1.14), (1.15), (2.17), (2.18), (2.19), (2.39),
(2.9), (2.31) and noting that, by account of (2.46) and (1.15), l0ul -< NO, I0uu] <- NO.

f0f0 f0tf0(2.49) leoROt2dxdr>vXo Ot2dxdr,

(2.50)
fotfoloOtOuvxdxdr fotfolot2 { }fotfo<_- vx0 dxdr+ A max%2 (1 + 08/3 ) dxdr

Or
’t’l 28<--PKOJo J00t dxdr+ A+ AZ3/4’

(2.51) fotfol { OPol)x- l)2x } Oul)xdxd’r

{ }fotfo 07/3 2 3/4<a maxv2 { + +VT }dxdr<_AZ
Or

(2.52)

(2.53)

(2.54)

(2.55)

Ox ’Ox dxd’r--- R(u(x,t), O(x,t))O2x (X,t)dx-- (Uo(X), Oo(x))Offx(x)dx

fore2(>-xo x t)dx-A2

fotfol OxOuDx dxd’r _< max05/6 lo-4/302xdxd,r
Q-

{fot )fo1 2 }1/2max O’/’( VTx(x, r) dxdr
[o, 1

<-A + ]-xoY+ AZ3/4,

eOO_uVxUx&Cl

} 1/2<--N2{maxlvxl}{maxO 5/6 } fofolO-4/302xdxd’r
{lot 05/3 fo1 2 }1/2max (.,) Ux(x,rldxdr

[o, ]

<-A + ---xoY+ AZ3/4
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(2.56) fotfolOxutlxOt dxd’r

To estimate the last term in (2.56),

Afotfol[Ox]2 ux2dxdr<_AfOt max 0x 2fouzx(x,r) dxdr[o, II

--<[1+1I(’/9 IOxll(Ox)xldxd

() (f0tf0, _4/30x2 }1/2(2.57) -<[A+AY1/9] max0-/ 0 dxd’r

-<A.ql___lgoy_._A(fol[(,Ox x]2dxdT ) 3/4.

Finally, to estimate the last term in (2.57) we appeal to (2.5) noting that

(2.58) Jo Jo ’Oot dxdr-<[ A +AY2/9 dxdr,

fotfo
and deduce easily

{f0f0 }3/4 1- fotfol Z3/4"(2.60) A l[(Ox)x]2dxd’r -<A-I- xoY+-vxo Ot2dxd’rnt-A
Combining (2.47)-(2.60) we obtain

fotfo1 f01 Z3/4(2.61) ’o O,dxd+-o 02x(X,t)dx<-A+-gor+A
from which (2.44) and (2.45) follow. V]

LENgA 2.5.

folv ,t)dx<A+AZ/2(2.62) max t(x
[0, T]

(2.63) v;tdxdt-<A -F AZ/12.

Proof. Differentiate formally (2.4) with respect to t, multiply by v and integrate
over [0, 1] [0, ], 0 < t-< T. Integrating by parts with respect to x we get

2 l2t(x,O)dx_.F ft(u)tdxdrv, (x,t)ax--
(2.64)

+ V;VxtaXa- {puVx+poO,}vxtaXa--o.

Using (1.10), (2.9), (2.31), (2.39), (1.14), (2.18), (2.36), (2.44), and (2.45), we estimate
every term of (2.64) as follows:

(2.65) fotfol(u)l)2xtdxd’roU-lfotfo12v;tdxd’r,
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(2.66)

(2.67)

fo’fo’ ’(u) :
v;vxt dxd’r

fo ,,v)dxd’r

<1 /’t /’1 2 { 2}f0tf01 2_-to- .]o .]o vtdxd"+ A maxv v dxd’r
QT

f0/f01 2 Z3/4<-/Xo/- vtdxdr+A+A-4

<1 f0tf01 { }f0tf01v;tdxd’r+A maxv (1 +08/ )dxd’r_toU-1
_

:
Qr

<_toU- 2

--4 v2:tdxd’r + A+ AZ3/4’

(2.68) fotfoPoOtvxtdxd <1 ftfl 2--- tx- JO JO v;t dxd’r+ A + maxOZ/3}fotfo’Ot:Zdxd-Qr

<--0U-14 vtdxd’r+ A -+- AZ11/12

Combining (2.64)-(2.68) we arrive at (2.62) and (2.63).
LEMMA 2.6.

(2.69)

(2.70)

(2.71)

max vt ( x, t) dx <- A,
[0, T]

foTfolvxtdxdt <- A

max vg(x, t) dx< A.
[0, T]

Proof. In view of (2.62), (2.63), and (2.34), it suffices to show Z_< A. To this end
we employ (2.4), whose terms can be estimated, with the help of (1.10), (2.9), (2.39),
(1.14), (2.44), (2.36), as follows:

(2.72)

(2.73)

(2.74)

fl-2’2 2 2 { 2}fol 2 Z5/6UxV; dx <_ A maxv u dx <_ A + A
"0 QT

f01^-2^- 2dx<2N2(1 +max0Z/3}fol 2dx<AAI-AZ3/4Pu Ux
QT

UX

lft-2p202dx<2N2 +max02/3 0 dx_<A+A /12
0

Qr

By virtue of (2.72), (2.73) and (2.74), (2.4) yields

(2.75) Z<-A+AZ11/12

whence Z_< A. Vq

LEMMa 2.7.

(2.76)

(2.77)

(2.78)

max Ot2 ( x, ) dx <_ A
[O, rl

T’I 2Jo O, dxdt <_ A

max O2,(x, ) dx <_ A
[0, T]
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Proof. We differentiate formally (2.5) with respect to t, multiply by 00t, integrate
over [0, 1] [0, ], 0 < <_ T, and integrate by parts. After a lengthy sequence of routine
estimations, which are recorded in [4] and thus need not be reproduced here, one
obtains (2.76), (2.77), and (2.78).

Proof of Proposition 2.3. By (2.76), (2.77) and Schwarz’s inequality, O(x,t) is
uniformly HOlder continuous in with exponent 1/2 while (2.78) implies that Ox(x, t) is
uniformly HOlder continuous in x with exponent 1/2. It then follows from a standard
interpolation property (e.g. [7,II, Lernma 3.1]) that Ox(x,t) is also uniformly HOlder
continuous in with exponent -, hence Ox cI/DA/6(QT) A. This immediately yields
[IOIIc,/3.,/6(QT)<_A. Similarly, using (2.69), (2.70), (2.71), we deduce that Ilvxllc,/3.,/6(QT)
_< A and thereby v c,/3.,/60)-< A, u CI/3.1/6(QT)
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ASYMPTOTIC PROPERTIES OF BEST L[0, 1]
APPROXIMATION BY SPLINES*

D. D. PENCES" AND P. W. SMITH

Dedicated to Michael Golomb on the occasion o[ his seventieth birthday.
We were [ortunate to benefit [rom his scholarship and teaching.

Abstract. Precise asymptotic error expressions are derived for best spline approximation to smooth
functions in Lp[0, 1] when the knots are chosen by a knot quantile function. These results lead to error
expressions for the free knot problem.

1. Introduction. The purpose of this paper is to extend, refine and clarify the
results in Barrow and Smith [1]. Given a sequence of knots tN := {0 to < tl <" < tN
1}, let $(t) denote the space of polynomial splines of order k with simple knots t,
i.e., the space of piecewise polynomials of degree less than k in Ck-2 with breakpoints
t. Barrow and Smith [1], [2] dealt with the approximation by splines whose knots
were determined by a diffeomorphism t, called a knot quantile function. Let map
[0, 1] onto itself with ’-> 0, and let $(t):= sk({t(i/N)}, i= O, 1,..., N). One of the
major results of [1] was the determination of the precise behavior of the L2[0, 1]
distance of some/ ck[o, 1] from sk(t) as N c.

It has become apparent that one can significantly reduce the hypotheses on both
and f found in [1] while still preserving the conclusions there. In addition, one can

obtain analogous results for Lp[0, 1], 1 <-p < c by modifying the arguments of [1] and
using a result of Zhensykbaev [9]. Specifically, we will prove under certain general
hypotheses on f and (see Theorem 4.4) that

(1.1) lim Nllf -eo(t)fllo.tO.l= C,(J,(f. t))/

where P)P(t) denotes the Lo[0, 1] metric projection onto S(t), Ck. is a known
constant, and

t) := Io ]f(k)(t(x))[(t’(x))k+ dx.J.(.

One can find a proof of (1.1) for p 2, f Ck[0, 1], and 0<8 <t’ <M in [1]. By
making slight modifications of that proof, it is possible to cover the case p 2 where

fk is piecewise continuous on (0, 1) and monotone near 0 and 1, and where the set
of zeros of t’ has content zero. However this method does not extend easily to p 2,
and thus we use quite different methods in the next sections.

2. Lower bounds. Let Bk(’) denote the kth Bernoulli polynomial on [0, 1]. See
[1], [2], [6] and [7] for various properties of these polynomials. In particular, we note
that

Bk(X)=(--1)tk-l/21k!(2"tr)-k2 m-kcos 2rmx----
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Thus it is possible to recognize that Zhensykbaev uses a multiple of this Bernoulli
polynomial in the proof of the theorem in [9]. There the following is demonstrated.

THEOREM 2.1. (Zhensykbaev). Let/P(ZN) denote the Lp[0, 1] metric projection
onto the subspace of SkN(Zv) consisting of all one-periodic ]unctions. Then

inf NIIB( )-/5P(Z"V)B (" ll,,ro,, c*,,
ZrV

where C k*.p minR IIB (’)-
Following the argument in [1, p. 301], we now use the above theorem. Since

B (.) is a monic polynomial, we can conclude for any polynomial g of degree k that

+ 2k) C*lg((0)l’

where Ck,, := Ck,/k
Now consider f e ck[o, 1] and a subinterval J c__[0, 1]. Let 17 denote the kth

degree Taylor expansion of f about some point a s J, and let R denote the remainder
function. Let r: [0, 1]--> J denote the linear change of variable, i.e., r’ is constantly
equal to IJI, the length of the interval J. Suppose that only the L-1 points
tLo+l,’’’ ,tt_.o+L-1 from {ts} lie in the interior of J and that r(Z*i)’-tLo+i, i=
1,. ’, L- 1. Let z*L {0 zo* < Zl* <’ < ZL*-I < ZL* 1}. Then

(2.2)

The first inequality follows from the triangle inequality while the second follows by
replacing the spline (P"(tv)f)o r with the best approximation to 1o r on [0, 1].
Further

(2.3) IJI’/"IIR ’ll,.xo.. IIRII... < k !(kp + 1) 1/’ maxe,
Let o(f(k), a, IJI)= maxe, If((’)-f((a)l. Now multiplying (2.2) by Lk, taking the
infimum of the right-hand side over all zL, and using (2.1) and (2.3), we can establish
that

[( L )
k 2Lk (f(k) iji)]ijik+/.(2.4) L"llf-P"(t)fll.,>-

L+2k c*lf()(a)l-k!(kp+l)/ ,a,

We can now prove the following sequence of theorems giving the desired lower
bounds.

THEOREM 2.2. Let f e ck[o, 1] and the bijection C[0, 1]. Then for 1 <-p < oo

lim N’<IIf-P" (t)fll,,.ro., >= C,<.,, (&,, (f, t)) 1/i.
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Proof. Let L be an arbitrary positive integer. For each N > L, let

the greatest integer_-< ),
t’ i - i i M,,

Yf t(I), j 1, Mu.

In the estimates that follow K1, K.,.. will denote positive constants independent of
N and :i will denote a point chosen from J, j 1, Ms. Using (2.4) we obtain

N’"IIf PP(t)f[I g.ro,,

L + 2k Ck,lf"}(# KiLkto (f(k). N. ])
p

There exist points r/v eI such that

(2.6) IJVl t’(r/)().
We can set :s t(r/Y) since these points were chosen arbitrarily from jv, =
1,’’ ’, Ms. Combining (2.5) and (2.6) gives

1=1

E KL"w $. J)((nf))"+
]=1

The first summation lacks only a term for the subinterval [Ms(L/N), 1] in order
to be a Riemann sum for the interval [0, 1]. Thus as N -, oo, it tends to

L + 2k
C"k.p If"(t(x))l"(t’(x))"+ dx.

The second summation is bounded above by K2Lk+ato(f(k,{maxt’}(L/N))
{max t’}k+(Ms/N). This goes to zero as N--> o because f(k is continuous and its
modulus of continuity, to(f(k, h), tends to zero as h --> c.

Therefore,

(2.7) lim NkPllf-P"(t)fl[ p.[o..]= L + 2k C"k.pJ..,(f. t).
Noo

But (2.7) must be true for all integers L _-> 1. Taking the limit as L oo we obtain the
pth power of the desired result.
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THEOREM 2.3. Letf Lv[O, 1] Ck[t(a), t(b)] where [a, b]c [0, 1] and the bifec-
tion Cl[a, b ]. Then for 1 <= p < oo

b
P | [f(k(t(x))[o(t’(x))ko+l dx.

Noo

Proof. Actually Theorem 2.2 is a special case, and the only modification of the
proof needed for this more general result is that all of the summations now should
only be for/" AN, ’, BN where a <- (AN 1)L/N <- BNL/N <= b.

Before stating the next theorem we recall the definition of content zero. A subset
G of the real numbers has content zero if for every e > 0 there is a set D, which
contains G and has Lebesgue measure less than e, and De is the finite union of intervals.

THEOREM 2.4. Suppose the set of points where either f(k)(.) or t’(. fails to be
continuous has content zero. Then for 1 <= p < o

lim Nll[-PV(t)fllv,o,3>= C,v(J,v(/, t)) /".
N-->

Proof. For every e > 0, there is a finite union of open subintervals D covering
all of the points where either f() or t’ fails to be continuous with IDI < e. Theorem
2.3 applies on the finite subintervals in D, the complement of D in [0, 1].

p" > lim NkVllf-PO(t)fll,,oclim N"ll-e," (tVIl.,to,l
N--> Nooo

(2.8)
>-- CPk,p f If{k}(t(x))l(t’(x))Ip+I dx.

Letting e-+ 0 in (2.8) gives the pth power of the desired result. Note that the lower
bound may be oo since f{k and/or t’ may be unbounded.

3. The operators Qs. We have obtained appropriate lower bounds for the error
in the previous section. This section develops the necessary tools and techniques which
will be combined in 4 to produce the proper upper bound.

Let {Nl,k,t,N}l_l-k denote the normalized B-spline basis for S(t), using the knot
set ti=0 for i<-O, ti=t(i/N) for 1,... ,N-1 and ti 1 for i>=N. Let hi=ti+l-ti
for all i. For simplicity we just write NI Nl,k,t,N when the other parameters remain
fixed. The subscript N will be added when we wish to emphasize that N is changing.
We shall make use of several results of de Boor. A very nice survey of these and
many other properties of B-splines can be found in [4].

LEMMA 3.1. Let Dk be the smallest number with the property that for every knot
set , every i, there exists a function Hi L[0, 1] such that

D Iosupp Hi [ti, ti+k], IIHillc,[o,]<(ti+k_ti), HiNj=cij for all j.

Then (r/2)k/2 <-- Dk <---- 2k9k-1.
LEMMA 3.2. Let E be the diagonal matrix [..., (ti+k- ti)/k, "]. Then

O lIE 1/,,11. --< lie INIIIv,Co, I <- I}E/0

for all a RN+g, 1 <= p <- oo, where I1" denotes the sequence norm on Iv(RN+).
Further, a class of local approximation operators ,N which are linear projections

from Lv[0, 1] onto S(t) can be defined using the functions Hi from Lemma 3.1"
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The norm of each operator ,v is bounded by Dk for each 1 _-< p-< oo, independently
of both N and the knot function t, because

I/(f)l Hd <- I]’l Ilglll.o. <----llfllp.,,.,,/3
(t+k ti)/ti

These operators ,s are examples of locally-defined spline approximation schemes.
kWe now define another such class. Let Bk.p(X):=Y.j__obi.k.pX1:=Bk(X)--yk,p be the

vertically shifted Bernoulli polynomial of order k + 1 satisfying

Note that for p=2, yk,2=0 and Ck.2:=C’,2/k!=(IB2I/(2k)!)1/2, where B2 is the
2kth Bernoulli number. Since k and p remain fixed throughout this paper, we simply
write bj bi..p.

We modify slightly the definitions of the operators Ov found in [2, p. 15]. For
simplicity we only give the case corresponding to a 0, leaving the more general case
to the interested reader. Let be an integer, 0_-< <N, such that =mk for some
integer m. On the interval L := [t, t+), set

i=o =o L

the Taylor expansion for f about ti where defined. Denote

ONf O(t)f , At.(f)Nt.N := Y. atNt.

Each operator Ou will be defined by the requirement that for each 0 (mod k)

, "r t) h(fi- ONf)(r) f Bk,p(’ hi
More precisely, this means that

k-1
tJ+1(3.1) al E l,i (f{--fkibihk-i),

j=O

where

for r L.

l=i-k+l,. ,i,

(]- 1)! Ik_>
k-1

(3.2) :,i := (-1)-l(k 1)1.
( (ti) and (r) :’- s=ll--I (7-- tl+s).

Set al 0 for any index not covered above (i.e., for such that mk < <N <= (m + 1)k).
Each operator QN is well defined for a function f e ck[o, 1]. Each coefficient

functional ,l.N is well defined at least when f ck[tl, tl/k].
LEMMA 3.3. Let fCk[a,b], tCl[a,b] with O<6<-t’<-_M<oo on [a,b] and

0 <- a < ? < b <- 1. For each N, let j be chosen so that ti <- ? < ti+ 1. Thus, for N sufficiently
large, a < ti <- < ti+l < b. With hi ti+l- ti and x t-l(?), let

RN(r" ?)=Nk(f--ONf)(ti+rhi), P(r" ?)=(t’(x))kf(k(?) Bk’p(r)
k!

Then there exists a sequence of positive constants {eN}, tending to zero, which may be
chosen independently of ? (a, b) but which depend upon k, p, 3, M such that

lIRa(" ;)-P(’, )llo,tO,l < eN.
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k
Proof outline. We can replace f by its Taylor expansion f(y; ?):=Y’-i=o (?)

(y_ ?)i/j!. Now

(3.3) If(y)_ jr(y. ?)[ < (y ?)(f, ?)Y

where denotes the modulus of continuity. Also

N (f- Of)(ti + ,hi) N (- ON)(ti + "hi) +N[(f ) ON(f- )](ti + rhi)

N ([- ON)(ti + rhi) + o(1).

This follows, using (3.1), (3.2), (3.3) and the hypotheses on t’, as N
The rest of the argument follows exactly that of [2, Lemma 1, p. 106] with minor

change to the vertically shifted Bernoulli polynomials.
The justification for (3.4) implies the following lemma which we record for later

use.
LEMMA 3.4. Under the hypotheses of Lemma 3.3, there exists a constant K

independent ofN but dependent upon the bounds on t’ and dependent upon the bounds
of the derivatives off so that

4. Upper bounds. Using these locally-defined spline approximation operators,
we can now obtain upper bounding results which complement the lower bounding
results of 2.

THEOREM 4.1. Let f Ck[O, 1], tCl[0, 1], and O < 8 <-_ t’ <-_M <- oo. Then for
l_-<p<oo

lim Nllf P"(t)fllozo, <-_ C,p(J,p(f, t))/.

Proof. We can extend f and to [0, 1 + e and apply Lemma 3.3 to [0, 1 as follows"

NPt‘ Ill- e)" (t)fl[/,[0,1 N’t‘ Ill- Ofll g,to,

Nt’ I0 I(f- Of)(y)lp dy

NII01 i+1IRa(r; t())lh dr for any _-< :i<
i=o N

Now choose :i so that t’(i)= N[t((i + 1)/N)-t(i/N)] Nhi. By Lemma 3.3

(t’(i)) (t’(i) k)(t(i)) ,i,N(7") d"l’,
,=o

IRN( t(i))lPhi dr - ,=o k’.

where le,u()l < e. Further, since eu tends to zero as N m, this equals

(t’(i I/()(t())l B 7) "" dr+o(1).
N i=o

The summation above is a Riemann sum for the pth power of the desired expression,
i.e.,

t)= [ dx.
o
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THEOREM 4.2. Let I := [a, b [0, 1] and J := [a r/, b + n ] fq [0, 1] where > O.
Define I*:= t(I) and J*:= t(J). Suppose that f ck (J*) and CX(J) with 0<8 <_-t’<_-
M < on J. Then for l_-<p<

lim Nllf-e"(t)fll,,, <-_ CZ, [ If(k)(t(x))l’(t’(x))k/ dx.

Proof. This is a generalization of Theorem 4.1. The only modification in the proof
given above is that the summations now should only run from ix max {i" (i/N)<= a}
to i2 min {i" ((i + 1)/N) _>- b}. For N sufficiently large, the interval [il/N, (i2 + 1)/N] c
J so that Lemma 3.3 applies.

THEOREM 4.3. Suppose f ck(o, 1)fqLp[0, 1], If(k)[ is monotone near 0 and near
1, C[0, 1] with t’ bounded and piecewise continuous, the set X consisting of the points
where t’ is either zero or discontinuous has content zero, and neither 0 nor 1 is an
accumulation point ]:or X. Then ]’or 1 <= p <

lim Nkl[f--n)(t)fllp,[o.1]<= Ck.p(f, t)) 1/p.
Nx3

Proof. There is nothing to prove when Jk.p(f, t) is infinite, so assume that it is
finite. Let e > 0 be given. Then there exist a finite number of relatively open subinter-
vals Io, lx,’", IM such that I0 [0, 80), 1M =(1--8 1, 1], the sum of the lengths of all
of the subintervals is less than e, and X is contained in their union. Let Jo, Jx, ",JM
denote the disjoint subintervals in the union of the sets

{x" ::ly Ii with [x y I-< n}, 1,. ., M,
where r/= e/(2M). Thus the sum of the lengths of Jo,"’" ,Jt will be less than 2e.
Let J := t(Ji), i= O, 1,..., M, and 8* := t(Si):= t(Si + r/), i= 0, 1.

We now define operators QN which are mixtures of the operators N and Qn.

ON/:--" l(f)Nl,

where l "-/l if the support NI- It/, tl+k] intersects the complement of the union of
J*o,J’,"" ,J and where l =/z otherwise. For N sufficiently large, (N is well
defined and (sf agrees with Qf on (UJ)c. The arguments used for Theorem 4.2
go through unchanged once we note that t’ is continuous and bounded away from
zero in (Uli). Thus

lim N"llf- ’" < lim NkPN flip,J0,1] {Ill- ONf[I p P,Y)}
N N

(4.1)
C,p I f(k)(t(X))iPt’(X)kp+i dx + lim NkP[I f-QNflp,(y)."

j) N

We now show that the last term in (4.1) can be made arbitrarily small with J.
Consider J [0, ]. Let L INto], the number of knots located in J. Define

Pi+k to be the Taylor polynomial for f of degree (k-l) expanded about t+k
t((] + k)/N). Then

L L

Ill- 0fll < <

(4.2)
i=o i=o

LN

j=O

where the positive constant K is guaranteed by the Lemma 3.2 and the fact that
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and QN are both locally defined bounded operators. Now

(4.3)

p

f(k(r)(X--r)k- dr dx

using the monoticity of f(k) (for sufficiently small e) and a lemma of de Boor and
Dodson (see [4], [5] or [8, p. 292]). We continue (4.3) by changing variables and then
using H61der’s inequality.

(4.4) <_
1 [f(j+k)/N--(k!)(kp+ 1) max0,(-k+l)/N

(k!)P(kp+ 1) kmax t0.(’-k+l/S?

ly:((t(x))lo/(o/t’(x) dx]
kp.l

[f(k’(t(x))lo(t’(x))g+l dx][2k- ] p"
Combining (4.2) and (4.4), we have

(4.5) Nllf Ofll’ Ir,,<=K If)(t(x))l(t’(x))+1 dx,
O,N

where Jo,tv [0, (LN + k)/N].
A symmetric argument will show that (4.5) holds with Jo, Jo* and Jo,N replaced

by JM, J and JM,N. Now taking the limit superior as N oo for 0, M

(4.6) 1Ni NIIZ- 0fllg"*’--< Ka Ij [Z((t(x))l(t’(x))k+’ dx.

Consider an interior interval Ji, 0 <i < M. Let/7/:= max {f(k(x)" X J}. Then, as
in (4.2),

Ill < K1 E F’ (k !)- I(x t+)l k’ dx
ti--k+l

(4.7) KF[(k)O(kp+ 1)]- E (t+-t_+)"+

The positive constant K3 involves the upper bound on t’, and the summations above
run over the index set {]" tj Ji}. Letting N- oo in (4.7), we get

(4.8) lim N"llf- OflI" < K3F’ IJi[P,J1

Finally if we sum (4.8) for 0 < <M and add this to (4.6) for 0, M, we get an
upper bound which tends to the pth power of the desired result as e 0.

Remark. The hypothesis on f in Theorem 4.3 can be weakened slightly. A close
examination of the proof together with standard density arguments yield that it will
suffice to require f s Wlcp (0, 1) with if(k)[ having a monotone majorant g near 0 and
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near 1, where

jIg(t(x))lP(t’(x))

kp+l dx <

for some J [0, 6]LJ [1-6, 1], 6>0.
This result we record in Theorem 4.4.
THEOREM 4.4. Suppose f Wlc (0, 1) and that there is a 6 > 0 and g which is

monotone on J (0, 6 3 1 6, 1) satisfying

g(x) >--If<’(x)[, I Ig(t(x))l"t’(x)k"/ dx < oo.

In addition, we assume that C[0, 1] with t’ bounded and piecewise continuous, that
the set X consisting of points where t’ is either zero or discontinuous has .content zero,
and that neither 0 or 1 is an accumulation point for X. Then for 1 <-p < oo

lim Nkl]f --PP(t)fllpZo,11 Ck.,(Jk,(f, t)) ’/.
Nc

5. Best approximation with variable knots. Denote by sk the closure of the set
of all kth order splines having at most N-1 knots interior to [0, 1] counting multi-
plicities. The variable knot problem then is" Given f L[0, 1], find sN S, called the
best Lp[0, 1] approximation to f such that

Ill- SNII.,[O,] inf II/-- sll.,[o,] =: dist. (f, S).
seSN

Existence of such a best approximation is assured because S is a closed set in L.[0, 1].
Unicity, however, is a more difficult question which has not been completely answered.

In this section, we consider the implications of the upper bounds in 4 to the
quantity dist. (f, S) as N -+ oo. Certainly, given N and f, the optimal location of N- 1
interior knots for sn must do better than or equal what would be achieved using any
quantile function t. Thus:

LEMMA 5.1. If f and satisfy the hypotheses of Theorem 4.3, then for 1 <-p <

(5.1) lim Nk distp (f, sku) <-- Ck,p(Jk,(, t))/.
Nc

Using calculus of variations, we can minimize the right-hand side of (5.1) over
the class of all knot quantile functions. This turns out to be easier to do using the
associated knot density function u, where u is related to by u(r)=(t-)’(r). Thuso u(r) dr 1 and u(t(x))> 0 when t’(x) is defined and bounded. Minimizing over the
closure of this class of knot density functions, we find that the minimum of

](u) := (r)i"(u(r)) dr Yk,(f, t)

is attained uniquely by the function iT, where r p/(kp + 1) and

The minimum value is

o-,[0,1]

thus furnishing the proof of the following theorem.
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THEOREM 5.1. Suppose f Ck(0, 1)(.J Lp[O, 1] and Ifk>[ is monotone near 0 and
near 1. Then for 1 <- p < oo and r p/(kp + 1)

lim Nk disto (f, S)-<
Noo

It is interesting to note that when If(k)[ is never zero so that t7 is associated with
? C (0, 1) with ?’ bounded, then the integrand in

is constant. Thus
(i+l)/N

#k)llp-Y..(f. )= [f(k)((X))[(l’(X))k+ dx .l ...[o.] E [f(k)(r)l
=0 a/N =0

where all of the terms in the last summation are equal. This can be interpreted as
evidence supporting the notion, at least for large N, that "good" knot sequences are
ones which "balance the error" in IIf<k>ll;,to,ll (see [4], [5]).

It is possible that (5.2) may not be sharp for a particular function f. Optimizing
the knot locations for each N and then letting N tend to infinity may produce a lower
limit than using the optimal knot quantile function ? for locating simple knots. The
following theorem describes when equality can be guaranteed in (5.2).

THEOREM 5.2. Suppose f ck[o, 1]. Then

lim Nk distp (f, S)--Ck r,[o,1],
Nc

where r=p/(kp + l) and l=<p<oo.
Proof. Appealing to Theorem 5.1, it suffices to prove that

(5.3) lim Nk distp (f, SN) > Ck o-,[0,1].
Noo

The proof follows closely the proof of [1, Thm. 2, pp. 300-302]. We look at special
cases first.

Case (i). Let f(x) x k. We can replace f by Bk(" ), the kth Bernoulli polynomial,
without changing the distance because these two functions differ by something in S.
Letting r/2k denote the set of one-periodic splines of order k with at most N + 2k
knots counting multiplicities, we note that $ is a subset of N/2k. Theorem 2.1

kprovides the exact distance form Bk(’) to SN/2k. Thus

N
k N k

Taking the limit as N
Case (ii). Let f Ck[0, 1], If(k>l _--> 8 > 0. First, suppose that (5.3) were false in this

case. Then for some infinite subset of the positive integers, Z1,

(5.4) Nk disto (f, S)=:
where 0 < d < Ck.p and N s Zt. For each m 1, 2,..., and for N sufficiently large
and in Z, subdivide the interval [0, 1] into finitely many closed subintervals
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{L := [at, at+l]} whose endpoints coincide with the knots of the optimal ’u, in such a
way that each L contains in its interior (mr- 1) knots of fN, where m <= mr --<-- m + k + 1.
Thus Y’. mr =: N <N with equality in case each ar is a simple knot of fN. The inequality
(5.4) implies that

1/(kp+l)

iO
Secondly, suppose that

for all r. If so, then summing both sides over r and applying H61der’s inequality for
finite sequences yields

(5.7)

1/(kp+l) ko" 1/(kp+l)

1/(kp+l)

However, (5.7) contradicts (5.5). Thus the second supposition (5.6) must be false for
some r rN, or

(5.8) m,,, If--fN[p <d
N

Since each mrs, satisfies m -< mr N m + k 1, some fixed integer must be chosen by
an infinite set Z2 c Z. Let a be an accumulation point of the set of left endpoints of
L, N Z2. We pass again to an infinite subset Z3, where a will be a limit point of
appropriate left endpoints. Since ]f([ N 8 >0, the length of L must go to zero as N
from Z3 goes to infinity. Thus the right-hand side of (5.8) tends to d[f((a)l. Now
divide both sides of (5.8) by [f(k(a)l, change variable from L to [0, 1] on the left-hand
side, and let N from Z3 tend to infinity. We get

-s,(x) dx d,

where s, e S. But (5.9) provides an upper bound on distp (xk/k , S) which contra-
dicts what we established in Case (i). Thus (5.3) must be true for the functions
considered in this case.

Case (iii). Let e C[0, 1] and A {x e [0, 1]: f((x)= 0}. Suppose (5.3) is false.
Then for some infinite subset of the positive integers, Z1,

i If--fNlP ( dP-(f[ [f(k,a)
-]

where 0<d <2< G,p and {} are the closed intervals where >0 for some
6. Let denote the number of knots of [ interior to I so that

M=:M<-N- I < N.

By an argument analogous to that given in Case (ii), roughly from equation (5.6) to
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(5.8), we can conclude that for some index ],

We pass to an infinite subset Z2 c Z1 where the same index/" is chosen for all N Z2.
Since I[k[ >= 8 > 0, M. tends to infinity as N Z2 tends to infinity. Now the argument
given in Case (ii) can be carried out, simply by replacing N with M. and replacing
[0, 1] with Ii. It leads to a contradiction analogous to (5.9).

Remark. One can also establish that the optimal knot density function t
describes asymptotically where the knots will be located in the optimal [N, as N c.
This was done explicitly for p 2 in [1, p. 302].

We conclude with a conjecture which is motivated by a comparison, of the results
of this paper with similar results for piecewise polynomials by Burchard and Hale [5]
(see also [8 p. 295]) Let Sk

v. denote the closure of the space of polynomial splines
of order k with N-1 distinct knots each of multiplicity ,, where , is a fixed integer
between 1 and k. Then when , k, kS.k is the space of piecewise polynomials with
no continuity between pieces. For f ck[o, 1], the conjecture is that

lim N dist,, (f, Sv.) C.p,llf o-.t0,1],
N--,ot3

where

1 mn IlB(x)-{ao + alx +’’" +

This paper establishes the conjecture for , 1 and [5] establishes it for , k. Thus
the cases , 2,.. , k- 1 remain open.
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EQUILIBRIA OF THE CURVATURE FUNCTIONAL AND MANIFOLDS
OF NONLINEAR INTERPOLATING SPLINE CURVES*

MICHAEL GOLOMB" AND JOSEPH JEROME$

Abstract. A detailed global and local analysis is carried out of smooth solutions of the variational
problem

(li) 6 K2(s) ds =0,

subject to position function constraints

(lii) X(Si)=Pi, 0S0<SI<’’ "<Sm<=.

Here {pi}c R is prescribed, x is a vector-valued function with curvature K(s) at arc length and the
interpolation nodes si are free. Problem (1) may be viewed as the mathematical formulation of the draftsman’s
technique of curve fitting by mechanical splines.

Although most of the basic equations satisfied by these nonlinear spline curves have been known for
a very long time, calculation via elliptic integral functions has been hampered by a lack of understanding
concerning what precise information must be specified for the stable determination of a smooth, unique
interpolant modeling the thin elastic bdam. In this report, sharp characterizations are derived for the
extremal interpolants as well as structure theorems in terms of inflection point modes which guarantee
uniqueness and well-posedness.

A certain type of stability is introduced and studied and shown to be related to (linearization) concepts
associated with piecewise cubic spline functions, which have been studied for decades as a simplification
of the nonlinear spline curves. Many examples are introduced and studied.

1. Introduction. Let P={P0, Pl,’’’,P,,} be an ordered set of points in the
Euclidean plane (the pi need not be distinct) and let it be required to pass a smooth
curve through these points in the prescribed order. It is an old technique of draftsmen
to use a mechanical spline to accomplish this. If the spline is considered as a thin
elastic beam of uniform cross section with a central fiber that is inextensible, then the
strain energy of the bent spline of length g is given by

A t (s) ds+B

where K(s) is the curvature of the fiber at arc length s and A, B are constants. An
equilibrium position of the spline makes the energy functional stationary, hence
satisfies

(1.1i) f0 K2(S) ds O.

This equation together with the interpolation conditions

(1.1ii) X(Si)--pi,

* Received by the editors October 30, 1980 and in revised form March 9, 1981. This research was
sponsored by the U.S. Army under contract DAAG29-75-C-0024. This work was supported by the National
Science Foundation under grant MPS 74-02292 A01.

" Division of Mathematical Sciences, Purdue University, West Lafayette, Indiana 47907.
Department of Mathematics, Northwestern University, Evanston, Illinois 60201.
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for the position function x, constitute the mathematical formulation of the draftsman’s
technique. The present article deals with analytical (not graphical nor computational)
problems arising from system (1.1). In elasticity theory the solutions of (1.1i) or of
the more general equation

where A is a constant, are known as elastica. Their study dates back to the Bernoulli
brothers, Euler and others (see Love [8, Ch. XIX] for classical results). The boundary
conditions in traditional elasticity theory have little in common with the interpolation
conditions (1.1ii). To materialize the latter ones in the beam model one may think of
freely rotating small sleeves, anchored at the points po,"" ", p,, through which the
spline can slide without friction. We refer to the solutions x $ of the variational
problem (1.1i, ii) as extremal P-interpolants. In some parts of the present paper we
deal with extremal length-prescribed P-interpolants, in which g s,- So is given in
addition to P. To materialize this condition one replaces the sleeves at po, p, by pins
which allow no sliding. In other parts we consider extremal angle-prescribed P-
interpolants, in which the angles that the spline makes at po and p, with a reference
line are given. This situation prevails if the sleeves at po and p, are not allowed to rotate.

Stable equilibrium positions in mechanics are sought as positions that minimize
the potential energy functional. In one of the earliest papers discussing nonlinear
interpolating splines [2] it was pointed out that the infimum of /2(S) ds is 0 for any
configuration P, hence can be attained only in the trivial case where P is interpolated
by a straight segment. Lee and Forsythe [7], who make a substantial study of the
variational problem (1.1i, ii), call the solutions (when existence is hypothesized) local
minima. However, it will be proved in 6 below that, in the simple case where P
consists of 2 points, there are countably many nontrivial extremal P-interpolants;
none of them constitutes a local minimum of the energy. This makes it evident that
an extremal P-interpolant is, in general, not a local minimum (for a detailed discussion
of the stability problem see [5]).

The existence questions for interpolating elastica are much more subtle. For
length-constrained or length-prescribed interpolants one can prove existence of
extremals (actually global minima) by the direct methods of the calculus of variations,
because one has compactness in a suitably chosen function space (this was done in
[3] and [6]; see also the Appendix of this paper). This is not the case for interpolants
with no length restriction, and the existence of such extremals interpolating n points
in general position, and whether they are local minima or not, remains an open
question (some progress along these lines has been achieved by M. Golomb [4], [5]).
Computational work on extremal interpolants is more advanced (cf. M. Malcolm [10]),
although decisive progress in this area is also hampered by the lack of general existence
and uniqueness theorems.

We now give a brief account of the content of this paper. In 2 we define the
function classes in which the extremal interpolants are sought. We also characterize
them by Euler equations (for the Cartesian coordinates), boundary and regularity
conditions. In 3 we do the same for the "normal representation" of the extremals,
by which we mean the function s O(s), which is the angle that the extremal makes
at arc length s with a reference line.

The normal representation 0 of a length-prescribed extremal P-interpolant
appears as the solution of a free multi-point boundary value problem for Sl, , s,-l, 0
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with s,- So prescribed’

(i) b’(s)-/x sin O(s)+/z/2 cos O(s) O, si-l<s<si,

(1.3) (ii) (So) (s,) O,

(iii) (/x i+ -i COS O(Si) -Jr- (/.2 2
i+1 -/x sin O(si) O, 1,.. , m 1.

For the general extremal P-interpolant, (1.3iii) holds also for m and So and Sm are
2free as well with/x,/ =/x,n/ =0. The function 0 and the knot abscissas si are the

2unknowns; the multipliers/x ,/zi are determined from the interpolation conditions.
In 4 it is shown how certain families g(kl,’".k,n of extremal interpolants with prescribed
numbers (kl,’’’, k,) of inflection points between knots ("mode"), can be realized
as smooth 2m-dimensional manifolds /(kl,...,,. The inverse mapping from (,...,k,

into the position function space of the extremals is continuous when the latter is
topologized by a suitable metric. Thus, the mode (k,. ., kin) of an extremal suitably
delineates uniqueness and well-posedness. The union of the g(,..-,m consists of only
those extremals which have a genuine knot and no inflection point at each interior
interpolation node. Points in the intersection of the boundaries of the manifolds
(kl,...,,, correspond to singular points in position function space. For these boundary
elements some interior knot is spurious (K is not discontinuous) or is an inflection
point. We give two examples to demonstrate this.

In 5 we study the existence of elastica spline interpolation in the small. Does
the set of configurations P for which extremal interpolants exist have nonempty interior
in N2m? More specifically, which P in N2" are interior points of this set? We show,
by use of the implicit function theorem that near a given configuration P with extremal
interpolant E there is a local diffeomorphism between configurations and extremal
interpolants if (E, P) satisfies a certain hypothesis (A). It requires that a homogeneous
linear differential equation with variable coefficients depending on E and with
homogeneous linear side conditions has no nontrivial solution. Another formulation
of this condition is that a computable function (involving many quadratures) be S0
at the end point of E. It is easily verified that the ray configuration Po, with the trivial
extremal interpolant No, satisfies (A), so that the existence of extremal P-interpolants
for all configurations P in some Euclidean neighborhood of any ray configuration is
thereby demonstrated. The differential equation problem of hypothesis (A) reduces
to the natural cubic spline interpolation problem in the case (Po, Eo). This demonstrates
that cubic spline interpolation can be interpreted as the result of linearization of

2extremal interpolation (in the sense of making I K ds stationary) near the trivial
interpolant for the ray configuration. This proof makes precise the old idea that cubic
splines are in some sense the "smoothest" interpolants. Of course, it has long been
known that cubic spline.functions arise from minimizing the quadratic functional
(D2f)2 among the interpolating functions f. Since the linear operator D supposedly

approximates the nonlinear curvature operator, the cubic splines recommend them-
selves as near optimally smooth interpolants. The "hairpin" configuration/5 with a
loop interpolant/ is given as an example where hypothesis (A) is not satisfied. There
are configurations close to/5 for which there exists no extremal interpolant near/
and there are other configurations close to /5 for which there do exist extremal
interpolants near/. This seems to be the first known example demonstrating singular
behavior in nonlinear spline interpolation.

Section 6 contains an exhaustive study of extremal P-interpolants for the case
where P consists of two points. It is shown that there exist, besides the trivial extremal,
countably many nontrivial ones of distinct integral mode, that all of them are obtained
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by simple transformations from a basic one, all have the same length and (cf. [5])
none makes the potential energy a local minimum. Composition of these 2-point
extremals yields countably many extremal P-interpolants for various special configur-
ations P. Section 6 also exhibits countably many angle-prescribed and countably many
length-prescribed 2-point extremals.

In 7 some special cases of closed extremal P-interpolants are considered. It is
shown that the only closed length-prescribed extremal without knots are the repeatedly
traversed circle and figure eight configurations. Formally, the Euler equation is the
limiting case of the Euler equation for an elastic circular ring under hydrostatic pressure
p as p 0 (cf. [1] and [12]). The ring, however, is not an elastica since its deformations
satisfy stress-strain relationships. We also consider closed extremals which are not
length-prescribed. Here the extremals in 6 are used to construct infinitely many
closed extremals for several special P-configurations, for example where P is the set
of vertices of a regular polygon. In particular, if a regular m-gon, m >_-2, is inscribed
in the unit circle, then a circumscribed extremal exists with length

2m sin (Tr/m)F@/-; [3,)
s,

4[2E(-/;/3m) F(4;/m)]’

where cos m =4COS (T]’/m). There are similar formulas for the energy U, and the
arc length Sin(O); of interest is the result that Sm(O)/O 1 as m oe, so that the
circumscribed extremals have the unit circle as a limiting configuration. These
extremals are stable, i.e., they make the potential energy a local minimum, as proved
in [5].

2. Regularity and characterizations of open extremals. For two points p (p, p2)
and q __(ql, q2) in real Euclidean space N2 we employ the inner product pq

2
P q + paq the distance [p- q]- [(p- q)(p- q)]l/a, and the exterior product [p, q]

2 2p q -p q of such points. We consider mappings x (x 1, x 2) of the unit interval
I [0, 1] to Na. We denote by H2(I) the real Hilbert space of those mappings x such
that the derivative 2 is absolutely continuous and 5i e L2(I), equipped with the inner
product

(2.1) (x, y)m f, (xy +: + :c’f).

We say x is a regular element of H2 if I(t)]>0 for all eL We observe that the
L/regregular elements of Ha form an open subset a of Ha.

For x e H. we define the arc length map s" ! R+ by

(2.2) Sx(t) Jo 121, e I.

l._lreg -1If xela then Sx has an inverse Sx "[0, g][0, 1], where g=sx(1), and in this
--1 2case the function x s "[0, g] has an absolutely continuous derivative, and

square-integrable second derivative. We identify x with the oriented curve C in the
2x x -plane which has parametric representation x x(t). Writing x sx , we say

that $ is the arc length parametrization of the curve C. Clearly ell2(0, g) and
we have"

-1 -1 [. S-1 2 -1

= 2os,, ;, X OSx -2OSx (25ios2)

12 s 12 s;114
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../-regIf x 2 then its curvature Kx" I + R is defined by

(2.3) Kx(t) [2, Y]o sx(t) [2, Jc’]12 I-3(t), e I.

LregSuppose x s 2 and sx (1) g. Then we define the curvature functional,

Io Io(2.4) U(x)= [2,] x

..regNote that (2.4) defines U as a mapping of 2 into +. The equivalent expression,

(2.5) U(x)

is independent of the parametrization of x in the following sense. If u is a C-map
of I onto itself with fi > 0 and x y u then

U(x) i [’ ]ll-S u(y).

regIf x 2 then U is Fr6chet-differentiable at x and, for any increment y H2,

(2.6) U’(x)[y] It {2[2, 2"]([2, )’] + [, -s- I-7}.

If the variable of integration is chosen to be s,, (2.6) simplifies to

2**(2.7) U’(x)[y] (2Y3 3xy) ds,, x x ,,,, y y Sx.

Let 0 po, pl,""’, p,, be fixed points in R2, not necessarily distinct, but pi-1

Pi, 1,. , m, and let P denote the ordered set {po, pl,’ ’, p,,}. We refer to P as
gjrega configuration in N2. If x2 is such that x(&) p (i=O, 1,...,m) for some

0 <- to < tl <" < tm <---- 1 we say the curve x is an admissible P-interpolant, with knots
p (i 0,..., m). The terminals x(O), x(1) may or may not be coincident with the
terminal knots po, p,n. The P-interpolants defined here are to be considered as open
even if x (0) x (1). In the physical interpretation p p. for some means that the
beam is constrained to pass through two sleeves which are fixed at the same point pi

but can rotate independently of each other. The reason for the condition p-i pi will
become apparent from Remark 6.2, 6.

Suppose x is a fixed admissible P-interpolant and $ x s21 is its arc length
parametrization, s(1)=g its length, (i)=Pi (i=0, 1,’’’, m) its knots. Given any

./regz ,2 let z s be the parametrization of z which uses the arc length of x
as the parameter, and assume i(g)=0 (i =0, 1,..., m). For sufficiently small,
x + ez is an admissible P-interpolant and

(2.8) U(x+ez)-U(x)=eU’(x)[z]+o(e) as e +0.

This justifies the following.
DEFINITION 2.1. The admissible P-interpolant x, with arc length parametrization

x=xosx, knots p=$(gi)(i=O, 1,...,m), length g=s(1), is an extremal P-
interpolant if

(2.9) U’(x)[z]=O,
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0

2.,.*(2f- 3xz) O, -1
2=Z Sx

E./-regfor every z e** 2 satisfying -(gi) 0 (i 0, 1,. ., m).
The following proposition follows from (2.8) by the usual arguments of the calculus

of variations. It helps to explain the interest in extremal P-interpolants.
PROPOSITION 2.1. Suppose the admissible P-interpolant x minimizes the curvature

function U locally, i.e.,

U(x)<-u(y)

for every admissible P-interpolant y in a neighborhood of x in H2. Then x is an extremal
P-interpolant.

The three major propositions of this section follow. We use the notation yl for
the restriction of a map y to the interval J.

PROeOSlTION 2.2. The admissible P-interpolant x with arc length parametrization
y., knots pi Y(gi), i= 0,..., m, and length g, is extremal if and only if the conditions

(i) Y Ca[O, g], (s) O, for O <- s <- o and gm <- S <- g,
(2.10)

2 R2(ii) (2 +3x)(s) c, for s e (-1, s), 1,. ., m
hold with Y(,-1.,) C(i-1, i), i= 1,..., m.

Remark 2.1. Throughout the paper we use the same symbol to denote regularity
classes for both scalar and vector functions.

Proof. The implication (2.10)=)(2.9) is routine and follows upon decomposing
[0, g] into subintervals determined by the gi, dot-multiplying (2.10ii) by z’, integrat-
ing by parts and summing; the continuity of gY, the equations (gi)=0, 0,..., m
and the equations of (2.10) easily yield U’(x)[z] O.

Conversely, if (2.9) holds then, selecting C[0,] with support in
[gi, gi+l], fixed, we have

i+1
(2) _+_ F), 0,

where / 3K2.x. By elementary distribution theory, (2+F)(.+l)is in C
and

D2(2. + F)(gi,gi+l) O.

It follows that

(2a? + 3K xX)(i,i+l) C

and, recursively, i(i,i+l C(S"i, i+1). To prove the continuity of Y at an interior
knot gi, select u in C[0, g] with support in [gi-l,g/+l] satisfying
u’(gi) 1 and put z (u, 0). Then, from (2.9) and integration by parts,

2.0= {(2’+3XxX)Z}+2(1, O)(x(si+O)-.(ffi-O)).

Since the first term equals

Ci(Z (i) Z (ffi-1))"+- Ci+ (Z (i+ l) Z (i)),

which is clearly zero, we conclude that (1)(o,., is in C2(g0, g,,). A similar
argument works for 2.
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If is either go=0 or g, =L jumps are replaced by one-sided limits and
one concludes Y(go+0)=Y(g,-0)=0. Assume now gm <g. One argues as above
that

2(2 + 3K xx) e...e) c,,

and that Y is continuous at g,. We show that Cm =0. Indeed, select u C[0, g],
with u=0 for 0<_-s-<g,, satisfying u(g)= 1, fi(g)=0, and put z =(u, 0). Then,
from (2.9) and integration by parts over [gm,

O=Cm(Z()--Z(.,))=C
and a similar result holds for c 2m. Thus Cm 0. By (2.15i) of Proposition 2.4 to follow,

2we conclude that Kx(s)=0 for gin<S<

and, by continuity, for g,, <-s =<g. A similar proof holds if 0<go. This completes
the proof of the proposition.

We introduce the following notation for the jump of the third derivative of the
extremal 2 at the knot gi

(2.11) mi (gi +O)--.(gi--O), i=0, 1,""", m.

If Y(go- 0) and/or Y(g, +0) are not defined, they are to be replaced by 0.
The following proposition gives expressions for the extremal value U(x) which

do not involve quadratures.
COROLLARY 2.1. I]: Y. is the extremal P-interpolant o]: Proposition 2.2, then

and

(2.12) (ii) U(Y)=-2 piAi.
i=0

Proof. If we dot-multiply (2.10ii) by . and integrate over [0, g], using integration
by parts, we obtain

m--1

-2U(Y)+3U(Y) Y ci(p+l-pi),
i=0

which is (2.12i). Now use (2.10ii) at gi +0 and gi-0 and subtract to obtain 2A$

ci ci-, which holds for 0, 1, ., m if we define c_ Cm 0. By (2.12i) we have

U(-) E ci(pi+-Pi) E pi(ci-ci-i) =-2 E piAi,,
i=0 i=0 =0

so (2.12ii) is also proved.
Remark 2.2. Since U(x)=0 only if x is linear, it follows from (2.12ii) that an

extremal P-interpolant that is not linear must have a discontinuity of at some
of the knots (or else, (po + 0) # 0 or (p,, 0) # 0).

From an extremal x, as characterized in Proposition 2.2, one can obtain infinitely
many other extremals by shifting the terminals x(0) and x(1) along the rays that are
tangent to x at po and p,,. The value of U(x) is not changed by these variations. We
wish to ignore these trivial portions of an extremal and will for this reason adopt the
following convention. If we speak of an extremal P-interpolant x with arc parametriz-
ation , knots pi .,(gi), 0,..., m and length g then, unless stated otherwise,
go 0, g,, g, and the terminals are po (0) 0, Pm Y(g,,) Y(g).

m-1

(2.12) (i) U(aT)= ci(pi+l-pi),
i=o
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For some applications one wishes to constrain the P-interpolants further by
prescribing the length g of the arc between the terminals. Let the class of these
P-interpolants be called length-prescribed (they differ from the "length-constrained"
interpolants of [3]). The next definition deals with the extremals for U in this class.

DEFINIXION 2.2. The admissible P-interpolant x, with arc length parametrization
=x s-1, knots pi=(gi),i=O, ,m, length g=Sx(1), is a length-prescribed
extremal P-interpolant if

(2.13) (i) U’(x)[z]+ AS’(x)[z] 0

for any z Hz(I) for which z s-1 (gi) 0, 0, ., m and A e R determined so that

(2.13) (ii) S(x) := I, I1 g.

For these extremals we have a characterization similar to that of Proposition 2.2; note
that S’(x) is given by

-1S’(x)[y]= xy, for allyH(I), = x s-, f y s

PROPOSITION 2.3. The admissible P-interpolant x with arc length parametrization, knots pi i(), i=0, 1,..., m and length =gm is a length-prescribed extremal

e c[0, ], (0) 0, ()= 0,
2(2Y + 3Kxx -A2)(e,_l.ei ci 2, 1, , m,

(iii) = U(Y)- ci(Pi-Pi_a) U(Y)+2 piiY,
i=1 i=0

hold with Y(,-1.,) C(gi-, gi) (i 1,..., m).
Proof. To prove the implication (2.14i, ii)(2.13i) one proceeds as in the first

part of the proof of Proposition 2.2. If, next, (2.14ii) is dot-multiplied by 2 and
integrated over [0, g] one obtains, using integration by parts,

-2U(i)+3U()-Ag= 2 ci(Pi--Pi-1) =-2 2 PiAiY,
i=1 i=o

which give (2.14iii), which is seen to be equivalent to (2.13ii).
Conversely, if (2.13i) holds then selecting zC[O,g] with support in

[gi, g/+l], fixed, we have

[e’+’ (2" +F Ag]% 0,

where F is as in the proof of Proposition 2.2. It follows that

(2 +3x -X)e,.e,+, c+a.
The regularity properties of x are proved as before. The argument in the first part of
the proof shows, that given (2.14i, ii), then (2.14iii) and (2.13ii) are equivalent.

Remark 2.3. For any configuration P {Po, p, ’, p}, there exists an extremal
P-interpolant satisfying (2.14) with A m . Indeed, if

Go=
i=0

if and only if
()

(2.14) (ii)
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2
then the length-prescribed extremal x, which minimizes I Kx among all admissible
P-interpolants with length equal to L>Lo is guaranteed to exist [6] and satisfies
(2.13i) [cf. Appendix].

Remark 2.4. Assume o is an (unconstrained) extremal P-interpolant and that
its length is go. Then Yo satisfies (2.10) and (2.12), hence o also satisfies (2.14)
with h 0, i.e., fro is also a length-prescribed extremal P-interpolant for the given
length go. We know that there exist length-prescribed P-interpolants of given length
g, g near go. More precisely, let us assume that for every neighborhood N of io
in H2 there exists some 6>0 such that if Ig-gol<6 there is a unique solution
N of Equations (2.14) of length g. Let g--> V(g)=[:sl be the function of
g whose value is that of the curvature functional at 5s. Then one can show that V
has a critical point at go, i.e., V’(g0)=0. Moreover, if V(go) is a local minimum
of V then U($o)=< U($) for every admissible P-interpolant in a neighborhood
of $0 in H2, i.e., the extremal $o is locally minimizing.

Remark 2.5. Curves $’E--> E2, satisfying the equation
225+3Kxx-A2 =c

are called elastica (cf. [8]), more specifically inflexional elastica if the curve has
inflection points (which is the case if and only if A 2_< c2). Curves for which A 0, the
case of primary interest in this paper, will be referred to as simple elastica. Geometri-
cally, simple elastica are characterized by the property that the angular variation
between consecutive inflection points is exactly rr (for all inflexional elastica the
angular variation is >=rr). A smooth oriented curve in E2 with continuous curvature
which consists of finitely many subarcs of the simple elastica and has (possibly)
discontinuities of the curvature derivative at the interpolation points pl,"’, p,-i

only is called an interpolating elastica (cf. [8]).
The next proposition deals with implications and equivalences of (2.14ii). It should

be observed that these results apply to Equation (2.10ii) as well, since the latter is
the special case of (2.14ii) with 0.

PROPOSITION 2.4. Condition (2.14ii) implies each of the following four con-
ditions on (gi-1, gi) (i 1," ", m):

2(i) ci + ,
(ii) kx 1/212, ci],

(2.15)
(iii) x -[, ci] + yi,

(iv)

Ti ,
x-- Kx --’0.

Moreover, (2.15i) also implies (2.14ii).
2Proof. If (2.14ii) is dot-multiplied by , one obtains, since I1 1, lYl2= x, xx

0,
2 2 2 2__3K + 2." + 21;I +2 x ci + A,

hence (2.15i). Differentiating (2.15i) we obtain

KxIx CiX.

If Xx(s)#O for some s, then and ;(s)/Kx(S) is the unit vector
(-2(s), l(s)). Therefore, k(s)= 1/2[(s), ci] and (2.15ii) holds in this case. If x(S)= 0

The authors thank S. D. Fisher for a helpful suggestion here.
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and s is a limit of sn such that Ix(Sn) O, then continuity of 2 and kx together with
the previous argument gives the same equation. On a fixed interval (gi-1, gi), let
Fi={s" Kx(s)#0} and let (a,/3) be any subinterval in the decomposition of
(i-1, gi)\Fi. We must show that (2.15ii) holds on (a,/3). Now Kx and k, are zero on
(a,/3). By the continuity of kx on (gi-l, gi) it follows that k,()=O=[(fl),ci].
Moreover, since 0 on (a, fl),

(2.16) (s)=as+b, sE[a,], a, bE2.
Thus, from (2.16),

[(s), c,] [a, ci], S E log, ].

In particular, [a, c]= 0 and thus (2.15ii) holds on (a,/3). Next, (2.15iii) follows from
(2.15ii) by integration. To show that (2.15iv) holds, let (s)#0; then #(s)=
x(s)(-22(s), 2(s)) and one obtains upon differentiating (2.15ii),

(s)-,,

Thus, (2.15iv) holds at every point s for which x(s) 0. The case when s is a limit
point of sn for which K (s,) 0 then follows immediately. The case when s is not such
a limit point is of course trivial.

To show that (2.15i) implies (2.14ii), assume (s)0 for some s E(g,g+).
Since :(s) and are orthogonal unit vectors in N2, we have, using (2.15i)
and the fact that 2(s)’(s)+ I(s)l=- o,

(s)
i (Ci(S))(S) -1" (Ci(S))

d((s)) (s)l
(3(s)- )(s) + (2c’(s).(s))2(s)+ (2:’(s)Y (s))

(3(s)- A)(s)+ 2’(s),

(s)
I (s)l2

which is just (2.14ii). If s is a limit point of s for which Y(s,) 0, then the same
equation holds by continuity. If s is not such a limit point, then (2.14ii) reduces to
ci =-A2(s), which is clearly obtained by dot-multiplication of (2.15i) by 2(s). This
concludes the proof of Proposition 2.4.

At the end of this section we mention still another constraining condition for
extremal interpolants. It consists in fixing the angle that the interpolant x makes with
a fixed line at the terminal knot p0 (g0) and/or p,, =(g,). Thus, the condition
is

(2.17) 2(o) eo and/or 2(gin) em

where eo, em are unit vectors in N:. We refer to these extremals as angle-constrained.
If x is an admissible P-interpolant with knots p $(gi) which satisfies the

constraint (2.17) then any other P-interpolant in a sufficiently small He-neighborhood
of x, satisfying the same condition, is of the form x + ez where z Ha, z s- (gi)
0, i=0, 1,...,m, 2 s-(go)=O and/or 2 s-l(ffm)-"O. It is easily seen that if



EQUILIBRIA OF THE CURVATURE FUNCTIONAL 431

g is an extremal P-interpolant with the added constraint (go)= e0 then the "free
boundary" condition ;(go)=0 of (2.10i) is replaced by 2(go)=eo. Similarly if
.(gm)----em is a constraint then this condition replaces ()= 0. There is no other
change in the conditions of Proposition 2.2.

3. Normal representation of extremals. In this section the dependent variable is
an angle. Let T(= Ta) denote the 1-dimensional torus. T is represented by a real
number (also denoted as) &, one of the set b + 2kr, k 0, +/- 1, +2,. . A continuous
function 0:(0, g)- T is represented by a continuous function (also denoted as)
0" (0, g) , one of the set 0 +2kr. The derivative is always a unique function
(0, g). Let /-]x(0, g) denote the class of absolutely continuous functions
0" (0, g) - for which L2(0, g). Then the function x Xo" (0, g) 2, defined by

(s) cos 0, x 2 (s) sin 0(3.1) Xo o

is in H2(0, g) and represents an oriented curve C in the xlx2-plane, parametrized
with respect to arc length, x(0)=0, 2/a =tan 0, O(s) is the angle which the curve
C makes with the x-axis at arc length s, and Os is the curvature of C at s. Conversely,
given an oriented curve C with cartesian representation x H2(0, g), parametrized
with respect to arc length, there is a unique function 0x /-(0, g), representing a
unique mapping (0, g)+ T, such that

(3.2) x(s) x(0) + cos 0, xZ(s) x2(0) + sin Ox.

We say that 0x is the normal representation (n.r.) of C.
Curves C that differ by a translation have the same normal representation. If 0

is the n.r. of C then 0 +const. is the n.r. of a curve obtained from C by a rotation,
and -0 is the n.r. of a curve obtained from C by a reflection at the xl-axis. In a
geometric setting we may identify curves C which differ only by a congruence, and
each congruence class is represented by a single function 0 with the specification
0(0) 0, 0(0) > 0 (or t}’(0) > 0 if (0) 0).

In many cases it will be convenient to characterize extremal P-interpolants by
their normal representation. For this purpose we replace Propositions 2.2 and 2.3 by
the following propositions whose proofs we omit.

PROPOSITION 3.1. The function I2Ia(O, g) is the normal representation of an
extremal P-interpolant with knots pi, O, 1, , m at 0 go < gx <" "< g, and
length g gin, if and only if the conditions

(i) g C1[0, g], (0) 0(g)= O,

(3 3) (ii) 2(S C
2

COS (S) - C sin if(s) for s (ffi-1, ffi), ci 2, 1," m,

Iogi
2

(iii) cos O(s) ds p, sin O(s) ds p, 1,..., m

hold with 0(,_,.,) C (si-x, gi), i= 1,’", m.
PROPOSITION 3.2. The function ffta(O, g) is the normal representation of a

length-prescribed extremal P-interpolant with knots pi, O, 1, ., m at 0 go < g2 (
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<gm and length g, if and only if the conditions

(3.4)

(i) ff e cX[o, el, g(o) g(e) o,
(ii) 2(s) c 2cos if(s) + c sin if(s) +,

for s G (gi_l, gi), ci []2, l, m,

(iii) cos O(s) ds p, sin O(s) ds p, i= 1,..., m,

(iv) Ag= c(pi-p-)
i=1

hold with 0(,_,,) C (gi-, gi), 1," ’’, m.
Remark 3.1. The conditions (g-0) O(gi +0), 1, , m 1, 0(0) O,

and (g,,)- 0 result in m + 1 conditions on the vector constants c,..’, c,. Both in
Proposition 3.1 and 3.2 we have

(3.5)

(i) (C 2
i+1--Ci )COS ff(gi) -[- (C/2+1 --Ci )sin 7(gi) 0,

(ii) c cos if(0) + c sin if(0) + , 0,

(iii) c 1 cos 7(g,) + c 2m sin if(f,,) + h 0,

i=1,...,m-1

where A is to be taken as 0 in the case of Proposition 3.1.
For use in 4 and 5 we state and prove
PROPOSITION 3.3. The function IZII(O, g) is the normal representation of an

extremal P-interpolant with knots pi, O, m at 0=go<" "<g, and length
g s- if and only if interpolation conditions (3.4iii) and the conditions

(3.6)

(i)
2(s)+c 2sin if(s) c COS (S) 0

for s (gi-l, gi),

(ii) (c+-c) cos (g;)+(c2+x-c2) sin t(g) O,

(iii) (0) O, (g) 0

hold with (,_,,,) C(gi_a, gi), 1, , m and Cm+l O.
Proof. The forward implication follows directly from Proposition 3.1 and Remark

3.1. The converse implication follows upon multiplying (3.6i) by (s) and integrating;
if the integrated equation is evaluated at s g,, and (3.6ii, iii) is used, the constant
of integration is seen to be 0. Thus, (3.6) implies

2O2(s)-ci cos (s)-ci sin if(s)=0 for s e (gi-, gi),

fie C1[0, g], i= 1,..., m,

and the result now follows from Proposition 3.1.

4. Manifold of extremals. As noted in the previous section, we may consider
equivalence classes of curves differing by a congruence, with representer satisfying
x(0) 0, 0(0) 0, (0) > 0; or b’(0) > 0 if (0) 0.
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DEFINITION 4.1. The extremal interpolant E is proper if"

(i) E has nonzero curvature b at each internal interpolation node si,

i=l,...,m-1.
(4.1)

(ii) Each internal interpolation node is a genuine knot, i.e., there is a
discontinuity Ak#0 in the derivative of the curvature at s,
i=1,...,m-1.

DEFINITION 4.2. The m-tuple (k,..., kin) of nonnegative integers is the mode
of E if there are ki inflection points strictly between the (j- 1)th and jth interpolation
nodes; here, an inflection point denotes a point of zero curvature and we note that
must change sign. For a fixed mode (k,. ., k), ,..., will denote the class
of proper (m + 1)-extremal interpolants E in the mode (k,..., k).

PROPOSITION 4.1. is a (finite-dimensional) metric space under the metric

(4.2) d(E, E2) 0=,=max xa(st)-x(st)
Here se and xi represent the lengths and Cartesian representations (parametrized w.r.t.
arc length) o Ei, j 1, 2, respectively, where xi(O)= O, ] 1, 2.

Remark 4.1. We omit the routine proof. We observe that is not complete.
Indeed, if each (,..., (m fixed) is embedded in the space of all extremal inter-
polants, with metric described by (4.2), then the boundary 0 of may contain an
extremal interpolant which is not proper. We also observe that if Ea is close to 2,
then the configuration interpolated by Ea is close to that interpolated by E2. This
would not be true if El, E2 were not restricted to a class (,...,m (see Example 4.2
at the end of this section).

Now let 0e Ca[0, s] be the normal representation of some E . If 0 So < Sl <
< s s are the interpolation nodes of E, put Oe(si) ai, O, , m and a

(,"’, am-) Tm-. Setting ci =-2 we have from Propositions 3.1 and 3.3 the
existence of a unique multiplier (, ., m) (N2)m sch that, for k 1,. , m,

(i) O(s)+cosO(s)+sinO(s)=O, sg_x<s<s,

(4.3) (ii) 0(s)- sin O(s) + cos O(s) 0, Sk- < S < S

(iii) (0) 0, O(S) 0.

By introducing the more convenient notation

Bg (A, fig), Ak > O, T, k 1, m,

where

-A sin g, A cos fl,

we may rewrite (4.3) in terms of the multipliers Bk for k 1,..., m"

(i) "gO(s)+Ak sin (0(s)--fl) 0, sg_a

(4.4) (ii) O(s)+Ag cos(O(s)-fl)=O, Sk-a<S<Sk;

(iii) (0) 0, O(S) 0.

Since 0 0 is not a proper extremal we must have (0+) 0. We consider it as
part of the definition of that

(4.4) (iv) (0+) > 0
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for all E . Geometrically speaking, contains only extremals which turn counter-
clockwise near the initial point.

PROPOSITION 4.2. Oz C1[0, sz] is the normal representation of an extremal E
(kl.....k,,) with interpolation nodes at 0 So < sl <. < s, sz if and only if

A. Oz satisfies (4.4i-iv) for some Ak > O, T.
B. sin (fli- fli+) 0.
C. sgn E(si)= (-1) ’+’’’+’, 1,... rn 1.
Proof. Since 0E C we have, by (4.4i)

(4.5) (i) Aisin(rei-i)-Ai+lsin(rei-i+l)=O, i=l,...,m-1,

where rei OE(si). By (4.4ii), E(si-0) ’E(si +0) if and only if

(4.5) (ii) Ai cos (cei i) Ai+ cos (rei ii+ 1) 0.

The two equations (4.5i, ii) are equivalent to (4.5i) and sin (i--i+1)’-0. Thus, the
above condition B is equivalent to the condition that each interpolation node of E
be a genuine knot (see 4.1ii). There are ki inflection points of E between the (i- 1)th
and ith interpolation nodes if and only if E changes sign ki times between si- and
si, i.e.,

(4.6) sgn Ki- sgn/i (--1) ki, , d(s).
Since by (4.4iv) E(s)>0 for all sufficiently small s, (4.6) is equivalent to the above
condition C. Condition C also implies that Ki 0 for 1,..., m 1, thus condition
(4.1i) is also satisfied.

Remark 4.2. Condition B also implies

(4.7) Ai-Ai+l 7 0, 1, m 1.

Indeed if mi-Ai+ =0 then by (4.5i) sin (rei-/3i)= sin (rei-/3i+l), hence i’-’i+l or
/3i =/3g/1 + r (mod 27r), which contradicts B.

We now define

(4.8)

"+ {A [r: Ai-Ai+ O, 1, m 1},

" {/3 T"" sin (fli- fie+l) 0, 1, , m 1},

B BE (B,’ Bin), re reE (rea, re,,).

By Proposition 4.2 each extremal E C(k,,...,km) determines a unique point BEe
+ In the next three propositions we shall describe the mapping E BE via the
composition of two mappings" the homeomorphism

(4.9) (i) J" E- (cz, Bz)

of q onto J() T’- ([ 7’) and the projection

(4.9) (ii) M: (re, B) B

of J() into "" ""/ T which is a local diffeomorphism.2 The composition M J is a
global homeomorphism.

PROPOSITION 4.3. The mapping J is a homeomorphism of g,.....g,, onto its image.
Proof. The continuity of J follows directly from (4.2) and (4.4); note that

Ba,..., B,, can be expressed via (4.4) in terms of rei, i, Ak, thus also in terms of

The homeomorphism M is a diffeomorphism if M and M- are continuously Fr6chet differentiable

on their domains. This is sometimes referred to as a C-diffeomorphism.
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0e arc tan .E,2/.E,1. Suppose now that J(E) (ae, Be). We show that E e ge is
uniquely and continuously determined by its map (ae, Be). By (4.4)

sin (0E (0)-/1) 0, cos (OE(O)- 1) < 0,

hence ao 0E(0) =/31 + zr (mod 2r). The restriction of 0z to [So, Sx] is now uniquely
determined from

(i) Oz(s) -[-2A1 sin (Oz(s)-/31)]1/2 < 0,
(4.10)

(ii) 0E(0)-- ao,

with s uniquely determined from

(4.10) (iii) 0E(Sl)=al, J(s)=0 for kl values of s in (O, Sl).

Indeed if there is an s > s for which O(sl)= 0(s)= a then (g)= 0 for some
sl <g<s], hence (s) 0 for more than kl values of s in (0, s). This clearly leads
to an inductive process; indeed if 0E is defined on [0, si], one obtains the restriction
of 0 to [Sg, Si+l] from the initial value problem defined by (4.4ii) with initial values
O(si) and O(sg). Si+l is uniquely determined from

OE(Si+l) 1i+1, {E(S) 0 for ki+l values of s in (Si, Si+I).

The process is terminated at m- 1 by replacing the condition OE(Si+I)- ai+ by
E(S,) 0. Since the continuity of j-x is an easy consequence of (4.4) the proof is
complete.

We determine now the image set

(4.11) 5 (tl,...,k,) J(C(kl,...,t,,)).

The following are necessary conditions for (a, B)6 5.

(i) sin (ai fli) < O, 1, ., m- 1.

(4.12) (ii)
If kt 0 for some 2 _<- m 1

then (-1) ’+’+’- sin

(iii) Ai sin (Og --[3i)--Ai+l sin (C --i+1), 1,..., m 1.

Conditions (4.9i and iii) express that is positive and continuous at sl,’’ ", s,,-1.

If some kt =0 then there must be no inflection point between st-1 and st, hence
sin (0- a-l) does not change sign, or

sin (Ow(s) a-l) (st-1) > 0 for st-1 < s <- st.

Using C of Proposition 4.2, we obtain (4.12ii).
We now show that conditions (4.12) characterize the image set completely.

We observe that (4.12i, ii) define an open set in the (3m-1)-dimensional space
T’-I x (’x ’), while equations (4.12iii) single out a 2m-dimensional surface in
the open set.

PROPOSITION 4.4. The image set J((kx,...,k,,) is

5(kl,...,,, {(a, B) T’-1 x (’x m): conditions (4.12i, ii, iii) hold}.

Proof. We need to show that if (a,B) is such that (4.12) holds, then there are
numbers

0 SO < $1 <" < Sm SE and a function 0 C1[0, s]
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such that conditions A, C of Proposition 4.2 are satisfied and moreover,

(4.13) OE(Si) O[i, 1," m 1

(condition B follows from the definition of 7m). Sl and the restriction of 0E to [So, $1]
are determined as in the proof of Proposition 4.3. Next, the restriction of 0E to Is1, s2]
(s2 as yet unknown) is determined from the initial value problem

(4.14) d(s) + (-1)[-2A2 sin (0(s)-[32)]1/2---0, 0(S1) O1.

The solution is the normal representation of a simple elastica with inflection points
at equally spaced abscissas trk where 0(o’k) =/32 or/32 + 7r (mod 27r). By (4o12i and iii)
we have

sin (a -/32) < 0, sin (02 [2) ( 0,

and, therefore, O(s) attains the values c1 and a2 exactly once between any two
consecutive rk. Thus if there are k2 >- 1 inflection points between s and s2 there is
exactly one s2 for which 0(s2) a2. If k2=0 and, say (Sl)>0, then by condition
(4.12ii) sin (a2-al)>0, which implies that O(s) attains the value a2 for s2>sl, with
no inflection point between sl and s2. By the same arguments the values of s3, ,
and the restriction of 0z to Is3, s4]," ’, Is,,-2, Sm-1] are determined, sm=
on [s,-l, s,,] are similarly obtained, except that the condition O(s,)= a, is replaced
by O(s,,)= 0. The obtained function Oz is in C1[0, sz] because of condition (4.12iii),
and it satisfies (4.13) and conditions A and C of Proposition 4.2 by construction.

PROPOSITION 4.5. The projection Mlse is a local diffeomorphism onto an open
subset l,,...,,, of x m. Thus 5 is a 2m-dimensional smooth (even analytic)
manifold (S# is not connected if rn >-1). The composition map M J is a (global)
homeomorphism of g(k,...,,,) onto (,"’,km"

o o oProof. Choose any (a,B)e, a =(a,... a, m) and B =(a,...,a,
fl,.. ,/3,,). Let U denote the open subset of T"- (T f’") satisfying conditions
(4.12i, ii). Define a mapping q" U--> E,-I by

(4.15) qgi(ce, B):Aisin(oi-i)-Ai+lsin(ai-i+l), i=1,’’ .,m-1.

With this notation, (a,B)6 U is in ow if and only if qi(ce, B) 0, 1,. ., m 1. Now
qi(a, B) 0 and the Jacobian [Oqi/Oaj] is nonsingular at (a , B), since it is a diagonal
matrix with diagonal entries

04i (Ol O, B) A( cos (a 0 o

t90/i
-/3)-Ai+l cos (o -+1)

(4.16)
=Ait =0.

We conclude that, for every neighborhood Uo U of (a, B), there is a neighborhood
oNoofBinx’ anda Cl-mappinga ofNosuchthata(B)=a andqi(a(B),B)=

0 for all B s No. This proves that M is a local diffeomorphism.
By Proposition 4.3 the mapping J is a homeomorphism of ,...,, onto 6e. If

the composite map M J is not a homeomorphism, there must be (a, B), (a’,/3) in
5e with a Ca’, say aC:a’i (mod2zr). By (4.12iii) we have Aisin(oi-i)-
Ai+l sin (ai-i+l)=O and Ai sin (al-i)-Ai+l sin (a-/3i+1) 0. These equations
imply a ai + zr (rood 2zr). But by (4.12i), sin (ai -/3i) < 0 and sin (a -/3i) < 0, which
contradicts the previous conclusion. Thus Proposition 4.5 is completely proved.
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Remark 4.3. It seems to be difficult to give an intrinsic characterization of the
set /(kl,’",km)" Examples show that it does not coincide with bm. It certainly
contains points B (A,/3) for each combination of the inequalities A1 <>A2, A2 X
A3,’’’, Am-1 X Am. Thus, /(kl,...,k, and 6(k,...,k, have at least 2"- disjoint com-
ponents.

Remark 4.4. The following examples show that the results of this section fail if
in Definition 4.1 either (4.1i) or (4.1ii) is omitted.

Example 4.1. Consider the 3-point interpolant Eo with normal representation

0o(S)-[-2 sin Oo(s)]/2 O,
du

0S $1
x/2 sin u

6io(S) + [-sin O0(S)]1/2 O,
du

S S S +
x/sin u

Here Beo (1, 0, , 0), ao rr, tea 2rr, a2 rr. The mode is (0,0). Eo violates (4.1i)
since 0o(sl)=0. For e >0 let the extremal E of the same mode (0, 0) be given by
Be (1, 0, 1/2, e), so that

O(s)- [-2 sin O(s)]/2= O,

O(s) + I-sin (Oe(s)--E)]l/2-O,
0 <--S <= S

S l,e S S2,e.

If 0 (Sl,e) is close to a 2 rr then 0 (s,) 2rr 6 for some 3 > 0. Thus, for s s 1,,

(Sl,) [2 sin 6]1/2= -[sin (6 + e)]/,
which is impossible. Thus, a(B) cannot be defined as a continuous function in a full
neighborhood of B0.

Example 4.2. Choose r < a. < 27r and consider the 3-point interpolant E, with
normal representation

t},(s)- [-2 sin O,(s)]/2 O,
*- du

0 < S < S1. /.

sin U

0,(s)- [-2 sin O,(s)]1/2 O,
du

<S<S2=2s. x/2 sin u

Here Be, (1, 0, 1, 0), ao rr, al a,, a2 7"/’. The mode is (0, 1). E, violates (4.1ii)
since A -"-A2. For rr < c < 2rr let " be defined by normal representation

’(s)- [-2 sin (s)]1/2 0, 0 < s < g
42 sin b/

(s)-[-2 sin (s)]1/2 0,
du

ffl S $2 2
/2 sin u

Here BE =(1, 0, 1, 0), ao r, a =c, O2--"/r, and the mode is (0, 1) as before. Since
there are extremals for all zr < c < 2r, E cannot be defined by B and its mode.

5. Perturbations of configurations. In the last section it was seen that the extremal
interpolants with rn variable interpolation nodes (more precisely, those that belong
to a fixed class <k,...,,) form a 2m-dimensional manifold. One expects that an
arbitrary configuration P {0, p,..., Pro} can be interpolated by an extremal inter-
polant (possibly by one from each class gk,...,g)). No solution of any kind exists for
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this existence problem. In this section we investigate existence in the small. Does the
set of configurations P for which extremal interpolants exist have nonempty interior
in N2,? More specifically, which P in N2,, are interior points of this set?

To attack this perturbation problem one is tempted to consider the mapping from
the 2m-dimensional set (kl....,k..) that coordinatizes the elements of (kl....,k.) (see
4), or from another 2m-dimensional set of parameters, to the configurations in N2,

which are interpolated. However, this mapping is so complicated--it involves the
elliptic integrals which are the solutions of the extremal equations--that little insight
is gained from its consideration. For this reason we start with the extremals themselves,
as defined by their differential equations.

Let " [0, ,]+ T be the normal representation of a given extremal interpolant
E, which interpolates the configuration

so that

(5.1)

P={O,/,..., ff,},

ffi IOgi

cos 0 fi, sin 0 =//2, O, 1,. , m,

0=go<g<.. "<gin.

Since we consider only extremals E with n.r. 0 near 0, hence with knots Si near gi,
we choose g>0, g=-min(g/-gi_l) and extend to the interval [0, g],g=
s-,, + g, by setting

O(s) o(.,), s-., < s <- .
We introduce two spaces of mappings from the interval [0, g]"
NBV=space of functions K’[0, g]-E of bounded variation V(K) and con-

tinuous from the right with (0)= (g-0)= 0 and norm V().
NBV1 space of functions 0" [0, g] T1, which are locally absolutely continuous

and have derivatives NBV, with norm sup 101 / v(O),
Both NBV and NBV1 are B-spaces. Clearly ff as defined above is in NBV1 and is
in NBV.

If 0 NBV is the normal representation of an extremal E which interpolates
the configuration P {0, p, ., p,} at the nodes 0 So < Sl<’ <Sm < g (more
precisely, we speak of the linear extension of E to length g) then the following
equations hold (see Proposition 2.4)’

(5.2)

’(s) + O3(s) 0, for Si-1 < S < Si, 1," ", m,
0)

0(s)=0, forsm<S<g.

(ii) O(&-0)- O(s) 0, i= 1,""’, m.

2
(iii) cos 0 =P i, sin 0 =p, 1,..., m.

It is easy to show that these equations characterize the interpolant E completely.
We rewrite equations (5.2) by using the values

(5.3) (si) a, b’(si + O)= be, 1,..., m

as parameters (but ao 0, b, 0 always).
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O(S) +2__1
s,_a

(S t)O3(t) dt ai-1 + bi-l(S si-1), si-1 < s <

(i) 1,..., m,

(5.4)
1 I

,
(Si--t)6i3(t) dt, i= 1 m.(ii) ai ai-1 + bi-l(Si- si-1) - s,_

io io(iii) cos 0 p, sin 0 p/2, 1, , m.

Equations (5.4) define implicitly a mapping cg from the space (N2)m of configur-
ations P to the space g’ of extremal interpolants E. To apply the implicit function
theorem we introduce a mapping G on the product space g’ x to NBV x Imx R2m

as follows. We set
19= (0; s,..., s,; a,..., am; b0,’", b,,_),

where
0NBV, sigN, ai e N, bi N,

D NBV x H(gi- , + ) x x N
and define a mapping G (g, r, qi) with components g NBV, ri , qi

, as follows"

g(s)= 0(s)+ (s-t)O3(t) dt-ai-l-bi-(s-si-1), si- Ns <si,

(i)
g(s)=O(s), smse.

(5.5)

(ii) ri ai-ai-a-bi-a(si-si-1)+ (si-t)O3(t) dt.

i2 2
(iii) q cos 0 p i, q sin 0 P i.

Clearly, (5.4) are equivalent to

In particular we have G(O, P) 0, since we assume that 0 is the normal representation
of the extremal interpolant E for the configuration P. We need the Fr6chet differential
G; (O, P)[], where

=(0; h, ", tm; , ", m; BO, -)

is an increment to . The components of G(O, P)[] are denoted by g’, r, q. One
finds readily

g’(s)=(s)+ (s-t)(t)(t) dt-_ (s-si-)ti-a

(i) -i--i-(s-si-a)+bi-ati-a, si-aNs<si

g’(s (s, sms<.
(5.6) r i-1 i-ais + (Oi- ais- ti- (s o)ti

(ii)

+ (si-t

io io
s,

(iii) (q)’= 0 sin 0 + ti cos Oi, (q)’ 0 cos 0 + t sin Oi.
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Here we have used the notation

(5.7)

and the relation - 0 3 b’(Si-1 4- O) b’(Si O) hi-1 i (si 0),
i--1

which follows from (5.2i) and (5.3).
The continuity of G’ near (19, P) is readily ascertained from (5.6).
We can now state the main result of this section.
THEOREM 5.1. G’o((R), P) is an isomorphism of

NBV1 Nm N, Nm onto NBV X m X (2)m

if and only if (19, P) satisfies the following hypothesis"
(A) The system for the unknown NBVI"

+ff2 0 on (if/-1, fie), 1,..., m,
(i) 0 on (, g),

(5.8) (ii) Zi/ 4- Ait 0 sin (67- 0-) 0, 1,..., m,

(iii) 0 COS (0- Oi)--O, i= 1,..., m,

has only the trivial solution d O. If (A) is satisfied then there are neighborhoods 2V
in D and in (N2),n of ) and P respectively and a diffeomorphism II,

onto

such that (R) No defines an extremal P-interpolant E ]:or P II((R)).
Remark 5.1. Explanation of the notation used above and in the following"

0" #(ffi), ffi (ffi), Ji I(ffi),

Ai=(gi+O)-(gi-O), Ai(k=t(gi+O)-d(gi-O),

in particular Ao (go + 0), A, -(gm 0), etc.

Proof. We first demonstrate the injectivity of the bounded linear mapping
G (19, P) under hypothesis (A). Thus, assume that for some

Then we have by (5.6i)

G (0, P)[] O.

(5.10) /(ffi 0) 4- (g, t)ff --1/2,? 1miffti.-1-oli-l-[:i-lAiff4-bi-lti-l--O,

and using (5.6ii)

(5.11) (i) [l(ffi O) Ol 4-R(K-O)t =0, i-- 1,..., m.

)’+}6 0 on (gg_,, gg), i=l,...,m,
(5.9) (i)

q)=O on (2re, i),
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Also by (5.6i)

(5.11) (ii) (i+O)-ai+b-iti=O.

Since bi (g + 0), the last two equations yield

(5.12) Ai + tiA 0, 1, ’, m.

The remaining equations (q)’= (q/)’ 0 (see (5.6iii)) are equivalent to

’i
(5.13) t 0 sin (0-0), 1,..., m,

i
(5.9) (iii) O cos (0- 0)= 0, i= 1,..., m.

When (5.13) is substituted in (5.12), one obtains

(5.9) (ii) g +g 0 sin (- 0) 0, 1,. , m.

By hypothesis (A) the equations (5.9i, ii, iii), which coincide with Equations (5.8),
together with ONBVa imply 0=0 on [0, g]. (5.9i) then implies 0=0 also on
[gm, g]. Then by (5.13), t=0, i=l,...,m, and by (5.11), a=0, i=l,...,m.
Finally, by (5.10), 0, 0, ., m 1, thus 0, hence G(, P) is injective.

Conversely, if hypothesis (A) is not satisfied, i.e., system (5.9i, ii, iii) has a non-
trivial solution 0eNBV1, then determine the t from (5.13), the ag from (5.11) and
the Bg from (5.10). (0; tl," ", t; al," , a B0," ’, Bin-a) is then a nontrivial
solution of G(, )[] 0, thus G(,) is not an isomorphism.

To show surjectivity of G(,) onto NBVxN x N2m, assume we are given
h NBV, u 6 N, vg 6 N2, 1, , m. Weust find 0 NBV1, ti , ai , i N, such
that (see 5.6)

(i) g’(s)=h(s), 0Ns<g,

(5.14) (ii) r ui, i= 1,..., m,

(iii) (q)’= v, (q)’= v, i= 1,..., m.

In particular, (5.14i) requires (see (5.6i))

(5 15) (i) (gi--0)+ (i--t)ff2--ff 3
i--1 iti--l--i--l--i--li

+ b-ltg-a h( 0),

and (5.14ii) requires (see (5.6ii))

ai-ai-l-i-ig+(bi-l-igY-)ti--(gi-O)ti+ (-t) u.

The last two equations imply

(5.6) (i) d(g,-o)-+;(gg-O)tg=h(g-O)-u.

(5.14i) also requires

(5.16) (ii) d(gg + 0)-a + k(g +0)tg h(g +0).
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We therefore must have

(5.17) (i) t(ff --0) t(ff -o)- mit -- Aih d- bli, 1,..., m.

The last equations (5.14iii) are (see (5.6iii))

(5.17) (ii) 0 sin + t cos 0- v, i COS /-F ti sin - v/2.

The general solution 4’ NBV1 of (5.14i) is the sum of a particular solution and
the linear combination of 3m functions with the coefficients c1,’", am,/3o,"’,
/3,-1, tl, ’, t,. When this 6 is substituted in (5.17i and ii) a nonhomogeneous system
of 3m equations for the unknowns ci, 3i, ti is obtained. The homogeneous part of this
system corresponds to the case h 0, ui 0, v 0, and it has only the trivial solution
Og O, i "-O, ti--0, as shown in the first part of the proof. This demonstrates the
surjectivity of G (O, P) and finishes the proof of Theorem 5.1.

The utility of this theorem is illustrated by the fact that it readily implies the
following important result.

COROLLARY 5.2. Suppose P={0, i01,.. ’,tim} is the ray configuration Pi--
(gg, 0), 1,..., m with the trivial interpolant E. Then the hypothesis (A) is satisfied,
hence the conclusion of Theorem 5.1 holds.

Proof. 0 0 in this case. If we put

(5.18) S

then y(0)= 0 and (5.8) become

);(4) 0 on (xi-1, xi),

(5.19)
y"= 0 on (x,., ),

y"(xi + 0) y"(xi 0) 0,

y(xi) 0, 1,.. m,

while y’ e NBV1, i.e., y" NBV, in particular y"(0) 0. These are exactly the equations
for a natural cubic spline that interpolates the points (xi, 0), 0,..., m. It follows
that y (x)-= 0, and the corollary is proved.

Remark 5.2. We briefly draw a connection between the above corollary and
natural cubic spline interpolation. The mapping F from the space of configurations P
to the space of extremal interpolants E is implicitly defined by G((R), P)= 0. Perturba-
tion theory looks for a pair tO tO +, P P+Z (Z {z 1, ’, z,}) close to the initial
pair tO, P for which

(5.20) a (tO, P)[q] + Ge((R), P)[Z] 0.

It is readily seen that this is system (5.9i, ii, iii) except that (5.9ii) is replaced by

i
(5.21) (i) O COS (O--Oi)-" Z2i COS i--Zi sin ffi.

Also, (5.13) is replaced by

(5.21) (ii) ti 0 sin (if- 0) + z cos + z/ sin ..
Now suppose the initial configuration P and the interpolant E are the ray configuration
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and trivial interpolant, as in Corollary 5.2. Further suppose P is the configuration

P- {(Xo, Yo), (x l, y 1).’’’, (xm, Ym)}, XO YO 0

with the xi-gi z and yi z/ small. Then (5.21i, ii) become (in the perturbation
approximation)

(5.22) ] Yi, i + ti xi

moreover,

(5.23) x(s) cos 0 cos s, y(s) sin 0- sin , .
The perturbed extremal E is now the graph of the function x y(x), which satisfies
(5.19), except that the last equation is replaced by y(xi)--yi. Thus y is the natural
cubic spline that interpolates the data (xi, yi), 0, 1,. , m.

We have shown that the cubic spline interpolant is the result of linearization of
extremal interpolation (in the sense of making K

2 ds stationary) near the trivial
interpolant for the ray configuration.

Remark 5.3. The differential equation that appears in hypothesis (A) of Theorem
5.1,

(5.24) (i) ./K2qj -0,

where is defined by the equation

(5.24) (ii) ’-[- 1/203 0,

can be completely integrated by quadratures alone. Indeed 4’ 1 is clearly one integral;

(5.25) (i) 01 ---/

is another; for )’1 0 (4) and 0(4)-[ -}d20" 0. The third one is

(5.25) (ii) 4,2(s) s:(s).
In the special case where (s)--cs, three linearly independent integrals are

(5.25) (iii) 1, s, s 2.
In the remainder of this section we discuss the replacement of hypothesis (A) by

a simpler condition, which requires only that the value of an explicitly given function
(involving many quadratures) at gm be 0. For this purpose we introduce a condition
on arcs of simple elastica. The arc of E from gg-1 to gi is said to be ordinary if it
is either straight or

(5.26)
i :-" (P --/-l)[(gi-1)2

COS 0" -/i-1 sin 0]
q_ (p2 -2 )[(y,_1)2 sin ;i-1 COS ] + ;i-1 sin (’-1 ) # 0--Pi--1

One sees readily that only exceptionally is such an arc not ordinary. For example, the
arc from go 0 to gl, where go 0, o 0, is not ordinary if and only if

sin 0-1-p cos 0- 0,

i.e., the chord Pop; is tangent to E at Pl.
THEOREM 5.3. Suppose the extremal E consists of ordinary arcs only. Let

o, Po(0)= 1, be the solution of system (5.8), exclusive of the condition on A,(O (tOo is
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explicitly constructed below). Then hypothesis (A) o[ Theorem 5.1 is satisfied if and
only if

(5.27) o(m 0) + (m 0) 0osin (0- 0,) 0.

Proof. Let b, be the integrals of "+ 0 (case 0) for which

(5.28)
i(i-1) ,(i-1 + O) O, i(i-1 + O) 1,

Xi(ffi-1) i(ffi-1 + O) O, 2i(,-1 + O) 1.

These are linear combinations of 1, 1, . One finds.easily

i Oi[(i--l)2-- i-i + i-I(S ffi-1)],
(5.9) (i)

xi ,[-#,-1,-, + ,-,# + (#,_,)(s i-1)#],

where we have used the abbreviation

1
(5.29) (ii) 2(/i- 1)2 -I- 1/2(’i- 1)4.

Pi

We construct Oo successively on the intervals [gi-1, i], 1,..., m. On [0, 1]
we have since 6,o(0)= 1, g)o(0)= 0’

(5.30) (i) g,o 1 + 4,o(0)41

with o satisfying condition (5.9iii)"

(5.30) (ii) cos (0 0o) + d;o(0) 1 cos (0 0o) 0.

One finds the last integral to be 01. Thus, ;o(0) is uniquely determined from (5.30ii),
and (5.30i) gives 0o on (0, ). (If 0 on [0, ] then one finds 0o(S)= 1- 3(s/)).
Assume 0o has been determined on [0, i_](i < m). Then 0o(-) and o(/--0)
are known, hence o(-) can be found from condition (5.8ii)"

gi

(5.31) o(i_1) o(i_ 0) +A_ osin (- 0_).

Then if0 on [i-, i] we have

(5.32) (i) o o(-) + o(i-l)Xi + o(i-)i,
and to satisfy condition (5.9iii)"

0 COS (-- 0) + [O(ffi-1) + 60(i-1)Xi] COS (if--
i--1

(5.32) (ii)

+ o(- cos (- 02. o.

One finds, using (5.29i) and

cos -pL1, sin
-i-

that the last integral in (5.32ii) is p& # 0. Thus o(g-) is uniquely determined from
(5.32ii), and (5.32i) gives o on [g-l, gi].
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(5.33)

In the omitted case 0 on [gi-1, gi], (5.32iii) are replaced by

(i) 4o(S) o(gi-1) + (Oo(gi-)(s -) + 1/2o(g-)(s g_)2,

(ii) 6o cos (0 0) + 6o(g-,)(g ei-,) + o(g/-,)(g- g-,)

The conclusions remain the same as before.
With 0o found on [0, gin] there remains condition (5.9ii) to be satisfied"

(5.34) o(m 0) + (. 0) 0osin (O--Om)=O.

System (5.6) has a nontrivial solution if and only if the constructed integral 0o satisfies
(5.34). This proves the theorem.

Example 5.1. To illustrate the utility of the preceding theorem consider the
configuration

P {(0, 0), (a, 0), (a, b)}

with the extremal interpolant E whose normal representation 0 is defined by

(5.35) (s)
[sin (s)]/, a <= s < g.

Here and g are the definite integrals

io ( )ioB sin/ g a + sin-1/2

That E does indeed interpolate the point (a, b) follows from

Io ( )Iocos 0 ds cos dt sin-1/2 cos O,

sin 0 ds sin sn b.

Using the construction of the preceding theorem, one finds by straightforward compu-
tation

2

2

 o(s,

2

a<=s<=g,

)o(g 0) + (g 0) fjo sin (if- 0-2) + < 0.

By Theorem 5.2 unrestricted perturbation of the 3-point rectangular configuration P
is possible.
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Even for this simple example we were not able to prove this result in the more
direct way, by expressing the parameters of the elastica spline in terms of the
coordinates of the interp,olated configuration.

Example 5.2. Let P be the "hairpin configuration"

io/3 {(0, 0), (0, ), (0, 0)}, 2 (2 sin) I/z,

with the extremal interpolant/ whose normal representation is defined by:

0(0) =0

(s)
[2 sin t(s)]1/2, 0 -< s <- r := (2 sin)-1/2

[-2 sin if(s)] a/2, o- =< s -< 2m

Then Y(0)= Y(cr)= Y(2o’)=0, A (cr + 0)-Y(r-0)= 2. One finds readily:
S

01(8) /($), X1($) (S), Os 0",

(s) -(s), X2(s)=Y(s), r-<_ s -< 2r,

Then

j" 1 O=<s <=o’,
Oo(s) / 1 +2(s), er -< s =< 2o’.

2o-

o(2cr-O)+(2cr-O) Io 4,osin (-2r)

20"

=-26-[I sing+f,,. (l+26Y) sinO]
=-2a-[a-a-26]=0.

By Theorem 5.3 hypothesis (A) is not satisfied, thus it cannot be concluded that the
hairpin configuration with the extremal interpolant " permits perturbation. Indeed,
one can show directly that if / is replaced by the perturbed co.nfiguration P
{(-e, 0), (0, 6), (e, 0)} there exists no extremal interpolant close to E no matter how
small e # 0 is. On the other hand, if P is replaced by P {(0, 0), (0, a), (0, e)}, which
is also close to/, then there is an extremal interpolant E near ’, E coincides with
E for the arc from (0, 0) to (0, a), the remaining arc is the simple elastica joining
(0, 6) and (0, e). Thus, we have an example of singular behavior taking place in the
perturbation from P to P.

6. Special cases of open extremals. We study in some detail in this section
extremal P-interpolants for some special configurations.

A. Two-point extremal interpolants. Let P be the configuration P {po, p}, po
0. For an extremal E with normal representation 0, 0(0)= 0, we have by (3.3)"

(6.1)

(i)

(ii)

(iii)

2(s) c cos if(s) + c 2 sin if(s), 0 < s < g,
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(6.1i) implies c 1= 0 and (7
2 sin if(g)= 0. Clearly, either C 2"- 0; yielding the extremal

if(s) =-0, p0=0, pl =(g, 0), or, c 2 0. In this case we write c2=-2/I. Differentiation
of (6.1ii) gives by Proposition 2.4 the differential equation,

(6.2) l(s) + cos if(s) 0, 0 < s < g.

When this equation is integrated over (0, g) and (0)= g(g)= 0 is used, one obtains
the first of equations (6.1iii) with p 0. From the equation,

it follows that -rr <- 0 -<_ 0 if > 0 and 0 -< 0 -< 7r if < 0. Since the choice < 0 amounts
to a rotation through r of the extremal corresponding to >0 or to a change in
orientation transforming 0 into -0, we may assume > 0 and -rr-< 0 _-< 0. In this case
2

pl =-d := -IPo-PI in the second equation of (6.1iii). We may rewrite (6.1iii)"

From (6.1ii), t(g)=0 is equivalent to sin if(g)=0. Since sin if(s)<_-0 for 0-<s-<g

and 0 is continuous, there are only two possibilities" O(g)= 0 or O(g)=-’rr.
Altogether we have shown that (6.1) may be replaced by the simpler system

(6.3)

(i) z2(s) -sin O(s), 0-<_ s <_- g; 0(0) 0, 0(g) 0 or -Tr,

(ii) sin 0 =-d.

If s is interpreted as physical time, lO as the displacement along a circle of radius l,
then (6.3i) represents the pendulum equation with pendulum length l, unit mass and
unit force downward, starting from horizontal position with velocity 0 at s- 0 and
reaching velocity 0 again at s when 0 0 or -r. The pendulum swings from
horizontal position 0 0 at s 0 through one or more half-swings to horizontal position
at s g. The kinetic analogue of the elastica equation was discovered by G. Kirchhoff;
see [8, p. 399].

One interpretation of the interpolation condition (6.3ii) is that the time integral
of the kinetic energy 1/2(/)2 divided by the maximum kinetic energy, l, is the prescribed
"minimum time" d. The length of the pendulum is the main unknown of the problem.

The solution of (6.3i) for various values of can be derived from the solutions
of the same system for 2. Indeed, the transformation

converts (6.3i) to the "normalized system"

(6.5) 2(s) -sin t(s), 0 _-< s =< Y, t(0) 0, t(g) 0 or

The solution of the pendulum equation (6.5) with O(g)=-zr is well known. It is
explicitly given by

(6.6) O(s) -- 2 arc sin sn 2 s 0 <-_ s <-_ ,
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where 2-1/9g is the half-period of the Jacobi function sn (U)= sn (u; 2-1/2) and arc sin
is the branch of the inverse of sin with range [-rr/2, rr/2]. For and U(})= 2
we find in terms of the complete elliptic integrals of the first and second kind [13]"

(6.7)

(i) g=
/sin 0 (1_ t2)(l__)

(ii) 0 4s-n 0 dO 21- 1 2/-[2E(2_I/.2)_K(2_/2)].

The analytic continuation of ff (also denoted as ) to all of is given by (s) -ff(-s)
for s < 0 and

f(2g- s) for g -<_ s -< 2,
(6.8) 0(s)=(s_2kg) for2kg<=s<-2(k+l)g, k=l,2,....

It is seen that ffto.2j also solves (6.5), the value at the new boundary point 2g being
0. In general Oo,kl (k 1, 2,’’ ’) solves (6.5), with (kg)=-rr or 0 depending on
whether k is odd or even. These are all the solution of (6.5) with free right end-point.

We now use the solution ff of the normalized problem to express the general
solution of the boundary value problem (6.3i) for fixed g > 0. It is given by

(i) ff(s)=(ks), 0<s<L=
(6.9) 2

where k is any positive integer. To satisfy the remaining condition (6.3ii) we must have

-d sin a(s) ds sin k ds =- sin a(s) ds =--0;s
hence

(6.10) g d,

independent of k.
We write 0k for the solution corresponding to k 1, 2, , Ik for the correspond-

ing parameter value in (6.3ii) and Uk for the value of the curvature functional for
Thus,

(i) O-(s) (k -s), O<s= =<g= (--)d,
(6.11) (ii) l =2 =2 k 1, 2,...,

(iii) r tJ,(s) ds k 2 2--g-=
All these solutions have the same arc length d/O 2.2d. Also O-(s)= (ks) for
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O<-s<-g/k and O(s)=l(kS-g) for g/k<-_s<-_2/k, etc. Thus the curve represen-
ted by 0k consists of k congruent arcs, all similar (contracted by the factor l/k) to
01. The curve whose normal representation is 0k is characterized as that arc of the
simple elastica whose endpoints are inflection points and which has k-1 internal
inflection points (it belongs to class ’(k-1) in the notation of 4). For the above
physical interpretation the result means" If the ratio of the time integral of the kinetic
energy to the maximum kinetic energy (in a motion from the horizontal to the
horizontal position) is to be the fixed number d then the pendulum must have one
of the lengths lk 2(d/ktfi)2, k 1, 2,... and the pendulum makes k half-swings in
total time (/)d.

We summarize the results in
PROPOSITION 6.1. There are countably many extremalP-interpolants Ek interpolat-

ing a two-point configuration with IPo-Pll d > O, one for each k O, 1, 2,.. . Eo is
the trivial ray interpolant; Ek is an arc of the simple elastica with inflection points at
the terminals and k- 1 internal inflection points. The normal representation Ok of Ek is
given by (6.11), where is the elliptic function (6.6). Each of the Ek, k 1, 2,... has
the same length = (/ )d, where and are given by (6.7). The extremal value of
the curvature functional for Ek is 0k k2/l, k =0, 1, 2,’ , where 1 2/d.

Remark 6.1. It is shown in [5] that none of the extremals El, E2,’’’ provides a
local minimum.

Remark 6.2. Since the simple elastica has no double point, it follows that there
exists no extremal interpolant for the "loop" configuration {po, pl} with p0 pl.

B. Ray and rectangular configurations.
COROLLARY 6.1. Suppose P ={0, Pl,’’’, Pro} is the "ray" configuration where

pi (si, O) and 0 < Sx Sm. Countably many nontrivial extremal P-interpolants are
obtained from the 2-point extremals of Proposition 6.1 as follows. Let YO.gxl represent
any of the nontrivial extremals for the configuration {0, pl}. Define 1,21 as one of
the {pl, p2} interpolants of Proposition 6.1 or the negative of it so that (gl-0)=
2(1+0). Continue in this way to the intervals [ga, g3],"’,[g,,-1, g,]. The
obtained curve represented by is an extremal P-interpolant.

COROLLARY 6.2. Suppose P {Po, PI, Pro} is the "rectangular" configuration
where the angle between pi-lpi and pipi+l, 1,..., m-1 is either 0 or +r/2. Let

represent a P-interpolant such that the segment from pi to pi+, =0,..., m- 1, is
any of the extremals of Proposition 6.1 (including the trivial one) and so that is
continuous. In this way countably many extremal P-interpolants are obtained for any
rectangular configuration P.

C. Angle-constrained two point extremal interpolants. The boundary conditions

(6.12) 2(0). (pl-po)=yo, (g). (pl-po)=yl,

are added to the problem of 6A, replacing the zero curvature endpoint conditions.
PROPOSITION 6.2. There are countably many extremal {po, pl}-interpolants con-

strained by conditions (6.12) if yo
Proof. Suppose 0 is the normal representation of the sought extremal. It is easily

seen that one can normalize 0 so that 0 satisfies (6.3i), except that the values of 0 at
0 and g are not 0 and -or, but given numbers 0o, 01,0>--0o-->-zr/2, 01=0o or

01 0o-zr. It follows that the solution of the problem is a symmetric arc of the curve
(6.9i), with k even if 00 01, k odd if 0o 01 + r, scaled and moved so that the terminals
are Po, Pl.
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D. Regular configurations. Suppose P {po, pl," , p,} is a "regular" configur-
ation, by which we mean each segment pipi+, =0,..., m-1 is of the length d
and makes the same (exterior) angle c, r <a =<2r, with the following segment
pi+ Di+2. We seek an angle-constrained P-interpolant Y for which

(6.13) 2(0). (pl-po)= (g,,)" (Din--Pro-l)--" d sin-
2

COROLLARY 6.3. For each regular configuration P={po, p,’", p,} there are
infinitely many extremal P-interpolants constrained by the condition (6.13), which consist

of rn congruent segments.
Proof. Let z represent one of the infinitely many extremal {po, pa}-interpolants

Eo of length g, constrained by

(0). (Pl-Po)= (ffl)" (pl-po)= d sin-
2

and such that (0) x (pl-po)= --(1) X (Pl--P0). Let Y represent the uniquely
defined P-interpolant E that extends Eo by congruent pieces. Then has continuous
slope and curvature and satisfies (6.13); hence E is one of the sought extremals.

E. Length-prescribed two-point extremal interpolants. We assume now the
length ff of the extremal {po, pa}-interpolant E is prescribed. Suppose 0 is the normal
representation of E. With the proper choice of the coordinate system we conclude,
using Proposition 3.2, that 0 must satisfy the following conditions (assuming g > d)

(6.14)

(i) (0)-- (g) 0,

(ii) Z(s) -sin O(s) + A,

Io(iii) cos 0 (s) ds O,

Set 0(0)= 0o (-rr/2 <-0o < rr/2); then

0-<_s=<g, 1>0, A6,

sin O(s) ds =-d.

(6.15) X sin 0o.

In particular, -1 =<A < 1. We may again interpret (6.14) as describing the motion of
a pendulum swinging from some position 0o where 0 in fixed time g to another
position where 0 0 and so that the time integral of the kinetic energy satisfies a
certain condition.

By (6.14ii), t(g) 0 if and only if (Y) is 0o or -- 0o. The condition I cos = 0
follows from (6.14ii). Thus, (6.14) may be replaced by the simpler system

(6.16)

2(i) (s) sin Oo-sin g(s), 0 =< s =< Y, 0(0) 0.o,

(ii) 0() 0o or -zr 0o, sin 0 -d.

We make the transformation (6.4) again, to obtain the normalized system

(6.17) d2(s)=sinOo-sind(s), O<-s<=g, d(0)=0o, d(g)=-r-0o.
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The solution is given by

(s) 0(s; 0o) -- 2 arc sin qsn s q2
(6.18) (i)

where 2-1/2 is the half-period of the Jacobi function sn(u;q)"

(6.18)

dO f
,+Oo dO= (0)=-

#sin 0o-sin 0 o,, /sin 0o+sin 0
(ii)

,/2 dO
=2

--Oo /sin 0o + sin 0"
We observe that 0o) increases monotonically from 0 to ee as 0o varies from -r/2
to rr/2. For d -o sin and U 2 we have

(6.18)
r/2 sin 0

(iii) (0o)= 2 dO,
J-Oo #sin -sin 0

(6.18) (iv)
r/2

/] f] (0o) 2 f /sin 0o + sin 0 dO.
o--0

We also observe the identity

(6.19) g(0o) sin 0o + d(Oo) 0(0o).

The analytic continuation of (also denoted as d) to all of is given, as before,
by (6.8). Then we put

-s 0<_-s-<_g, k=l,2,...,

(6.20)

(ii) lk= 2(-) 2.
These quantities still depend on 0o. 0o must be determined so that the last condition

fo fo (-) fo (0o)(6.20) (iii) -d sin Ok(s) ds sin ds sin (s) ds -(0o---
is satisfied. Thus 0o is determined from the equation

(6.21) d(Oo___) d
(0o) ’

where and are given in (6.18). As 0o varies from -r/2 to 0, (0o) increases from
0 to 2 g/2 sin1/2 0 dO and then decreases from this value to -oo as 0o varies from 0
to r/2. Clearly (0,)=0 for some 0, between 0 and r/2 (0,40). The ratio
d(0o)/Y(0o) can be seen to decrease monotonically on [-r/2, 0,] with values in the
entire interval [0, 1]. Therefore, for any 0 < d < L there is a unique 0o in [-r/2, 0,)
such that (6.21) holds. For this unique 0o, g (0o) is determined according to (6.18ii),
then 0k and lk from (6.20). Together with I sin 0o, these quantities satisfy the original
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system. U(Oo) is given by (6.18iv) and the value of U for 0k by

(6.22) Ok := Io ,(s) ds k2 g(OO)s_ (0o).

Altogether we have proved
PROPOSITION 6.3. There are countably many extremal {po, px}-interpolants

if.z,"" of prescribed length >IPo-PI[. Their normal representations are given
explicitly by equations (6.18) and (6.20), with the angle ofinclination Oo atpo determined
from (6.21). For the value of the functional U, the relation Ok k2 U1, k
1, 2,’’ holds.

Remark 6.3. The curves of Proposition 6.3 are subarcs of inflexional elastica (cf.
Remark 2.4). For illustrations see [-8, p. 404, Figs. 48-53].

Remark 6.4. In the beam interpretation the joint at po exerts a force R whose
tangential component is sin Oo/1 and whose normal component is cos Oo/l. Thus R
acts along the line joining po to pl. The magnitude of the force is 1/1. For fixed
and d, the force Rk in the mode k has magnitude kZR1. For 0o < 0 the tangential
force on the joints is a pressure, for 0o > 0 it is a pull.

7. Examples of closed extremals. Let P {Po, Pl,’"", Pm} be a configuration as
Lgregin 2. If x 2 is such that x (ti) pi, O, , m for some 0 < to <’ < t, < 1 and

besides x(k(0+) x(k)(1 -) for k =0, 1, 2, we say x represents an admissible closed
P-interpolant with knots Pi. Suppose )7 represents an extremal closed P-interpolant,
i.e., )7 makes the curvature functional U stationary in the family of admissible closed
P-interpolants. Then the graph of )7 is a closed curve which has continuous curvature
everywhere, and the curvature is continuously ditterentiable at all points other than
the knots.

In this paragraph we examine four classes of closed extremals"
A. Closed extremals of prescribed length with no knots.
B. Closed symmetric extremals with two knots.
C. Closed extremals for rectangular configurations.
D. Closed extremals for regular polygons.
A. If )7 represents a closed extremal with no knots, of prescribed length g> 0,

parametrized with respect to arc length, K(s) its curvature at s, then one finds, as in
Proposition 2.3, that

(i) )7 e C[0, g], )7(k)(0 )7(k)(g), k 0, 1, 2,

(7.1) (ii) 2#’+ 3K2 -a c, c e ,
Io(iii) , 1

Conversely if )7 satisfies (7.1) then represents a closed extremal with no knots, of
prescribed length L parametrized by arc length. For the normal representation 0,
where )71(s)= cos if, )72(s)= sin if, (7.1) gives

(7.2)

(i)
O(g) 0(0)+ 2kTr,

cos 0 sin 0 0,

k 0, +,... 0(0) (),
(ii) 02

C COS ff "[" C
2 sin ff + A,

(iii) h =-zsl IO 2.
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PROPOSITION 7.1. For each k 1, 2,... there exist exactly two closed extremals
with no knots of prescribed length g>0. These are the circle of radius g/(2kTr)
traversed k times and a contracted figure eight configuration traversed k times.

Proof. We can omit (iii) in (7.2) since it follows from (i) and (ii). We write
A sin (7+ a) with A>_-0, a T for c cos ff+c2 sin ft. If ff represents an extremal then
0-a represents the same extremal rotated by the angle a. Therefore, (7.2ii) may be
replaced by 2= A sin if+ to, where to> 0. (tO2o 0 means h 0, which is impossible
by (7.2iii).) We may also assume k 0, 1,..., in (7.2i). Thus, (7.2) is replaced by

(7.3)
(i)

(ii)

t(g) if(0) + 2kr, k 0, 1, 2,.. (0) (g),

2=A sin ff+w, A =>0, too> 0.

Case 1. A 0. In this case we may assume 0(0)= 0. Then O(s)= woS and Wog
2kcr, hence too= 2kr/g. For k 1, 2,..., 0k(s)= 2krs/g satisfies all conditions. Ok
represents a circle of radius g/2kr, traversed k times. The value of U for 0 is
(2k/).

Case 2. A > O, > A. We may assume A 1 since if ff ts a solution of (7.3) for
A >0, of length g>0, then ff defined by (A-/2s) is a solution for A 1,
A-aw> 1, of length g A 1/2g. If ff satisfies (7.3) then if(s) is uniquely defined by

(7.4) s
Oo #w+sin

k in (7.3i) must be positive, and w is uniquely defined by

s
4+ sin +"

For 0 defined in this way we have, after a change of variable,

fo I sinsin O(s) ds d=#w + sin

[o o sin ]sin
d d < 0,k g+sin -sln

which contradicts (7.3i). Thus no solution exists for>A.
Case 3. A > O, < A. We may again assume A 1, thus o < 1. Conveniently

replace 0 by 0 + , and write sin 0, for , with 0 < 0, < /2. Thus (7.3ii) is replaced
by

(7.3) (ii’) = sin 0,-sin 02
In this case --0, N O(s)N 0,, thus we must have k 0 in (7.3i). Since O(s) cannot
be monotone, we must have (s) 0 and sin (s) sin 0, for some s; it is no restriction
to assume that this happens for s 0, and 00)= 0,, (0)= 0. As s increases from 0
to some s,, (s) decreases from 0, to --0,, when (s,)= 0. Since --0, e 0,
the curve cannot be closed yet, and as s increases further, O(s) increases up to the
value 0,, which is attained for some s s**, and (s**) 0. If we set O(t) (2s,- t),
we see that 01 satisfies (7.3ii’) and O(s,)= O(s,), hence 0 0, i.e.,

O(s,+t)=O(s,-t)
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and, in particular, s** 2s,. Thus the curve obtained is symmetric w.r.t, the point
s 0. If we put 02(s)=-Tr- O(s,-s) then we see that 02 satisfies (7.3ii’) and 02(0)=
0(0) 0,, hence

O(s,- t) -r- O(t),

the curve obtained is symmetric with respect to the line 0 0 and O(s,/2)=-r/2.
The curve will be closed iff the conditions ** cos ff 0, ** sin ff 0 are satisfied.

The first equation follows directly from the symmetry of the curve. We are left with

[** I* sin(7.3) (i’) 0 sin O(s) ds 4 d O.
o /2 Zin

Let the last integral be denoted as I(8,). Clearly I(0) -< 0 and I(/2) +.
Thus, there is a value 8, between 0 and /2 for which (7.3i’) holds, and it is easily
seen that there is only one such value (approximately 8, 40). With this value of ,
we have obtained a closed extremal E* of length s**. It is an analytic curve, crossing
itself at s s**, and consists of 2 congruent loops, each symmetric w.r.t, the same
axis (an illustration appears in [8, p. 404] as an example of an inflexional elastica).
By proper scaling the curve will have the prescribed length . The differential equation
for the normal representation of the curve E is

aO=sinO,-sinO, 0(0)=0,, O .
Thus, the inverse function 0 s(O) is given by

* 0,de
s (0) a

#sin 0, sin 2

_
0 <=

where the constant a is determined from

g 0, d
-=/2 sin 0,-sin

The other extremals E, E,... in this sequence are obtained by traversing
E 2, 3, times with scale factor , , , thus their normal representations satisfy

O(s)=O(s), Os.

Case 4. Ao>0, w=A. In this case the solution of (7.3ii) is monotonically
increasing in s but does not attain 0o +2 for finite s.

Remark 7.1. The restriction of 0 (s) to [0, g/2] represents a length-prescribed
extremal (length= g/2) interpolating the "loop configuration" {Po, P} with po=p.
This is not a closed extremal, although it is a closed curve. Each O(ks),k
1, 2,... 0s g/2 can also be considered as the normal representation of such
an interpolating extremal. The curvature functional (potential energy) for this extremal
is seen to have the value

sin 0,.
s / sin O,-sin

The k-times traversed circles and contracted figures eight with the point po=p
anywhere on these curves are also length-prescribed loop interpolants but have no
knot at the interpolation point.
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Remark 7.2. The length-prescribed extremal interpolating the loop configuration
with the knot at the interpolation point can also be obtained as the limiting case of
the extremal of 6. E as d - 0. There it was pointed out that d(0,) 0 for 0, satisfying
(see 6.18iii)

,,/2 sin 0
0= dO.

J-0, /sin 0, +sin 0

Clearly, this is the above condition (7.3i’).
B. We turn to the problem of closed extremals/ with two knots. We consider

only extremals that are symmetric with respect to the line joining the two given knots.
We assume po (0, 0), p (0,-d) with d>0 are the knots and that (1, 2)
represents the extremal/, parametrized by arc length. If is the length of/ and
(0)=po, then (k)(g)=(k)(0) for k=0,1,2, and because of the symmetry,
(/2) p. Thus, we may assume

X(s) =-(-s), (s) (-s), 0__<s-<L

(7.5) 1(0)=1()=1()=0, 2(0)=2(g)=0, 2()=-d,
}(O)=}(d)=l, 2()=+/-1, J2(O)=j2()=2(d)=O.

If is the normal representation of/ then by (7.5) and Proposition 3.1,

(i) cos g(s) cos ( s), sin d(s) -sin g(- s), 0 N s N ,
/2 /2

(ii) f cos=O, [ sing=-& IoCOS=O, foSin=O,0 0

(iv) o)=o =()=o,

(v)

cos (s) + A sin (s),

cos (s) + A sin O(s),

s /2 in (v) gives AI= A=0; substitution of (i)in (v) gives A=-A=-A. Thus
(7.6v) becomes

-A sin (s), 0<s_-<_s-,
(7.6) (v’) d(s)

-<=s<+A sin O(s),
2

When the conditions (0)= 0, (/2)= 0 or -Tr, 6(0)= (/2)= 0 are taken together
with (7.6v’), it is seen that o,/21 is one of the functions 0k of 6, with g replaced
by /2. The symmetry condition gives for t/2,l’

<s_<_LtJ(s) -2]7r- tJ(- s), =
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Thus we have found all solutions of system (7.6) and have proved
PROPOSITION 7.2. There are countably many closed extremals 1, 2,"" with

normal representation dx, 2, with two knots which are symmetric with respect to the
line joining the knots, l,k is obtained from the open extremal Ek of Proposition 6.1 by
reflection at the line joining the knots. Each l,k has the same length 2, where is the
length of the open Ek. The value of the curvature functional U for the extremal is
2k 2 lQ1 where 1 is the value for the open El.

C. In this section we consider rectangular configurations as defined in Corollary
6.1.

PRO’OSITION 7.3. Let P {P0,’"", P,, P0} be a rectangular configuration as in
Corollary 6.1. There exist countably many closed extremals with knots at po, ", p,.

Proof. Since P is closed there must be an even number of right angles between
consecutive segments pi-lpi, pipi+l. To connect pi to pi+ we use either the trivial
extremal or one of the 2-point open extremals of Proposition 6.1, with the proviso
that we switch from one class of extremals to the other if the angle at pi is a right
angle, otherwise (if the angle is 0) no switch is made. It is easy to see that infinitely
many closed P-interpolants with continuous curvature everywhere can be obtained in
this way.

D. Let pl,"’, p,, be the vertices of a regular polygon ordered as they come
when the polygon is traversed counterclockwise. Define pi for > m by periodicity"
pi p_,,. Let P,,. {pl, p/,""’, pl/,} for k 1, 2,.... Pm,k is a configuration of
the kind that Corollary 6.3 applies to, and if the construction used there is applied
to P,,.k one obtains closed extremals. Thus we have

PROPOSrrION 7.4. For each regular configuration P,,k as described above there
are infinitely many closed extremal P-interpolants, each composed ofcongruent segments.
For each k, there is precisely one such extremal whose intersection with the polygonal
path connecting the points of P,,g is precisely P,,. For k 1, this extremal E*,,, circum-
scribes the polygon counterclockwise and its representation x* satisfies

(Pi+ Pi)" 3*(Si)m IPi+l pi[ COS --, 1, .m
m

If the polygon is inscribed in a unit circle, each of the rn arcs of E*m may be expressed
in terms o] the inverse o]: its normal representation"

2sin(Tr/m)F(/-,O) 7r
----0 < +(7.7) (i) s* (0)

2E(, tim) F(, )’ 2 m m’

where cos 0 =n 0 and cos Bm =C/m. In this case, the length s and the
energy U ofE are given explicitly by

2m sin (/m)F(, B)
(7.7) (ii) s

2E(,) F(, )’
and

(7.7) (iii) U*
Finally,

4m
sin (Trim)

[2E(1/2#,/.,)-F(1/2.,/,/.,)3.

(7.8)
0

so that the extremals have the unit circle as limit.
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Proof. We sketch the verification of (7.7). Starting from the differential equation
2 ’23’,,0 sin 0,

we obtain

f0 dq rr rr
S O rn , Olin O Tr Olrn, Olrn

/sin q 2 m

Since the distance between adjacent points of Pm,1 is 2 cos am, the constant y. is
determined from

COS Crn

" I2/ /sin q

sin (’/rn
ff[2E(ff, fl F(ff,

This gives (7.7i). (7.7ii) is immediate and (7.7iii) follows from

fs/2m 2m i/2U 2m 2 ds #sin de.
ao Tm

The calculation (7.8) is routine.
Remark 7.3. It is shown in [5] that the extremalsE are stable, i.e., they provide

a local minimum for the curvature functional.

Appendix. Let P {Po, , P}, be given and let Lo i= ]Pi+I-PI. We assume
that P is not collinear.

THZO. For every L > Lo there exists a length-prescribed extremal P-interpolant
of length L satisfying Definition 2.2.

Proof. The existence of a function Y, parametrized with respect to arc length,
for which

U(Y) min {U(x)" x is an admissible P-interpolant of length L}

is demonstrated in [6]. (The modification required for the ordering of the points in P
is trivial.) If X denotes the closed subspace of H2[0, L] consisting of those functions
vanishing at the knots,

0go<g<" <g L,

of Y, i.e., at those points gi for which Y(g)=pi, i=0,..., m, define f to be the
mapping of X into obtained by/(y)= U(Y + y) and let H be the function such
that H(y)= S(Y + y)-L, where S is the usual length functional (cf. (2.13ii)). Clearly,

f(0) min {/(y): H(y) 0},

and H’(0) is surjective, since P is assumed noncollinear. The result follows from the
Lagrange multiplier rule (see, e.g., [9, Thm. 1, p. 243]).
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RESOLVENT FORMULAS FOR A VOLTERRA EQUATION
IN HILBERT SPACE*

RALPH W. CARRY AND KENNETH B. HANNSGEN$

Abstract. Let y(t, x, f) denote the solution of the Cauchy problem

y’(t) + Io [d+a(t-s)]Ly(s)ds=f(t), t>-O, y(0) =x,

where d _-> 0 and L is a self-adjoint densely defined linear operator on a Hilbert space with L_-> A I. Let
U(t)x y(t, x, 0), V U’. By analyzing a related scalar equation with parameter, we find sufficient conditions
on the kernel a in order that o IIV(t)L-Vll dt < (y > 0). These results and certain resolvent formulas can be
used to study the asymptotic behavior of the solution y(t, x, f) as t-. An application to a semilinear
integro-partial differential equation is presented.

1. Introduction. We continue our study, begun in [2], of the nonhomogeneous
linear equation

(1.1)

y’(t) + Io [d +a(t-s)]Ly(s) ds f(t),

d
y(0) yo e , dt’

t>-O,

where L is a positive self-adjoint linear operator defined on a dense subspace @ of the
Hilbert space . The kernel d + a(t) satisfies

a Loc(I+, +)(E+ (0, ), [+ [0, )); a is nonincreasing and convex
(1.2)

with a(oo) 0< a(0+) _-< oo, and d >_-0,

and f belongs to @oc (+, ), the class of locally Bochner integrable functions from/+

to Yt’.
Let u(t, A) denote the solution of the real equation

(1.3) u’(t)+AIo[d+a(t-s)]u(s)ds=O, u(0)= 1;

define v Ou/Ot,

U(t) Jn u(t, A) dEx, V(t) Jn v(t, A) dEx,

where {Ex} is the spectral family corresponding to L. In [2] we established the resolvent
formula

(1.4) y(t) U(t)yo+ U(t- s)f(s) ds

* Received by the editors June 8, 1981. The work of these authors was sponsored in part by the United
States Army under Contract No. DAAG29-80-C-0041 and by the National Science Foundation under Grant
Nos. MCS77-28436 and MCS78-27618.

t Department of Mathematics and Computer Science, St. Cloud State University, St. Cloud, Minnesota
56301.

Department of Mathematics, Virginia Polytechnic Institute and State University, Blacksburg, Virginia
24061.
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for the solution of (1.1), and we gave sufficient conditions for

Jo IIu(t)ll dt <(1.5)

In particular, (1.5) holds if -a’ is convex. (See Theorem A after Theorem 2.4 below;
here and below we use the norm symbol for a space to indicate the operator norm for
linear operators from that space to itself.)

We are principally concerned here with V, the formal derivative of U. V can be
used with (1.4) to express y’(t), and it appears in the alternate resolvent formula

(1.6) y(t) F(t) + Jo V(t-s)F(s) ds

for the integrated version of (1.1), that is,

(1.7) y(t)+ Jo [(t-s)d +A(t-s)]Ly(s)ds=F(t),

where A(t)=oa(s) ds, F(t) o f(s) ds +yo.
Estimate (1.5), with V in place of U, is always false (see Corollary 2.1 below). Our

main results, Theorems 2.3 and 2.4, contain the following:
THEOREM 1.1. Let (1.2) hold, and assume that -a’ is convex. Then

(1.8) ti[V(t)L-1/2[[ is bounded on R+, and Io [IV(t)L-’/zll dt < o.

The conditions of Theorem A for (1.5) do imply

(1.9) J0 IIV(t)L-I[ dt < c.

Estimates (1.8) and (1.9) can be used with (1.4) and (1.6) to study the asymptotic
behavior of y(t) under various assumptions on the forcing term.

A variant of (1.1) is

z’(t) + Io [d+a(t-s)][Lz(s)+g(s)]ds=f(t), t>=O,

(1.10)
z(O) =Zo,

with g: R+- Yd. Proceeding formally from (1.4) and the formal identity

V(t) -| [d + a (t s)]LU(s) ds,

we obtain

(1.11) z(t) U(t)Zo + Io U(t-s)f(s) ds + Io V(t-s)L-’g(s) ds.

In 3 we state a theorem justifying (1.11), and we use it to study the semilinear equation

(1.12)

y’(t) + Io [d +a(t-s)][Ly(s)+Ny(s)] ds f(t),

y(O) yo.
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Here N is a nonlinear operator with

N(O)-0,
(1.13)

sup

where e (0, a) - / and e - 0 as A - O,

We also give an example of an integro-partial differential equation of the form (1.12), to
which our result applies.

The spectrum of L is contained in a closed subinterval of +; without loss of
generality, we take this interval to be [1, ). Then for 0 <_-/<,

Ilv(t)L-’)l<- sup Iv(t, h)lx-" vr(t),
lh<

(1.14)
IIV(t)L-Vll v(t).

We shall develop estimates for vv from (1.3) and deduce estimates such as (1.9) from
(1.14).

In 2 we state our results from v; they are proved in 4 through 8. In particular,
8 contains a correction for the proof of [2, Lemma 5.2]. We discuss the operator V and

(1.11) and (1.12) in 3; proofs follow in 9.

2. Statement of results for yr. Throughout this paper it is assumed that d + a(t)
satisfies (1.2). We define

a(t) o a(s)ds, Al(t) o sa(s) ds,

(r) o a(t)e-i’dt()-iO(),

(with and 0 real; note that is continuous),

D(r) D(r, ) (r) dr-, D(r, D(r) +i-.
Formally, the Fourier transform of v(t, ) (defined to be zero for t < 0) is given by

-(
(.) (r,)=

so v(’, I L(N+) if D(r, I 0 for some . By [4], (r) N 0; moreover, () > 0 (r > 0)
unless a (t) is piecewise linear with changes of slope only at integral multiples of a fixed
number to (taken as large as possible) and is an integral multiple of 2/to. In all other
cases, D(, a)e 0 ( >0); then the hypotheses of [15, Theorem 2] hold, and v(., )e
L(N+) and (2.1) holds. Throughout this paper, we restrict ourselves to this case by
assuming

(2.2) (r)> 0, r>0.

Estimates for v depend crucially on the size of (r, I) when ImD(, I)=
r[--O(r)-d-] is zero. Choose and fix t >0 with a(t)>0, and let 0 =6/t. We
showed in [2] that OO(rm) and that the equation

(2.3) I-- 0()-d- 0
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defines a continuous, strictly increasing function o(h) on the interval [ho, c), where

o max {1, [0(O)+ do-Z]-1}.

We etend o to [1, c) if necessary by defining o() p(1 o). We showed in [2,
(4.3), (4.24), (4.27)] that

(2.4) A(-)O()12A(-), >0,

(2.5) 10wz a (tl)A, A 1,

(2.6) A (w-) < A-= :< C1A l(w-1), A >= 1,

where C Ao[12 +(2d/a(t.))] 12. (We shall often suppress A as in (2.5) and (2.6).)
For A Ao, we then have

This proves our first result.
TnzozM 2.1. Let (1.2) and (2.2) hoM, and let y > O. If vr La(+), then

(2.7) sup <.

Suppose, in particular, that a (0 +)<. From (2.6) we see that
2 (0

In this case, for y , (2.7) is equivalent to
21+

(2.8) sup <"

that is, a is strongly positive.
To find upper bounds for vv, we first define (A) to be the unique solution of

(2.9) -aA(-a)=-.
Then :++ is strictly increasing, since a(t) tA(t) is strictly increasing. Using
(2.6), we see that for A 1,

a A CAx =a
Therefore, since (2.5) holds,

(2.10) C and A C22, A 1,

with Ce lOC/a(tx). can grow faster than w; for example, if a(t)= t-(-log t)-3/2

for small t, one shows from (2.6) and (2.9) that

Kxw log w K2A (log A)-a/2 K3A (log A)-a/2 K4w log w,

where the Ki are positive constants. Note, however, that

(2.11) lim = lim A() O.

The next result relates to v.
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THEOREM 2.2. If (1.2) holds, then

r
<_ sup ]v(t, Z )l <_ (8 + dC2)m (Z >_- 1).(2.12)

8(8 + dC2)- t=o

The proof of Theorem 2.2 contains the following:
COROILARY 2.1. Let (1.2) hold. There exist e, K >0 such that Vo(t) >=K/t (0< <

e); in particular,
By (2.6) and (2.10), (2.12) shows that )t-1/zv(t, h) is not bounded if a(0+) oo.

If a(0+)<oe, (2.9) shows that o-2a(0+)h, so A-/zv(t,A) is bounded. The latter
conclusion strengthens [6, Lemma 5.2]; it thus improves Theorems 1 and 2 of that paper
by showing that one may omit the term log (A/A) from the definition of u without
changing the conclusions. Our main results, Theorems 2.3 and 2.4, generalize this part
of [6] to cases where a (0 +)= . As in [2], we shall need the technical hypothesis

a(t)= b(t)+c(t), where b and c each satisfy (1.2),

(2.13) except that either b (0 + 0 or c (0 + 0 is permitted.

Moreover, t-b(t) dt < and -c’ is convex.

THeOReM 2.3. Suppose (1.2) and (2.2) hold, and let 0 y <. (i) If
[0()]+

(2.14) sup <,

then supo tvv(t) <. (ii) If (2.13) holds and either

[0()]+-
(2.15) sup < for some e, O < e < y,

or y >-_ 1 and

[0()]=+
(2.16) sup

1/20_<_.r<co

then

(2.17) Jo vv(t) dt <

When y 1/2, the following criterion is sometimes weaker than (2.15).
THEOREM 2.4. If (1.2), (2.2), and (2.13) hold, and if

r202(r)(2.18) sup <oo,

then I /)1/2(t) dt
For purposes of comparison, we restate our conditions for (1.5) from [2].
THEOREM A. Suppose (1.2), (2.2) and (2.13) hold. Then

(2.19) [ sup [u(t, a )[ dt
ao

if and only if

(2.20) sup O(r__) < oo.
1/2o_<_-<oo (’r)
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The hypotheses in these results satisfy the following implications’

(2.21) (2.18) ::> (2.14)(y 1/2) ::> (2.20) ::> (2.16)(3" => 1)

(see (2.4)). If a (0 +)< c, (2.4) gives us
-2a (tl)"-2 <- 0(’) -< 6a (0 +)-

so (2.18), (2.14) (3’ =1/2) and (2.20) all are equivalent to strong positivity. Thus, while
(2.15) obviously implies (2.14), the kernel a(t) e-’ provides an example where (2.18)
holds but (2.15) (3’ 1/2) is false.

If 0</3<1, the example a(t)=t- satisfies (2.14) (3"=0) and, hence, satisfies
(2.15) for all positive 3".

By considering a certain family of piecewise linear kernels, we can demonstrate
other differences among our hypotheses. We defer the proof to 7.

THEOREM 2.5. There are kernels al, a2.(3" =, 1, , .) a3 and a4 satisfying (1.2),
(2.2) and (2.13) and such that

(i) al satisfies (2.15) (3’=1/2) but not (2.18).
(ii) For each fixed 3", a2. satisfies (2.14), but neither (2.15) nor (2.18) nor (2.16)

when 3" >- 1 holds.
(iii) a3 satisfies (2.20) but not (2.14) (3" =1/2).
(iv) a4 satisfies (2.16) (3" 1) but not (2.20).
By (2.21), Theorem 2.3 and (1.14), the sufficient condition (2.20) of Theorem A

implies (1.9), as asserted in 1. The following corollary shows that Theorems 2.3 and
2.4 contain Theorem 1.1.

COROLLARY 2.2. If (1.2), (2.2) and (2.13) hold, and i

(2.22) lim sup Ji b(s) ds
t-,O+ C(S)

then (2.18) holds, so (by (2.21) and Theorems A and 2.3) supt=>0 tvl/2(t)<c, and
(2.17) (3’ 1/2) and (2.19) are valid.

3. Statement of results for equations in o m solution of (1.1) (or (1.10)or (1.12))
is a continuously differentiable function y:/ such that Ly:/ Y( is defined and
continuous (in brief, yC(+,)) and (1.1) (or (1.10) or (1.12)) holds. Unless
otherwise specified, integrals b of Y-valued functions are Bochner integrals in
Y3 l((a, b), Yg); Hille and Phillips [7, pp. 59-89] give the theory of this integral. We recall
from [2, Theorem 2.1(i)] that if (1.2) holds, then U(t) is strongly continuous on and
IIu(t)ll-<- (t +).

Our first result concerns V(t) as an operator from @1 to . The results of 2 can
also be used to study V(t)L-(3" ).

THEOREM 3.1. (i) Suppose (1.2) and (2.2) hold and

[o()]/
(3.1) sup <c.

ll2o<=t<c

Then for >0, V(t)L-1/2 is a bounded operator on , strongly continuous on +.
Moreover,

d
(3.2) V(t)y - U(t)y, (t > 0, y

(ii) Ira(O+) < o, we may omit (2.2) and (3.1) in (i); moreover, V(t)L-1/2 is strongly
continuous and uniformly bounded on +.
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Next we state a representation theorem for solutions of (1.10).
THEOREM 3.2. (i) Let the hypotheses of Theorem 2.3 (ii) (3’ =-) or of Theorem 2.4

hold. Let z0 9, let [ C(+, ) with t(t) (t >- O) and L[ loc(+, ). Assume that
glo(-/R 1). Then the function z(t) given by (1.11) is the unique solution Of (1.10).

(ii) Let (1.2) hold with a (0 + < oo. Let Zo and f satisfy the hypotheses of (i), and let
g oc (, 1). Then the conclusion of (i) is valid.

Remark. In (i) above, we need and by (1.14), the
conclusions of Theorems 2.3(ii) (3" ) and 2.4 imply this.

Miller [13] shows how to combine the resolvent formula for Volterra equations
with fixed point theorems in order to prove global existence theorems for nonlinear
equations. We use this method and Theorem 3.2 to obtain a result for (1.12).

THEOREM 3.3. Let the hypotheses of Theorem 2.3(ii) (3" 1/2) or o]" Theorem 2.4 hold,
and let yo . Let f satisfy the hypotheses of Theorem 3.2(i) with f fl + f2, f (+,
), f2 (I/, ). Let

satisfy conditions (1.13). Then if Ix---Ilroll+llfll(+,+llfll(+, and a>0 are

sufficiently small, (1.12) has one and only one solution y such that Ily(t)ll--< A(t +).
A simple example illustrating Theorem 3.3 is the problem

(3.3)

tlt(t’x)= IO a(t-s)[Uxx(S,X)+U(S,X)Ux(S,x)]ds+F(t,x),

u(t, O) u(t, 7r) O, >--_ O, u(O, x) Uo(X).

We take L2(0, 7r), Ly -y" on , the space of differentiable functions y on [0,
with y(0)=y(Tr)=0, y’ absolutely continuous and y"e . 1 consists of absolutely
continuous functions which vanish at 0 and r and have square integrable first deriva-
tives.

In terms of Fourier sine series

y(x)= E c, sinnx,
n=l

@ and 1 are characterized respectively by the conditions Y. n 4Cn < oo andn22Cn<O02
and

L/2y(x) ., nc, sin nx.
n=l

Thus IIL/2yll Ily’ll (Y 1). Note also that, if y @,

ly’(x)[ E nc. X n -2 Z n c.=Bz 2

n=l n=l n=l

(0 <_- x <_- 7r), so also [y (x)l <-- BrlILylI(0 <= x -<_ zr). Using these facts, one easily shows that
Ny yy’ satisfies (1.13).

The nonlinearity uu in (3.3) could be generalized, but our theorem does not cover
such nonlinearities as u x or Nu [h(u)]x’, N1 is important in viscoelasticity theory.

MacCamy [11], [12], Dafermos and Nobel [3] and Staffans [17] have established
global existence results for (3.3) with N replaced by N1 and a(0+ <. Londen’s global
existence results [10] deal with (1.1) with L replaced by a maximal monotone
(nonlinear) operator and a(0+)<o, a’(0+)=-. Travis and Webb [18] prove a
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general local existence result for hyperbolic semilinear equations, including (1.12)
when a (0 + < 00.

4. Proofs oi Theorem 2.2 and Corollary 2.1. We redefine a’, b’, c’ where
necessary to make them continuous from the left on [/, da’ denotes the Lebesgue-
Stieltjes measure on /. We adopt the conventions

f(t) da’(t)-- Fda’,
O,y) i f(t) da’(t) =- f da’, O<x < y.

x,y)

-1For this proof, we define 6 o-

Recall that when (1.2) holds,

(4.1) lu(t, X)[ 1, 0, Z > 0

(see [5], [2, p. 965]). Then (1.3), (4.1) and (2.10) imply

(4.2) Iv(t, a )l <- a (td +A (t)) <= cr + a d6 <= or(1 + dC2)(0 <= <

For 6 -< < 00, we make the change of variable s t- s in (1.3) and integrate by
parts to obtain the identity

8

v(t,A):AIo a’(s) I, u(r,A)drds+AIa’(s)It u(r,A)drds

-A(d+a(t)) Io u(s,A)ds

=--vl(t, A)+ v2(t, A)+ v3(t, A).

Clearly,

(4.3) [vI(t’A)I<=-A Io sa’(s) ds<=AA(6)=m

Since a’ is monotone, we can use Fubini’s theorem to see (with A suppressed) that

iot-S]I a’(s) [Is u(r) drds

IoA-lVz(t, A) I a’(s) u(r) dr ds,

Therefore, v2(t, A) is locally absolutely continuous in and

1 Lta’(t) Io u(s,A)ds+ a’(s)[u(t,A)-u(t-s,A)]ds
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a.e. (t >_-3). Integration by parts then yields

002
Ot
=u(t,a,)[a(t)-a(3)]+a’(3) u(r,a)dr

a.e., t>=3,

SO

(4.4) 1]{gVz[ <2a(a)-26a’(3)-2a(t)+ ta’(t)--g-= aoeo

Since

1 Or3

a’(t) Io u(s,a) ds-(d+a(t))u(t,a)

<-- -ta’(t) + d + a (t) a.e.

Adding this to (4.4) yields

(4.5) 2 <-_2a(3)-23a’(3)+ d a.e.

Suppose there exists t*> 3 such that

(4.6) Iv(t*, a)l > (8 + dC2)o..

Let I It* 3, t* + 3], and observe that if s e L

Iv(s,)t)l>-lv(t*,a)[-Zsuplvx(r,a)l-3 esssup
{9(/92+/33)

(r,a)
rI rI {gt

(4.7)
> (8 + dC2)o.- 2o’- 21 (3a (3) 32a’(3)) Id3;

here (4.3), (4.4) and the absolute continuity of. v2 + v3 have been used. Integration by
parts shows that

0<-- Io t2 da’(t)= 2A(3)-23a(3)+32a’(3)"

Combining this with (4.7), we obtain

]v(s, 1)l>(6+dCz)o’-41a(3)-1d3, seI.

But 3 -a
=o’= AA(3), and since (2.10) holds,

Iv(s,a)l>26-, seL

Thus, by (4.1) and the Mean Value Theorem, (4.6) has led us to the contradiction

2 _-> lu (t*, a)- u(t* a, a)l > a. 23- 2.

Since (4.2) holds, the second inequality in (2.12) is established. It follows that

u(t,a)>-_l-(8+dC2)o’t, t>=O,
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so u(t, A)>_-1/2 for O<-t<-[2,(8+dC2)]-l=-2T. Then by (1.2) and (1.3),

AA(o"-1)
(4 8) Iv(t,A)I>AA(T) > o"

8(8 + dC:) 8(8 + dC:)’
T <- <- 2 T.

This proves Theorem 2.2.
If a(0+)< oo, the second inequality in (2.12) is essentially contained in Levin [8].

The idea of writing v vl + v: + v3 in case a(0+)= oo was introduced by Londen [9,
Lemma 2].

For Corollary 2.1, let T T(A), as in (4.8). If > 0 is sufficiently small, we can find
h At such that T(A) <-_ <- 2 T(A). Then by (4.8)

r 1
Vo(t)>__v(t,h)>_ >

8(8 +dC:) 16t(8 +dC:)2’

as asserted.

5. Proof o Theorem 2.3. Throughout this paper, the symbol M denotes a finite
positive constant, independent of h (1 =< h < oo); the numerical value of M can chage
each time M appears. We assume (1.2) and (2.2).

(2.11) and (2.12) immediately yield

(5.1) v(t)<-M, y>=l, t>=O.

Choose w* w*(h) so that

w_-<r-<_2o and o(w*)= min q(r)"

for instance, w* could be the smallest such number.
We shall establish the following estimates;

(5.2) Iv(t, A)I -< 1 + 0(o*) t_
(o*) ]

If (2.13) holds,

(5.3) Iv(t, A)I 1 +
(w,) ] O(t) + 1 +

where O eLa(1, ).

t>0.

],q2(a,) ]
-2 t-->__ 1,

Before proving (5.2) and (5.3), we show that they imply the conclusions of
Theorem 2.3. Note that

2t 2t

It sa(s) ds <-a(t) It s ds 3a(t) Io S dS <=3Al(t)"

Therefore,

(5.4) Al(2t)<-4Al(t), t>0.

Using (5.4), we can combine (2.4) and (2.6) to see that

1
<_aO(r)<M, 1/2w <r<2w.(5.51

M

Then if (2.14) holds, (5.2) gives us the conclusion of Theorem 2.3(i).
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If => 1 and (2.13) and (2.16) hold, we use the algebraic inequality

(5.6) --_20<_o 1+()
2

to deduce from (5.3) that

m[ (.0" 02((..0 #:) -2]Iv(t, x)l-<- O(t)(1 + w*)+ > 1.q(o*)
Then by (5.5), (2.10), (2.11) and (2.16),

x-lv(t, X )[ <=M(O(t) + t-2), >= l.

Since (5.1) holds, (2.17) is valid.
Now assume (2.13) and (2.15). If 0 < y < 1, we deduce from (2.15), (5.2) and (5.5)

that

(5.7) Iv(t, h )1 <= Mt-lh /-, > O.

If p (1-7)/(1-3, + e), then O<p < 1 and p(y-e)+(1-p) y, so (2.11), (2.12) and
(5.7) tell us that

(5.8) [v(t, h )[ ]v(t, A )lP+(x-) <- MAt-p, t>O,

if 3’ < 1. We conclude from (5.1) and (5.8) that

t"

(5.9) Jo vv(t) dt < oo if (2.15) holds.

Choose 6 < e/(y-e), 0<6 <1. If l_-<t <_-h , (2.15), (5.2) and (5.5) imply that

Iv(t, it )l <= 1 +
,)

it

(5.o)
--<_ Mit vt--.

If it < , then it-+/ < -, so (2.15), (5.3) and (5.5) yield

Iv(t, it)l -< it v-eO +
q oo * ] zit ---- J"

Since y-e < e/& another application of (2.15) shows that

Iv(t, it )l <-_Mit v[O(t) + t--], it ( .
This inequality, taken together with (5.9) and (5.10), gives us (2.17).

We have shown that Theorem 2.3 is a consequence of (5.2) and (5.3), which we
prove next.

When (1.2) and (2.2) hold, one has the inversion formula

{1 I) ,drD’(r)-D(r).)dr} t>0,(5.11) rv(t,a)=Re - e I --{,a)
where the integral is absolutely convergent at both r =0 and r=oO. This was
established in 1].

The next lemmas will enable us to estimate D and D’.
LEMMA 5.1. /f (1.2) holds, then

(5.12) o(r)>=[A(r-)-3rA(r-)], r>0.
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Proof. Two integrations by parts yield

q(r) r
-z Jo (1-cos rt) da’(t)

1 IO
1/’r

>---- 2 da’(t)
-4

1 fo
1/

>- (t rt3) da’(t)
-4

1 1 _).[A(r-1) 3zA (r-l)] -]- ---T a(T

Here we have used 1-cos x >-1/4x2(0 <_- x <- 1) and the fact that da’ is a positive measure.
Since a >_-0, the lemma is proved.

LEMMA 5.2. If (1.2) holds, then
2

(5.13)
Z

(5.14) A(z-)<=MID(-,h)[, z e [p, 1/2w] U [2w, ).

Proof. [2, Lemma 5.2] states that (1.2) implies

(5,15)

(5.16) zAI(-) <-MID(r, A )I,
In 8 below we give a corrected proof of this lemma.

For r-> to, (5.13) is a trivial consequence of (5.15). (2.6) and (5.15) show that

1
rA l(r_) _< rA l(w_l) <:

1o =.x
(5.17)

_-<MIZ(, )1, _->2,.

Thus, if re[p, w] [2w, o), (5.12), (5.16) and (5.17) imply that

A(-) _-< 2()+3A(-) <-_MID(, A )[,
as asserted in (5.14).

If p _-< r _-< 1/2w, by (2.6),

w -z<__w< CwA1 < C1A

By (5.14), this implies (5.13) for such r, and our proof is complete.
Recall from [2, Lemma 4.1] that when (1.2) holds we have

(5.18) 2-3/2A(r-1)<-It(r)l<-4A(r-a), [d’(r)l _-< 40A l(r-), r>0.

We now deduce (5.2) from (5.11). If d>0, (5.18) shows that

IrD’(r)-D(r)[<-_Mr-, 0<r_-<p,

while (2.2) gives

(5.19) ID(r, h)l >_-max
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Thus,

fo/2 IrD’(r)-U(r)l
(5.20)

On the other hand, if d 0, (5.18) implies that IrD’(r)-D(r)l-<MA(r-1) and

(5.21) ]D0", A )[ _->max {2-3/2A(r-1) -, q (’)},

so (5.20) is again valid.
By (2.10), (5.18) and (5.14),

IrD’(r)-D|)1
dr =<M ,)(5.22) + <_- M.

/2 2o AID(r,A) 0/2 AAZ(r A(or-l)
Next we use (5.18) and (5.13) to obtain

(5.23) I IrD’(r)-Dlf)l
dr <=M’ I2 A(7"-1)2 dr <=MAA(cr-l)cr-e <=M.

Clo" AID(z, h) c, r

Before estimating the final piece in (5.11), note that (5.18) implies

(5.24) MA(r-1) <- q(w *) + w * O(w *),

Now (5.13), (5.18) and (5.24) give us

(5.25)
<MA(20 -1)

< M( co* 0(o*)’

Thus, from (5.22), (5.23) and (5.25), we obtain (5.2).
Next we turn to (5.3). Assume (2.13), in addition to (1.2) and (2.2), and write

(5.11) as

(5.26) v(t,A)=Re{A-lvl(t)+iA-zv2(t)+a-3v3(t)-v4(t,A)-vs(t,a)},
where (these vi are unrelated to those of 4)

,) ’}D(r, +D(’, --- dr,

We shall show that

<5.27) Iv4<t,X)l+lv<t,x)l<=M{[l+ * ],o 0(,o*), (t) +
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where

q(t) -2 + -2 Io b(s) ds + t-*b(t)- b’(t),

We know from [2, p. 972] that q s LI(1, oo). Moreover, from [15, Theorem 2] and the
fact that

Re Io e-Sta (t) dt > O, Re s _-> 0, s 0,

under our hypotheses [4], it follows that v(., A) LI(R+). Then by (5.26) and (5.27),
each of va, v2, v3 belongs to L(1, oo). (5.3) now follows from (5.26) and (5.27) with
o -Ival / 1 21 / / q, We have reduced (5.3) to (5.27).

Let J(u)= iu(1-eiU)-2(1-iu --eiU), and recall from [2, (4.9)] that

For t, r > 0 define

b’(-) r J(-rs) db’(s), 7">0.

-3 ot8(t, r)= r J(-rs) db’(s),

(t, r) r- J(-rs) db’(s)

(5.28) A(t, r)=/3(t, r)+’(r)+idr-2=D’(r)-(t, r).

In [2, Lemma 5.1] we proved by direct estimates that e C2(R+), OB/Ore
C(+ x R+) and

1/r

(5.29) ["(r)[ 6000 Jo s2c(s) ds, r > O,

(5.30) ]fl(t, r)[ 40r-2(b(t)- tb’(t)), t, r > O,

(5.31) (t, r) N5OOr- b(s) ds, t, >0,

1/r

(5.32) I(t, r)[ 40 Jo sb(s) ds, t, r > 0,

1/r

(5.33) [’(r)[ 40 Jo sc(s) ds, r > O.

Write v4 v41 + v42, where

o i,t[[r3[A(t,r)+ih-])(2 1 ) 1 ](5.34) tAv41(t,A) e k( D(r)+D(r, +D(r,h) de,

(5 35) tAVg2(t, A) e irt 73flm(t, r) 2 1
aaDa(r)D(r,a) +

D(r,a
dr.

Likewise, let vs Vsl + vs2, where

(5.36) taVsl(t, A) o ei’’ rA(t,DE(r,a)r)-D(r) dr,
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(5.37) thvsz(t, ,)= Io e iz’ ’r(t’Dz(r, ,)z) dT.

Now integrate by parts in (5.34) and (5.36) to obtain

iht2v41(t,A)=eiOt{p3[A(t,p)+ih-1]( 2
D(p, +D(p, )t----- D(0+)

(5.38)

1 Io i,,{3r2[A(t,r)+i;t-1]+r2A,(t,r)[ 2 1 ]A 2 e D3(’r)D (r, A D(r) +D (,r, h----
r3EA(t, r) + iA-1][3D’(r)D(r, X) + D(r)D,(r, X )]

D4(,r)D2(,r, ,)

_i,t2v51(t ,)= eio,(pA(t, p)-O(p).)DZ(p, h)

(5.39)
7",h) D3(,r, A)

Here (5.18), (5.32) and (5.33) have been used to simplify the boundary terms. In (5.38),
l/D(0+) is zero unless d =0 and a LI(R+). Our estimates (5.18), (5.19), (5.21) and
(5.40) below show that the integrals in (5.38) converge absolutely.

By (5.18),

A l(,r-) + d,r-2 + h -1

[D(z, X)[

If d > 0, (5.19) shows that

(5.40) Ion[ D’(’ A)
dr<M.D(r, ,)

If d 0, we recall from [15, (1.21)] that

A l(’r -1

A.(-1) dr <

Thus, by (5.21), (5.40) holds in this case as well. It is now a straightforward matter to use
(5.18), (5.19), (5.21), (5.40) and (5.29) through (5.33) to estimate the terms in (5.35)
and (5.38) and deduce

(5.41) Iv4(t,h)l<-_Mq(t), t>-l.
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We turn now to vs. The following estimates, direct consequences of (2.6), (5.18)
and (5.29) through (5.33), will be used without explicit mention for estimates of the
numerators.

(5.42)

We recall as well that

(5.43)

and

1 ) >A(cr-1)
A (r-1) -> a 2Cir - 2Ch

,r <_ 2ClO

1) 1)zA(z- > a (z- > a (tl)

We use Lemma 5.2 and its simple consequence

(5.44)

to get

(5.45)

,o/. ,a., x ID0", x)l
dT

<
M[ 2C1"A (’- a) + "-lt2q(t)

dT"

M{ 2c’ 1 t2q(t)
h ao/2 "ra (’r -1) + "rA2(’r-1) KT

Aa (h)
1

t2q(t)
+A(o.- )l <-- Mt2q

and (here (2.6) is used as well)

(5.46)

Similarly,

(5.47)

IA(t, ’) + zA,(t, r)-D’(r)l
dr

2Cao-

MI2 h- + z- t2q(t)

’ Clo" (r/,)2 dr <= Mt2q t).

Co-T /
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On [1/2o), 2o)], we use (5.13) to estimate the denominator. This yields

f" [A(t, z)+rA(t, r)-D’(r)l I x-a+r-lt2q(t)

ds
(5.48) M(1 + t2q(t)a -) Jo [x(,)] + s

Mtaq(t)Ao- *0(*)
A(o*)

=Mtq(t)
(*)

The last inequality above used (2.5) and (5.5). Similarly, using (5.24), (5.25) and (5.6),
we obtain

(5.49)

Thus, the representation (5.39), along with the estimates (5.45) through (5.49), gives us

As in (5.45) through (5.48), we derive

(5.5 1) dz/ /
aO/2 .2" c, h ID(z, h )l

Mt__t_.

Again, we use (5.13) on [1/2o), 2o)]. This gives us

’ z(t’ )]
dz

Mtq(t) [*0(*)](5.52) <

/ h]D(z, h)]2 d;)=Mtq(t) (,)
where the last inequality invokes (2.5) and (5.5).

Then (5.37), (5.51) and (5.52) imply

[ l(5.53) Ivs(t,)l<-_Mq(t) 1+
q(w*) J"

But v5 v51 + vs2, so (5.41), (5.50) and (5.53) give us (5.27). This, in turn, gives us (5.3).
This completes the proof of Theorem 2.3.

6. Proofs of Theoren 2.4 and Corollary 2.2. To prove Theorem 2.4 we need
(6.1), (6.2) and (6.3) below, which are consequences of (2.18), (5.18) and (5.24).

a2(T- 1) [ (o) ,)12 ../ (O) * 0(O)
(6.1)

.)
-<M _-<M (o)*) + _--< M, 2x-o) < 2o).
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Thus,

(6.2)

<__ la (,o*)l< <._MA(2/oo) M
q(w*) q(w*) -A(2/w)

M CM_< <_ < mhcr-1

-A(1/Cltr)-A(tr-1)=
Furthermore, by (2.21), (2.18) implies (2.20), so

o*0(o * ( (.O*0((.O*)(q{,(.O ]
0 (0) *)

)]
_-< 1 + -7-;: 1 + ;-,:. <-Mho’-(6.3) 1+

Comparing (6.2) and (6.3) with (5.3) shows that

A>_-l, t>__l.(6.4) Iv(t, A )[ <_-- MO(t)Acr-1 <- MO(t)h 1/2,

Using (5.2) and (6.2) it follows that

(6.5) Iv(t, h )1 <=Mh’-lt-, h->_l, t>0.

Combining (2.12) and (6.5) yields

(6.6) Iv(t, A )l lv(t, A )ll/2+a/2 <=Mrl/Z(Ar-t-1)l/2 MA /2t-1/2, h_-->l, 0<t<-l.

Theorem 2.4 is an easy consequence of (6.4) and (6.6).

Proof of Corollary 2.2. If a(0 + < oe, then [14, Corollaries 2.1 and 2.2] imply that
c is strongly positive. Then a is strongly positive. As noted in 2, strong positivity
implies (2.18) (which in turn implies (2.14)) in this case, so our assertion follows from
Theorems 2.3(i) and 2.4.

If a(0+)= c, we follow the proof of [2, Cor. 2.1(ii)] for this case. There we
invoked [16, Thm. 2(iii)] to obtain

O 1(6.7) q(z) >=- AZ(z-a), r >=max {p, x }

(a,/3, Xo are positive constants whose values are irrelevant here) at an intermediate
stage of the proof. Since A(r-) >-zAI(z-) and (2.4) holds, we deduce from (6.7) that

(r)g r>max {, x }.

But and 8 are continuous, so (2.18) holds, and our conclusions follow as before. This
completes the proof.

7. Proot ot Theorem 2.. Each example has the form

(7.1) a(t)= ckbk(t),
k=0

where
b(t) (1 2ot)x(t);

Xk is the characteristic function of the interval [0, 2-k and/3 is an integer greater than
or equal to 2.

Each Ck will be positive, and we shall have 2A(oo)= Y’,--o Ck2-< oO; then (1.2)
and (2.2) hold. (2.13) is clear because a(1/2)= 0.
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For any kernel of the form (7.1),

(7.2) q (r) Y. Ck 2k
(1 COS 2-kr)

2
k=O

Note that

(7.3) 1/4U2<--I--cosu1/2u2, 0<--U<----l"

Therefore,

(7.4)
4 -4re’

On the other hand, if we let r, 2" (2rr), (7.2) and (7.3) show that

(7.5) q(rn) < Ck2-k =n+l

From (2.4), we get

120(r)<= Y. Ck t(1-2t) dt+ Y Ck
k =0 k=m+l

(7.6)
<-- Y. Ck + Ck 2-2t3 2 <r<2+
2r2

=o k=m+l

/r. 1= Ec.(7.7) S0(r.) >
=o

c t(1 r,t) dt >
=o

Now we need only choose B and c appropriately.
For a, let B 2, c k_92-=, 0 < e <. By (7.4), if 22 < r < 22+’

(r)->_

t(1 2t) dt

m+l
2-3(2)"/2 log2 log2 7/4r3/2.

Since (7.6) holds and

(7.8) (x + y)r <__ (2x)r + (2y)r, X, y, r > 0,

(_ )3/=- (1 _7(2)k_2)3/2-e__1 [0(T)]3/2_e 7.-2 Y. Ck + Y k2
150 =o gk=m+l 22" _< r_< 22"+1"

The first sum on the right is dominated by c,,; the second sum is dominated by its first
term. Thus

1 (.r)]3/2_ )3 + ((m + 1)2 3/2-

150 [o __< (r-2Cm /=-

<_-- (1 + log2 log2 r)3/2(r-21/8+ve/4 + 2-5(2)"), 22" <- 7" <- 22"+1.
Since 0 and q are continuous, we deduce that (2 15) holds with 3’ By (7.5) and (7.7)

q (r,) =< (n + 1)2 -3(2)"-1,
2

/ _3(2)n-1900r]OZ(r,)>24,n.2
2 oo(n -+ oo), and (2.18) does not hold.so r,O2(r,)/q(r,)-+
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2(l+v)kFor a2.v, let/3 1 + 23,, ck Note that

k+12-2k+1
Ck 2-2tk

< 2-3v < 1,

Therefore, (7.6) implies

(7.9) O(r) K(T)[+ c+12-2’+"],

Ck+l

Ck

for some number K(y) < oo. Using (7.4), (7.8) and (7.9), we get

=< 21+3"K(y)[1 + 23"[(1+3")"+1-2(1+23’)"+1]]
2m<_r<__2+’.

Thus, (2.14) holds. On the other hand, (7.5) and (7.7) yield

(7.10) (r,)_-< 1 +
1 2-3"

c,+1 300(r,) >= c,r-2.

From (7.10), our final conclusions about a2,3" follow easily.
For a3, we take 2, c 2, and for a4, we take/3 2, c 1. The estimates are

similar to those given above, so we omit them. Example a4 appeared in [2].

8. A lemma. In this section we prove’
LEMMA 8.1. If (1.2) holds, then

(8.1) ID(r, a)l >=MrA l(g-1),

(8.2)

1/2p --< r =<

This is the same as [2, Lemma 5.2], but our proof in [2] contains an error.
Proof. When p -< r < p o or r => o, the proof in [2] is valid, so we exclude those

cases here. [2, (5.11)] is not correct when r <w. When we integrate the inequality

7" fl/r r3a (r) dr >=-o’()> o
1 1)

807"3
a (r-

[2,(4.4)] from r to w, we obtain

(8.3)

r(w r)(o20 + r) fo
1/"

IIm D(r, a)[ > r3a (r) dr

1/r

+-i-- /oo
ra(r) dr, 0 < ,

Since

we have

2/o 1/o

f rga(r) dr<=15 Io r3a(r) dr’
al/

1/

f fo
1/’r 1

(8.4) 16 r3a (r) dr >-_ r3a (r) dr >= r3a (r) dr, r
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By (8.3) and (8.4),
1/-

T ((’O 7.) (7. -t- (’O) il(8.5) IIm 0(7., A)l >--
320

ra(r) dr +--d /,o
ra (r) dr

for p < w, 1/2w _-< r < w. Except for a constant, this is the same as [2, (5.11)] for these r, w,
so the remainder of the proof of (8.2) as given in [2] is valid. We need only establish
(8.1).

Note that

(8.6) ID(z,h)I>-_(7.)>-M>-_MzAI(z-1), 1/2p <-_7.<-_p.

If 1/2o -<_ p, then (8.6) implies (8.1). Otherwise we consider two cases.
-1) (o9-1), then, as in the proof of LemmaCase 1. If p _-< 7. _-< 5w and A(w _-> 6wA

5.1,
1 fo
/

t2[Re D(7., ,)l (7.) ->- da’(t)

(8.7)

Thus, (8.3) and (8.7) imply

(8.8)

>-- 2 da’(t)
-4

1 _)>1 [A(oo_a)_3ooA(w_x)]+_w a(w=2
>_- 1/4A (09 -1) e 1/4foAl (o9 -1) e 41-7.A ((.o 1).

1/-r

7.I1 dr +
Z lora (r) ra (r) dr

>- A 1(7"- in Case 1.
160

<-7.<1/2w and A(w-)<6wAx(w-), then let g(t)=(6wt-1)a(t).Case 2. If P/o,
In Case 2, then, Io g(t) dt > O.

It is easy to see that (6oot)’g(t) >- g(t), (t > 0, n 1, 2), so we conclude that
1/o

(8.9) (6w) | tng(t) dt > O, n 1, 2.
3o

From (8.9) it follows that
1/o 1/o

(8.10) 36)2 Io t3a(t) dr> Io ta(t) dt.

Now (8.3) implies
1/o -1/-rT(’02 I0 3 7. I1 ra (r) dr, p <= 7. <-

2
w.(8.11) IImD(7.,h)[_->-0- r a(r)dr+- /

(8.10) and (8.11) combine to yield
1/o 1/"

ra (r) drIIm D(7., h )] > ra(r) dr +-i-d1440 al/o
(8.12)

>_- A (7.- a) in Case 2.
1440
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Finally, (8.6), (8.8) and (8.12) establish (8.1) in all cases. This completes the proof of
Lemma 8.1.

9. Proofs of Theorems 3.1, 3.2 and 3.3. For Theorem 3.1(i), first observe that
Theorem 2.3(i) implies

(9.1) [v(t,h)l<-Mt-lxl/2, t>0.

By (1.14), V(t)L-1/2 is bounded, for each > 0. Moreover, if t, s > 0 and y

II[V(t)-V(s)]L-/YlI= I Iv(t, X)-v(s, X)]X- d(Exy, y).

Since v(t, A) is continuous in and (9.1) holds, Lebesgue’s Dominated Convergence
Theorem shows that V(t)L-1/2y --> V(s)L-1/2y(t --> s). v(t, A is differentiable in t, so the
Mean Value Theorem implies

(9.2) Ilh-l[u(t + h)- U(t)- hV(t)]yll2 I1 v(t+rt, A)-v(t,A) 2

1’/2 hd(Ey, y)

(ysl), where r/=r/(t,A, h) is between 0 and h. For ysl, Ad(Exy, y) is a finite
measure, so by (9.1) and dominated convergence, the integral in (9.2) tends to zero as
h 0. Therefore, U(t)y is differentiable (t > 0) and (3.1) holds. This proves Theorem
3.1(i).

Under the hypotheses of Theorem 3.1 (ii),

(9.3) sup Iv(t, A)I <-Mr <-Ma(O+)A 1/2

t=>0

(see Theorem 2.2 and the remarks following it). Using (9.3) in place of (9.1), we can
argue as above and prove the results on the closed interval +. This completes the proof
of Theorem 3.1.

Proof of Theorem 3.2. To simplify formulas, we take d 0, since this does not
change the argument. For (i), the uniqueness assertion and the special case g =- 0 are just
Theorem 2.1(ii) of [2]. Therefore, it suffices to establish (1.11) when f=0 and Zo=0.

Let n be a positive integer, and let g, E,g,

h,(t) | a(t-s)g,(s) ds.
Jo

loc([ ). Since IILE.II n and Lg, E,Lg is measurable, g, belongs toThen g, +

3c ([+, @). Therefore, h," [/ --> @ is continuous. By [2, Thm. 2.1 ], the unique solution
of

Then z, s C(+, @) and

z’(t) + Io a(t-s)[Lz(s)+g,(s)] ds =0,

z. (t) -Io U(t s)h. (s) ds.

z(O) =0,

(9.4) z,(t) a(s-r)[Lz,(r)+g,(r)]drds, t>-O.
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But for yo e , y(t) U(t)yo is the solution of

y’(t) + Jo a(t-s)Ly(s) ds =0, y(0) yo

[2, Theorem 2.1(i)]. Since L is closed and (3.1) holds, this means (see Theorem 3.1)

L-1V(t)Y V(t)L-lY -Io a(t-s)U(s)yo ds

U(t-s)a(s)yods, yo.

Therefore,
t-s

Io V(t-s’L-Ig"(s) ds:-Io [Io a(t-s-r)U(r)g,(s) dr] ds

t--r

:-Io U(r) Io a(t-r-s)g,(s)dsdr

Zn(t).

Since Zo t 0, (1.11) reduces to

z(t) fo V(t-s)L-g(s) ds,

but V(’)L-1/2 is strongly continuous on + and I[V(’)L-/21IGLI(+), while
g lloc(-+I @1). Therefore,

V(t- s)L-ag(s) and LV(t- s)L-Xg(s) V(t- s)L-/2. La/2g(s)
are strongly measurable in s (a modified version of [2, Lemma 3.1] shows this), and
standard estimates show that z C(+, @). Then by (1.14),

I[L[z(t)- z. (t)][I <- Io ilV(t- s)L-1/2II IlL1/2[g(s) -g. (s)ll ds

<= Io v/2(s)ll(I-E")L/2g(t-s)ll ds.

But En - I strongly (n - co), and the integrand here is dominated by the Lx function

w(s) va/2(s) ess sup IlLa/2g(r)ll,
O<=r<=t

SO

T

[IL[z(t) z. (t)][[ -< Io w(s)ds, 0_-<t_-< T<oo,

Lzn(t)Lz(t) in o, neo, t>_-0.

Similarly, z, (t) - z(t)(n oo) and z- z, is bounded on finite intervals. Therefore, we can
let n oo in (9.4), using dominated convergence, and deduce that

z(t)= i a(s-r)[Lz(r)+g(r)] drds.
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Therefore, z(t) is a solution of (1.10) with Zo t 0, as asserted. For (ii), the hypotheses
imply vl/2(t)<-M (see Theorem 2.2), so the proof of (i) can be repeated with minor
changes. This proves Theorem 3.2.

Proofof Theorem 3.3. By (4.1), Theorem A of 2, and the fact that (2.14) (y =)
implies (2.21), our hypotheses yield

(9.5) [IU(t)[l <- 1 (t >_- 0), Io IlU(t)ll dt <

Let T" g z be the operator defined formally by the right-hand side of (1.11) with
yo in place of z0, but interpret the integrals as Bochner integrals in 1((0, t), @). If
g(R,@l), Theorem 3.2(i) shows that Tge C(+,@). Moreover, by (9.5) and
(1.14),

With K 1 + , + II/=ll,
IITg(t)ll g( + [[gl[/([+,l)), -k-.

Referring. to our hypotheses, we choose A, 0 < A < a, so small that K (A)< , and
choose/x _-< A/2K. Then TN maps the ball

in the Banach space C(+, ) into itself, y S is a fixed point of TN if and only if y is a
solution of (1.12) in SA.

We complete the proof by showing that TN is a contraction on SA. For zl, z2 e Sa,

IITNz(t) TNz(t)[[ IoV(t s)L-l[Nz(s) Nz2(s)] ds

<_- K e (A)llz z2ll(+, 9)

This proves Theorem 3.3.

REFERENCES

1. R.W. CARR, Uniform L estimates for a linearintegrodifferential equation with a parameter, Ph.D. Thesis,
University of Wisconsin-Madison, 1977.

2. R. W. CARR AND K. B. HANNSGEN, A nonhornogeneous integrodifferential equation in Hilbert space,
this Journal, 10 (1979), pp. 961-984.

3. C. M. DAFERMOS AND J. A. NOHEL, Energy methods ]’or nonlinear hyperbolic Volterra integrodifferen-
tial equations, Comm. Partial Differential Equations, 4 (1979), pp. 219-278.

4. K. B. HANNSGEN, Indirect Abelian theorems and a linear Volterra equation, Trans. Amer. Math. Soc.,
142 (1969), pp. 539-555.

5. ,A Volterra equation with parameter, this Journal, 4 (1973), pp. 22-30.
6. , Uniform L behavior]or an integrodifferential equation with parameter, this Journal, 8 (1977), pp.

626-639.
7. E. HILLE AND R. S. PHILLIPS, Functional Analysis and Semi-Groups, American Mathematical Society,

Providence, RI, 1957.
8. J. J. LEVIN, The asymptotic behavior of the solution of a Volterra equation, Proc. Amer. Math. Soc., 14

(1963), pp. 534-541.



VOLTERRA EQUATION IN HILBERT SPACE 483

9. S.-O. LONDEN, The qualitative behavior of the solutions ofa nonlinear Volterra equation, Michigan Math.
J., 18 (1971), pp. 321-330.

10. ., An existence result on a Volterra equation in Banach space, Trans. Amer. Math. Soc., 235
(1978), pp. 285-305.

11. R. C. MACCAMY, An integro-differential equation with applications in heatflow, Quart. Appl. Math., 35
(1977), pp. 1-19.

12. ,Amodelfor one-dimensional, nonlinear viscoelasticity, Quart. Appl. Math., 35 (1977), pp. 21-33.
13. R. K. MILLER, Nonlinear Volterra Integral Equations, W. A. Benjamin, Menlo Park, CA, 1971.
14. J.A. NOHELAND D. F. SHEA, Frequency domain methodsfor Volterra equations, Adv. Math., 22 (1976),

pp. 278-304.
15. D. F. SHEA AND S. WAINGER, Variants of the Wiener-Lvy theorem, with applications to stability

problems for some Volterra integral equations, Amer. J. Math., 97 (1975), pp. 312-343.
16. O. J. STAFFANS, An inequality for positive definite Volterra kernels, Proc. Amer. Math. Soc., 58 (1976),

pp. 205-210.
17. ., On a nonlinear hyperbolic Volterra equation, this Journal, 11 (1980), pp. 793-812.
18. C. C. TRAVIS AND G. F. WEBB, An abstract second order semilinear Volterra integrodifferential equation,

this Journal, 10 (1979), pp. 412-424.



SIAM J. MATH. ANAL.
Vol. 13, No. 3, May 1982

1982 Society for Industrial and Applied Mathematics
0036-1410/82/1303-0007 $01.00/0

A THEORY FOR THE APPROXIMATION OF SOLUTIONS OF
BOUNDARY VALUE PROBLEMS ON INFINITE INTERVALS*

PETER A. MARKOWICH

Abstract. An ad hoc method to solve boundary value problems which are posed on infinite intervals
is to reduce the infinite interval to a finite but large one and to impose additional boundary conditions at
the far end. These boundary conditions should be posed in a way so that they express the asymptotic
behavior of the actual solution well. In this paper a theory is derived which defines classes of appropriate
additional boundary conditions. Appropriate is to be understood in the sense that the solutions of the
approximate problems converge to the actual solution of the "infinite" problem as the length of the finite
interval tends to infinity. Moreover, boundary conditions which produce convergence with the largest
expectable order are devised.

1. Introduction. Boundary value problems on infinite intervals, which are posed
in the following way:

(1.1) y’=tf(t,y), 1-<t<00, ao,

y m C([1, 00]). :> y C([1, 00)) and lim y(t) exists,
t-oo

(.3)

where f: R"+I R" and Io is the set of nonnegative integers, are often solved numeri-
cally by restricting the infinite interval to a finite but large one and by imposing
additional suitable boundary conditions at the right end. The resulting two-point
boundary value problem has the following form:

(1.4) Xr tf(t, XT), 1 <= <= T, T >> 1,

(1.5) b(xT-(1)) 0,

(1.6) S(XT(T), T) O,

and can be solved by any appropriate code. The questions this paper answers are the
following:

1) What class of asymptotic boundary conditions S(xT(T), T) 0 implies conver-
gence in the following sense

(1.7) IIx YIItl,T1 -’> 0 as T--> 00

where IlzlL,a :-- supte[a,b] Iz(t)l?
2) Which asymptotic boundary conditions yield a reasonably fast order of conver-

gence?
It will be shown that the admissible boundary conditions have to be constructed

with regard to the invariant subspaces and eigenspaces of the matrix

(1.8) Ao(y) := fy (00, y (00)).

* Received by the editors December 11, 1980, and in revised form June 8, 1981. This research was
supported by the U.S. Army under contract DAAG29-80-C-0041. This material is based upon work
supported by the National Science Foundation under grant MCS-79-27062.

" Department of Mathematics, University of Texas at Austin, Austin, Texas 78712.
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2. Linear constant coefficient problems. The problem

(2.1) y’-tAy=tf(t), 1-<t<co, a, a>-l,

(2.2) y C([1, oe]),

(2.3) By(l) =/3

shall be approximated by the "finite" problem

(2.4) x T- tAXT tf(t), 1 <--_ <--_ T,

(2.5) Bxr(1) B,

(2.6) S(T)xT(T) y(T)

as T approaches infinity. A is assumed to be a real n x n matrix with the Jordan
form J’

(2.7) A EJE-1 # 0

(from here on 0 stands for a zero matrix of appropriate dimension) and J has the
block diagonal form

(2.8) J diag (J/, jo, j-)

where J/ contains the eigenvalues of A with positive real part, jo the eigenvalues of
A with a zero real part and J- the eigenvalues of A with a negative real part. The
dimensions of these three matrices are r+, ro, r_ respectively, and the geometrical
multiplicity of the eigenvalue zero will be called Fo (geometrical multiplicity refers
to the number of independent eigenvectors).

The projection-like matrices G+, O0, G_ and Go are obtained by taking the
matrices D/, Do, D_ and Do, which are the projections onto the direct sums of invariant
subspaces of J belonging to eigenvalues with positive, zero, negative real part respec-
tively, and onto the direct sums of eigenspaces belonging to zero eigenvalues of jo,
and by cancelling all columns of these matrices which have only zero entries. So G/
is n xr+, Go is n Xro, G_ is n xr_ and Go is n x o.

By substituting

(2.9) u =E-ly
we get the problem

(2.10) u’- tJu tE-If(t), 1 <- <

(2.11) u C([1, oo]),

(2.12) BEu(1)=B.

The general solution of (2.10), (2.11) is

(2.13)

where

u(t) [& (t)Go, & (t)G_]r/+ (Hf)(t), "1 C ?O+r-

(2.14) (t)=exp( J )a+ it+

and H is a solution operator for the inhomogeneous problem:

Hf=n+f+nof+n_f,
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where

(2.15)

(2.16)

(2.17)

(H+f)(t) &(t) D+-l(s)E-Xf(s)s ds,

(Hof)(t) (t) I DO-X(s)E-f(s)s ds,

(H_f)(t) (t) Is D-c-I(s)E-lf(s)sa Ks

holds for 6 -> 1. f is assumed to be in C([1, oo]) and in order to make the integral in
(2.16) exist we assume that

(2.18) IIDoE-’f(t)ll= O(t-("+’)’-), , >0.
Here r is the dimension of the largest Jordan block of J associated with an eigenvalue
with zero real part. We assume that r > 0 because the case r 0 has been treated by
de Hoog and Weiss (1980b). An analysis of the operator H can be found in de Hoog
and Weiss (1980a) and Lentini and Keller (1980a). Markowich (1980b) has shown
the following estimates, which hold for _-> 6 _-> 1’

(2.19)

(2.20)

(2.21)

II(H+ f)(t)ll <= const.

]](Hof)(t)l[ <= const, max

II(H-f)(t)ll <-- const, - max IIs D_ - f(s)ll for >_- 0.
6s<t

All constants are independent of f and & Moreover we assume that B is a (o + r_) n
matrix, that/ Re+r- and that the (o + r_) x (o + r_) matrix

(2.22) BE[O(1)Go, O (1)G_]

is nonsingular so that (2.3) defines ?o + r_ independent boundary conditions. Accord-
ing to Markowich (1980a, b) these propositions are necessary and sufficient for the
unique solvability of the problems (2.1), (2.2) and (2.3) for all appropriate f’s and
/3 e Reo+r. Therefore S(T) has to be a (r+ +(ro-o))Xn matrix and y(T)r++(-e)

so that (2.5) and (2.6) set up n boundary conditions.
At first we prove a stability estimate for (2.4), (2.5), (2.6)’
THEOREM 2.1. We assume that (2.22) holds and that (A), (B), (C) which are

defined as follows, are fulfilled.

(A) IIs(r)ll-<- const, for T-+
(B) IIS(T)EtoII=o(T-(+1(-1) forT+m,

(c) II[s(r)Ea+, S(r)Edo]-ll<-_const.
where o is the n x (to-fo) matrix which is obtained by cancelling the columns of the
matrix lo Do-JOo which have only zero entries.

Then the problem (2.4), (2.5), (2.6) has a unique solution xr for all T sufficiently
large and xr fulfills the stability estimate

(2.23) Ilxrll[l,r]<----const. ([[/311+ T(+’(r-1) IIT(T)II+

iff e C([ 1, T]),/3 e R v+r-, y(T) e IR"-(e+r-).
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Proof. In order to prove this we first reorder jo by permuting its lines and columns
so that

(2.24) RJR-I= =]o
j o

eo
where R is an appropriate permutation matrix. This corresponds to a reordering of
the columns of E. The reordered matrix will be called E. More information on this
reordering is given by Lentini and Keller (1980a). Now

(a) do (b) do e,

}r_ }o+ r_

Fo ro-fo

holds. From (2.24) it is easily concluded that

jo
(2.26) exp

a+l

Obviously

and

) [el(t+l-- 1) 0 ]}ro-’ fo
(t/ 1)

e2(t+- 1) Ie,_L }o

ro- o o

exp(’alr)=R exp (aJlr)R-l, el(r)=exp(\a+i
Jl r)

(2.27)

and get the problem

(2.28)

(2.29)

(2.30)

where J has the block structure

(2.31)

holds for all r R. (Note that J is nonsingular because it has no zero eigenvalue.)
We substitute

T J-IxT

. diag (J+, ]o, j-).

We write the general solution of (2.28) as follows’

(2.32) gr(t) A(t, T)a + C(t)2 + t;p (t, T)

where

(2.33) A(t, T)=
+ 1

(t+aexp

0

0

0

r+

T+i)) 0 1el(t’+l-- 1) n

e2(t’+1- 1)

ro fo

e2(r)=J(J)-l(exp \a+lr)(’J Lo-eo)
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and

(2.34) C(t)

0 0

exp a+l
o r_

so that 1 Cr++(r-) and 2 C+’- hold. go(t, T) is an appropriate particular solution
which will be defined later.

From (2.26) we easily derive the following properties of el, e2"

(2.35a, b) el(0) Iro-eo, e2(0) 0,

(2.36a) el(t+1- 1)-1 e(1- t/l),
(2.36b) e2(t/1- 1)el(1 "/1) -e2(1 /1)
for all R. A more general statement than (2.36) is

(2.37a)

(2.37b)

for all to, t R.

(2.38a) [[el(/’+1-1)11- o(t(a+l)(r-1))
(2.38b) ]]e2(t+1-1)11 O(t(+l)(r-))
The estimate (2.38) is derived by using that

(2.39)

+1el(t +1 1)el(1 t’+x) el(t +1 t’ ),
a+l a+l +1 a+le2(to -1)e(1-tl )=e2(to -tl )-e2(1-tl

for oo,

for

exp =exp F(t),
a+l

where Jk is an rk-dimensional Jordan block with the imaginary eigenvalue iy and F(t)
is a real matrix whose entries are polynomials of maximal degree (rk 1)(a + 1).

By inserting (2.32) into the boundary conditions (2.29), (2.30) we get the linear
block system

AI(T)
(2.40)

A3(T)
B7)

t, (1, T) T))a4/’)] (sc’x)= (T(T-$(T)Idp(T,
where

(2.41a) [A (T) Bff.G/ exp
a+

(2.41c) A3(T)=[S(T)JG+, S(T)J(oe(T+1-1)+S(T)Jroe2(T+1-1)],

(2.41d) A4(T)= [S(T)jro, S(T)O_ exp (a + i
J- Ta+l)]"

As we will see in (2.52), the system (2.40) is soluble if and only if the matrices A
and A3(T) An(T)AIA I(T) are invertible. A2 is invertible by assumption (2.22) and
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the existence of (A3-A4A-IA1)-1 has to be proven. We will show that

(2.42)

(A3-A4A-IAx)-’=
0 el(1-T"+1) [S(T)IG+,S(T)o]-’(I+o(1)) for rooo.

The existence of the right-hand side of (2.42) is assured by proposition (C) of Theorem
2.1.

We split A3(T) into

A3(T) IS, (T)/G+, S(T)Jroel(T+a- 1)] + [0, S(T)Jroe2(T+1- 1)],
(2.43)

A(T) A(T)

and get

[I(2.44) A(T) [S(T)IG+, S(T)/(o]
0

From (C) and from (2.36a) we conclude

(2.45) (A(T))_I [I0
Moreover

0 ]el(T,,+1_ 1)

0 ]e1(1- T+) [S(T)IG+, S(T)/o]-1.

A(T)(A 3( T))-1 [0, S T)roe2(T+1-1)e (1 T+I)][S T)G+, S(T)/(o]-1

(2.46) [0, -s(r)oez(1 T+I)][S(T)G+, s(r)/(o]-1

holds because of (2.36b). The proposition (B) and (2.38b) assure that

(2.47) IIA(T)(A(T))-’I] o(1) for T-* oo.

Therefore A3(T)-1 exists and can be written as

(2.48)

Moreover

(A3(T))-1= (A(T))-1 I + (-1)(A(T)(A3(T))-1)

=(A(T))-(I+o(1)) for

(2.49a)

(2.49b)

IIA4(T)I[=o(T-’+1)r-1 for

IIA(T)II O(1) for T oo

and therefore

(2.50) IIA4(T)AIA(T)(A3(T))-II[=o(1) for Tm

because of (2.48), (2.49), (2.45). So

(a3 A4AIA -1(1)- (A3(T)) I+ E (Aa(T)AIAI(T)(A3(T))-I)
i=1

(2.51)
(A(T))-I(I + o(1)) for T
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and (2.42) follows immediately. The linear equation (2.40) can now be solved:

L(1) =[ -(A3-A4AaAI)-IA4A
2 AI +AaA 1AI(A3-A4A 1)-1A4A

fl-B/gp(1, T)

(A3-A4AA1)-I
-AIA(A3-A4A]A 1)

Inserting 1 into (2.33) the term A(t, T)(A3(T)-A4(T)AIAI(T))-1 appears. From
(2.33) and (2.42) we get

A(t, T)(A3-A4AIA1)-1

xp (J+(t’+- T+l)/(ce + 1)) 0 ]
0 e(t’+x-1)ex(1-T’+1

0 e2(t+1- 1)el(1- T+I)
(2.53)

Using (2.37) we conclude that

(2.54) IIA(’, T)(A3(T)-A4(T)A-IAI(T))-III[I, Ta O(T(a+l)(r-1))
holds.

From (2.52), (2.33) and (A) we derive:

ll6Tllt,T3 <---- const. (11/3 + T(’+1)(-1)I[Y (T)II + Ilt (1,
(2.55)

+ Ile.(r.
Now tTp(., T) has to be defined. We set

/(t), 1 <= <_- T,
(2.56) [(t, T)

f(T), T <- -< o

and

(2.57) (TH+f)(t) := exp a + 1
-s sf(s) ds,

(2.58) (THof)(t) := exp a + 1
--s sf(s) ds,

O(1).

(2.59) (TH-f)(t) (H_EI-lf)(t), 8 <= <= T, 1 <= 6 < T,

so that we can define:

(2.60) tT, (., T HTf TH+f+ THof+ Tn-f.
From the estimates (2.19) and (2.21) we conclude that

(2.6 la) [[TH+f
because

(2.61b) IITH+
holds. Moreover (2.58) can be estimated as follows

T

(2.62) II(Tnof)(t)ll <const. [[fll[t,T] f (t+1 a+l)(r-1)S Z(+l)rs
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Altogether we get

(2.63)

and

(2.64) [[g(T, T)I[=i[(TH_/)(T)[[<-const.

holds because (THof)(T)=O. From these estimates and from (2.55) the stability
estimate (2.23) follows.

In order to derive a convergence statement we write the problem (2.1), (2.2),
(2.3) as follows

(2.65) y’- tAy tf(t), 1 T, y C([1, ]),

(2.66) By(l) fl,

(2.67) S(T)y(T) S(T)y(T)

and subtract (2.4), (2.5), (2.6) from (2.65), (2.66), (2.67). We get

(2.68) (y XT tA(y XT O,

(2.69) B(y--XT)(1)=O,

(2.70) S(T)(y-xT)(T)=S(T)y(T)-y(T).

If S(T) fulfills the assumptions (A), (B), (C), Theorem 2.1 can be applied giving"

(2.71) [[y--XTIIt,TaConst. T(+(r-IIS(T)y(T)-(T)[[.
Setting y(T)0 and using (2.9), (2.13) we get

(2.72) [ly --XTI,TaConst. T(+I(-IS(T)E[(T)o, (T)G_] +

for some Cr-+e Assumption (B) guarantees that all columns of the fundamental
matrix which are constant are dampened by an o(T-(+)(r-l)). All other appearing
columns decay exponentially. Therefore the term which originates from the solution
of the homogeneous problem converges as an o(1) as T . So assumption (B) is

necessary for convergence for general fl and f. Now let

(2.73) IIf(t)ll o(t-(+(a--), > o.
From the estimates (2.19), (2.20), (2.21) we conclude that

(2.74) II(nf)(T)ll
holds. Altogether we get

(2.75) Ily--xTllCl,TaConst. (T(+(r-a (IIS(T)EolI+iIS(T)E(T)G-[I)+ T-).

If f(t) contains an exponentially decreasing factor so that it has the asymptotic behavior

ex (- a+1 >0

then there is an operator so that y Ef is a particular solution of (2.65) and

(2.vv) II(Nf)(r)II O T
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holds. A proof for this can be found in Markowich (1980b). In this case T in (2.75)

has to be substituted by T/(+1)(2r-1’ (In T)exp (- to T/X
a+l ]

An optimal choice $(T) So (T) would be so that

(2.78) [$D(T)EGo, SD(T)EG_]= 0

holds. Equation (2.78) is fulfilled for

(2.79) SD(T)E =SDE [ (G+)T] TSo(&o)T j :>E =[O+, do].

These are linear equations for the rows of So which can be chosen independently of
T. The asymptotic boundary condition (2.79), called a projection condition, fulfills
(A), (B), (C) in Theorem 2.1 and is optimal in the sense that it makes the first two
terms on the right-hand side of (2.75) vanish.

3. Linear variable coefficient problems: distinct eigenvalues. In this section we
analyze the problem

(3.1) y’- tA(t)y tf(t), a e No, 1 <= < c,

(3.2) y e C([1, m]),

(3.3) By(l) =/3

and we require the n x n matrix A(t) to fulfill

(3.4) A C([1, m]), A(o) # 0,

(3.5) A(t) Ait-i for sufficiently large.
i=0

Moreover let J0 be the Jordan form of Ao obtained by

(3.6) Ao EJoE-1.

The following assumption is basic for this section:

Jo diag (A 1, An), A(3.7)

The substitution

(3.8)

gives the problem

(3.9)

(3.10)

where

u =E-Xy

u’-tJ(t)u=tE-If(t),
u C([1, oo])

for # ].

l<_-t<oo,

(3.12) b(t) P(t)te o(,)

The fundamental matrix of the homogeneous problem (3.9) can be represented as an
asymptotic series (see Wasow (1965) and Coddington and Levinson (1955)):

(3.11) J(t) E-XA(t)E E Jit J =E-1AiE.
i=o
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where

(3.13) P(t) I + 2 Pit-i,
i=1

(3.14) D =diag (dl,’", dn),
’*+1

+ O--+" +Ot, Oi(3.15) O(t) Jo + 1
are diagonal matrices

hold. The unknown coefficients Pi, Qi and D can be calculated by algebraic operations
from the Ji’s. An algorithm for that is given in Markowich (1980b), and therefore the
asymptoti.c behavior of the basic solution can be determined knowing the Qi’s and D.

Let Do be the projection onto the direct sum of eigenspaces of Jo associated with
those eigenvalues with a real part zero which produce a basic solution which is in
C([1, ]) and let o be the projection-like matrix which is obtained by cancelling
those columns of/o which have only zero entries. Let to be a n x Fo matrix. Then
the general solution of the problem (3.9), (3.10) is

(3.16) u(t) [(t)0o, (t)G_]r/+ (Hf)(t), rl C+r-

(if o 0 then [&(t)0o, 0b(t)G_] has to be substituted by [(t)G_] in (3.16) and in the
sequel) where G_ is defined as in 2 and uv(t)= (Hf)(t) is an appropriate particular
solution, which has been described by Markowich (1980b). The operator H operates
on the space of all functions fulfilling

(3.17) f C([& ]), _-> 1, II[(t)ll O(t--l-), e > O.

Then the estimate

(3.18) }l(nf)(t)ll<-const. In t. max lls++f(s)ll

has been proven by Markowich (1980b). The particular solution on [1, oo] is obtained
by continuation. The boundary value problems (3.1), (3.2), (3.3) iswunder the given
assumption on A(t) and f--for all /3 e R/r- uniquely soluble if and only if the
fro + r_) if0 + r_) matrix

(3.19) BE[&(1)Go, (1)G_] isnonsingular.

Of course, B has to be a (o + r_) n matrix. We consider the approximating problems

(3.20) x’T-- t’*A (t)xT tf(t), 1 <-- <= T, No,

(3.2) Bx(1)=3,

(3.22) S(T)xT(T) r(T).

S(T) is a (n-ffo+r_))n matrix and y(T)eR"-(+’-). For the following, G+ is
defined as in 2 and Go is the n (ro-o) matrix which is obtained by cancelling
the zero columns of D0-/o. Then the following stability theorem, which is analogous
to Theorem 2.1, holds:

THEOREM 3.1. Assume that (3.19) and (A1), (B1), (C1) which are defined as
follows, hold:

(A1)

(B)

(c)

IIS(T)II <-- const, as T->

IIS(T)EOoll o(1) as T--> oo,

[][S(T)EG+, S(T)Eo]-II<= const, as T.->oo.
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Then the problem (3.19), (3.21), (3.22) has a unique solution x7‘ for sufficiently large
T. XT fulfills the estimate

(3.23) IJXTJItl,T] -< const" (lltll+ll’(T)ll+ T’+I In Tllfll[1.7‘a)
[1+r Rn--(o+r_)forfC([1 T]) fl.. -, y(T)

The substitution

(3.24) v7‘ E-lx7‘
gives the new problem

(3.25) vT- tJ(t)vT‘ tE-lf(t),

(3.26) BERT‘(1) ,
(3.27) S(T)EvT(T) y(T).

l<=t<=T,

As the general solution of (3.25) we take for convenience

(3.28) vT‘(t) &(t)e-(7‘)T-[G+, o]sCa + O (t)[(o, G-]sc2 + vp(t, T),

where a Cr++(r-), :2 C+r- hold and vp(., T) is an appropriate particular solution
which will be defined later. O(t) is the fundamental matrix as of (3.12). Evaluation
of the boundary conditions (3.26), (3.27) gives the linear block system

-Q(T) -D

ls
(3.29)

=( BEvp (1, T) )y(T)-S(T)Evp(T, T)

The matrix in the (1, 1) position is bounded because of the definition of G+, Go and
because of the diagonal form of Q(T) and D. The matrix in the (2, 2) position is
bounded too, because & (t)[Go, G_] is the matrix whose columns are the basic solution
of the homogeneous problem which are in C([1, ]) and because (A1) holds. Moreover

(3.30) IIS(T)E&(T)[o, G-Ill o(1) as T oo

because of (Ba) and (3.12). The matrix in the (1, 2) position is invertible because of
(3.19) and its inverse is, as the matrix, independent of T. Finally

(3.31) S(T)EP(T)[G+, o]= S(T)E[G+, o]+ O(T-)
because of the asymptotic expansion for P(t), (Ca) assures the bounded invertibility
of the matrix in the (2, 1) position.

From (2.40) and (2.52) we conclude immediately that the system (3.29) has a
unique solution (a, :2) C and the estimate

(3.32) IIVTIII,Ta <= const.
follows.

The particular solution vp(., T) has to be defined now. We set

(3.33a) vt,(", T) (1) (1) (1)fHT= THief+ THo + TH

(1)(3.33b) TH(ol)f E THoi J,
i=1
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where

(3.34)

(3.35)

and

(1) IT(TH+ f)(t) 49(t) D+d)-(s)sE-lf(s) ds,

(TH)f)(t) 49(t) f D-cb-l(s)sE-lf(s) ds, 6 >-_ 1

(t) ITDOi)-l(s)sF_-lf(s) ds, if (I)holds,
(3.36) (rH(ol,)]c)(t)

(t) Is Di-(s)sE-lf(s) ds, if (II) holds.

Do is the projection onto that eigenspace of J0 which belongs to the ith eigenvalue
with real part zero and (I), (II) are defined as

(I) Re (O(t)Doi) +oo or (Re (O(t)Doi) 0 and Re (DDo) 0),

(II) Re (O(t)Doi)- or (Re (O(t)Doi)O andre (DDoi)<O).

From the considerations in Markowich (1980b, 3), we immediately conclude that

(3.37) Iln)lle,T N T+ In TIIIle,T.
Therefore the estimate (3.23) follows and Theorem 3.1 is proven.

As in 2 the convergence estimate follows

(3.38) [ly- xrlltl,ra N const. IIS(T)y(T)-r(T)II
for all (r+ + (ro- 0)) x n matrices S(T) which fulfill (A1), (B) and (C1).

Setting y(T)0 and inserting (3.16) we conclude

(3.39) Ily- xlla,a const. (IIS(T)E6(T)[o,
The assumptions (Aa) and (B1) guarantee convergence for all f fulfilling (3.17) because
(3.18) holds. If

(3.40) S(T)EdoO,
convergence of the order T-1 + T In T follows. In many practical cases all eigenvalues
with real part zero produce exponentially decaying solutions and f also decays exponen-
tially. The operator H can be changed to an operator , so that (/)(t) decays with
the same exponential factor (see Markowich (1980b)). In this case exponential conver-
gence follows from (3.39).

The optimal boundary condition is again the projection condition and it has to
be calculated from the equation

[9 1
which is uniquely soluble because of the regularity of E and e(T).

This immediately yields

(3.4) So(T)E6(T)[o, _]
because of the form of (T) and because of (3.41). However, we do not know P(T),
but we can calculate the coecients P of its expansion recursively (for the algorithm
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see Markowich (1980b)). Having calculated P1, P2,"’’, Pk we set

k

(3.43) P(T) I + E PiT-i
i=1

and solve

I-qTI(3.44t SD(T)EP(T) [((0)Tj

instead of (3.41). Because

(3.45) P(T)=P(T)+O(T-k-l) asTo

holds, we get by a simple perturbation analysis

(3.46) D(T) SD(T)+ O(T-k-l) as Taz.

Therefore

(3.47) IIgD(T)E4(T)[o, o-311 const. T--’II&(T)[o, O-Ill
holds and the boundary condition SD(T)xT(T)= 0 implies at least convergence of the
order T-k-1 for IlY--XTII[1,T] if f-=0 holds. More generally speaking, the order of
convergence is determined by inserting (3.47) into (3.39).

However, this rather work-intensive procedure does only give significant improve-
ment if some columns of O(t)[(0, G_] do not converge exponentially. Only in
this case the projection conditions imply a significant improvement of the order of
convergence.

4. Linear problems---the general case. In this section we admit a general Jordan
form of A0. So we deal with problems of the form (3.1), (3.2), (3.3) with the assumption
(3.4), (3.5), (3.6).

Again we perform the substitution (3.8) and get (3.9), (3.10).
The fundamental matrix &(t) of the homogeneous problem (3.9) can now be

represented as an asymptotic log-exponential power series of the following form

(4.1)

(see Wasow (1965)) where

(t)=P(t)tDe (t)

(4.2) P(t)--. Y. Pit-i/" as , p No,
i=0

(4.3) D is a constant matrix in Jordan form,

t+l ta+l-1/p
(4.4) Q(t) diag (Jo) + Ol

a+l p(a +1)-1
+... + Qp(+l)_lt1/p

and the Qi are diagonal matrices, diag (Jo) is the matrix which has the same diagonal
entries as J0 and all other entries zero. The matrices D and e* commute because
the diagonal elements of Q(t) which belong to a particular Jordan block of D are
equal. Wasow (1965, Thm. 19.1) only says that D is a constant matrix, but from the
proof of that theorem it is easily concluded that D can be taken in Jordan form and
Q(t) is still diagonal (see Markowich (1980b)). Moreover, P(t) can be split up into:

(4.5) P(t) P(1)(t)" P(2)(t)" P(3(t),



BOUNDARY VALUE PROBLEMS ON INFINITE INTERVALS 497

where

(4.6) P(1)(t)-I + ., P(1)it-i,
i=1

(4.7) Pk)(t) Pk)it-i/p, k 2, 3.
i=0

P2)(t), P3)(t) are in block diagonal form, too. The ith diagonal block of PE(t)
corresponds to that block in J0 which is obtained by gathering all Jordan blocks
belonging to the ith eigenvalue of J0 and the jth diagonal block of Peak(t) corresponds
to the jth eigenvalue of Q(t), where in both cases only different eigenvalues are
counted. Markowich (1980b) has shown that

(4.8) II(Pz(t))-aDII const, (+l)(r’-l)

holds, where Di is the projection onto the direct sum of invariant subspaces associated
with the ith eigenvalue of J0 and r is the algebraic multiplicity of that ith eigenvalue.
The statement (4.8) holds for the matrix P2 derived as in Markowich (1980b).

The matrix Pa(t)t is the fundamental matrix of the system

(4.9) z’= B +--/(x) z, B C([1, o])
X

where

(4.10) u P(a)(t)P(2)(t) e(t)z

has been set. The system (4.9) has a singularity of the first kind of . Obviously
P(3(t) and D are not uniquely defined; only their product is u.nique (neglecting
multiplication with a constant matrix from the right side)./(3)(t)to= (P(3)(t)t-)t+I
would also be a way of splitting the product. The algorithm given by Wasow (1965)
establishes a matrix/5(3(t) which has a convergent power series expansion, but/(3)(m)
is not regular. We will show now that a representation can be given, so that P(3)()
is regular. Therefore we assume that B is in Jordan-canonical form:

(4.11) B diag (B1," ’,

and Bi has the only eigenvalue bi, where Re (bi)<=0 for 1 <--i _<--s and Re (bj)>0 for
s + 1 <=/" <-n. We write (4.9) as

1 1
(4.12) z =-Bz +-(B(x)z), B(x) _1 (x)

X X X

and set for 1 -<_ <-s

(4.13) z,(t) i + (Gz,)(t), 6 <= < o,

where G is the operator defined in (4.46), (4.47) in Section 4 of Markowich (1980b)
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which applied to a function g defines an appropriate particular solution of the problem

1
(4.14) z’ l-Bz /-g, 6 <_ x < o,

X X

where 6 >_- 1. Markowich (1980b) showed that

(4.15) II(Gg)(t)ll<-const. (In t)i+k-[[ll[.m], 0Nj <_-max (dim (Bg))

holds if

(4.16) g(t)= t-(ln t),(t), g, g Cb ([8, oo]), e >0,

where Cb([& oe)) is the space of all functions f C([8, ee)) which are bounded as
Set

(4.17) ri(t) lltBill c tRe(bi)(ln t)dim(Bi)-l, l <--_ <-- S.

We want to show that (4.13) establishes a fixed-point equation for zi Ai,, where

(4.18) A,, (u u(t) U(t)tri(t), U Cb([6, co))}, Ilul],
We show that the operator

(4.19) (0, (z,))(t) ’ + (G;zi)(t)

is a contraction on Ar,. for 3 sufficiently large. From (4.13), (4.15), (4.17) we conclude
that 6i maps Ai, into A,,. Moreover,

(4.20) ]li(Zil)--lli(Zi2)lli--IlG(Zil-Zi2)l]i-<_ const. 8-1(ln
holds where 0 -<]-<_max (dim (Bi)), and therefore
sufficiently large. From (4.13) we conclude

B(4.21) zi(t) (I + O(t-l(ln t)=+aim(B))) as t-->

Now let s + 1 <- _<- n hold, so that Re (bi) > O. We substitute

(4.22) Zi i b+l

and (4.12) becomes

1
(4.23) Y.’i ---(B-(bi / 1)I)z7i /!(x)i.

x x
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Now we set

(4.24) Yi(t)

so that

tBi-(bi+l)I
0

0

+(GBi)(t)

(4.25) tri--[[ts’-(’+a’[[- c. t-l(ln t)dim(Bi)-I

and (4.13), (4.21) implies that

(4.26) ,fi(t) (I + O(t-l(ln t)2’+dim(B)))

holds and from (4.22) we conclude

(4.27) zi(t) (1 + O(t-l(ln t)2i+dim(n’)))

tBi-(bi+l)I
0

0

Obviously the matrix

(4.28) z(t)=[z(t), z,(t)]=[I+O(t-X(ln t)’)]tB,

as t.

mNo
is a fundamental matrix of the system (4.9). Therefore P(3)(t) and D in (4.5) and (4.1)
can be chosen so that

(4.29) IlP(3)(t)-lll =III + o(1)11 <= const.

holds.
Knowing the fundamental matrix asymptotically we can sort out the basic solution

qi fulfilling q9 E C([1, 00]) SO that the general solution of (3.9), (3.10) is

(4.30) u(t) (t)[0o, G_]r/+ (Hf)(t), r/E C+r-

where H defines an appropriate particular solution Hf on [6, c] if

(4.31) f(t) -(+1)- (In t)lF(t), F Cb([6, o))

where is the maximal algebraic multiplicity of eigenvalues of Jo which have real
part zero. We assume that ?>0 because = 0 is covered by the theory given in
de Hoog and Weiss (1980a, b). Moreover

(4.32) II(nf)(t)l[ <= const, (In t);+/llFllc.a, 0 _-< j -<_ n.
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The particular solution on [1, oe] is obtained by continuation.
Again, the boundary value problem on the infinite interval is uniquely soluble

for all fl R/r- and f’s which fulfill (4.31) if and only if the (tro+ r_) x (tro+ r_) matrix

(4.33) BE [& (1)0, (1)G_] is nonsingular.

Of course, B is an (Yo + r_) n matrix.
The approximating problems have the form (3.20), (3.21), (3.22). We will again

prove a stability theorem.
THEOREM 4.1. Assume that (4.33) and (A2), (B2), (C2) which are defined as

follows, hold:

(A2)

(B)

(C)

IIS(T)I[ const, as T -) oo,

I[S(T)EP(T)(oII o(T-(’+)(e-1)),
II(S(T)EP(I(T)[G+, P(2(T)P(3(T)o])-II O(T/-).

Then there is a unique solution XT Of the problem (3.20), (3.21), (3.22) for T sufficiently
large and the following estimate holds for all fl +r-, y(T) N(ro-o)+r+, f C([1, r])"

(4.34) IIXTIItl,TConst. (1111/ T(+’)(-’)II3’(T)[I/ T(+l)e(ln T)llflltl,Ta), O<=]<=n.

Proof. We substitute

(4.35) xT(t) EP(1)(t)WT(t), W ol
WT

W

and get three separate problems

w(t) t’ +(t) w(t)
r(t) I t J(t) w r(t) +,tPq (t)E-lf(t!_(4.36) w

where

j+

j-(c) j

(o)
(4.37) jo() J) Jo

and the eigenvalues of J have a positive real part, the eigenvalues of J have a zero
real part and the eigenvalues of J have a negative real part. This structure can always

+be obtained by reordering the columns of E. Now we rewrite the equation for w r"

(4.38) w-(t)’ / / / / (t) + f/(t)Jo wr(t)+(J+(t)-Jo )wr

We define the general solution of (4.38) as

+ ( J- +1 T.+I) + + +(4.39) WT(t) exp (t" + (TH+(J+
a + 1

-Jo )WT)(t)+(TH++)(t),

where TH+ is defined in (2.57) with E I and jo j. We derive

(4.40) ((I-TH+(J+-J-))Wr)(t) =exp (, J- "+’ T"+’)):+
\a+l /

+(TH+[+)(t).
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De Hoog and Weiss (1980b) have shown that (I TH/(J/ J )) is invertible as
operator on C([3, T]) with 3 and T sufficiently large, so that

(4.41) wr(t)=O+(t, T)/ +O+([/)(t)E C([& T]),

where

(4.42) +(., T) (I- TH+(J+-J ))-i exp (.\a + 1
(h-J,- T+I)), h(t) to,+1

and

(4.43) T&+(+) (I- TH+(J+ -J ))-ITH+/.
Moreover, they have shown that

(4.44a) I1,+(", T)ll{a.Ta -< const.,

(4.44b) IIT+(L)IIt,Ta <= const. II/lltS.Ta
and from (2.57) and (4.42) we derive that

(4.45) &+(T, T)= L

Now we define the general solution of (4.36) as

(4.46)
0+(L)(t)

+ P(2)(t)P(3)(t)e(’)t[ro, G-]st2 + wp (t, T)

w- (t, T)

where wp, Wp are appropriate particular solutions. This solution is defined on [3, T]
and the corresponding solution on [1, T] is obtained by continuing 0+(’, T). Resub-
stituting in (4.35) and evaluating at the boundaries sets up the linear block system
for

[BEP(I)(1)[[$+( T) ]G+,P(2(1)Pt3)(1)et
kS(T)EPi(T)[G+, Pt2)(T)P3)(T)Go] S(T)EO(T)[o, G_

(4.47)

The matrix in the (1, 1) position is bounded, BE& (1)[0, G_] is independent of T
and invertible because of (4.33), the matrix in the (2, 1) position fulfills (C2) and

(4.48) IIS(T)E@(T)[#-,o, O-]ll -< o(1)T-(<’+’)(-’)
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holds because of (B2). From (2.40), (2.52) we conclude that

IIXTII[1,T] const. (11/ + T(’+I)(-’)I[’Y(T)II +
(4.49)

where

(4.50) vp(t, T):= P(a)(t) wp (t, T) / (H()f)(t)
w (t, T)

has been used. SplittingH into H), rH(o2), rH(__2) where rH? is already defined
by r+(+), we can define rH2) as we have defined rH1) in (3.36), only the Doi
have to be substituted by the projections onto the invariant subspaces of D. The
estimate

(4.51) (2) < T(+)(lnTno f[Ira,Ta const.

results as in 3.
(2)TH- f can be constructed by the same perturbation approach we used for the

(2)construction of T + Y. We set

(4.2) 6-(Y-) (- n-(Y--Y))-n-L w (., T)

where TH- is defined in (2.59) with E I and J J and then

(4.53) (TH)f)(t) Pl)(t)

holds. Moreover the estimate

(4.54) IIe<)fllr, const. Ilfllrx,a
is fulfilled. Because of (Bz) and (3.36) we get

(4.55) IIs(r)E ) T(THo f)(T)[I const. (ln

so that the estimate (4.34) follows.
Again the convergence estimate follows"

(4.56) Ily- XTIIrx, const.

for all matrices S(T) fulfilling (A2), (B), (C2). Setting T(T)0 and using (4.30) we
get the order of convergence as follows"

(4.57) Ily--xT[l[,T]const. r<+)-) ([[S(T)E&(T)Eo,
Assumption (C) guarantees convergence for all f’s which fulfill

(4,58) [l(t)ll o(t-+)2’-a)-), e > 0

because the columns in O(T) which may be constant as T are dampened by the
factor o(T-+a)-a)). Again if all columns of &(t) and f decay exponentially, the
convergence is exponential, too.

Still the question has to be answered whether there is a matrix S(T) fulfilling the
assumption of Theorem 4.1 and how it can be constructed. We set

(4.59) S T)EP)(T)
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and choose (T) so that:

(4.60)

(4.61)

and

(4.62)

g(r)[G+, 0, 0] [(G0+)],
(T)[0, 0, G_] 0

Because of the block structure of P(2), P(3) (4.62) is equivalent to

(4.63) (T)[O, Go, O] T-(+l(e-l[ 0 r](o) P-] (T)P] (T).

The equations (4.60), (4.61), (4.63) determine (T) and S(T) can be calculated from

(4.64) S(T) (T)P] (T)E -.
S(T) fulfills (Bz) because of (4.62), the proposition (A2) follows from (4.8) and (4.29),
and (C) is implied by (4.60), (4.62). This asymptotic boundary condition (with
y(T) 0) is the projection condition fulfilling

(4.65) SD(T)E&(T)[o, G_] O.

In general, we only can determine a finite number of coefficients of the expansion of
Pa), P2), P). An algorithm is given in Markowich (1980b), and it is shown that

(4.66) P2)(t) 1-[ S,(t)EiPI)(t)
i=1

where the matrices $i are in block diagonal form and their diagonal blocks are

Sii(t) diag (1, t-g",(4.67)

The Ei’s are regular and

i/ t-i/p(4.68) P(2) (t) I + Y P(2)
/=1

holds.
We denote by

(4.69) P(z)o(t) H Sio(t)EiP(2)o(t),
i=1

as tc

P(2>o(t) I+ oii ,-i/p
(2)Or

that diagonal block of P(2) which is associated with the zero real part eigenvalues of
Jo. Assume now that we know ikP2)o, ", P(2o for 1(1)m and k2 >
2p(a + 1)(?- 1)- 1. Then we set

k2
(4.70) /5(2)o(t) H --i --iSio(t)EP(2o (t), P(2o I + Y Pi2)ot-’/

i=1

and assume that we know

(4.71)
k

/5(3)o(t) I + E P{3ot-i/o,
/=1

k3>p(a+l)(f-1)-l.
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P(3)o(t) consists of the first k3 / 1 summands of P(3)o(t) which is that block of P(3(t)
associated with the real part zero eigenvalues of Jo. Moreover we have to know

kl
(4.72) P(l(t) I + P(ljt-’, kx > (ce + 1)(f- 1)- 1.

j=l

Using P(ll, P(2)o, P(31o instead of P(I, P(2o, P(3o we calculate a matrix S(T) instead of
S(T); using (4.60), (4.61), (4.63), (4.64) and a perturbation analysis shows that

(4.73) ,q(r) S( T) + o(r--)
where

(4.74) k=min(kl, k2+--l-(a+l)(f-1)-l, k3+----l-1)>-(a+l)(f-1).P P

Therefore

(4.75) g(T)O(T)[ro, G_]= o(r-k-)4)(T)[ro, G_]

and the order of convergence for homogeneous problems is at least T(+l)(r-a)-k-a.
The requirement that A(t) is analytical in oo is very restricting; therefore, we

will now admit matrices A(t) fulfilling

(4.76) AC([1, c]), A()C(+I)r+I([0,]), 6->1,

where is the maximal algebraic multiplicity of an eigenvalue of A (oo) with nonposi-
tive real part. Therefore A can be expanded"

(4.77) a(t) Ao + t-lA +. + t-(+a)rA (+x) r+ A(t)
where

(4.78) fi(t) A (t) -(+l)r-a- e>0, AC([1,

The problem (3.1), (3.2) can now be rewritten as

(a+l)"
(4.79) y’- , At-iy t(t)y + tf(t),

i=0

(4.80) y C([1, m]),

and can be regarded as a perturbed system of

(4.81)
ait y tf(t),

i=0

(4.82) 17 C([1, oo]).

Markowich (1980b) has proven that the n x (o + r_) solution matrix EO of (4.79),
(4.80) for [-> 0 fulfills for large t:

(4.83) I[O(t)-(t)[ro, G-]ll-<const. t--(ln t)zillb(t)[do, G-][I, e >0

where 0<_-/’_-<n holds and b(t)[do, G_] is the general solution of (4.81), (4.82).
Moreover, a particular solution EO(f) of (4.79), (4.80) can be constructed if " fulfills
(4.31) and

(4.84) I]O(f)(t)- (Hf)(t)ll <- const, -1- (In t)2il[(Hf)(t)][
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holds. The problem (3.1), (3.2), (3.3) is for all fl R+r- and f fulfilling (4.31) uniquely
soluble if and only if the (Yo + r_) (Y0 + r_)-matrix

(4.85) BEO (1) is nonsingular.

Of course, B is a (o + r_) n matrix.
For the existence theory and for the following stability theorem it is sufficient to

require that (4.77) holds with -= and with /[(t)= t-/lr-(t) for some e >0.
This implies that the right-hand sides of (4.83) and (4.84) evaluated as T equal
const. (In T)JT-. Note that L which is the largest algebraic multiplicity of an eigen-
value of Ao with real part zero, is always larger than or equal to r (defined in 2),
which is the dimension of the largest Jordan block which has an eigenvalue with real
part zero.

We consider the asymptotic boundary value problem

(4.86)

(4.87)

(4.88)

x 7"- tA (t)XT tf(t), 1 <-- <-- T,

Bx(1) =/,

S(T)xr(T) y(T)

and show that the construction of S(T) and the stability estimate (4.34) depend only
on the validity of (A2), (B2), (C2) for the perturbed problem

(a+l)

(4.89) T-- 2 Ait 2T tf(t),
i=0

(4.90) S(T);T(T) y(T)

if (4.85) holds.
THEOREM 4.2. Let A ]ulfill (4.76) and let (4.85), (A2), (B2), (C2) of Theorem

4.1 hold where

qb(t) P(l)(t)P(2)(t)P(a)(t)tRe O(t)

is the fundamental matrix o] the homogeneous problem (4.81). Then there is a unique
solution XT Of the problem (4.86), (4.87), (4.88) ]:or T sufficiently large and ]:or all

Rtro+r_ r++(ro--tro)y(T) ]e C([1, T]). This solution XT fulfills the estimate (4.34)
with ] substituted by 2].

Proofi We write (4.87)

/ (ot+l)f )(4.91) x’- o Ait-i ITT (. (t)XT + f(t)), 1 < < T

and write the general solution after having set xr Err as

(4.92)

VT(t) Pl(t)[[ O+(t’ T)
0 O] G+, P(2)(t)P(3)(t)e

0

D

0 1

(2)+ P(t)e O(t)tD[do, a-]:2 h- (H)EVT)(t)+ (HT f)(t).

We restrict to the interval [8, T] where 8 is sufficiently large, so that

(4.93) H?}A C([8, T] C([8, T])
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holds. Then the following estimate is fulfilled:

IIH)II.T max IInT.ll<.Ta

(4.94) <= max

1
-< const. (I]I],T +- (In );llall.Ta)

for all T > 6-> g sufficiently large. This follows from the estimates for TH
given in 2 and from the estimates from Ho given in Markowich (1980b). Therefore,
(I-HTE) is invertible on C([6, T]) and we get:

(4.95) VT(t) TI[IO+ (t)l + TO2+ Tgt(f)(t), [6, T]

where T, T fulfill the equations

(4.96)
D

(4.97) TO -H)ETO [do, G_]

and TO(f) fulfills

(2)(4.98) rO([)--H)TO(?) HT .
By evaluating at the boundaries the following block system is generated:

(4.99) S(T)ETO((T) S(T)ErO(T)J 2 v(T)-S(T)ETO(?)(T)"

Obviously, the matrix in the (1,1) position is bounded as T . From (4.97) we derive

4.a00 s(r)z(r strztr[do, O_?+S(T)E(H()ETO)(T).
From the definition ofH we conclude that

T

S(T)E(H)ETO )(T) S(T)EP(T)oe(T)T [ oe-O()s-Dp-(S)
(4.0)

where o is the projection onto the direct sum of invariant subspaces of D belonging
to case (II) as in (3.36).

Now from Markowich (1980b, 4) we conclude

(4.a02 II(T.H<’u(T)II II(n-u)tr)l[ O(T-+1-/2), u C([& T]).

This and (B2) guarantee that

(4.a03 IIS(Ta2 (TII o(

holds. Similarly, (4.96) implies

(4.104) S(T)ETO (T) S(T)EP()(T)[G+, P(2)(T)P(3)(T)o]+ o(r-(+)(e-1)).
Markowich (1980b) has proven that

(4.05) aC-EaC a[do,
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where/- is defined as H(T2), except that the integrals are stretched to instead of T
and C is a regular (tz0 + r_)x (o + r_) matrix. We subtract (4.97) from (4.105), getting

(4.106) (OC-TO)-Ifi,EOC+H)ETO =0

or

(4.107) (OC-TO__)=H)E(#C-TO)+(tEg/C-H)EC), 6 <-t<= T

and therefore

(4.108) [[C- TO[[[,T] <=cOnst. H)AI[,Ta
By continuation to [1, T] we get

(4.109) lim IIoc T II l,Ta- 0
T-oo

so that

(4.110) TO

_
(1) 0

_
(1)C + o(1) as T --,

Also we derive

(4.111)

Theorem 4.2 follows now from (4.103), (4.104), (4.110), (4.111) by considering the
system (4.99) as in the proof of Theorem 4.1. The convergence results change
correspondingly to (4.83), (4.84):

(4.112)
+ II(Hd)(T)II) + T 0n T);).

5. Nonlinear problems. Now we deal with problems of the following form"

(5.1) y’=tf(t,y), 1-<_t<c, a.
(5.2) y C([1, ]),

(5.3) b(y(1)) 0.

f:/ is supposed to be continuous in (c, y()). Equations (5.1) and (5.2)
imply that

(5.4) f(c, y (o))= 0

holds. So y() can be calculated a priori as a solution of a system of n nonlinear
equations. If

(5.5) rank (0f(o, y (az)))0y

then the solution manifold is discrete so that the possible values of y() are known
a priori. This case has been treated by de Hoog and Weiss (1980b). We will assume
that the rank of this matrix is smaller than n, so that we have to expect a continuous
solution manifold y(/x) with/x S c E", n n. We assume that we have determined
such a hi-dimensional manifold and that f(t, ) C() for all [1, c] and

(5.6) A (t, it)
Of(t, y(tx))

Ai(lz)t-i for > ’0y i=0
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holds. We calculate the fundamental matrix E(/z) (t,/z) of the linearized system

(5.7) ’ tA (t, tz)

as an asymptotic series. E(tz) transforms Ao(tz) to its Jordan canonical form Jo(tZ).
Now we restrict tz to subsets S c S so that r/, to, r_, ? which are defined for

Jo(/X) as in the last sections are independent of/z in S. Moreover, we require that
there is an n x o projection-like matrix o independent of/z , so that

(5.8) [[4,(t,g)[o, G-]ll<=C(tz)t-(+l)e-l(")(lnt)i, el()>0, O<--_j<=n

and that

(5.9) ill(t, Yoo(/x))ll -< C(/z)t-2(+1)-"), e2(/x) >0, /x e

holds. Assuming that fy is locally uniformly Lipschitz continuous around
Markowich (1980b) showed that there are solutions y y(.,/x, rt) in the space of
functions in C([& oo]) which decay to a finite limit at least as fast as -("+a)v-" (ln t) 2i

where e min (el, e2) and 6 is sufficiently large. These solutions fulfill the estimate:

(5.10) I[y(t,/x, r/)-yoo(/x)-E(/z)&(t,/x)[10o, G_]r/ll<_-const. (/x). (In t)21t-(’+1)-

for r/e o+r. For many important applications

(5.11) f(t, yoo(/x)) --- 0and (t,/x)[o, G_] decays exponentially. In this case the right-hand side of (5.10)
contains the exponential factor II&(t, tz)[Oo,  _]11= and the algebraic and logarithmic
factors may be different. It follows from this analysis that the boundary value problem
(5.1), (5.2), (5.3) is soluble if the equation

(5.2) b(y(, , n)) 0

is soluble where b" "- -,+eo+r_ and y(t, tx, r) denotes the continuation to [1, co] (if
it exists). We assumethat b C(R").

The approximating problems have the form

(5.13) x tf(t, xr), 1 <= <= T,

(5.14) b(xr(1)) =0,

(5.15) S(XT(T), T) 0

and S’ +1._>-(,1+o+_). We assume that we have obtained a solution y*-
y(.,/z*, r*) fulfilling (5.10) and that this solution is isolated, i.e., the linearized
problem

(5.16) w
Of(t’ y*(t))

W

(5.7) w e c([, m]),

b
(5.18) yo--(Y*(1))w() o

has only the trivial solution w =0. Using (5.10) we get for fr Lipschitz continuous

(5.19)
Of(t, y*(t))

0y
A (t,/x *) + O(t-(+1)-e (t**)/2).
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From Markowich (1980b, 4) we derive that the general solution of (5.16), (5.17) is

(5.20) w E(/z ,)g,o (t,/z *, r/*)s, s C+r-.
g,o_ is an n (o + r_) matrix.

For the following we assume that

(5.21) Y0 nl + r*o
holds, which means that the nonlinear problem and the linearized problem have
solution manifolds of the same dimension. The isolatedness of y
the (0 + r_) (o + r_) matrix

(5.22)
0y

(y*(1))E(/x*)O (1,

is regular. Now we define"

(5.23)

(5.24)

and

* now implies that

(Fy)(t) (t-y’-f(t, y), b(y(1)), S(y(T), T)-S(y*(T), T)),

F" (C([1, ]) f’l C([1, ))f’l {y t-y C([1, o])}, I1"
--> (C([1, oo]) x R , II(v, a)ll Ilvllr,a + Ilall)

(5.25) (FTx)(t) (t-x’-f(t, x), b(x(1)), S(x(T), T)),

FT" (C1([1, T]), lixll--Ilxlh,Ta/ T- IIx’IIc ,Ta)
(5.26)

All involved spaces are linear normed spaces and the space on which FT- is defined is
a Banach space. We calculate the Frechet derivative of F(y*) where y* is an (isolated)
solution of F(y*)= 0 assuming that S C(R")

( Of(t,oyy*(t)) -0b OS(y*(T),oy T))(5.27) ((F’T(y*))z)(t) t-z’- z, v-v (y*(1)),
Assuming that

0-2-(t," )is locally Lipschitz continuous in the I1" II[l,oo-normOy
around y* uniformly in 6 [1, ],

(5.29)

hold, we derive

(5.30)

for

(5.31) [[y*- y;l[.r + T-’Ily *’- ylllEl.r =< const.,
Moreover Theorem 4.2 assures that the problem

(5.32) z t, Of(t, y*(t))
’= z + tf(t),

Oy

ob oS

0--(y(1))’ 0y(T) (y (T)) are locally Lipschitz continuous

around y*(1), y*(T)respectively

I[F(yl)-Fr(y)[[-< const. Ily- yl}

i=1,2.

Norms are always assumed to be taken in the appropriate spaces.
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Ob
(5.33) 0---(y*(1))z (1)=/3,

(5.34)
0S(y*(T), T)z(T)= /(T)

0y

is for all f C([1, T]), fl R+r-, y(T) Rn-(o+r_) uniquely soluble if

(5.35)
OS(y*(T), T)

fulfills (A2), (Ba), (C)
3y

where

(5.36) E(*)O (t) E( *)(t, *) E( *)P(t, *)tD"*et’"*

is the fundamental matrix of the problem

(5.37) t Of(t, y(*))
3y

It also implies that the unique solution fulfills

1
(5.38) [Ixl[t,T+llx’lll,Tconst. T(+)(ln Z)2[[(f, fl, y(T))II

so that F(y*) is invertible and

(5.39) [l(F(y*))-llconst. Z(+)0n T)2(
We have used the fact that (5.19) holds. From the nonlinear stability-consistency
concept in Spijker (1971) we conclude that

(5.40) IIXT-- Y*[k,T+ T-IIX--(Y*)’II,TConst. Z(+)(n T)aIIS(y*(T),
if

(5.41) [IS(y*(T), Z)llPZ-=(+)0n T)-4

holds, where pl is sufficiently small. XT is a solution of FT(X)= 0 which is unique in a
sphere whose center is the restriction of y* to [1, T] and whose radius is smaller than
p2T-(+)e(lnT)-2i with pa sufficiently small. This holds in the
Z-llx’ll,T-norm. From (5.40)we conclude

(5.42) IIXT--y*IIt,TConst. T(+)e (ln T)2[iS(y*(T), Z)ll, Oyn

if (5.35) and (5.41) hold.
Because of (5.10) it is sufficient to require that (A2), (B), (C2) hold for the matrix

OS/0y(y(*), T) instead for OS/Oy(y(T, *, n*), T). Moreover, (5.41) is fulfilled if

S(y(*), T)0 for T sufficiently large(5.43)

and

(5.44) lOS ,, ,)yy(y(tt*), T)(y(T,/z r/ y(/z*)) O(T-a(+)v-), e >0.

In most cases of physical interest y*(T) converges exponentially so that (5.44) is
fulfilled automatically. Therefore, if (A2), (B2), (C2) hold for OS/Oy(y(/x*), T) and if
(5.43) is fulfilled, convergence follows at isolated solutions and the order of conver-
gence can be estimated by (5.42).
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For the case when f is independent of t, Lentini and Keller (1980) have generalized
the projection condition and an example for the construction of an appropriate
asymptotic boundary condition in the other case will be presented in 6.

6. A case study. The problem we analyze is a similarity equation for a combined
formed and free convection flow over a horizontal plate (see Schneider (1979)). The
governing equations are

(6.1) y’=x

x

Y
x

1

xf(x, y), O-<_x<,

(6.2)
1 0 0 0il0 1 0 y(0)=-
0 0 0

(6.3) y e C([0, c]).

In this section x instead of and X instead of T are used. From (6.1) we conclude that

(6.4) y yoo(/z)= (/z, 0, 0, 0)T, /Z
and

(6.5)
od(x, y(g))

Oy
0 0 0 1[000 0 1 0

0Q -k
+-

0 - x 0 -/x/2 0

o...o - o o -t,/2
Ao A(tx)

For this problem a 1, ? 2 hold. We calculate"

(6.6) Jo E-1AoE

0 0 0 0
0 0 0 010 0 -0 0 0 -1/2

E diag (1, 1, 1, -),

(6.7) Y(p,) E-1A (p,)E A (P,).

Markowich (1980b) calculated an asymptotic expression for the fundamental matrix
& (x,/x) of the system

(6.8) if’ =X(Jo + 1jl()) if,
x
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(6.9)

(x,,)=

1 1 O(x-) O(x-)]
O(-1) O(X -1)

2j_
diag (1, x, 1 x 2) iiag (1, 1, e -x2/4-"x/2 x:Z/4-ta’x/2)

P(x, 1 x e
o’&,,

Markowich (1980b) showed that the problem (6.1) has solutions y (., :1, 2, /-/, which
fulfill

(6.10) [lY (x, , 2, ,) yo(,)ll =< const, x2e -x2/4-ox/2,

for x sufficiently large, where the constant depends linearly on s, s. These solutions
are in A. + (yoo(tz)} where

(6.11) A,8={ulu(x)=x-4-U(x), UCb([8, c))}, e>0, 8-->0.

From (6.9) we conclude that

(6.12) 0o [1, 0, 0, 0], o [0, 1, 0, 0].
The simplest choice of S is a linear function so we set

(6.13) $(X)--- [sI(X), s2(X), s3(X), s4(X)].

Condition (Bz) of Theorem 4.1 applied to our problem gives

(6.14) s(X) O(X-2).
We choose sx(X) -= 0. Condition (C2) gives

(6.15) (s2(X)X-1)-1"- O(X2).
Therefore any matrix $(X) of the form

S(X) [0, s2(X), s3(X), s4(X)],(6.16)

where

(6.17) sz(X) const. # 0, s3(X) O(1), s4(X) O(1)

fulfills (A2), (B2), (C2). A natural choice is the following asymptotic boundary condition

(6.18) [0, 1, 0, O]vx(X)= O,

which assures convergence of the order

( X2 *x)/ (In X)2(6.19) ]lVx Y Ilrl,X =< const, x6 exp
4 2

where/x* is the parameter value of the actual solution y(.,/z*, :1", :z*) of (6.1), (6.2),
(6.3) which is assumed to be isolated. Inequality (6.19) holds because

(6.20) [0, 1, O, O]y(/z)=-0 for tz e

and because of (5.41).
Numerical calculations can be found in Schneider (1978).
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Michael Golomb was born in Munich, Germany, on May 3, 1909. His family
soon moved to Wiirzburg, where Michael received most of his schooling. He moved
to Berlin for doctoral research, and was awarded the Ph.D. degree in 1933, under
the supervision of A. Hammerstein and Erhard Schmidt [1]. His dissertation and early
mathematical work were in the field of nonlinear integral and general functional
equations.

There was no possibility of a career under the Nazi regime, and so it was necessary
to leave Germany. Europe and the United States were in a deep economic depression
and had closed their borders to anyone seeking employment. Michael moved to
Yugoslavia where he had been offered an assistantship at the University of Belgrade,
but the state authorities intervened and annulled the offer. He remained there during
the next several years, living under constant threat of deportation. Michael gave some
lectures at the University of Zagreb and other institutions, but had no chance for
employment (academic or otherwise). He had all but given up hope of a career in
mathematics when in 1939 he received an immigration visa from the United States;
by this time he was a stateless person. Most of Michael’s closest family perished during
the last year of World War II in the Nazi extermination camps.

Shortly before leaving Europe, he married Dagmar Raid, a mathematics student
at the University of Zagreb. They have two children, Miriam and Deborah.

Upon arrival in the United States, it was necessary to find a position, and through
the help of Hermann Weyl he obtained an appointment as research fellow in the
Electrical Engineering School of Cornell and one year later an additional instructorship
in the Mathematics Department. From 1942 until his retirement in 1975 Michael was
on the faculty of Purdue University, although he spent numerous periods away during
World War II (war-related research) and on academic leaves. His activities during
these leaves have influenced many mathematicians. Lectures at the Argonne National
Laboratory were collected in the influential publication Lectures on Theory ofApproxi-
marion [24], and the effect of a similar series delivered in Brau (France) is affection-
ately confirmed in the dedication and preface to Laurent’s Approximation et optimisa-
tion [La]. Michael was a Member-at-Large of the Council of the American Mathemati-
cal Society (1968-1971) and has been a Fellow of the American Association for the
Advancement of Science for over thirty years. He is at present Member-at-Large of
the Mathematics Section Committee of the AAAS.

Michael has been a respected and admired teacher and colleague. His wide
knowledge and experience in mathematics and applications were recognized by Purdue
University, which gave him a joint appointment in the School of Engineering. The
strengthening of the Purdue Mathematics Department in the 1950’s and 1960’s owes
much to Michael’s experience, insight and counsel. Michael also has coached the
Purdue team in the Putnam competition for several years. The Mathematics Depart-
ment showed its appreciation for his contribution to the teaching program by instituting
the Michael Golomb Award in 1975. This award is given annually to the undergraduate
with the best performance in this competition. Michael has directed several doctoral
dissertations. The second author of this biographical note is among this group, and
remains grateful for Michael’s guidance.

Michael Golomb’s research interests have included nonlinear analysis, ordinary
differential equations, numerical analysis, approximation theory and extremal prob-
lems in analysis; these contributions are discussed in the next three sections. Lettered
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references refer to the References which immediately follow the text, while numbered
citations are listed in Michael Golomb’s professional bibliography, which immediately
follows the References. The concluding entry is a list of his doctoral students.

I. Nonlinear Analysis and Dynamical Systems

These topics presently correspond to the properties of mappings in infinite
dimensional spaces (or manifolds) and to the study of flows on manifolds, respectively.
There is a tendency today (cf. L. Nirenberg IN]) to categorize nonlinear methods via
global topological methods, variational methods and local perturbation study.
Gradient mappings, monotone operators (for generalizations, cf. H. Brezis [Br]) and
their perturbations play a decisive role in much of this work.

Golomb’s early work touches on all of these topics. Item [1 is remarkably modern
in outlook, though it is an early study of problems in nonlinear functional equations,
mostly integral equations, especially of Hammerstein type. Existence and uniqueness
of solutions are proved by successive approximation, fixed point theorems and direct
methods of the variational calculus. Several concepts that proved to be fundamental
in the later development of functional analysis were introduced in this paper. These
include: gradient mappings in Hilbert space, later studied with R. A. Tapia in [40]
as "metric gradient" in normed linear spaces; also, the splitting K H*H of a linear
integral operator, involving what is known in the Soviet literature as the Golomb-
Hammerstein functional; and, finally, strongly monotone mappings, though the name
is not used. Both G. J. Minty [M] and F. E. Browder and C. P. Gupta [BG] have
recognized [1] as the historical antecedent of monotonicity in nonlinear functional
analysis. Item [2] is a sequel to [1] with essentially the same methods applied to some
more general equations and systems. Many of the problems of these early papers and
the methods developed there were later extended and systematized by Soviet
mathematicians, especially M. Vainberg, N. Nazarov, M. Krasnosel’skii and Ya.
Rutickii, and by American mathematicians such as C. L. Dolph, G. J. Minty, F. E.
Browder, C. P. Gupta, I. Kolodner, S. Weiss et al.

Items [18], [21] and [23] deal with the existence of periodic and almost periodic
solutions of ordinary linear or nonlinear differential equations and systems, and with
the stability of such solutions. Constructive existence proofs, based on novel kinds of
expansions, are provided; new expansions are discovered even for the solutions of
the classical equations of Mathieu and Hill. Also, some stability results, related to
those of L. Cesari and J. Hale, are obtained. Recent work by these authors is described
in [CKW].

Golomb’s publications in this area ended with [2], but several of his students
were introduced to it under Michael’s direction.

II. Numerical Analysis and Spline Functions

Golomb’s major contribution to Numerical Analysis is the joint paper [19] with
H. F. Weinberger Optimal Approximation and Error Bounds. It is a basic paper on
what is called "optimal recovery" these days; see [MR]. It deals with the basic
computational task of evaluating or estimating a linear functional/x on some function
g from information about g.This information consists of the numbers Ag,...,
for some known linear functionals A x, , A, and, in addition, some bound on some
seminorm ug of g. The authors rightly take issue with the traditional approach in
which one is content to show that the error in some rule for/xg based on
is O(n-’ug); the authors’ characterization of this 0 as the "fig leaf [which] covers
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the offending member" cannot be improved upon. The authors propose to find the
best estimate for g based on the available information about g. They show how to
provide this best estimate in case the seminorm u derives from a quadratic form. In
that case, the best estimate is of the form IzPg, with Pg a "spline interpolant" to g.

The relationship of [19] to spline theory is a curious one. It serves to illustrate
the importance of using the "right" terminology. For, while [19] contains in consider-
able generality various aspects of the variational approach to splines in a Hilbert space
setting, the word "spline" never occurs. As a consequence, others are now usually
credited with certain basic spline results which first appeared in [19].

It pays to be a bit more explicit, also in order to prepare for the discussion of
other papers. The abstract variational approach to splines (as first proposed in a
Hilbert space setting by Atteia in [A]) produces splines as the solution to the following
problem: A collection A of continuous linear functionals on some linear space X is
given. Since the problem will only involve

A+/- := {x X: Ax 0 for all A A},

we might as well assume that A is a closed linear subspace. Further, a bounded linear
map T on X to some normed linear space Y is given. For given g X, determine, if
possible, an element g* at which the map

g + A+/-- R+: y

takes on its minimum. Such a minimizer g* is called a (T, A)-spline interpolant to g.
The word "interpolant" is appropriate since g* agrees with g on A. Now [19] deals
with the special case" X Y is a Hilbert space and T 1. In this setting, as can be
inferred from [19], the map g,--g* is just the orthoprojector PA onto A considered
as a subspace of X. Further--and this constitutes the main result of [19]mif we only
know g on A together with the fact that Ilgll-<-r, then, for any linear functional

Izg lxeAgl <- (11 = -IIzeAII=) 1/2(r2 -IIegll=)
is the sharpest possible estimate for/xg. It is instructive to relate this to the bound

Ig tzPgl <= dist (/z, ran P’)II PII dist (g, ran P)

obtainable for any bounded linear projector P on any normed linear space. Inciden-
tally, Sard’s treatment of the problem [Sa2] only provides the bound

Ig tZPAgl <= dist (z, A)r.

It should be stressed that PAg is constructible entirely in terms of the given data,
viz., the values of g on A. This requires, though, the imbedding of A in X, i.e., the
construction of the representer for any A A. Unless A is already introduced into the
problem in terms of its representers, this task can, in general, be accomplished only
with the aid of a reproducing kernel, a fact rightly stressed in [19]. The work of [19]
was continued in [22].

Several of Golomb’s later papers take up again the variational approach to splines,
in the form of an extension problem" The function g is only known on A (as a linear
function, of course) and one wonders whether there is some function G X for which

GIA g. Formulated this way, one recognizes this, of course, as a problem which can
be solved with the aid of the Hahn-Banach theorem (as is the case with the problem
posed in [19]). It should be clear, though, that there will be additional difficulties in
case X is not reflexive. These extension problems are usually formulated more
concretely" X is a space of functions on some domain and A is spanned by the linear
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functionals g->g(a) with a taken from a closed set A. In this form, such extension
theorems go back at least to Hassler Whitney who in [W] established a simple necessary
and sufficient condition for a function on some closed set A in R to be the restriction
to A of some C(’(R) function.

Golomb’s interest in such problems seems to have been sparked by Schoenberg.
According to [30], I. J. Schoenberg posed this extension problem for the function
space X Hm= L2" of m-fold integrals of functions in L2(R). According to [32],
this problem is attacked in [31] (a paper which only exists by implication, i.e., as a
reference in [30], [32], [37] and [39] with slightly differing titles) by considering a
minimal H"-extension of g, i.e., an extension for which I IG(’I2 is as small as possible.
This is, of course, entirely in the spirit of splines and the extensions so obtainable
make up the class S" (A) of Hm-splines with knots in A, i.e., the class of functions in
/-/" which, on any open interval in R\A, agree with some polynomial of degree <2m
and which are in C:m-: on every open interval in R\A’. Here, A’ is the set of limit
points of A. Further (now quoting [30] for some of the details), an extension (and
therefore such a minimal extension) is shown in [31] to exist if and only if the sequence
(sn) is H -bounded, with sn the natural 2m-order spline interpolant to g at the points
xl,’ , xn and (xl, x:,. .) a dense sequence in A. To this, [32] adds a more detailed
analysis" The construction of a minimal extension for g f]A for g H is shown to
be the orthogonal projection of f onto S’(A), thus sm(a)+/-={fGHm: flA 0}. It is
also shown that the extension problem decomposes into essentially disjoint problems,
one for each of the countably many disjoint open intervals whose union makes up
R\A’. Special attention is therefore paid to the special case when A consists of the
entries of an infinite strictly increasing sequence.

In [39], paper [32] is extended in the following directions: H is replaced by
Hm’t L,") for some 1 < p <. Points in A may be multiple, i.e., on some points of
A, the first so many derivatives of g may be prescribed along with the function value.
In other words, a "Taylor field" is given on A. In the case of particular interest that
A consists of the entries of an infinite nondecreasing sequence (xi) with finite global
mesh ratio sup/,/Axi/Axi, the necessary and sufficient condition for H’’P-extendability
patterned after [31] and [32] is replaced by the more concise one that. (xi+ -xi)l[xi, Xi+m]g]p < CX3

with [xi, Xi+m]g the mth divided difference of g at Xi, Xi+m. Subsequent work
in [B] has shown this to be correct for arbitrary sequences (xi).

Golomb also contributed substantially to the constructive approach to splines. In
[33], the reader has a chance to share with the author the delight that comes with the
discovery that the polynomial spline interpolant on a uniform mesh to the complex
exponential function shares so many properties with that function. The circulant
character of the matrices involved permits explicit calculation of error expansions for
periodic spline interpolation on uniform meshes and Golomb makes full use of that.
These explicit error expansions are put to good use in [34] (as corrected by [44])
where the effect of jump discontinuities in some derivative of the function to be
interpolated is gauged so precisely that one could use the information to obtain good
estimates of the location and size of the discontinuity from the behavior of the
interpolant.

An alternative approach to Golomb’s results in [33] is provided by Schoenberg’s
elegant analysis of cardinal spline interpolation, detailed in [S].

Finally, in [46] and [47], Golomb successfully tackles, jointly in part with J.
Jerome, the difficult analysis of true splines, i.e., of curves modelling a flexible rod.



PROFESSIONAL BIOGRAPHY: MICHAEL GOLOMB xi

III. Approximation Theory and Optimization

Modern approximation theory proceeds by a reduction of complexity often
involving well-defined extremal characterizations and the associated measures of
deviation. Representative surveys of the field may be found in M. Golomb [24],
G. G. Lorentz [Lo], A. Sard [Sal] and L. L. Schumaker [Sc]. One of the central issues
in the field is that of understanding, preferably by means of algorithmic procedures,
the complexity of functions of several variables.

Item [20] is a survey of approximations, optimal in some metric, of functions of
several variables by finite aggregates of functions of fewer variables of prescribed
structure. Except for a few classical results due to E. Schmidt, the results presented
there are due to Golomb. One of them (in Section 7) is related to his early work: If
the function fL:Z(121 xf.x.., xIIn) is to be approximated by a product ul’"u,

with uiL:Z(Ili)(i= 1, 2,..., n)so that the squared distance al [a, If-u1"’" u,l2
is minimized, the ui are solutions of the nonlinear eigenvalue problem

II"l "’’IIl Ill "’’II fHl’ti’tlli (i=l,...,n)
ji

belonging to largest possible "eigenvalue" A. Solutions can be found by the Newton-
Kantorovich method. An appraisal of this work and its significance can be found in
the detailed review by E. Stiefel [St].

In [28], the distances from an ellipsoid determined by a nonnegative definite
self-adjoint operator R to manifolds determined by the associated spectral projection
family were computed, and shown to satisfy an optimality criterion. It is straightforward
to use these results to characterize the n-dimensional diameters of the ellipsoids in
terms of reciprocal square roots o positive eigenvalues bounded away from the
infimum of the essential spectrum of R. In the case that R is an elliptic operator on
a smoothly bounded Euclidean domain, these results can be combined with known
results for asymptotic eigenvalue estimates to yield the asymptotic distribution of the
diameters. This project was the basis of the second author’s dissertation, directed by
Golomb.

Another major task of approximation theory is that of data fitting subject to an
optimality criterion, e.g., smoothest point or spectral interpolation. We have already
discussed this to a certain extent in the preceding section. We briefly mention here
item [36] concerning the estimation of uniform norms of periodic functions, with
certain zero Fourier coefficients, in terms of higher order derivatives. Golomb’s student
P. W. Smith in his dissertation [Sm] did additional work in uniform norm optimization,
with auxiliary studies in Lp, which gave several insights on earlier work of J. Favard
[F] and G. Glaeser [G]. A substantial amount of related activity followed the appear-
ance of [Sm] (cf. especially the seminal paper of S. Karlin [K]).

Golomb’s contributions to the area of approximation and optimization have been
both synthetic and original. As a final example of his unifying observations, we cite
his identification in [30] of the spline as a distribution of finite order, hence a classical
solution of the standard direct Hilbert space minimization problem, whose prior
existence is established by direct methods of the calculus of variations. This seemingly
innocuous observation served to distinguish questions of existence and uniqueness
and served to embed a part of the spline theory firmly in the calculus of variations,
thus effectively giving substance and order to the various generalized spline theories
developed in the 1960’s. An application of this perspective is furnished in [37].

CARL DE BOOR
JOSEPH W. JEROME
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RAYLEIGH-SCHRODINGER PERTURBATION OF SEMIGROUPS*
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Abstract. A second order differential operator with abstract operator coefficients is considered in the
spaces LP(O, 1), _<p< c, where the operator coefficient and the boundary conditions are analytic functions
of a finite number of complex parameters. Asymptotic expressions for the eigenvalues and eigenfunctions are
obtained, which are uniform over all eigenvalues. These are applied to develop a structure theory for the
operators and the semigroups they generate. An application to the problem of determining the extent to
which the semigroup approximates the identity operator is given.

1. introduction. Let X denote any one of the Banach spaces LP(0, 1), _<p< .
Let e=(e0,.. ",er) and a=(ao, a) be vectors of complex constants. Let V= V(e):X--, X
be a bounded linear operator, defined for e in a neighborhood of 0 in complex
(r+ 1)-space such that

(1,1) v()ll_<gl
and assume that V is analytic as a function of each ej., O<__j<_r. Also, for suitable
functions u(x ), 0 -< x < 1, let

(1.1..1) Uu- Uj.(a)u-ut(j)+asu’-’(j),
where j 0, 1, lj. 0, and aj-- 0 if lj-- 0. We consider the second order ordinary
differential operator defined by

(1.2) Hu=n( e, a)u= u2) + V( e)u

with domain of definition

(1.3) (a)-(ueC[O, 1]’u)eAC[O, 1],u2)eS, U(a)u-0,j-0, }.
In the special case that e=0, a=0, the operator H is a simple Sturm-Liouville

operator whose eigenvalues and eigenfunctions can be computed explicitly, along with
the semigroup thereby generated. Our purpose in this paper is to obtain asymptotic
estimates for the eigenvalues k=,(e,a) and eigenfunctions u Uk(X; e,a) of H(e,a),
and to use these to obtain structural relationships between the operators H and
H0-- H(0, 0) as well as the corresponding semigroups U(t) U(t; e, a) and U0(t)
U(t; 0, 0). An indication of the structural results which are possible is given in [3] for
r 0, e 1, a 0, li 0 and V of the special form Vf(x) q(x)f(x), for q L(0, 1).

Rayleigh-Schri3dinger perturbation theory arises in the context of two Hamilto-
nian operators H,Ho and a potential V, related by H--Ho+ eV, where e is a small,
nonnegative constant and the operators are acting on a Hilbert space. If ,0 is an
isolated eigenvalue of H0, along with normalized eigenvector u, then it is assumed that
the perturbation eV introduces perturbations in the eigenvalue and eigenvector which
are analytic in e. Then one obtains formulae

(1.4) ;k(e) ,o + e( Vu, u) + "corrections to order e ",

(1.5) u(e) u+ eu’ +"’corrections to order e2 ",

Received by the editors November 4, 1980, and in revised form, April 23, 1981.
t Department of Mathematics, University of Illinois, Urbana, Illinois 61801.

515



5].6 HAROLD E. BENZINGER

where u can be expressed in terms of V and objects related to H0. A derivation of (1.4),
(1.5) can be found in [5, pp. 686-689]. Conditions permitting rigorous justification are
given in [8, pp. 10-18].

The Rayleigh-Schr6dinger method is useful for determining the influence of V on
a given energy level and stationary state. However, no information is provided on how
the "corrections to order e2’’ vary from eigenvalue to eigenvalue. Consequently, the
overall influence of the perturbation on the structure of H, as well as the time evolution
of the system, cannot be determined from this method. For the differential operators
considered in this paper, it is possible to estimate the error terms so as to obtain a
structural relationship between H and H0 which can be used to express the semigroup
(or unitary group) generated by H in terms of the similar object generated by H0. This
can be done without resorting to time-ordered integrals as in time-dependent perturba-
tion theory. See [5, pp. 722-728] and [7, pp. 282-292]. Additionally, the error estimates
and strtictural properties incorporate the dependence of the domain on the vectoi
parameter a.

Sections 2 and 3 contain asymptotic estimates for solutions of the differential
equation

u + V(e)u-
as well as for the eigenvalues and eigenfunctions of H. These generalize results obtained
in the classical case that V is determined by a bounded function: Vf= qf. In 4 it is
shown that the eigenfunctions form a basis for LP(0, 1), <p<. In 4 and 5, with
additional assumptions on V, it is shown that the eigenfunctions of H form a basis
equivalent to the basis of eigenfunctions of H0, and a structural relationship between H
and H0 is obtained. In the case that X=LZ(0, 1), the additional assumptions are not
needed. In [}6 a structural relationship between the semigroups generated by H and H0
is obtained, and in 7 this is applied to the problem of estimating the extent to which
the semigroup approximates the identity operator for small values of time.

2. Solutions of the differential equation. Our purpose is to obtain asymptotic
estimates for a fundamental set of solutions of the differential equation,

(2.1) u<2)+ V(e)u=-#2u,
where p is a complex parameter. In the "classical" case that (Vf)(x) q(x)f(x) for
some qL(O, 1), the asymptotic estimates are obtained for a half-plane Imp>-K
(some K>0). We shall see that for general V asymptotic estimates are obtained only in
a strip IIm <K. Because of the theorem given below, this is adequate. If --t is an
eigenvalue of a linear operator, we shall refer to t as an eigenvalue also, relying on the
context to avoid confusion. A linear operator is discrete if it has compact resolvent, and
consequently has a discrete spectrum consisting only of eigenvalues and the origin.

THEOREM 2.2. Let i, , , K, be preassigned positive constants, with lel < lal< a.
Then H(e, a) is a discrete operator whose eigenvalues p(e,a) are ultimately in the strip
S: IIm0l<K.

Proof. H(O,a) is a classical Sturm-Liouville operator with compact resolvent
represented by a Green function:

R(X; O,a)f:-f)G(x,t,p; O,a)f(t)dt.

Since the eigenvalues of H(0,a) are asymptotically equal to those of H(0, 0), for
sufficiently large and IP-P(0,0)I>-6, P is in the resolvent set of H(0,a). Then there
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exists a constant K(8)>0 such that

[6, pp. 73-74]. Consequently,

[G(x p;O,)l<K(6-----)

(2.3) IIR(X" 0 )11 <g()-I1"
Since H(e, a) H(0, a)+ V(e), we have

(2.3’) R(X;e,a)-[I-R(?t;O,a)V(e)]-’R(X;O,a),
provided 2 is in the resolvent set of H(O,a) and IIR(X;O,a)V(e)I[<I. Using (1.1) and
(2.3), it suffices to have lO-Ok(0,0)[_>6 and IoI>KK(). Thus R()k; e,a) is a compact
operator, and the eigenvalues of H(e, a) ultimately lie in the disks 1O-0k(0, 0)l <6. In
particular, since 6>0 was arbitrary, the eigenvalues ultimately lie in any preassigned
strip IIm 01 <K.

To find a fundamental set of solutions to (2.1), we proceed as in the classical case
and convert (2.1) into a first order system

(’)-
-o- v() 0 ’ - ’2

being careful to treat V as an operator rather than as a scalar. Note that the success of
this procedure implies that the notion of a fundamental set is in fact valid for these
operator differential equations.

For p 4: 0, let

T( O ) ip -ip T-’( p ) -’tp ip -1

T(O) generates the similarity transform which diagonalizes [_o ]. Introducing a new
dependent variable y through q,= T(p)y, the differential equation for y is

(2.4) Y(l)- [ iPf + --p AoV] Y,

where

-[0 -1

Let

eipxe(x,p)- o
If the matrix integral equation

1 fXe(x t, )aoV(r(t ))) )=-._,,.-e.,.+. ,, dt

has an invertible solution Y, then Y is a fundamental matrix for (2.4). We make the
further substitution Y(x, p, e) Z(x, p, e)E(x, p ), obtaining for Z the integral equation

fXe(x t, )aoV(Z(t e)E(t, ))E-’(x, )dt.(2.5) Z(x,o,e)-I+ O ,P, O P
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It is this equation which we actually solve. Let o = i, 02=-i, and let Pkj denote the
2 2 matrix with in the k,j position and zeros elsewhere. Then

2

E
k-I

and (2.5) becomes
2 2 2 x1 fxZ(x,p,e)-I+__

k=l j=l l=1 *S

Since Pu is a scalar matrix, it can be removed from the parentheses. UsingPu
we have

2 2 x

For any matrix M(t) with components in L(0, 1), let

Then the linear map M A0[e-V(eM(t))] has norm bounded by

2eIIml V 2elIlgle
where we have used (1.1). Using K as a generic constant, we see that, in any strip

ao[e-’tV(e’tM(t))] gll M II,

Let .(z)=e-tV(eytZ). Then with the choice

XII:XI2:0 X21X22 1
we have

mz),

where H is the linear operator defined by

 oW,(Z)),
H(Z)--

fxl _2it(x_te (AoWI(Z ))21dt
foXe2i(x t)( AoW2(Z)) 12dt

fxl ( AoW2( Z ))22dl

For Ilmo[<K, we have Ilnllgle[, uniformly in p. For IP[ sufficiently large, TH is a
contraction mapping on matrix Lp, uniformly in e, [el_<, as well as a contraction
mapping of LP into L.

THEOREM 2.6. For I1_<, IImpl_<g, Ipl sufficiently large, (2.5) has an absolutely
continuous, nonsingular solution such that

(2.7) H(i)+O((le_lO)2)Z(x,P,e)-l+ "tp
uniformly in x, O<_x<_ 1, and e, as llol o. Additionally, Z is an analytic function
of e forfixed x, .
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Proof. Since aH is a contraction of Lp into L, the successive approximations
Zo=I,

H(Zn )Zn+ I+ lp

are uniformly convergent to a continuous function Z(x, O, e), which is a solution of (2.5)
and therefore absolutely continuous. Relation (2.7) is an immediate consequence of

Z(x,p,e)- E 2i91=0

Since the successive approximations are analytic and the convergence is uniform, Z is
analytic in e.

COROLLARY 2.8. For e, p as above, (2.1) has a fundamental matrix

(x,o,e)-T(o) I+t’tpH(I)+O((lel/O)2 E(x,o).

More precise information can be obtained by evaluating H(I). Let e(t,O,e)=
e-o/V(e)(eOt). Then

H(I)---

THEOREM 2.9. For e, p as above, (2.1) has a fundamental matrix (x, p, e) of the form

1---lp (hll +h21)+b eix

(/’P’)--
ip 1-tp (hll-h21l+b eix

1-- -p (h22+hl2)+b e-wx

-ip 1- lp (h22-hl2)+b e -ix

where b b(x, p, e) is generic notation for a function which is O(([el/p)2).
COROLLARY 2.10. For e,p as above, (2.1) has two linearly independent solutions

uk(x,p,e), k= 1,2, which, along with their derivatives u(kJ),j= 0, 1, are analytic in p,e and
are expressed as

)J[1-- Hkj(x, ,e)u(kJ)( x p e) ( pWk p, e) + b( x, p e’*x,

where Hkj are linear combinations of the entries in the matrix H(I).
Proof. The functions u(J) are the entries in the matrix (x,p,e). Note that

H,(x, p, e)[ <_K[e[ uniformly in x, p.

3. Eigenvalues and eigentunetions ot H(e,a). Using the fundamental set u(x, p, e),
k 1,2 as above, let

(3.1) u(x,p,e,a)= Uo(u2)u Uo(u,)u2.
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This solution of (2.1) satisfies the boundary condition at x 0. Thus the eigenvalues are
those values of p= p(e, a) satisfying

(3.2) U(u) =0,

and the eigenfunctions are u(x, Pk, e, a).
To lighten the notation, in (1.1.1) let l=to, m= 11. Also let/=%./lal (/3=0 if

lal-O).
LMM 3.3. For k 1,2,

[ nkl(O, ,e)+ lal ,,a)],Uo(Uk)----(pok)’ 1--p p -----o/C(p e
P60k

U,(Uk)--(pk)me’k 1--’tpHkm(1, p,e)+ POk, +C(p,e, ol)

where C(p,e,a) is generic notation for a function which is o((lel/p)z)+o((lal/.p)2),
uniformly in p in the strip, I1-<, I,1-<,

Proof. Consider U0. Using (1.1.1) and the estimates in (2.10), we have

{ Hk,(0, ,e)+b( ,e)]Uo(u)-()’ - p p

Now

Thus

pdk "lp Hkl- l(O’ P’ e) "l" b( p’ e)

(ololl [Onk,_

1 )+ I1 a + )].Uo(u):(,%) - H,(0,p, ---o C( p,

The proof for U is similar.
Let ----l+ rn (mod2). Using (3.3) a direct computation shows that

Ul( tt ) (-1)m ( ip ) t+me-iP

X 1-tp[Hll(O,p,e)+H2m(1,O,e)]+ [/0--t1] + C(p, e, ol)

e 1- [H,(O,0,e)+H(1,O,e)]- [Bo-B]+C(o,e,)

Thus the zeros of U(u) are characterized by

e:,O_,,,_

With lel and lal bounded, we can assume 1ol is sufficiently large, so that we can use the
geometric series. Then

(3.4) e
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where

-A(p, e) : H,,(O, p, e) + H2m(1, p, e) Hz,(O, p, e) H,m(1 p, e),
-&-.

We introduce the further notation

( kr+ -pi=p(0,0)

p=p(,-),

c(,.)=c(p,,.).

THEOREM 3.5. The zeros Ok of (3.4) satis
1 II--()-+c(,).

4Pk Pk

Proof. Agn using the assumption that lpl is suffidently large, we can use the
power series expansion of the gafithm on the right of (3.4) to obta

h( )+ +c(,,.).(.6) 2ip-i=2ki+ p,,
ip,

It suffices then to show that Pk can be replaced by p on the fit, with errors wch
can be incoorated in C. From (.8) we have

Thus,

Since the analytic functions nkj(X,p,e) are analytic with respect to p, uniformly with
respect to x,e, in the strip Ilmpl_<K, all derivatives with respect to p are uniformly
bounded, perhaps in a slightly smaller strip. Since A(p,e) is a linear combination of the
Hki’S, we see that

and
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The expressions for the eigenvalues, as well as for the eigenfunctions, can be made
more enlightening by introducing the notation

(3.8) Tt(z)-v/ e’-(-1)te-’Z
2i(-i)’

It is then a matter of direct computation to verify that

(3.9)

To obtain expressions for the eigenfunctions, we use (3.1) along with (2.10) and
(3.3). Performing these computations, multiplying by the inessential factor ()t, and
thereby redefining u(x, 0, e, a), we have

(3.10)

u(x,p,e,a)-[ei-(-1)’e-i]

2ip ([ H21 (0’ p’ e) d- Hlo(x,/9, e)] ewx

-(-1)t[H,z(O,p,e) + H2o(X,p,e)] e -ix}
flo[ eix + (-1) te + C(xip

Again redefining u, after multiplying (3.10) by /2i(-i)z, we have

I1/0(3.11) u(x’p’e’t)-Tt(px)+- Yt(x’p’e)+ to Tt+’(Px)+C(x’p’e’t)"

Performing another lengthy computation, we have

(3.12)
Y,( o, ,( )

-TI(pX) foXTt+I(Pt)V(Tt(ps)) dt-4c-iTt(pX) foleiotV(e-ios ) dr.

The boundary value problem adjoint to (1.2), (1.3), on the space X*, is obtained by
replacing V(e) with (V(e))* and as. with KS.. Note that the parameters l,m are un-
changed. Thus, corresponding to (3.11), a solution of

(3.13) v2) + ( V(e))*v -o2v,
satisfying the adjoint boundary condition at x--0, is

(3.14) v(x,o,e,a)-Tt(ox)+ l__y+(x o,e)+ T+(x)+C(x o e a)

where Y+ is obtained from (3.12) by replacing V(e) with (V(e))*.
Let Ek(x, e, et) denote any function which is

uniformly in x, e, et.
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THEOREM 3.15. A normalized biorthogonal system of eigenfunctions for H and H* is
given by

uh(x e,a) T( oox)-[(x,)r,(oOx)+(x,,)r,+,(oOx)]+e(x,,),
vh(x e,) ( o 0x)]+ )o,x)-[C,(x,)(ox)+D,(x,,)+,( o e,(x,,

where

fo _ioOks (Oxt)V(tl(OOks))dtAh(x,e)--i e’tV(e )dr- Tt+

+- fo (1-t)Tt+’(Ot)[V(Tt(os))+ V*(Tt(OkS))]dt’

Bh(X’e’a)-- Tt(ot)V(Tt(os))dt- 5 Tt(oot)V(T( OkS))dt+lal(floO fix),

Ch(x,e,a)_ f’eioOtV,(e-io,)d +,(OOkt)V,(Tt( Ohs))dto

+ f0 0

z(x,,)- r,(o,)v*(r,(o))d, 5 (o,)v*(( oo)) d+ ll (o-gx )

Pro@ Ngenfunctions for H are obtained from (3.11) with O=Ok. We want to
replace 0k with 0. Using the identity

(z+ u) (z)cosu++(z)sin u,

we have

Tl(OkX) rl(OOkx) [ xAk(e) OkX)+ a)
40

+
Oh

+,( o Ch(x,e,

For the remaining terms on the right of (3.11), the presence of the factor means that
directly replacing Oh with 0 introduces errors which can be incoorated into Ck.
Similar considerations hold for (3.14). Using (3.9) for A(e), we have

u(x,p,,)-(Ox)

[ ’eitV( -is
x

0
W e )dt- +,(pt)V((
Pk

(3.16) + (Ot)V(( o

o ]pgs))dt+ll(flo fix)+(px)

+G(,,),
along with a similar expression for v(x, }k, e, ). Since u, v come from adjoint problems,
we have

’u(x,o,,)e(x,,,)dx-O, j.
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It remains to scale these functions so that (u, v)= if k=j. We note that the leading
terms Tt(Pkx) are already normalized:

pkX )’dx 1.

Using (3.16) and the corresponding expression for v, we have

foU(X, O, ,)(x, , ) dx

fo’fox OkS))+V*(Tt(Pks))ldtdx+Ek

Thus, multiplying u by
1+ Sb-_o fo (1--t)TI+I(Pkt)[V(TI(PkS)) -+" V*(Tt(pksl)]dt+Ek
20

and multiplying v by the conjugate, we have u, v as given in the statement of the
theorem.

In carrying out this computation, one must se the relation

fo fo -ipktV* ( -i#ksleitV(e-iS)dt- e e )dt-O.

This holds since the left side is

( V(e-O),e-ikt) (e-iOOkt, V* (e
which is zero by the property of V*.

4. Basis properties of the eigenfunctions.
THEOREM 4.1. The eigenfunctions of H(e,a) are complete in LP(O, 1), 1 _<p<
Proof. We shall show that the hypotheses of [2, Theorem 1.1] are satisfied. By

Theorem 2.2, H-H(e, a) is a discrete operator. Assume is sufficiently large, and p is
bounded away from the eigenvalues of the classical operator H(0, et). Then from (2.3)
and (2.3.1) we see that R(X; e,a)ll also satisfies (2.3). Thus [2, Theorem 1.1] applies.

Let H=H(0,a) and let {tk}, {tk} denote a normalized system of eigenfunctions
for and *. The partial sum operators for H and are

N N

( l, (I,

LnM 4.2. In each space LP(0, 1), <p< o,

for some M independent ofN.
Proof. Let {Cu} be a family of circles centered at the origin of the -plane,

enclosing the first N eigenvalues of H and , and uniformly bounded away from both
sets of eigenvalues. Then

(N--N)f --il fcN[R(X’e’a)-R("O’a)]
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Using (2.3.1) gives

provided II R(?; 0,a)V(e)l[ < 1. From (1.1) and (2.3), we can have II R(,; 0,a)V(e)ll < 1/2
for N sufficiently large, as well as

k
[[R(X;O,alV()[[<-X on Cu.

Thus we have

Thus

II($u-SN)f]I<-MI] fll.
TnEOR 4.3. The eigenfunctions ofHform a Schauder basis for LP(O, 1), 1 <p<.
Proof. A complete eigenfunction system is a basis if and only if its partial sum

operators are uniformly bounded. Since the eigenfunctions of the classical operator g
are a basis for <p< [1], there is a uniform bound for the family (gu), 1 <p<.
From Lemma 4.2, there is a uniform bound for {u), 1 <p<.

DEFINITION 4.4. Two bases (Uk) and (u) of a Banach space X are equivalent if
there is a bicontinuous linear map B"XXsuch that

Bu-u.
If (Uk), {U) are equivalent, then the inflate series

(4.5) 2 (:,v)u=f+Lf=f+ 2 (:,v)(u-u)-B:,

0 v=+ 2 v,- 0(4.6) (f,v)u uk=B-lf

converge and define bounded linear operators on X, where {v}, {v} are the dual
bases. Conversely, if the series in (4.5), (4.6) converge for all f in X, they represent
closed and therefore bounded linear operators wNch are necessarily inverses of each
other.

0Let {u,} denote the eigenfunctions of H(e,a), and {u} the eigenfunctions of
H(0, 0), with {v}, {u} for the adjoint problems.

Assumption 4.7. There ests a constant M>0 such that, for all f in L(0, 1),
[V*f(x)lMII f ll.

Remark 4.8. Assumption 4.7 is satisfied for operators of the form

V(e)f=q(x,e)f(x),
where q(., e) is in L and is analytic in e, q(., 0)= 0, and for

V(e)f= K(x, t, e)f(t) dt,

where K is bounded uniformly in all variables and analytic in e.
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THEOREM 4.9. The eigenfunction systems (Uk), (U) are equivalent bases in X--
LP(O, 1) provided either

(i) <p< and V*k satisfies (4.7) or
(ii) p-- 2 and V is just bounded on L2.
Proof. Using (3.15) in (4.5), we consider the series

Bk(X e a)(f,v)Tt+,( oX (,)(f,vT)u()+ X )
Pk Pk

+ E e(,, )(/,).
We show that each of these terms represents a bounded linear operator on X. Since
Ek- O(k-2), this is the case for the third term above. Consider the second term. If
<p_<2, then {(f,v)) is in q, pq--p+ q, by the Hausdorff-Young inequality, and

l/q

<-gll f llp.

pO pSince { 1/ k) is in for any p, <p< oo, we see that the second term converges
absolutely and uniformly to a bounded function, depending continuously on f. If
2<p< oo, thenfin Lp impliesfis in L2, so {(f,v)) is in 12 and

(ot )1/2K II f II :zK f lip.

Considerations for the term involving Ak(X,e) are similar. Thus, B is a bounded linear
operator.

Next we consider (4.6). Using (3.15), we obtain

__o (S.C,(x.)vT)uO+ __:_c(/.,<(x....),+l( opxl)uO
Pk Pk

+ E (l,(,,))u.

Again, the series involving Ek presents no difficulties. Consider the expression for Dk in
the statement of Theorem 3.15. Let

Then

(4.10)
We see that

x,(,)- fo",(t)v,(,( oPkS)) dr,

Dk(x,e a)-- Xk(x,e) + XYk( e, a) +

o

PkX))uOkE (f, (xr,<+ I-IJo)r,+,( o

k
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represents a bounded linear operator on X, using the same arguments as in the
consideration of B. Next we consider

(4 11) _o ( f,X(x,e)T+( o

Pk

Note that

Using Assumption 4.7 and the.uniform bound on (pt)V*((ps)), we have

Ox)dxdt.
k Ok

Let

Then

0, Ox<t,f,(x)- f(x), t<x< 1.

For <p-< 2, we again use the Hausdorff-Young inequality

_<K f2l(ft T/+,(Px)) 1 -<K ftllp ,,
and proceed as before. For 2<p< m, je as in L2 and

)1/2 _<K f, 2<K f 2<K f lip.

This completes the proof of part (i) of the theorem.
For p-2 we can show that (4.11) represents a bounded linear operator without

using Assumption 4.7. We have

fo’ t ( x ) T,+ ( ) 2dt]1/2
Since V" Z2--+ L2 and all functions T are uniformly bounded, there is a constant M>0
such that

Tl(Pt) V*(Tl(ps))l2 dt<M.
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Thus

1-k ( f’Xk(X’E)TI+I(J)OkX))

THEOREM 4.12. Under the hypotheses of Theorem 4.9, the operators L=L(e,a) and
J J(e, a) are compact and analytic in each component of e and a.

Proof. Since the partial sums of the infinite series defining L,J converge in the
uniform operator topology, L and J are approximated by operators of finite rank and
are consequently compact.

If f is in X, g is in X*, then (Lf, g) and (Jf, g) are clearly analytic in e and a.

5. The structure of H(e, a). Let

(5.1) Vk(e) ( VTt(px ), Tt(ox)).
Assumption 5.2. The sequence {Vk(e)} defines a multiplier transform

2 :,

for each e, lel _<g and

Remark 5.3. The operators introduced in Remark 4.8 also satisfy Assumption 5.2.
For V(e)f= q(x, e)f(x ),

Vk( e) folq( x, e.)Tl( Okx ) dx

1q(x, e)dx- 2(-1)/’q(x, e)COS2kXdx

where Q(e) defines the multiplier Q(e)I, and since (q(e)} is in 12, {q} defines a
multiplier on each L(0, 1), p<. For

t,
g0

we have

With K uniformly bounded, {Vk(e)} is in 12.
For X= L2(0, 1), Assumption 5.2 is no restriction on V(
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THEOIM 5.4. Let X=Lv(O, 1), <p<. If V(e) satisfies Assumptions 4.7, 5.2,
then there exists an analytic, compact multiplier transform M(e, a) on X, such that

M,(e, a)ll- o(11= / I,1=)
and

(5.5) n(e,)-n(e,)[no+Mo(e)+2lll+M,(e,)]n-’(e,a).
IfX=L(O, 1), this result holds with no restriction on V(e).

Proof. With Assumption 4.7 or X=L-, Theorem 4.9 is valid. Thus, for anyf in X,

 ii= 2 (s-si, 2 x,<(/, -’’v )u O

o+ 2 (x,< vT)u =i x(zl ’i, vT)u

=/t[no+M(e, a)] B-’f,

provideO {he infinite series

M(e,a)g- (,/-,)(g,v%)u#

converges. Using Corollary 3.7 and (3.9), we have

M(,)g=M0()g/ 21ltg/M(,)g,
provided the series in Assumption 5.2 defining Mo(e) and the series

(5.6) M,(, <)g- I1: ak(e, a)(g’Vk)k u+ la 12 bk( e, a) (g’v)k uko

converge. These latter series converge due to the , and clearly M satisfies the
conditions stated. From Assumption 5.2 the series defining M0(e) also converges.

6. The semigroup generated by H(e,a). Assumptions 4.7, 5.2 hold throughout this
section. Let U(t) denote the semigroup generated by H, and let Uo(t ) denote the
semigroup generated by H0. Since M0, M in (5.5) commute with H0, we have using
(5.5),

(6.1) U( ) BUo( ) e Mo(Ote2N#teM’(’ <OtB -1

Since the exponential of a bounded operator can be evaluated directly from the power
series, we have

(6.2) U(t)-BUo(t)[I+t(Mo(e)+21alBI+M(e,a))+ W(e,a,t)]B-,
where

W II-< t2g(lel + lal2)
uniformly on any interval 0_< <_ T for given T>0. We summarize in a form slightly less
detailed than (6.2):

THiOIM 6.3. Let T>0 be given. There exists an operator Y(e, a,t), analytic in e
and a, lel-< g, lal-< <i, such that

IIY(e,a,t)ll<_gt(lel+lal), O<_t<_T,
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and such that

U( ) O( ., ol)[ Uo( ) .ql.. tY( g, ol, )]

7. The saturation problem and approximation to the identity. A general survey of
the saturation problem for semigroups is given in [4, pp. 83-92]. For a semigroup U(t)
and a vector f, we consider the problem of estimating IIU(t)f-f as t--0+. Unless
U(t)f is constant, I[ U(t)f-f II can be no smaller than O(t). If X is reflexive, this
optimal bound is achieved if and only iff is in the domain of the infinitesimal generator
of U(t).

Referring to the semigroups generated by H and Ho, let q(s) be a positive,
nonincreasing function on (0, oo) such that q(s)0 as s o. Let A(q,) denote the
collection of all f in X such that

(i) IlU(t)f-fll-O(q(t-)), t0,

(ii) limsup
I[U(t)f-f[I >0.

Let A0(q) denote the similar class for Uo(t).
THO 7.1. Ifs(s) ass, then A() =B(e, a)Ao().
Proof. Using (6.3), we have

(7.2) U(t)f-f=B(Uo(t)-I)B-f+ tBrB-f
Let g be in Ao() and let f= Bg. Then

Ilg(t)f-fllg(,(t-)+tl[gll)-g,(t-) 1+ (t,1)[Ig[[
Since s(s) , we have t/(t-)O, so

U(t)f-f K(t-).
For the same reason,

limsup >0,
t-,O O(t -1 )

so fA(q). Solving (7.2) for Uo(t)-I, we show in the same way the converse: that if f
is in A(q), then B-f is in Ao(q).

THEORE 7.3. If p(s)--- and zero is an eigenalue of neither H nor Ho, then
A((p)-- B(e, a)A0((p )

Proof. In a reflexive Banach space, for )(s) , condition (i) is satisfied if and
only if f is in th domain of the infinitesimal gnrator [4, Corollary 2.1.3, p. 90]. If zero
is not an igcnvalu of H, then A((t))-@(a), and similarly for H0. Thus it suffices to
show that @(a) = B(e, a)@(O).

Iffis in (R)(0), then (f,v)-(Hof, vk)/X,, so

Bf=E

Since hk:, this series and its term by term derivative converge uniformly, so Bf
satisfies the boundary conditions of @(a). Using the differential equation and 3.7 for
h, we see that the second term by term derivative converges in the norm of X. Thus
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B(R)(O) C(R)(a). For the converse, we note that for fin @(a), (f,v)--(Hf, vk)/Xk, so
o

2
We then proceed as above.
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EXPONENTIAL LEVELING FOR STOCHASTICALLY
PERTURBED DYNAMICAL SYSTEMS*

MARTIN DAY

Abstract. This paper considers solutions of O-ei ia. i(x)u.,.+ ,ib(x)u in a bounded domain f for
which supu[u[ is bounded in e>0. We assume that’aa, b’b and that all solutions of the ODE
:=b(x), x(0)ufl converge to a single linearly asymptotically stable critical point in fl without leaving f].
We give a proof, based on the standard probabilistic interpretation of u, of an exponential leveling property:
SUPx,yK[Ue(X)--u(y)[ <--e-8/ for some 8>0 which depends on the compact set KC_fL

1. Introduction. Consider a deterministic system described by an ordinary dif-
ferential equation in R d:

(1.1) dx( ) b(x( )) dt.

A natural model for the behavior of this system, when subjected to a small stochastic
perturbation, is the diffusion process described by the Ito equation:

(1.2) dx(t)-b(x(t))dt+ fo(x(t))dot,
t being a Brownian motion in R d. Applications of this type of model can be found in
Ludwig [6], Schuss [10] and Matkowsky and Schuss [9]. Several aspects of the asymp-
totic behavior of x(.) as e 0 are of interest. Consider in particular a bounded domain
ft. If u denotes the exit time of x(.) from f and E the expectation for the solution of
(1.2) subject to x(0)- x, then (under appropriate regularity assumptions)

is the solution of the Dirichlet problem

(1.3) O-[u]-- a(x)u:+b,(x)u, inwithu[au=f.
t,j

(Here a-oor.) The behavior of u as eO depends, of course, on the nature of the
trajectories of (I.I) which start in f]. One of the more interesting cases is when all
deterministic trajectories starting in remain in f and approach a unique stable point,
at the origin, say. Because all continuous solutions of the reduced equation

O-Ebi(x)uXi

in f are constant, one expects that u approaches a constant function, or at least
somehow "levels out". We prove here, under modest assumptions, that this leveling
does occur, and at an exponential rate:

sup lu(x)-u(y)l<_e-/
x,yK

for any compact KC_F, some >0 and all sufficiently small e. In many cases much
more is known. Matkowsky and Schuss [8] presented a formal calculation to show that
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u converges to a constant function and derived a formula for what this constant should
be. Kamin [5] and Devinatz and Friedman [1] gave rigorous proofs of this in cases
where has a selfadjoint form,

(1.4) [ul-e-*/ .-xi (e*/ai.iUxj).

In [4] Kamin showed that the formal calculation of Matkowsky and Schuss for (1.3) is
correct provided the solutions of certain auxiliary first order PDE’s exist and are
sufficiently smooth. The fundamental work of Vent-tsel and Freidlin [12] also estab-
lishes that u converges to a constant for (1.3) in the case that the variational distance
V(O,y) which is central to their treatment attains its minimum over y Ofl at a unique
place.

Actually, the E in (1.4) is of a more general form than (1.3):

(1.5) E[ u -- ] ai.iu,,x + E bux,
t,j

with b--, b as e0. In this context the solutions u may not converge to a constant.
Indeed, in [1] the authors presented the two examples:

(1.6a) e(x+2)u"-x(x+2)u’=O,
(1.6b) e(x+ 2)u" + (e-x(x+ 2)) u’ 0

on [- 1, ], both with u(- 1) 0, u(1) 1. They observed that u --, 1/2 for (1.6a) and u -34
for (1.6b). If we combine these two examples as

(1.6c) e(x+2)u"+ {esin 1} )-x(x+2) u’-0

we get an example of the type (1.5) for which u does not converge.
The result proved here is for of the form

E[ul--- Ea +Eb,jUxix Uxi"
t,j

The a, b are required to converge to a, b as e $0. This form of encompasses all the
cases (1.3)-(1.6) mentioned. The boundary function u[au=f is allowed to be e-depen-
dent u[au and is required only to be bounded (in both x and e) and measurable (Borel),
but need not converge with e.

Section 2 contains the technical assumptions and the statement of the main
theorem. Sections 3 and 4 are devoted to a bound on hitting probabilities which is the
cornerstone of our proof. The proof of the theorem is given in 4 also. Section 5
contains two additional remarks.

2. Technical assumptions and statement of the main result. The domain f c_ R a is
assumed to be bounded. To treat u as the solution to an elliptic boundary value
problem with ulon =f, a specified continuous function, one might also want to impose
the requirement that f be C2. The probabilistic definition (2.1) of u renders this
unnecessary, however. The assumptions on the coefficients are as follows:

(a) a(x), a(x) are Lipschitz (or just H61der) continuous in x, uniformly in e,
p_ositive definite symmetricdd matrices on and [aj-a.l--’ 0 uniformly on

as e$O;
(b) b(x) and b(x)_are in CI(), Ib-b and Ibm,-bx,l, i- 1,...,d all converge to

0 uniformly on f as e $ O;
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(c) for any solution to x’(t)-b(x(t)) with x(0) 2, x(t)f for all t_>0 and
limt_+x(t)-O;

(d) the matrix B-[Ob(O)/Oxj] is stable, i.e., all itseigenvalues have negative real
parts.

For a specified x 2, xe(t) is a Markov diffusion process with xe(0)-x and differential
generator

For definiteness one can think of ae, b as being extended to all of N d, the process xe(.)
then being obtained as below for all t< +o. We are only concerned with xe(t) for
t_<ra, however, which does not depend on this extention. If one likes, xe(t) can be
considered as the solution to a stochastic differential equation (see [7] or [11 ])

dxe(t)-be(xe(t))dt+ foe(xe(t))d,, xe(O)--x
if ae--Oe(Oe)T, where o is Lipschitz. Alternately, xe(t) can be discussed directly via the
martingale problem associated with e [11]. (Continuity of coefficients is sufficient for
that treatment.)

The boundary functions fe(x) are assumed to be bounded in x and e>O and
measurable on Of. The ue(x) are now defined by

(2.1)
It can bc shown that ue@ C:() and satisfies

e[u]=0 inn.

Indeed, on any ball B with B C_ it is true that u is the Perron solution corresponding
to the boundary data ue[a. Since Perron solutions are C on the interior of their
domains, for bounded measurable data [3, Thm. 6.11], it follows that u C(fl). The
boundary behavior of u does not concern us; only the boundedness in e,x is necessary
for our arguments below.

There is one more condition that we will need when proving Theorem 2 below. In
deriving (4.6) we will use

(2.2) be(x ) b(x ) o(1)Ixl
as e $ 0 uniformly in .

We know that b(0)-0, so the above will follow from the convergence of b to b if theX

further condition be(0)-0 is true. Once we restrict our attention to x in a compact
KC_2, however, we can achieve be(0)-0 without imposing any further assumptions.
The following argument accomplishes this" from the stability of 0 with respect to b as
in (d) above, and the uniform convergence of b to b, one can deduce that (for
sufficiently small e) b has a critical point .e such that .e0 as e $0. Change variables
to y-x-e. The new coefficients te(y)-a(y+) and le(y)-be(y+ e) satisfy all of
our assumptions above as well as be(0)-0. The only difficulty is that the domains
f_ .e are e-dependent. We can pass to a subdomain f’ so that y f’ implies x=y+e
f and a compact subset K’ C_ f’ so that x K implies y x .e K’, for sufficiently

small e. Applying Theorem to ’, K’, we get the same result as for f,K. Taking the
details of this argument for granted, we assume in the following that be(0)-0, and
consequently that (2.2) is true.

Here is our main theorem.
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THEOREM 1. Under the assumptions described above, for any compact KC_f there
exist i> 0 and eo> 0 so that for all 0 < e< eo

sup lu(x)-u(y)l<-e-/.
x,yK

Roughly, the reasoning behind the proof is that for small e x’(t) should, with high
probability, follow the deterministic trajectory x(t) into the vicinity of the origin
before making its first excursion to the boundary Of. A precise probabilistic estimate
along these lines is established in the next two sections. To apply the probabilistic
estimate, we need to know a modulus of continuity for u. The following lemma
establishes the modulus that we need; the rescaling argument is the same one used by
Kamin [5].

LEMMA 1. Let KC_f be compact. Then there is a constant C so that 17ue(x)[<_Ce-1/2
for all x K and e< 1.

Proof. Make the change of variables y-8-1/2X. Then v(y) u(e/Ey) satisfies- e. .(y)Vy,y-f-(y)Vy,--O for ye-1/2.
t,j

The coefficients (y)-a(el/2y), (y)-e-/:b(fl/2y) are H61der continuous with
respect to y uniformly in e. If we take r so that B,(x)-(z’[x-z <r} C_f whenever
xK, then B,(y)C_e-/2 whenever ye-/2K and e<l. We can apply the basic
Scahuder interior estimate [3, Thm. 6.2] to Br(Y ) for any ye-l/:K to conclude that
XTv(y)l_< C for all yK for some constant C. This implies the lemma after changing
back to the original variable x.

3. A prototype: An Ornstein-Uhlenbeck process. Before proving the estimate on
hitting probabilities of the next section, it is convenient to look at the special case of an
Ornstein-Uhlenbeck process with generator as in (3.1) below. The proof of the general
case rests on a comparison with the function described by (3.4) and analyzed below.

In d, d>_2, suppose that et >0 is a constant and ’(t) is a diffusion process with
differential generator

(3.1) [u](x)--Au(x)-ax. Vu(x).

Let r(r) be the hitting time of the sphere of radius r;

(3.2) (r)-inf(t>O lf(t)l-r).
Take a fixed R>0 and, for r0< Ixl < R, define the hitting probability

Qo(X)-P;[z(ro)<z(R); z(r0) < o].
What we show is that there exists a positive constant 8 >0 so that

(3.3) Qo(X)>_l-e-/ whenever ro>_e-’/ and Ixl  R.
In words, for I’(0)[< R we can let ro $0 exponentially in e- and at the same time
have the probability that z(r0) < r(R) converging to exponentially fast. To prove this
we calculate Qo(’)" By symmetry Qo depends only on r-IxI. Thus Qo(X)-Q(r),
where [Q(r)]-0 with Q(ro)- 1, Q(R)-O.

eQ,,( led-1 ]ar Q’(r)0-[O(Ixl)] r)+ 2 r
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or

----r Q’(r)-O, Q(ro)- Q(R)-O.
r I

For the above, fl-d-1, but we will carry out the calculation for arbitrary positive
constants a, ft. Solving (3.4) gives

Q(r)-I

If ro <r<_ 1/2 R, then

-e(/)s ds
R/3 R

ro - e(a/e)(R/3)2r(
e-(a/e)R2/3r#R#.

s-e(/*)’2 ds e R
R/3 3

If log(r0)_>-.(-), then the preceding is <_e-(/OR2/6R#. Consequently, if i is
slightly less than the minimum of ___2 and (slightly less so as to absorb the Ra),
then, for r0_> e-’/ and r_<, we have

(3.5) Q(r)>-l-e-’/ for sufficiently smalle>0.

4. The hitting probabilities in the general case. Next, we prove that an estimate
like (3.3) holds for the hitting probabilities of the process x(t). (z(r) now denotes the
time of first contact with the ball of radius r about the origin for x(.).)

THnORM 2. For any compact KC_, there exists >0 so that for some eo>0 and all
0<e<e0,

P[z( ro) <] >_ e-/ whenever x K and ro >_ e-/.

Proof. We will first make an argument for an appropriate neighborhood of the
origin. The key to the proof is to use not the standard Euclidean norm Ixl but a
different symmetric positive definite quadratic form. By hypothesis, the matrix B-
[Ob(O)/Oxj] is stable. Lyapunov’s theorem on matrices implies that there exists a
unique symmetric positive definite matrix Vwhich solves

BrV+ VB- -I.
Define p(X)--[xTvx] 1/2. Forf C2(R), a computation gives that

(4.1)

e [e XotiPx,xY+i biPx,],e*[f(o(x))] =/"(O)’- XajPx,Ox,+Y’(P)" - i,j

vo(x)- p Px,x 0 03 X VilXIXkVkj"
l,k

The idea is to effect a comparison of each of the terms of E[f(p)] with those of
6[O(r)] in (3.4). First,

xrVa VxX  ,5Ox,
i,j XTVX
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which is bounded above and below, away from 0, on f- (0}. Moreover, these bounds
can be taken to be independent of e sufficiently small since aa uniformly. Thus,
there exists a constant A >0 so that

(4.2) A-l<_ao,px<_A in f- {0}, all sufficiently small e.
i,j

Secondly,

1__ xTVaeVx C(4.3) E abpx,x--- E abViy+p p2 -for a positive constant C (again uniformly in e sufficiently small). Thirdly,

xrVb(x) _xrVb(x) + xrV(b-b)(x)- p(xP ) P

Using b(x) Bx+ o(Ixl) and b(x) b(x) Ixlo(1) from (2.2), we find that

bp,-p. 02
+o(Ixl) +o(1) -p-

2 p bo(lxl) +o

(The o(Ixl) is as Ix[ -o 0 and is independent of e. The o(1) is as e 0 and is uniform in x.)
The second equality is a consequence of our choice of V. It follows that, for some D, R
and eo all positive,

(4.4) biePx,<_-Dp(x) if p(x)<_R and e<eo.

(Also, restrict R so that xf whenever p(x)<R.) Take a=DA-, fl=AC and then
Q(. ) as in (3.4). Since Q’ _< 0, (4.1)-(4.4) combined imply that, for e< eo and p(x) -<R,

Using ,(r) for the hitting time of the set {x:o(x)=r} by x(.), (4.5) implies, either via
the maximum principle or the fact that Q(O(x(t))) is a submartingale, that

P;[(ro)<(R)] >_Q(p(x)).
If r>0 is a constant so that v<_o(x)/Ixl<_v then (Tro)>r(ro), provided Ix (0)l >ro
If Ix (0)l < then p(x(0))<R and ?(R)_< -. Consequently, for ro< Ix (0)l < we
have

P;[z(ro) <zn] >_P; ;r ( Vro ) < rr ( R ) >- O( p ( x ))
This is trivially true also if Ix*(0)l_<ro. The calculation of 2 now implies the existence
of i >0 so that for all 0<e<eo and Ixl_< R,

(4.6) P[r(ro) < r,] --> e-’/ if yro_> e -’/.
The last step of the proof is to show that such an estimate remains true for all

x K. By the strong Markov property,

P;[ z( ro ) <Z] E P;%(,(vS3))[ z( ro ) < Zu] ,
3R

>_(1-e-n’/).P; -R <zn
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It is sufficient, therefore, to prove that for some 2>0 and all xK

(4.7) P; -R <za _>l-e

Let q(t; x), e _> 0, denote the solution of the deterministic equation q/(t) b((t))
with (0)= x. Since K is contained in the domain of attraction of the stable point 0,
there exist T, r/> 0 so that if x K then

yf whenever ly-q,(s;x)l<2n for some 0 _<s _< T,

and
Ylyl<-R whenever ly-q,(T;x)l<2n.

As e 0, b converges to b uniformly in fl, and consequently q,(t; x) converges to
(t; x) uniformly for t[0, T] and x K. Therefore, if e is sufficiently small and
x K, it will be true that

y f whenever Lv- ,(s; x)l<,/ for some 0<s< T,

and

For such e and x K,

Define

whenever

sup
O<s<T

O(t) x(t) x fotb(x(s )) ds

(=’g ff)o(x(s))dws if x is obtained from an Ito equation). Gronwall’s inequality
implies that

suplq,(s;x)-x(s)l<_eMr. sup 10 (s)l,
[0,T] O<--s<--T

where M is the Lipschitz constant for the b(.) (uniform in e). It is a standard
argument, using exponential martingales, that

P2 suplO(s)l>_l _<(2d)exp ’deAT[0,rl

where xrax<_AIIx -; see [11, eq. (2.1), p. 87 and proof], for instance. Combining these
facts, for all x K and e sufficiently small, we have

(,)]Pa_< R _<
e 2dAT

This shows (4.7) and completes the proof.
Theorem is now simple.
Proof of Theorem 1. Take any xK and set ro--e-/ (t$>0 as in Theorem 2),

u(x)-E:[u(x(a(ro))); ,(ro)< ,n] +E:[f*(x*(’rn)); ,--< ,(ro)
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Therefore,

+E[f(x(’ra))-u(O); ’--< ’(ro)]
+2

Nsup] Vul .r0 + 2 suple-/
K

NCe-/2e-n/+ 2 supe-/.

The theorem now follows (with a new slightly smaller 8).
$. Concluding remarks, We have two simple observations to make in closing. The

first is regarding the case in which contains several critical points of (1.1). This has
been discussed in the literature [9], [12]. Both u constant and ua piecewise
constant function are possibilities now, depending on the Vent-tsel-Freidlin variational
distances between the critical points and . If x* is an asymptotically stable critical
point (replacing the origin in (d) of 2) and * G is its domain of attraction, then by
taNngf-u on * we can apply Theorem to see that leveling takes place exponen-
tially fast in each such domain of attraction.

Finally, we observe that the specification of boundary data f is actually superflu-
ous. All that matters in the proof is the availability of a bound in e for the u. Theorem
could be formulated as follows:

For KC compact there exist >0 and e0>0 so that whenever [u]-0 in a and

(5.1) sup lu(x)-u(y)le-*/ suplu].
x,yK fl

Define the exit measures on the Borel subsets of 0 by

The strong mamum principle implies that and are mutually absolutely continu-
ous for x,y . Equation (6.1) implies that

(s) 1-d 2ds e IIIII L()

for all fbounded and measurable on a. TNs is equivalent to

e for x,yK,e<eo.(5.2)
df ,(=)

In cases for which a Green’s function exists (if Off and all the coefficients are C2, for
instance) so that u can be expressed as

then (ds)-G(x,s)ds on Off and (6.2) becomes, for x,yK,
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TURNING-POINT CONNECTION
AT CLOSE QUARTERS*

J. F. PAINTER AND R. E. MEYER*

Abstract. WKB-connection theory across singular and turning points of linear second order differential
equations is extended from Langer’s [1931], [1932] class of fractional turning points to a larger one including
logarithmic turning points and even more irregular, singular points. Uniform approximations of solutions
then become necessarily much less tractable and useful, but this is shown not to affect the first order
WKB-connection formulae of primary practical importance. The extension is achieved by a new connection
method which abandons the reliance on progressive paths to control the rapidly varying exponentials.

Introduction. A central problem for the general linear second-order equation

d2

(1.1) e2 ,W +q2w(z)-O, q-q(z) e-const $0
dz2

has long been known to be that of connection across roots and singular points of q(z)
(which is independent of e and is assumed analytic on an appropriate domain, see 2).
The solutions have asymptotic "WKBJ" or "Liouville-Green" approximations (Olver
[1974])

q/wAexp q(s)ds +Bexp-- q(s)ds

--ieq-l/2w’,A exp --/ q(s)ds -Bexp
-i q(s)ds

with constants A,B in appropriate regions of the z-plane, but such regions do not
include roots or singular points of q(z). The constant (A,B) may therefore have
different values on different sides of such a transition point, and the connection
problem may be phrased as that of determining the value on the fight, given the value
on the left.

Langer [1931], [1932], [1935] solved this problem for the class of "fractional
turning points" (Olver [1977]) for which z-q(z) is analytic and nonzero at the transi-
tion point (taken as z=0) with real constant v>-1. But, if branch points of q(z), even
of infinite order, be thus admitted, why not logarithmic branch points? The limitation
of Langer’s "central-connection method" is intimately related to its triumph: he showed
that Bessel functions provide approximations to the solutions of (1.1) as e 0 that are
uniformly valid both near the transition point and away from it. This provides full
insight and information, and (1.2) emerges from the asymptotic properties of those
Bessel functions. The fractional turning points, however, stand in one-one correspon-
dence to the Bessel functions of real order, and logarithmic turning points, e.g., do not
(Painter [1979]) admit uniform approximations of such type because the solutions have
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branch points of different structure. Uniform approximands must then be anticipated
to be much less familiar, tractable and useful, arid no attempt to find them is made in
the following because the most important applications, such as in scattering, do not
require any of the details of information provided by uniform approximation. What
they do require is connection, and especially, a first approximation to it, and this will
be shown not to depend on the details.

From (1.2), the WKB (or Langer) variable

fZq( )
is seen to be a more natural, independent variable than z for a study of (1.1). When
(1.1) is a time-reduced wave or Schr/3dinger equation, e- measures distance in local
wavelengths; for an oscillator equation, it measures time in local periods. For the
connection problem to be fully meaningful, q(z) should be absolutely integrable, even
at the transition point z-0, and this will be assumed here. Then the intrinsic variable
can be defined as

(1.3) -foZq( s ) ds.

The new connection method to be presented starts from the replacement of (1.2) by the
definition (Kemble 1935], Fr6man and Fr6man 1965])

q/2w( z ) =A( ) e’/+B( )e-,/
(1.4)

--ieq-/2 dW--A(t)ei/-B(l)e-i/dz

of "modulation coefficients" A() and B() for (1.1) of which the circuits as e 0 are
sought which are the WKB-constants in (1.2). Equations (1.1) and (1.4) imply

(1.5) dA
dl

(1.6) dB
d--- q()A()e2’/,

where the "modulation function" is

(1.7) (t ) --q-2 dq
dz"

This canonical formulation helps to identify the parameter really governing connection:
all commonly,encountered roots or (integrably) singular points of q(z) satisfy

(A) q()--’(V+o(1)) as I1-0
uniformly in arg with real constant 3’ < 1/2 which will therefore be adopted as the main
assumption here. The fractional turning points (Olver [1977]), for example, satisfy (A)
with ,-1/2r/(1 + r) and so do "logarithmic turning points" for which q(z)z"(logz)t’

with r>-l, g>0. (Details of this and other relatively simple technical points may be
found in Painter and Meyer [1980].) The canonical formulation (1.4) is thus seen to
relegate to an error term in (A) logarithms and other multivalued functions that had
seemed fundamentally different in the central-connection version (Olver, [1977]) of the
irregular singular point of (1.1). Of course, the error term in (A) may be disagreeable, it
is only O(llogl-) in the logarithmic case, and many technical difficulties in the
following stem from the fact that (A) admits errors tending to zero much more slowly
still and barely characterized.
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To solve connection in such generality, neither the lateral-connection method
(Zwaan [1929]) nor the central-connection method (Langer [1931]) can serve, and a
main objective of the following is to show that the arsenal of methods is not nearly as
exhausted by them as the literature of the last three decades might seem to indicate.
Lateral connection (Evgrafov and Fedoryuk [1966]) operates too far from the transition
point to make good use of the singularity structure of the modulation function (1.7), on
which connection depends. Central connection, on the other hand, gets too intimately
involved in the local solution properties at the nonintegrable, poorly defined singularity
of (), where the good properties of the exponentials in (1.4) cannot be used for
estimates. The new method presented below compromises by connecting along a semi-
circle

such that

I1-- const-- (e)

(1.8) i(e) 0, but 8( 8)E-1 --’> (X) as e 0

in order to profit from both singularity structure and WKB-exponentials. The price is
abandonment of the traditional key feature of turning point proofs to employ only
"progressive paths" (Olver [1974]) on which the exponential kernels can be controlled
in terms of their magnitude at an endpoint. A first departure from this absolute rule
occurs in Olver [1978], where a nonprogressive path’s length and distance from the
turning point are made so small that the exponentials are nicely bounded. But in the
following, control of the nonmonotone and wild variation of the exponentials in (1.5),
(1.6) on the nonprogressive path I[ i becomes the central feature of the connection
proof.

The method of proof will be traditional in rephrasing (1.1) as a Volterra integral
equation to be contracted, which is also the normal method to generate error bounds
(Olver [1974]), but we feel it is premature to consider this aspect here.

2. Integral equation. The connection problem arises in many equivalent or related
forms. For definiteness, let us here take it to be that of connecting the limits of A()
and B() at fixed points =--7. on the left with those at = E on the right of the
singular point =0, when the branch of q() in (A) is defined by a cut along the
negative imaginary axis of so that connection must be made through the upper
half-plane. Then our main result is the

THEOREM. Let (1.1) hold on an open connected simply connected set R C C, with
q(z) analytic and nonzero on R and on its boundary except at a boundary point z-0. At
z--0, let q(z) be absolutely integrable. Let the image set R-(Rz) under the map (1.3)
contain an e-independent rectangular neighborhood of z-0 (Fig. 1), except for a branch
cut along the negative imaginary axis. If Im has no lower bound on R, then let
q( ) 1/2 q-2 be of exponential order as i.

Suppose that q( ) satisfies

(A’) q()--[3+O(1/logn)[l-l)] as I 1- 0,

where logO’) denotes any finite number of iterations of the logarithm. Then as e 0,

(a)
(2.1)

(b)
A(r) =A(t) 2i sin(r)B(t) + o(1),
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:0

FIG.

where y is given by (A’) or (A) (1), r is any point between i(e) and -, t is any point
between -B(e) and--, B(e) is an arbitrary function satisfying (1.8) and (3.4), and - is an

arbitrary point ( fixed as e O) for which the intervals (--, O) and (0, - ) lie in R. If q( )
satisfies (A) but not (A’), then (2.1) holds with r--B(e) and =-B(e).

A simple example of an equation to which this theorem applies is

e2W "- (Z logz)2w 0.

Suppose that we know w and w’ at z-1/2 exp(i0) and need to compute them at
z=1/2 exp(-ir) (--1/2, briefly in what follows). In terms of the WKBJ-variable (z)-1/2z 2

(log z 1/2), we are connecting from (1/2)- (+log2)exp(ir) to (-1/2) (1/2+log2+
r) exp(-i r).

Since (- 1/2) has a negative imaginary part, (1.2) implies that as e - 0,

(2.2)
(1) 1/2 1)(i(-1/2))w --- -(A+o(1))q- {- exp

e

1 /2)).w’(--) -(A+o(1))ie-lql/2l-)exp( i(-le
The approximation (1.2) holds in a -region that includes both (-1/2) and positive real
values of such as - , so we may take A-A() in (2.2) and it remains to find A(1/2).
But it is easy to verify that the hypotheses of the theorem hold with r-- -, t= (1/2) and

R-
Therefore,

and A, B at (1/2) can be computed with (1.4).
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The theorem will be proven in the rest of this paper. Assumption (A) rather than
(A’) will suffice until the end of 4. Equation (2.1)(b) presents no problem: in the upper
half-plane where connection is made, B is the coefficient of the dominant term in (1.4),
and a well-known asymptotic argument (Evgrafov and Fedoryuk [1966]) gives

(2.3) B(1)=B(-1)+o(1) as e-0,

the difficulty lies entirely in relating A(-_-) to A(-E) and B(---). To attack it, integrate
(1.5) by parts and use (1.6) to get

(2.4) A(li)-A,-B,j(li,ll)e-’"+ fiA(s)j(l,s)dp(s)ds,
where

(2.5)

2i
P----e AI=A(}t)’ nl-n(}l)’

j(},s)-- fe(-t)o(t) dt,

and the path of integration is chosen along the upper semicircle 1[ =i(e) from t -i;
on it, 101-Iosl- z __, by (.8).

The computation of the kernel j(,s) on this nonprogressive path is one of the
main hurdles, and the Appendix summarizes a method of estimating it adequately by
computing (2.5) on paths depending on arg and args and chosen carefully to afford
simultaneous control of exp(-pt) and q,(t). The result, valid uniformly as e0 for
and s on respective arcs of the circle I 1- Isl- (e) (Fig. 2), is

0_< argd_<r- Oo

,=-i r=i

r
-2-<arg-<r

FIG. 2
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e-"" e-
(2.6/ j(,s)e-’

for 0_<argO, args_<r-0o, where 00>0 is an arbitrary constant

(2.7) J(’gs’)exp(-Pgs’)-(7+(l))[ e-r)r e-p 2ri]
for 0 _< arg_<r 0o, and

(2.8)
e- )J(li’s)e-’-O (Oli)

for _< arg_< arg s _< r.
To use these estimates in the integral equation, it helps to split off the main

exponential factor in A() by defining

a()=A()e,
so that (2.4) becomes

(2.9) a()-a e-’-Btj(,t)e-’+ fa(s)j(, s)eO-sck(s)ds
For in the upper left quarter-circle (Fig. 2), where Re(p)_<Re(ps)_<Re(pt)=0,
(2.6) and (1.8) show the integral operator in (2.7) to contract and thereby to assure a
bounded solution a() of (2.9) given the constants A and Bt. Therefore,

(2.101 A(j) O( e -or ) O( e:n/),
and by full use of (2.7) to (2.9), the contraction argument and bound (2.10) can be
extended to the entire semicircle I 1- 0_< arg_<r (Fig. 2) (Painter & Meyer 1980]).

This existence proof for a nonprogressive path, even if constructive, is disappoint-
ing because the potentially large bound (2.8) is insufficient to support a sequence of
asymptotic approximations for A(8)=A at the right end of the semicircle. The essen-
tial fault stems from the lack of definite information on the error term in (A); by the
Dubois-Reymond lemma, (A) sets no definite limit to how slowly that term can
decrease with I 1.

3. Bessei comparison. To refine the proof, recourse may be had to Langer’s [1931]
idea that turning-point theory concerns generalizations of Bessel functions. In the
simplest special case, q(z)--zv, the modulation function (1.7) is qv(5)--7/ exactly and
(1.1) is a form of Bessel’s equation with solutions

1) wV(z)-lXH(xi) ( -, X- ---’1(a

in terms of Hankel functions H(), i-1,2. From their asymptotic properties (Olver
[1974]), the limit A of A() at r-( for this special case can be computed straightfor-
wardly to be

(3.2) AVr:At 2iBtsin (-{r)+ o(1).
This special case Av() of the modulation coefficient A() satisfies (2.4) with q, and

j replaced by q,v and
Os--otjv(,s)-’{ e t- dt,

respectively, and (2.4) can be rephrased as an integral equation for A()-AV(),
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A( , A’( , B,[ .j( ,, ,, _.jr( , ., )] e-,,,

ds

+ f[A(s)-A(s)]j((,s)(s)ds.
Now, A() and AV() are not generally close, e.g., they have different types of

branch points at =0, but there is a small subfamily of the semicircles (1.8) char-
acterized by the condition

(3.4)
on which the estimates can be improved. They are very small semicircles (typically we
might have 6(e)e logllogel as e 0), but whenever () satisfies (A), the subfaly is
not empty. On them, j-iv can be computed by a modification of the calculation
outlined in the Appendix to obtain

for and s in the same arc as in (2.4) (Fig. 2),

(3.6)

for in the same arc as in (2.5) (Fig. 2), and

(3.7) g(,):(,)+o()
for and s in the upper left quarter-circle (Fig. 2).

With these estimates, together with (2.6)-(2.8) and the bound (2.10) on AV(), (3.3)
can be reduced to

on the semicircle (=, Imp>0 (Fig. 2) suNect to (1.8) and (3.4). Since the integral
operator is the same as in (2.4), (3.8) is solved by the same contraction (2) in the upper
left quarter-circle (Fig. 2) and there yields

For the upper right quarter circle, (3.9) and the equations (A), (2.6)-(2.8) and (3.5)-(3.7)
may be used to rewrite (3.8) as

On tNs part of the path, the integrand is susceptible to (2.6) so that (A) and (3.4) show
the integral operator to be a contraction and thereby to assure (3.9) uniformly for in
the whole secircle (I =, Im(0 (Fig. 2).

It now follows that the connection formula (3.2) carries over to any A() suNect to

(A), on these semicircles. A further corollary is that, while the solutions of (1.1) cannot

be approximated uniformly by Bessel functions in the framework of (A), they can be so

approximated in the annulus specified by (1.8) and (3.4).

4. Ceefi gap. For practical usefulness connection is needed between points
bounded from the singular one independently of e, say between (= and
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and that between t=-8(e) and r--8(e) achieved in 3 falls seriously short of that
goal. The gap from ---1 to =-8(e), subject to (1.8) and (3.4), still needs to be
covered; the dual one from 8(e) to then poses no new problem.

We begin by showing that A() is nearly constant on sufficiently short -intervals
[-62( e), - l( e)] with e<(e)--<l<2<l. The integral equation (2.4) applies here with
-i2 in place of t and with (-82, -il). Integration by parts of (2.5) gives

j(g,s)e-* O-’[e-*q(s) e-(})] +p-’ fs e-t,(t)dt,

and by (A) the first term on the right-hand side is bounded by (3’+ o(1)). Since q,()
is holomorphic near zero except for the branch cut, (A) also implies

(4.1)
and therefore

qd(t)=O(t-2) for real t0,

j(,s)e-- 0 l
It follows from (2.4) that, for some constant C and the supremum norm on (-2,-1),

IA(li)-a(-2)l<-Ce? I/IIAII ls-ldsl C.’{ l/llAIIlog

That implies a bound on A() between 2 and -8 independent of e, provided 81 and

2 are so dose that

(4.2) elog 0 ase0,

and it then follows that A is appromately constant on [-, -l]-
To deterne inteals over wNch B() will also be nearly constant, integrate (1.6)

by parts,

and apply (A), (4.1) and (4.2) to obtain

1+ log

Approximate constancy of B on [-2,-l] is therefore assured by a strengthening of
(4.2) to

(4.3) ea?’ log 0 ase0.

Unfortunately, (4.3) is too restrictive for a direct bridge across the gap from -1 to
-i(e). The estimates just sketched will, however, bridge the gap from -1 to -il(e) if a
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finite sequence

can be found for which each pair 8, +l satisfies

(4.5) eC log 0 ase0.

It is not plausible that (A), wNch adts an error term decreasing arbitrarily slowly,
can assure estence of such a sequence with (e)-(e) suNect to (3.4), and a
counterexample with error term in (A) approacNng zero more slowly then the recipro-
cal of any finite iterate loglog---log(-) has been constructed (Painter [1979]).
Accordingly, (A) must be stly strengthened to (A’) (2).

TNs new assumption does not exclude any common examples; for a logafithc
turning point q()(log), e.g., (A’) holds with n- 1. It is also sufficient" (3.4) may
be satisfied with

8(e)- 6l(e) --elg("+2)( )’e
and the sequence (4.4) may be chosen as

+4- 1,

wNch satisfies (4.5). Hence (A’) suffices to support the connection formula

(A1)
where

(A2)

and

Appendix. Properties and error bounds of the kernel.

j(,s )e-Ps =j(s )e-PS-j( )e-
j( )e_ f-ioe-*#,(s)ds

From (2.5) and (A),

with an "error seed" function specified only to the extent that it is analytic, except for
the branch cut, and of exponential order as }- -i and that

(A3) g(8)-sup(Ig()l.ll_<8} 0 as 6-o0.



550 J.F. PAINTER AND R. E. MEYER

To derive the bounds (2.6)-(2.8) resolves itself largely into estimating the contributions
of g(s) in (A2) in the presence of the volatile factor exp(-ps).

If could be ignored, j()exp(-p) would be the incomplete gamma function
(Olver [1974]) which has a Stokes phenomenon at arg--r so that different calculations
are needed for j close to z and for j bounded away from the negative real axis, say
0 _< arg_< rr 00 with any fixed 00> 0 (Fig. 2). In either case only points

with real , i need be considered that lie on the semicircle I1 =8(e) 0, _>0.
(i) The case 0_< arg_< rr 0o (Fig. 2) admits a "progressive" path A of integration

on which the exponential is monotone in magnitude, but which keeps its distance from
the origin, where (s) is not integrable, and yet stays largely within the circle Isl--8(e)
0 where (A) applies. For definiteness, it will be chosen to run (Fig. 3) from
vertically down to

A A 2

A3

A4

FIG. 3
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(14) --Rd-ii withi-min -i,i---R
then horizontally to the circle at --g+ ii, I1 -, then around the circle to the lower
half-plane and finally down to -io. Thus,

(A5) Ij( fie
du)e-O_y -u

U
_<g(8) E fA e---s

j=l

where A1,--.,A 4 are the four segments of A (Fig. 3). It will be shown now that the
"error terms" on the right are smaller than the incomplete gamma function, approxima-
ble (Olver 1974, p. 110]) by

du
(A6) --(p)- e

u

as e--, 0, uniformly for in the arc [[ 8, 0_< arg_<r- 0o (Fig. 2). A is a path of
steepest descent of the exponential factor and integration by parts gives

iol_l, iol_ exp[iP(i_i)] _+_1_]_ (i-t)dt
[Pl fo’-’eit [-- it[

Since /6 is bounded from zero, the first two terms in the last sum are O(e/6), and
since 2(i-t)/l-itl is bounded on A, the last term is O(e2/82). Therefore,

fA
for some constant C, which is a bound of the magnitude of the incomplete gamma
function (A6), and the factor g(8) on the right-hand side of (A5) makes the contribu-
tion from A small by comparison.

That from A 2 (Fig. 3) can be evaluated explicitly as

fA e_pS
ds
s

and A2 has been chosen far enough from both 5 and 0 so that the logarithmic term is
uniformly bounded and

This integral is therefor small even by comparison with exp(-o), when I[ =6 and
0 _< arg_<r 00, and the same follows from (A7) for

e-S
S

For the last term in (A5), the assumption that q,(s) grows at most exponentially as
s--io assures convergence and descent, and for sufficiently small e, the upper end-
point of A4 (Fig. 3) becomes decisive and, also,

le-Og(s) ds << e



552 J.F. PAINTER AND R. E. MEYER

j(})e-}-e-___
Hence,

(A8)

as e-o0, uniformly for } on the arc 0<arg}<r-00 (Fig. 2), and (2.6) follows from
(A1).

(ii) Further information is needed for } and s near } (Fig. 2), and this cannot be
obtained by integration on progressive paths. In particular,

j(r,l)e-Mi’- fire-’sdp( s ) ds

must be estimated, on a path avoiding the branch cut (Fig. 1), say F +L (Fig. 4). An
analogue of Jordan’s lemma applies to the integral along F: the exponential keeps the
integrand small except on the path segments close to the real axis, where integration by
parts leads to a bound

fre-’q,(s ) ds- O( - )

r

F:G. 4
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By the residue theorem,

so that

e_OS
ds

-2
s

j(r,t)e-i’=-2rri’/+O - + e-S,(s) -7-"

To avoid the large values of the exponential in the upper half-plane, the curved part of
L follows the circle Isl-e, and if L’ denotes the straight part (Fig. 4),

fLe-*:,(S) ds ft. dse-*:,(s)--+O(g(e)).
S S

Since L’ lies in the lower half-plane, the exponential is bounded on L’ and the segment
e_< Isl-< contributes O(g(8)). On the remaining segment, Isl > and exp(-0s) 0, and
since the exponential order assumption on q carries to , the dominant contribution
comes from the neighborhood of Is]-8 and is of the order of exp(--). Therefore

and

(A9)

,e-O*(s ) -7- O( g(#)) + O e

--o(1) ase-+0

J(r, !)e-’- --2 rriy + O(1),

and (2.7) now follows from adding (2.6) and (A9).
Finally, j(,s) for both and s close to t may be estimated by computing (2.5)

along an arc of the circle Isl- (Fig. 5). Here I(s)l-o(s-) by (A), and with t-Im(s)

[/(6,6,)e-’1-<C 6e-S-- <-C )e-’t182-t21 l/2dt
"0

for some constant C, and the last integral can be computed to obtain

(AO) j(,,)e-’=O -ge

FIG. 5
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This applies to near r in the first place, but (2.7) extends it to the arc 11- 8, 00_< arg
_<r (Fig. 6). It now follows from (2.5) or (A1), (A2) that for

-<arg<args_<r
2-

on the left upper quarter-circle (Fig. 2)

j( li,s )e-=j( li, ti, )e-’-j( s, li, )e-’- 0 -g e-o

which is (2.8).

FIG. 6
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GLOBAL STRUCTURE OF BIFURCATING SOLUTIONS
OF SOME REACTION-DIFFUSION SYSTEMS*

V. NISHIURAf

Abstract. We study the global structure of the set of bifurcating solutions of a class of coupled nonlinear
reaction-diffusion systems. Our main result is that when one of the diffusion coefficients is sufficiently large,
the bifurcating branch emanating from a uniform state continues to exist until it is connected to the
singularly perturbed solutions which contain interior transition layers (Theorem 6.1).

We also present a global branching theorem for the bifurcating branch which shows that in the general
situation it does not fall entirely on the trivial branch (Theorem 2.2).

O. Introduction. Many of the mathematical models that have been proposed for
the study of population dynamics, biochemistry, morphogenesis, plasma physics and
other fields, take the form of a system of coupled nonlinear diffusion equations:

ut-dlAU+f(u,v), vt--d2Av+g(u,v),
subject to

Ou Ov---- --- 0 on the boundary.

We assume that () has a constant solution =(,g) which is stable to spatially
homogeneous perturbations, and that fu(,)> 0, g(,)<0. One of the most im-
portant and interesting problems is to find nonconstant stationary (especially stable)
solutions of () when d and d2 are taken as adjustable parameters, i.e., the study of the
structure of the set of solutions of the following problem:

(S) O--dAu+f(u,v), O--d2Av+g(u,v),
in the space R2+ X, where R2+--{(d,,d2)ld,>O, d2>0} is a parameter space and X
is a suitable function space. It is obvious that {(D., )[D-(dl,d2)N+ } is a solution
sheet of (S) which we call the trivial branch of (SP).

Two powerful analytical methods for (S[) have been developed" bifurcation theory
and the singular perturbation method. The former method is closely related to the
phenomenon of diffusion driven instability, which can be traced back to Turing’s work
[26]. When d and d2 are sufficiently large, the constant state U is locally stable (it is
globally and asymptotically stable if ([) has an invariant rectangle, see, e.g., Conway,
Hoff and Smoller [3]). As d becomes smaller, U loses its stability at some value
D-Dc-(d[,d) (see Fig. 6 below), and new nonconstant solutions appear in place of
U. We call (Dc, U) the bifurcation point with respect to the trivial branch. The bifurca-
tion method gives us precise pictures of the solution set of (S[) near the bifurcation
points, and there is extensive literature such as [1], [23], [20], [17]. However, solutions
obtained by this method are of small amplitude, and when the parameters leave the
critical point D we usually have little information about the behavior of the bifurcating
solutions.

On the other hand, the latter method, when one of the diffusion coefficients d is
sufficiently small, enables us to obtain large amplitude solutions which contain interior
transition layers. In fact, Fife [7] proved the existence of singularly perturbed solutions

*Received by the editors October 27, 1980, and in final form June 22, 1981.
Department of Computer Sciences, Kyoto Sangyo University, Kyoto 603, Japan.
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of (S) in one space dimension under Dirichlet boundary conditions and, using Fife’s
method, Mimura, Tabata and Hosono [19] proved analogous results for Neumann
boundary conditions.

The main purpose of this paper is to integrate the results obtained separately by
the above two methods; i.e., the bifurcating branch continues to exist with respect to d
until it is connected to the singularly perturbed solutions when d2 is sufficiently large.
The asymptotic analysis as d2 ’ oo for fixed d was done by Keener [14], which shows
the existence of large amplitude solutions and suggests the relation between bifurcating
solutions and large amplitude ones. However, this does not cover the problem of the
global structure of bifurcating branches and their asymptotic behavior as d $ 0. We
note that the largeness of d2 appears naturally in some applications (see the examples
below).

In the case where d2 is not large, the situation is more complicated. The bifurcating
branches of different modes can intersect each other, and therefore secondary and
tertiary bifurcations necessarily occur. To understand the mechanism of the global
behavior of these branches, we need to perform more systematic analytical and numeri-
cal studies. In this regard, see, e.g., Fujii, Mimura and Nishiura [8].

In order to prove the global existence of the bifurcating branch with respect to d1,

the assumption of large d2 is unnecessary. This is discussed more precisely in 2.
Rabinowitz’s alternative theorem [22] plays an important role in the proof of Theorem
2.2.

Throughout this paper, when d2 is fixed, we use the space =R+ X, where
R+-{dlldl>0}.

Now we restate our problem and assumptions. We treat the system of equations in
one-dimensional space:

(SP-1) O-dlUxx+f(u,v),

(sv-2)

subject to zero flux boundary conditions

(SP-3) ux(O)=ux(1)=O
In vector notation we write (SP) as

(SP)
where

xI=(0, 1),

vx(O) x(1) O.

O-DUx-+-F(U),

( d, 0 ) F(U)- f(u,v) )D-
0 d2 g(u,v)

We use the symbol D for the diagonal matrix or a point (dl,d2)2+, as the case may
be.

We impose the following conditions on the nonlinearities of (SP):

(A-0)

(A-l)

The nonlinear functions f and g are smooth (C-class) on some open set
fc2 which contains in its interior a closed rectangle R defined below by
(0.1).
The zero level curve f(u, v)=0 is S-shaped in . When it is solved with
respect to u, it consists of three branches u=h(v) (i=0, 1,2) such that
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(0.1)

hi(v)C(Ii)fqC(i) (i-O, 1,2) with Io-[,] and Io cI (i-1,2) (each
I; is a closed interval); they satisfy

hl(v)<-ho(v)<-hz(v ) for VIo,
where equalities hold if and only if v- for h l(v)-h0(v ) and v- for

ho(Vo)-h2(v ) (see Fig. 1). Moreover we assume that fu(hi(v),v)vO for
vI (i-0, 1,2). The positive-valued region of f corresponds to the upper
side of the graph u-h0(v). We define the closed rectangle R by

R umin, Umax X lo,

where

un rrfin h i( v ) u maxh2(v )
v G lo

max
V GIo

Hereafter we denote the open interval 0-(
Remark 0.1. It follows from (A-I) that, fo each fixed v-f E, f(u, f) has just

three zeros ut(l)<Uc(l)<ur(l) in (see Fig. 1).

V

Uc(; Ur() Umax U

FIG. 1. Typical functionalform off( u, v) O.

(A-2)

(A-3)

(A-4)

Define J() by J(li)-Er(ti)-E(li) for E, where

E2(5)-f 5)ds,--’uA) J(s,
"Uc()

Then J() 0 holds if and only if * Z and
d
E()<O,

d .E()>O at-d
(wch obviously imply that ()/d<0 at *).
In there efists a unique constant solution U=(U,) off(u, v)=g(u, v)
=0.
At (u,v)-(5,5), fu>O, fv<O gu>O, gv <O, fu+gv(O and fugv-fvgu>O
hold.
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Remark 0.2. It follows from (A-0), (A-l), (A-3) and (A-4) that (, 5) must lie on
the branch u--ho(v) and the zero level curve of g intersects it transversally at (if,5).
Moreover, the positive-valued region of g is on the right-hand side of the zero level
curve of g (see Fig. 2).

V
g<u,v :0 u:ho 

FIG. 2. Functionalforms off=O and g=0 near U= .
We show several examples which satisfy the above assumptions.
Example (Diffusive prey-predator model [17]). First we give a model system of a

prey and its predator with diffusion:

(E-l) O-dlUxx/fo(u)u-kuv O-d2vxx-go(v)v+kuv,
where k is a positive constant; fo(u) is a smooth function such that

(i) /0(0)_>0,
>0, O<_u<c,,,,fo(u) =0, u-c,(ii)
<0, u:>c

for some positive constant c; and g0(v) co + cvm(co, C, m> 0).
In this model, u and v denote the population densities of a prey and its predator,

respectively. If the predator’s diffusivity is very high, we can assume d2>> 1. The zero
level curves of nonlinear terms are drawn in Fig. 3.

V

FI(3. 3. Functional forms ofprey-predator model.
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h

FIG. 4. Functionalforms of Gierer-Meinhardt model with saturation.

Example 2 (Gierer-Meinhardt model with saturation). The following model was
proposed by Gierer and Meinhardt [10] for the study of morphogenesis:

cpa2

O- daaxx + ppo+ Ia,
(E-Z) h(1 + xa)

O- dhhxx + c’p’a2- ta,

where O<da<<dh and P,P’,P0, c,c’, t,/ and u are all positive constants. For the zero
level curves f(a, h ) 0 and g(a, h ) 0, see Fig. 4.

Example 3 (Seelig’s model with diffusion [15]). Finally we give a model of a
substrate-inhibitaion reaction diffusion system:

(E-3)
O- duxx +j, u-r( u, v ),
O-d2v+j2 -/r( u, v ),

where r(u, v) uv/(1 + u+ v+Ku) and j, j:, /3, 3’ and K are all positive constants.
This model without diffusion was originally proposed by Seelig [25]. The zero level
curves off and g are drawn in Fig. 5.

FIG. 5. Functionalforms of Seelig’s model.
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This paper is divided into seven parts. In 1, we summarize the results of a local
bifurcation analysis, especially near the simple critical case. In {}2, we prove the general
global branching theorem under the assumptions (A-0), (A-3) and (A-4). In {}3, we
derive a limit system of (SP) as dE ’ , which we call the shadow system, and study its
global structure in of the set of bifurcating solutions from the trivial branch. We also
prove that there are generically no secondary bifurcations along the solution branch of
the shadow system. In {}4, we study the relation between the structure of the shadow
system and that of the original system (SP). We show that the former is a nice
approximation to the latter when dE is sufficiently large. In {}5, we summarize the
results of singular perturbation analysis with respect to d studied by [7] and [19], and
derive some lemmas to be used later. In {}6, using the results of previous sections, we
prove the main theorem: The bifurcating branch continues to be extended with respect
to d until it is connected to the singularly perturbed solutions of 5. Finally we
conclude with some comments on our results.

Some of the results in 4 and 5 were reported at an International Symposium on
Mathematical Topics in Biology at the Research Institute for Mathematical Sciences,
Kyoto University, 1978 [16] and the main theorem was announced in [21].

Throughout this paper, we use the following notation:

RE+ {(dl,dg.)REldl>O, dE>0}.-- R + X, where X is a suitable function space.
R-[Umin, Um]Io. See (0.1).
E--(_,). See (A-l).
Ey(), E(): See (A-Z).
C," See (1.4).- Un%C..
d",a d,,, where a-d1. See Remark 1.3
d.",o lim, o d",, limu.too d",a b ,/(n rr )2.
2u(I)-(H2u(I)) with norm I1-11, where HuZ(I)-closure of {cos(nrrx)},__o in
HE(I).
VIii- (H’"), where HN’’- closure of {cos(mnrx)}=o in HE(I).
$- closure of the set of nonconstant solutions of (SP) in $.

a (a dl) component in $ to which (d,d, ) belongs.
$1: See Theorem 3.3.
Seck(W)-- (wl(k,w) W}, where Wis a subset of $ and kR +.
Elo, +_" See (4.1), (4.2).
Eo=E U0, +
E" See Remark 4.1.
A-(xlxA and xB).

1. Local bifurcation analysis. Throughout this section and the next one, we only
assume (A-0), (A-3) and (A-4). It follows from (A-4) that the uniform state U is a stable
equilibrium point of the evolution system (P) with d --dE--0. Moreover, even if the
diffusion coefficients d and d2 are not zero, it is a stable solution of (P) when they are
sufficiently large. Therefore the instability of U occurs when at least one of the
diffusion coefficients is not so large.
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To find out the critical points D,,-(d,d) where U becomes unstable, we have to
solve the following linear eigenvalue problem associated with the linearized operator of
(SP) at U:

(EP-1)
(EP-2) XI’x(0) XItx(1) 0,

where xI’-/(k,k2) and B-(bi}i,=,2 is a Jacobi matrix of F--t(f,g) at U, i.e.,
bl=f, t7, b2=fvlff, b-gul.y, bn-gvl . The Fourier cosine expansion
,--0 xI,, cos(nrrx) reduces the problem (EP) to the following system:

(1.1) (B,-AE)9,-O, n-0, 1,2,. .,
where B,-B-(nr)ED and E is a unit matrix. The characteristic equation of (1.1) is

):X2_ ((b+b22)-(d+d2)(nr }h(1.2)
+ (b-(nrr)2d)(bEE-(nr)EdE)-bEb2-O.

It follows from (A-4) that the coefficient of X is strictly positive for any n. Therefore a
pair of complex conjugate roots of (1.2) never crosses the imaginary axis when D varies
in R 2+. Hence the instability of U occurs if and only if some real root of (1.2) crosses
the origin. It is easily seen that (1.2) has a zero root if and only if D satisfies the
following:

(1.3) (b,,-(nr d,)(bz2 (nrr d2)-b12b21-O.

C0

d

FxG. 6. Schematic bifurcation set in d,d2)-space.
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Thus the set of values of D where (EP) has a zero eigenvalue is given by the hyperbolic
curves (Cn}n in R 2+ (see Fig. 6)"

4

(1.4) C, d2-
b,zb2,/(nrr b22+----- n-l,2,...
d-b/(nr

Remark 1.1. All the curves {C.}=, are tangent to the straight line d2 mdl, where

detB-bzb2 + 2/-bzb2 detB
m=

b
Remark 1.2. It follows from (1.4) that for any m and n, we have the following:

then(m2d/n2,m2d/n2)C,.
We call LJn__ Cn the bifurcation set with respect to U. We define the primary
bifurcation curve F (Fig. 6) by

r- .J _..,
n=l

where Po=b/r and P. (n_> 1) is an abscissa of the intersecting point of C. and C.+ .
Note that C. = and C. O (m- when n 4 m. We denote by * the countable set of
intersection points of two curves of {C.}=, and ’=\*. It is apparent that, if
D ’, there exists a unique n such that De Cn. Every point D %’ is a nondegener-
ate simple critical point in the sense that [4, Thm. 1.7] is applicable to our case when the
bifurcation parameter D crosses ’ transversally at Dc. Here, for simplicity, we take d
as a bifurcation parameter with dz being fixed.

THEOREM 1.1 ([17]). For any Dc=(d,dz)@@’fqCn with d2 fixed, there exists a
positive constant eo such that (SP) has a unique one-parameter family of solutions
(dl(e), U(e))- + H2N(I)for lel <e0. Here d(e) is a smooth function of e with d(O)-d
and

u+,.+ o(1 1),
where dn is a normalized eigenfunction corresponding to the zero eigenvalue of (EP) with

Moreover the above bifurcation is one-sided (i.e., dl(e)< (or >) d for ev0) and,
if D lies on the primary bifurcation curve F, the bifurcating solutions are stable when
they appear above criticality (i.e., d(e)<d) and unstable when they occur below
criticality (i.e., d(e)>d).

Remark 1.3. For each fixed d2, we denote the countable set (dl(d,d2)} by
a. We can label each element d ofa in the following manner:

d n if (d,d2)Cand Cmformn
d-

c,U
n,mdc,a if(d,d2)C,Cm, n<m.

We also note that

b(1.5) d2roolim den.d2 ( nr )2
If Dc is a point of double multiplicity, the local structure of solutions of (SP) near

D--D,, is more complicated than the above theorem (see [8], [13]). However, using
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Theorem 1.1, we can always pick up bifurcating solutions from a double critical point
by restricting the solution space to the subspace of H which has some symmetric
property. In fact we have the following:

PROPOSITION 1.2. Vtnl is an invariant subspace of HN under the operation , where
Vt"l-(H2’")2, H2u’-closure of (cos(mnrx))=o in H2(I) and is a compact operator
form of (SP) which is defined by (2.1) in 2. When we consider the problem (SP) in Vt"l,
the corresponding bifurcation set 6 consists of (Cm,)m= l" Therefore, if Dc is a point of
double multiplicity such that D Ck f’) Ct(O<k<l), D becomes a nondegenerate simple
critical point if we restrict the solution space to VItl if l/k is integral, and to Vtl or Vit] if
l/k is nonintegral.

Proof. We prove only the invariant property of Vtnl. The remaining part is easy to
prove, so we leave it to the reader. In order to prove that maps any element of Vt"l

into itself, it suffices to show the following:

(1.6)
f0F( U(x )). cos(krx) dx 0

for any positive integer k-n (modn) and U(x) V[".

After even extension of the integrand to (-1,0), the left-hand side of (1.6) is equal to

1 f_F(U(x))cos(krx)dx.2

Since F(U(x)) is an even function at x=0, we can rewrite this as follows:

=1_ f_ r( U(x ))exp( ikrx ) dx.2

It is clear that F(U(x)) and exp(ikrx) can be extended periodically to . Then,
transforming x to x- 2/n, we obtain

( 2kri f-exp F(U(x ))exp( ikrx ) dx.
n

Here we use the fact that

for U(x) Vt"l

Thus we obtain

( 1-exp( 2ki)}flF(U(x))exp(ikrx)dx-On -1

which implies (1.6) because k n (mod n).
Remark 1.4. The space VI’1 is characterized by the following property of symme-

try: U(x)(H2u) belongs to Vt"l if and only if O(x)-O(-x) and (J(x- 2/n)- (J(x ),
where/(x) is defined by the periodic extension of Ue(X ) to R and Ue(X) denotes the
even extension of U(x) to (- 1, 1).

The above result is a consequence of our homogeneous Neumann boundary condi-
tions. In fact, for Dirichlet boundary conditions, for example, we cannot obtain the
corresponding result because the even power of the sine function cannot be expressed
by sine functions only. As is seen from Remark 1.4, the group-theoretic method is
useful for our problem. For results in this direction, see [8].
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2. Global existence theorem of the bifurcating branch with respect to the parameter
d. It is natural to ask how the bifurcating branch in the previous section behaves
when d leaves the critical point d. Rabinowitz’s alternative theorem [20] says that the
component in -+ which contains the bifurcating branch of Theorem 1.1
exists globally in the sense that either there is no closed bounded set M in the interior of

which contains the comp__onent, or else such a set M must contain the bifurcation
points different from (d, U). We will show in this section that the former case occurs
for our system. Here we assume, for simplicity, that the nonlinear term F is globally
defined, i.e., f -R 2.

U0(x)

0 1

U0(nx)

V \’, ’

/
0 1 2 n-I 1-n- n n

FIG. 7. Transformation Tn.

First we convert (SP) into compact operator form by operating on it with

K= -D- +i

where/ denotes the identity operator. Then we obtain

(2.1) U-(d,U),
where (dl, U)-K(_f+F(U)). Here we consider d2 to be fixed. It is clear that is a
compact continuous operator from + H2u into . The known curve of solutions
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((d, U)ld g+} will be referred to as the trivial branch. The closure of the set of
nonconstant solutions of (SP) in will_ be denoted_by , and Ena_ (resp. En,md2 ) denotes
the component in to which (d,d2, U) (resp. n,md,d:, U) belongs. The following lemma is
a consequence of our boundary conditions (SP-3).

L,MMA 2.1. Let Uo(x ) be any smooth solution of (SP) with D-Do. Then T(Uo(x))
defined by

if is even,

if is odd

for i/n<_x<_(i+ 1)In and i-O, 1,. .,n- is a solution of (SP) with D-Do/n2 (see Fig,.
7).

Proof. T"(Uo(x)) is constructed by means of successive (n- 1)-times reflections of
Uo(nx) (0 <_x <_ 1/n) at i/n (i- 1,2,...,n- 1). Since (SP) is an autonomous system and
T"(Uo(x)) is matched at i/n (i-1,...,n-1) in the C-sense, the conclusion follows
easily.

Now we can prove
THEOREM 2.2. Under the assumptions (A-0), (A-3) and (A-4), n ,,,,

a. ( resp a: )exists
globally in for any d2

g + and n -> (resp. n, rn (1 <_ n < rn )).
Proof. Let us assume the contrary. It then follows from Rabinowitz’s alternative

n,mtheorem [22]_ (and Proposition 1.2) that ": (resp. Ed2 ) contains a finite subset A-
{a[l(a, u)E" (resp. n,ma )) of a. Let =max(m there exists an element d of
A such that d[ Cm) and denote the value of dCA which attains by d’. It follows
from Lemma 2.1 and Remark 1.2 that if (2d,2d2)C is simple we have

(2.3) Tin( " (resp ,,m)
and if (2d,2d2) is of double multiplicity, i.e., there exists some integer 1_>2 such
that it belongs to C Ci, we have

T( l,l n (resp n,m).E,2d2)C d2 d2

It suffices to consider the simple critical case, since restricting the solution space to
to E-2" in virtue of Proposition 1.2.V Itl we can apply the following discussions

-Suppose that n2d2 exists globally; then T m’-d:) also exists globally, which leads
to a contradiction from (2.3). If :d: does not exist globally, it must contain a
bifurcation point (dck,2d2 U) for k_>2 (see [22,Thm. 1.16]). But this contradicts the
fact that is the maximum value, because applying T to m2d:, we can see that dE
(resp. "’’ d,d:,d: ) must contain ( m ). In either case we have a contradiction. Thus the
proof is completed.

If we have some a priori estimate for the bifurcating branch " (resp. n,ma a2 ), much
more can be said about its global behavior. We say that (SP) has the property (B) if and
only if

(B)
There exists a positive continuous function M(dl,d2) on R2+ such that
for any (d U)" (resp. n,m ood d: ) the estimate IlUll <-M(d,d2) holds,
where I1" oo denotes the L-norm.
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One sufficient condition for (SP) to satisfy (B) is that () has a strictly contracting
rectangle (see [18, Remark 5.2]). In this case we can take M to be independent of d and
d2. It is known that examples (E-2) and (E-3) have such rectangles (see [18] and [15]).

We say that n (resp En,m
d2 d2 ) exists globally with respect to d if and only if

Proj(ff) resp. Proj("’m))d: contains 0, where Proj denotes the projection operator
from to d-space and the upper bar denotes the closure operator in R.

THEOREM 2.3. Suppose that (SP) satisfies the property (B). Then nd: (resp. n,md )
exists globally with respect to d in for any d2

+ and n>_ (resp. n,m (1 _<n<m)).
Proof. Using the equations of (SP), we can see that property (B) leads to the

estimate

(2.4) U 2 <-kM( d,, d2) -1+-2
for any solution (d U)@ (resp n,m

d. d2 ), where k is a positive constant independent
of d and d2. Combining (2.4) and Theorem 2.2, we have the required result.

3. Shadow system. We start by giving a heuristic derivation of a limit system of
(SP) as d: q’ . First we rewrite (SP) as follows:

(SP)
O-duxx+f(u,v),
O-vx+ag(u,v),
ux(O) ux(1) vx(O) Vx(1 ) -0,

where d=d and a-dI. Let us suppose that, for some fixed d, solutions of (SP)
remain to be bounded as a q’ 0. The second equation of (SP) implies that the limit of v
satisfies

(3.1) Vxx-O.
It follows from (3.1) and the boundary conditions that v must be a constant. On the
other hand, integrating the second equation of (SP) from 0 to 1, we can see that

(3.2) fo’g( u, v ) dx-O

holds independently of a. Thus we obtain a limit system of (SP) as a $ 0:

(SS-1) O-duxx+f(u,),
(SS-2) folg( u,li) dx-O,

(SS-3) ux(O)-ux(l)-O
where v-- is a constant function. In (SS), is considered to be a parameter which is
contained in both (SS-1) and (SS-2). We call (SS) the shadow system of (SP). In this
section, we study the global structure of the set of solutions of (SS) in . We will see in
the next section that its structure is a nice approximation to that of (SP) for small a > 0.

3.1. Global branching theorem for the shadow system. First let us consider the
problem (SS-1) and (SS-3). It follows from Remark 0.1 that f(u,) has three zeros
ut()<u()<u() if and only if E. Note that U-U is the only constant solution
of (SS), and that (SS-1) and (SS-3) has no nonconstant solutions for 7.. Therefore,
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without loss of generality, we can assume that 5 moves only in " The energy form of
(SS- 1) is given by

(3.3)
a ):-(u +F(u,ti)-E,

where

(3.4) f f(s,)ds
u.()

and E is a nonnegative real parameter of energy level (for a typical figure of F, see Fig.
8). All nonconstant solutions of (SS-1) and (SS-3) for fixed are given by the E-para-
metrizable family of solutions in the following. From (3.3) we have

(3.5) (du) 2 2
-x ( E F( u li ) )

F

FIG. 8. Typical functionalform of F( u, ).

Since (SS-1) is scalar and autonomous, it is sufficient to construct the strictly increasing
solutions; in fact, all the other solutions can be obtained by Lemma 2.1, if we replace
U0, DO by u, d. Hence we consider the equation

dx - (E- F( u ) )

Equation (3.6) has a nonconstant solution satisfying (SS-3) if and only if 0<E<E(),
where

(3.7) E() =min(Ey(), EF()} (see (A-2)).
By using separation of variables, it is easily seen that the strictly monotone increasing
solution u=u(x; E,) of (3.6) and (SS-3) is given by the inverse function of

(3.8)
a.

=x

for each fixed 0<E<E(), where d=d(E, ti) is determined by the relation

=f(e,) du
(3.9) d(E,) u(e,) 2(E-F(u,))
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and u(E, ) and fi( E, ) are two consecutive zeros of E F( u,) 0 with ut( )< u(E, )
<ff(E,)<ur() (see Fig. 8). The definition domain of d=d(E,) is

(3.10) r= U (0,E()) (}.

It follows from (A-l) and (A-2) that the boundary of T consists of three parts, i.e.,
E O, E-E() for <_<* and E=Er() for *_<< (see Fig. 9).

E=E 

V

FIG. 9. Shadow branch in T.
E

1)

3)

4)

5)

d(e,) e C(_) C(

d(E,)C(T_) for any x>0.

lira d(E,)=d()=f(uc() )/r2

E$0

uniformly in
_
" for any x>0.

lira d(E,)=0
EtE()
uniformly in li - for any > O.

u(x; F, t) e c(./x_r,,)n coo(./x r),

O--u(x;E,)C([) for any

limu(x;E,)=Uc()
E$O

uniformly in x and
_
" for any x> O.

We use the following notation in the next lemma:
_r= u.__ [o,())x {,},
:r,- u.,(o,.eoo(,)) x {,},= u,[o,e(,))x {,},
,(,)=lFuu(u,(,),)l (=lfu(u,(), )1),
a,.()-IF,,,,(Ur(), ’)1 (-If,,(uX,), ’)1),

where _," -(+x,-x) with x>0. We note from (A-l) that at()vO Otr()=/=O and
ac()vO for ..

LEMMA 3.1. For each -, all nonconstant strictly monotone increasing solutions of
(SS-1) and (SS-3) in are given by the E-parameter family of solutions (d(E,),
u(x; E, )) for 0<E<Eo(), where d(E,) is defined by (3.9) and u(x; E,) is the
inverse function of (3.8). Moreover, the following properties hold:



BIFURCATING SOLUTIONS 569

6)
lim u(x; E,’)

E’tE()

ut() uniformly in x[0, 1-xl for any x>0 if E()<E();
ut(*) forO<_x< * * *),Olr /( Ol "- Ol

Uli’(X)-- Ur(*) for * *ar/(Oq_ +a*)<x<
uniformly in X I\I for any x>0 if E() E()
(i.e., :*, see (A-2)), where I (ar/(a + a ) ,

* * ar(*);ar/(a’ +ar)+X) and a’[ at(j*), O

Ur() uniformly in x[x, 1]for any x>O, if E()>Er().

Proof. We will only prove properties 1), 3), 4) and 6). The others are easy to prove,
so we leave them to the reader.

First we change variables from u to v:

(3.11) v-(u,)- ( (F(u’l) ) l/2’
-{f(u,f)) 1/2

It follows from the generalized Morse lemma (see, e.g., [5]) that F(u,}) can be written
as

F(u l) -a(l) (U-Uc())2

2 (1 +h(u,)),

where a(l)-F,u(U(l), )>0 and h(u,l)-O(]u-u(l)l). Therefore we have

a(l) (U_Uc(l))(l +h(u f))P(u,)- 2

near u uc(). Thus the above transformation (3.11) is a diffeomorphism from u(E),
(E)] to [-(F(u(g), )}/2, (F((E), )}/2]. The right-hand side of (3.9) becomes

where Ou/Ov-’l(v,). Here we note that F(ff(E),)-F(u(E),)-E. We set v
V-x; then

(3.12)

If/ represents a general.differential operator with respect to E and. , then

sup
x[-l,1]
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is locally bounded in T, This implies from Lebesgue’s theorem that d(E, li)C(T).
Next, noting that

lim sup
E$0, xE[-l, 1]

uniformly in -a- for any x> 0, and

lim sup IP&(x,)-P&(o,)I-o
E$0, xE[-l, 1]

uniformly in .E for any x>0, we can see that d(E,)C(T_,,) and Od(E,)/O
c(T.).

Converting (SS-1) into the first order system of equations, we can see from 1) that
4) is a direct consequence of smooth dependence of solutions on parameters (cf. [2]).

In the proof of properties 3) and 6), the following asymptotic formula plays an
essential role:

(3.13) fo (ax)-l/2
(x+t),/2dx---a-l/21ogt+O(1) as $ 0,

for any fixed positive constant 6 (see [6,p. 138]). First let us consider the case E()_>
Er(). We will prove the formula: As E ’E(),
(3.14) f(e) du _1 (Er(li)-E)()- /2(E-F(u,l)) ---%(5)-1/21g 2E +O(1).

First we note from (3.12) that the left-hand side of (3.14) can be written in the form

(3.15) fl
Here we alter the term O(1) of the right-hand side of (3.14) appropriately. Since

Fu(u,)

fu( U, ) -Otr( )( U- Ur( ))(1-t- O(lu-- ur( li )l) )
and

1/2( 1/2+O([Er()-v2[ )),

we obtain

2/(/-1(v, j), j)

29

Or() ((ErC()__l)2) } !/2 (1
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Therefore

(3.16) /v- V-x,
Ctr(’)(I-x2)’+ Er()-EE

Substituting (3.16) into (3.15), we have

(3.15) _fl x- /a,(t/)(l_x) (l_x2)+ Ef(()-EE
(l +O(.))dx

fo y-l/2dy
2/%( ) ;Y+ Er(EEli ) E

+ 0(1).

Here we set y--- 1-x and, using (3.13), we have

-a,()-/21og +O(1)2E

Thus (3.14) is established. In the same way, if E(ti)<_E(li), we obtain the formula

(3.17) f_u(E)+ du ()_/21og E[(I)-E)a(E) /2(E-F(u,li)) --at 2E +O(1)

as E ’ E(j). Property 3) follows directly from (3.14) and/or (3.17).
Now we are ready to prove property 6). In the case of E()<Er(), the integral

(E) d

(E)+ {2(E- F( u, ))

is bounded as E q’ E()(=E()) for any small positive 8, since the integrand has a
singularity of order -1/2 at if(E) as E ’ E(). Noting this fact and (3.17), we can see
that, for any x>0 and e>0, there exists Eo-Eo(x,e) such that for any E with
E0<E<E(), the following inequalities hold:

(3.18)
lu_(E) u,(01 <
E) + e/2 du/d(E,l)

_(E) /2(E- F(u,l))

This implies that u(E,) converges uniformly to uz(0 on any compact set [0, 1-x] as
E ’ E(0. We can prove the corresponding result analogously in the case of Et(O >
Er(O. Finally, we consider the case Ez(0= Er(0. It follows from (A-2) that this
case occurs if and only if =*. Both asymptotic formulas (3.14) and (3.17) are valid
in this case. Since the integral

u( 1,: du

":) +’ /2( E F u, li*
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is bounded as E ’ E(j*) for any small positive constant 8, we can see from (3.9),
(3.14) and (3.17) that the following two limits hold:

(3.19)

These imply the required result. Thus the proof is completed.
In order to solve (SS), all we have to do is to pick out all solutions from

{u(x;E,)}(e,) 7. which satisfy (SS-2); i.e., we must find all solutions of the scalar
equation

(3.20) B(E,.)- fog(u(x;E,), )dx-O.
From lemma 3.1 we can see that B(E,) satisfies the following properties:

LMMA 3.2.

1)

2)
3) lim

E,)(Et(), )

S(E, C(y) C=(T),
C(_T,).

B(E,)=g(ut(), ) for _<<*,

lim B(E,)--g(Ur(), )
(e,)(Er(),)

Remark 3.1. B(E,) cannot bc continuously extended to T, since B(E(), ) and
B(Er(), ) do not coincide with each other at -*. However, noting that for*the convergence in property 6) of Lemma 3.1 is a uniform one for an_appropriate
neighborhood of , wc can see that it can bc continuously extended to T\{(E(*),

Remark 3.2. It follows from (A-l), (A-3) and Remark 0.2 that there exists a
positive constant i independent of such that g(ut(), )<-i and g(Ur(), )>i hold
for E. We extend the domain of definition of B(E,) for E<0 as follows"

(3.21) B(E,)-B(O,) for E<0, E.
This extension preserves the continuity of B(E,) for E<0.

Now we can prove the main theorem in this section.
THEOREM 3.3. The component (i.e., maximal closed connected set) $1 in T_ of

solutions of (3.20), which contains (0, ), exists globally with respect to E in the sense that

NT4 where T-((E(), j)[jE}, and its intersection consists of only one
element:

(3.22) 1N To- ((E(*) *)}"
Here we note that denotes the closure of in 2. Moreover, there exists a positive
constant such that Sece(g ) consists oonly one element for 0 <_E< i, where Sece(g )
( (E,) } for fixed E. Therefore is wholly contained in T except for the starting
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point (0,6) and the terminal point (E(*), *). Finally, (3.22) means that a pair of
solutions ( u(x; E, ), ) of (SS) corresponding to satisfies the property

o_<x<x*,
(3.23) u(x;E’*)u*(xl-[ur(**), x*<x_<l

uniformly in [0,x* x and x* + x, for any x>O,

and * as (E,) (E(*), *), where x* is uniquely determined by the relation

(3.24) O- flg(u*(x), *)dx.
"o

Remark 3.3. It follows from Lemma 3.1, property 3) that "globally exist with
respect to E" is equivalent to "globally exist with respect to d" as stated in 2.

Remark 3.4. Given an arbitrary path in T which goes into the point (E(*), *),
the position of an interior transition layer of the step function obtained as the limit of
the given path as E ’ E(*) is closely related to the asymptotic form of its path as
E ’ E(*). For the details, see Appendix 1.

Proof of Theorem 3.3. First we construct the local solutions near (E, )--(0, 6). Let
us differentiate (3.20) by ,

B,(E,,)- fo {gu(U(x;E,,), ,) ---u(x;E,,)+g,(u(x;E,,), ,)} dx.

At (E,) (0, 6), we have

On the other hand, f(uc(), )-0 holds identically in the vicinity of -6. Differentiat-
ing this equation by , we have, at ,

aUc( )(3.26) fu( ff, 6) d =6

Substituting (3.26) into (3.25), we have

B(O, 6)- ( fu(ff, 6)g,(ff, 6)-f(ff, 6)gu(ff, 6)}/fu(ff, 6).
Therefore, by (A-4),

(3.27) B(0, 3) 4: 0.

Thus, by the implicit function theorem, we obtain the unique solution -(E) of (3.20)
in some neighborhood of (0, 6). Here we note that (A-3) and Lemma 3.1, property 5)
imply that - is the unique solution of (3.20) when E-0, and that there exists a
positive constant such that we have no solutions of (3.20) for (-8,) or
(,+81). Therefore the continuity of u(x;E,) implies that Sece(l) consists of only
oia element for 0 _< E_<8 with i an appropriate positive constant.

Next we show the global existence of l with respect to E. When we consider
B(E,) to be a function of , a finite dimensional degree

deg(B(e,), Sece(T), 0),



574 Y. NISHIURA

where Sece(T)- (l (E,) T} for fixed E, is well defined. It is clear from the above
discussion that

deg (B(O,), Seco (T), 0) :/:0

holds. Since solutions of (3.20) never lie on the boundary of Sece(T ) (see Lemma 3.2,
property 3)), it follows from the homotopy invariance property of degree that

(3.28) deg (B(E,), Sece(T ), 0)0
for 0 _<E<E(*). Hence the required result follows from (3.28).

Lastly we prove the final statement. It follows from the asymptotic formulas (3.14)
and (3.17) that, for any e>0, there exist a positive constant 8(<e) and a closed
e-interval I x e/2, xc+ e/2] ( cI) such that the values of u(x; E,) $ belong to
(Ur(*)--E Ur(*)] or [ut(*), Ut(,*)+e) for xI and
Since g is smooth, there exist positive constants K and K2 such that, for IE-E(*)[
+ [-*1<, we have

(3.29) ]g(u(*), *)-g(u(x;E,), )l<_Ke for xI,.,
(3.29)b Ig(u,(*), l*)-g(u(x;E,l), ,)l<_K,e for xIt,

(3.29) fz,g(w(x ), )dx <Ke,

for any function w(x) with values in [Umin, Umax] where I=(x+e/2,1] and Iz=
O, x e/2). We define the step function u*(x; x) by

(3.30) u*(x;x)- {u/(*),ur(.), O<_x<X,xc<x<_ 1.

It follows from (3.29) that

(3.31) fol{g(u*(X;Xc),l*)-g(u(x;E,l),l))dxl<-K3 e

holds for an appropriate constant g3>0. Since u(x;E,) is a solution of (SS), (3.31)
becomes

On the other hand, the function G(t) defined by

G(t) fo’g(u*(x;t), l*) dx

is a strictly monotone decreasing linear function of t, and has a unique zero at t-x*.
Therefore it follows from (3.32) that

(3.33)

for some positive constant K4 independent of e. The estimate (3.33) leads to the
conclusion. Thus Theorem 3.3 is established.

The above theorem states that the bifurcating branch starts from (dc(), U) and
goes into (0, (u*(x), *)) in the space . In the vicinity of (dc(), U), its branch is a
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smooth curve. Then what is the structure of the component 5 between the two ends
(0, 6) and (E(*),*), and how many branches hit the terminal point (E(*), *)?
We shall consider these problems in the following two subsections.

3.2. Uniqueness of the shadow branch near (E (/j*), /j*). In the previous subsec-
tion we have shown that the shadow branch exists globally with respect to E and its
starting point and terminal point are uniquely determined. Moreover, near the starting
point, $ consists of a unique curve. Then what is the structure of $ near the terminal
point (E(*), *)? Since d(E,) becomes zero as (E,) tends to this point, this
problem is related to the uniqueness of the singularly perturbed solutions of (SS). We
have already reduced (SS) to theproblem of finding the zeros of B(E,). Therefore the
problem is how many zeros are there in the vicinity of (E(*), *) for fixed E? The
answer is only one; i.e., Sece($) consists of only one element in some small neighbor-
hood of (E(*), *). In this subsection we will prove this result, which plays an
essential role in 6.

First-we rewrite the right-hand side of (3.20).
LMMA 3.4.

du

’g(u(x;E,}), })dx-
f(E,) du).

Proof. E and } are fixed throughout the proof, so we write u(x) instead of
u(x; E, ), and so on. We assume, for simplicity, that g is monotonic with respect to u
for fixed } (if g is not monotonic, we can prove the above formula by dividing the
interval into several parts where in each subinterval g is monotonic).

First we set z(x)= g(u(x)). Since u and g are monotonic, z(x) is a monotonic
function (see Fig. 10). Denoting the inverse function of z(x) by x(z), we have

(3.34) -o ()

fg()x

X

X(Z)

o
FIG. 10. A graph of x-x(z).

Z
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If we change variables from z to u, the second term of (3.34) (.which we denote by J)
becomes

J- [(%(z)-fi((u))g’(u) u,
-g(_u) "u_

and noting that (see (3.8))

x( z ) (-’() {2(E- r(v))
we have

" g’(u)au.

Integrating by parts, we obtain

(3.35)

Substituting (3.35) into (3.34) and noting that

duf fu_ 2(E-F(u))
=1,

we obtain the conclusion.
We will show that B(E,) is strictly monotone increasing with respect to

SecE(T) when (E,) is near (.E(5*), 5"), which implies the unique existence of the
solution of B(E,)= 0 for fixed E. For this purpose it suffices to prove the following:

LEMMA 3.5. The derivative of B(E,) with respect to is strictly positive when ( E,
(T) belongs to the sufficiently small neighborhood of (E(*), *). More precisely, we
have

(3.36)

B(E,})-- {K(E,})E’(})R(E,})-IlogL(E,})
-K(E,)E’()L(E,)-’logR(E,,))(1 +o(1))/

{ llogR(E,})+ }22ar(}) 2{a,(} i
logL(E,)

>0 forSecE(T),

where

K(E,})-g((E,}), })-g(u(E,}), ),
R(E,})- {E(})-E}/2E,
L(E,})- (E(})-E}/2E

and’ denotes d/d.
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(3.37)

Proof. Using Lemma 3.4, we have

( 012 OI--I1-- -I2 } /I2B(E,)-

where

I1--_ (2(E- F( u, F; ) ) f. g(u,)

Let us calculate the asymptotic expansions of the four terms I1, 12, )I1/ and OI2/Oli
as (E,)-(E(*), (*). First we note that IE-E;f)I/IE-Er()I becomes zero
ffhen (E,) tends to (E(*), *) (see Fig. 9 above). Therefore it follows from (3.14)
and (3.17) that I is expanded as

(3.38) I1---- {ar(li)-l/21ogR(E,li)+at(li)-l/21ogL(E,l)} +O(1)

when (E,) is near (E(*), *). Analogously, 12 can be expanded as

(3.39) 12--- {ar(li)-l/Zg(ff, li)logR(E,li)+a,(li)-l/Zg(u,li)logL(E,ti)} +O(1)
when (E,) is in the vicinity of (E(*), *).

Next we consider the term Oll/Oli. It follows from (3.12) that

" -- f-I 2(1-x23

We divide the interval [-1, 1] into three parts,

+f +
-1+8 -8

where 8 is some small positive constant. Since (0/0r)s-l+61-8 0(1), we must expand the
other two terms (i)/Oli)f1+, (O/O)fll_a. First let us consider the integral (O/Oe)ftl_.
Noting that

(see the proof of Lemma 3.1), we obtain

fl--6 fl-8((1--X 2) -- fu(ff’-l(g/-x,),)
dx

(3.40)
2d-/x

fl --8 i 2i {fuu’-l’qL- Fu’ }/Fu2 dx.

Let w and z be

(3.41) W-- {F(ur() )--v2} 1/2__ {E(I__x2)+(Er()__E)} 1/2,
=U--Ur(),
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where v- x/x. Using Taylor’s expansion of F(u,) and (3.11), we can see that

2 (l+O(Iwl))z--
,()

w

(3.42)
Fu--2%(} ) w( / o(lwl)),

F-Er’()-2() u;()w(1
Fuu=-r()(l + O(IwI)),
fu}- %()u;(})(1 + o(I wl)),

and noting that -l _/Fu (UUr(})), we have

{ar(’)E’(,)w-,(l+O(lw[))(fuu-1 + Fut}/F 2r( )W2 2
(3.43)

+r()U;()(] + O(Iwl))} (1 + O(Iwl)).

Here the following asymptotic formulas are needed.
LEMMA 3.6. For a positive constant 6, we have as 0

1)
x-l/2
(x+tdx--t-l/(1 + O(1)).

2)
X-’/

(X+l)3/2
dx-Zt-’(1 + o(1)).

Proof. Taking y-x/t as a new variable, we can easily derive the above formulas,
so the details are left to the reader (see [6, p. 138]).

Combining (3.40), (3.43) with Lemma 3.6, we obtain

(3.44) (3.40)-
Ey’() R(E,)-’ +O(R(E,)-/2).

For (0/0()f1+, we obtain the same result as (3.44) replacing r by I. Since g(u,)
has no singular points, I:/O( can be expanded in an analogous way. Thus we obtain

I, =_{E2’(}R(E })-’+O(R(E

+ +O(L(E’)-I/:)} + O(1),

(3.45)

Be2 =_ g(,)E7’() (e,)- + O((e,)-/:)

+ g(,)e7’()L(e,)- +O(L(E,)-/:) +0().
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Substituting (3.38), (3.39) and (3.45) into (3.37) and taking the principal part,we obtain
(3.36). Since g(ff,)>0, g(u,)<0, Er’()<0 and E’()>0 (see (A-2)), the right-hand
side of (3.36) is strictly positive. Thus the proof of Lemma 3.5 is completed.

As a direct consequence of Lemma 3.5, we obtain
THEORFM 3.7. There exists some neighborhood U* of (E(*), *) and 6>0 such

that Sece(l)f3 U* consists of only one element for E(*)-6<E<E(*).

3.3. Local arcwiseness of the shadow branch. So far, we have studied the unique
existence of the shadow branch Sl when (E,) is near (0,) or (E(*), *). In this
subsection, we reveal the structure of $1 between these two ends by using Sard’s
lemma: $ is generically a one-dimensional submanifold in T, i.e., a locally smooth
curve. The definite meaning of the genericity will be given in Theorem 3.9.

First we state the well-known Sard’s"lemma:
LEMMA 3.8 (Sard’s lemma). Let (9 be an open set in R (k >_ 1) and let f: (9 R be a

function of C-class. Then the set C of critical values of f has measure zero in 1.
Moreover, if (9 is compact andf is real analytic in (9, C is a finite set.

Proof. For the Poroof, see, e.g., [11 ].
We recall that l l Cq T is the preimage of a zero of B(E,) in T. We note that

l--l\((0,g)} (see Theorem 3.3) and B(E,) is of C-class from Lemma 3.2. There-
fore whether or not l is a one-dimensional submanifold of T depends on whether or
not zero is a regular value of B. This is what is called the "preimage theorem" (see [12]).
On the other hand, Lemma 3.8 says that the set of critical values (i.e., nonregular
values) has measure zero. Hence it is plausible that zero is not a critical value in almost
all cases. In fact we know:

DENSITY THEOREM. In any small neighborhood in the Whitney C-topology of the
given function B, there exists a function B such that zero is a regular value.

This is a special case of Thom’s transversality theorem (for the details, see, e.g.,
[11]). However, in practical applications, this theorem is not tractable because, in
general, all small perturbations for the nonlinearities f and g which do not destroy the
functional form required by the given model do not correspond to all small perturba-
tions for B. For example, if f and g are of polynomial type, we can only vary their
coefficients. However, in the next theorem we give a useful result that some perturba-
tions for g which preserve the functional form bring B into the general situs.

THEOREM 3.9. Suppose that there exist an admissible perturbation eh(u,) with e a
small real parameter, and a positive constant eo such that for e [-e0, eo] g(u,)
g( u, ) + eh( u, ) has the functional form required by the given model and that

(3.46) flh(u(x;E,.), )dx:O for (E,)T.
"o

Then, for almost everywhere e [-e0, e0 ], zero is a regular value of Be(E, ), where

(3.47) B(E,[i)- g(u(x;E,li), li)dx.

In other words, if we replace g in (SP) by g, its shadow branch in T is a one-dimensional
submanifold of Tfor almost every e. Therefore, it has no secondary bifurcation points.

Proof. First we note that the preimage of zero of B(E, () is the same as that of the
following/}(E, )"

(e,})- B(E,})
fd h(u(x;E,), li)dx
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Analogously we can define/}(E, ) for B(E,) which has the same preimage of zero as
that of B. On the other hand, we have

Therefore whether or not zero is a regular value of/} depends on whether or not -e is a
regular value of/. Hence, applying Lemma 3.8 to B, we obtain the result that zero is a
regular value of/ for almost every e. This implies the conclusion.

Remark_ 3.5. If f and g are real analytic in R, B(E,) is also real analytic in any (
with (gCT. It follows from Lemma 3.8 that zero is a regular value of B(E,)]e
(restriction to () for "all small e except possibly e=0". Combining Theorem 3.3,
Theorem 3.7 and this result, we can see that Theorem 3.9 holds with "almost every-
where e" replaced by "all e except possibly e 0" iff and g are real analytic.

Since the nonlinearity of polynomial type frequently appears in applications, the
next corollary is useful.

COROLLARY 3.10.
1) If g( u, ) has a constant term, one can take h( u, )= 1.
2) Ifg(u,) has a monomialm (m> 1) andOqE, one can take h(u,()=m.
3) If g(u, ) has a monomial u ( n >_ 1) and 0 q umin, umax ], one can take h ( u,

We give several examples which serve to illustrate the above results. First let us
consider the prey-predator model given by Example in 0. B(E,) becomes

B( E, li ) fo’ { g( li ) ku(x E, li ) } li dx,

where g0() Co +c’(co C l, m> 0). Noting that > 0, we can take h ( u, ) or + .
Next we consider the Gierer-Meinhardt modei-(Example 2 in 0). In this case

B(E,()- fol{c’o’u(x;E,()2-v( } dx.

One can take h(u,)-, since >0. It is also possible to set h(u,)-u2 since Hmin---
hi(()>0 (see Fig. 4).

Finally for Seelig’s model (Example 3 in 0), we can apply, for example, Corollary
3.10, part 1) to it, since g has a constant term J2.

4. Approximation theorem for large d2. Let us bring the shadow branch of
Theorem 3.3 into the space . Using the mapping d-d(E,) in Lemma 3.1, we have
the corresponding shadow branches and in g:

0,+ 0,-

(4 1) o,+ {(d(e,),(u(x;e,),))l(g,)$1},
(4.2) ,_-- {(d(E,), (u(1-x;E,), ))] (E,) g}.
g is the reflection image of g We set0,- 0, +

0,+ 0,-"

0,+ (resp. ,_) connects (dc(g), ) to (0, (u*(x), *)) (resp. (0, (u*(1-x), (*))) and, if
is locally one-parametrizable, is also locally one-parametrizable.
Remark 4.1. Using the transformation T in Lemma 2.1 and replacing U0, DO by

u,d, we can construct any other solution branch with n modes of (SS) (which we
denote by )). Roughly speaking, ) is similar to with ratio 1,/n in g.
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We use the notation and dcn, instead of n and d and denote the valued2 c,d2
bl/(nr)2-(lima2,dc,a) by d,0 In what follows we only discuss . However, the
corresponding results for (n2) can be obtained in the same way.

Now we will show in the next theorem ,that is a good approximation of for
small a. We denote by ], the restriction of to [, +)X.

THEOM 4.1. For any positive and e, there exists a positive constant a such that, Uf forO< <

where U’ is the restriction qthe e-neighborhoodq in + XH to[81 +)X2
N"

Proof. First, it follows easily from (1.5) and Lemma 3.1, property 2) that the
bifurcation point (d,, ) converges to (d,0, ) as a $ 0. The boundedness of E,, and
compactness of imply that E,, is compact in [81, +)X. On the other hand, it
follows from Remark 4.1 that only finitely many, (n-2,...,1) are not empty for
fixed 8 and E ( l 28) . Since E , and Uz E, are compact in , the0,81 n= n=2 8
distance between these two sets is positive. Therefore, for all sufficiently small positive
e, we can take the 3e-neighborhood U2 of E in [61, +)XH such that UE,
does not contain any other solutions of (SS) except the trivial solutions
(d1, U) with d,o-y(e)<d <d2,0+y(e) and dl d2,0, where lim+0y(e)-0. There may
be a solution set M, of (SS) in [8, +)X which does not belong to z, 0,,
However, since M, is closed, the distance between the compact_ set E0,, and M, s
positive. Note that none of the bifurcation points (do, U) (nN) belong to the set

U2E,, for small e.
Now let us assume the contrary: There exist some positive constants 81 and e such

that, for any small a, E,, is not contained in Uf. Then we can extract the sequence
(d,,U) (nN) of solutions of (SP) with a-a, such that lim,a,-0,
(d,, U) U’ but (d., U) U2 (see the remark at the beginning of ts proof). Since
the set ((d., U))= is bounded in [81, +)X and each element is a solution of
(SP) with d 81, we can extract the strong convergent subsequence ((d,, *)}_ in
[81, +)XH. We set (d*, U*)-limz(d,, *). The strong limit (d*, U*) is a solu-

Moreover, due to the following lemma, we can seetion of (SS) and belongs to UE,,.
that U* U.

LEMMA 4.2. For any fixed small e >0, there exists a positive constant a a(e) such
that the operator norm of

-1

D+B
dx

from (L(I)) to N with ed-d,ol2e is uniformly bounded for d>(e)-1.
Pro@ By using the proof of [16, Lemma 5.1], we can verify this lemma in a

straightforward way, so we omit the details.
Thus we have a contradiction and Theorem 4.1 is established.

5. Singularly perturbed solutions. We know from Theorem 4.1 that when a is small
the branch is approximated well by the shadow branch for d ->l >0. Then how
does behave as d $ 0? To answer this question we need more precise analysis of (SP)
with d sufficiently small, usually called singular perturbation analysis. Such study for a
coupled nonlinear diffusion system was done by Fife [7] for Dirichlet boundary condi-
tions, and recently Mimura, Tabata and Hosono [19] used Fife’s method to resolve the
problem for Neumann boundary conditions. In this section, we summarize the results
of [19] and derive some lemmas from them to be used later.
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In order to construct the singularly perturbed solutions, we make the following
assumption in addition to (A-0)-(A-4):

(A-5) G,(v)EC’(.ii) and dG,(v)fldv<O in ]i (i-1,2), where Gi(v)-g(h,(v), v)
(i 1,2 and each h i(v) is defined as in (A- 1)).

Note that Examples 1-3 in 0 satisfy (A-5).
Now we rewrite (SP) as

(SP) O--e2Uxx+f(u,v), O--vxx+ag(u,v),
where e- df-. First we solve the reduced problem of (SP):

(SP)0 0-f(u, v ) O- Vxx + ag( u v )

It follows from Remark 0.1 that f(u, v)-- 0 has three solution branches u hi(v)
(i=0, 1,2). Therefore there are many ways of taking the solution u=h(v) of the first
equation of (SP)0 which may be discontinuous. Therefore we seek a solution pair of
(SP)0 in a weak sense; i.e., we call (U(x), V(x)) a solution of the problem (SP)0 if
(U, V) satisfies

(U, V)L2(I)>< H’(I),
f(U, V) 0 almost everywhere in I,

<Vx,qx>=<ag(U, V), q> for all q,Hl(1),

where (., .) is the inner product on L2(I).
Here we take the following special solution u h*(v) of f(u, v) 0:

(5.1)
for v (v <}*) n i,,
for v (v>}*} n]:,

where * is the value of v which appears in (A-2). We define G*(v) corresponding to
(5.1) by

for v (v<*) /,
forv (v>*} /2

We can see from Remark 0.2 that

(5.2) G,(v)<0 on 11, G2(v)>0 on 12
It is found that G*(v) has a discontinuity of the first kind at v= *. Thus the problem
(SP)0 is reduced to the two-point boundary value problem for a single equation:

(5.3)a Vxx+aG}’(V)=O, xU_I,

(5.3)b Vx(0) Vx(1) 0.

For this problem, a solution V is defined by

(5.4)a
(5.4)b <Vx,dPx >- <aO}’(V),> for all qcHl(I).
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We have
LEMMA 5.1 ([19]). Under assumptions (A-0)-(A-5), there exists a positive constant a

such that (5.4)has a unique strictly increasing solution r/’*"tx) Cl(I) for 0<a<a"1,0 k

Remark 5.1. Since (5.4) is reflection-invariant, r/’*,,,z,
,1 tx) V0’*"(1 x) is also a

solution of (5.4), which is strictly decreasing.
Remark 5.2. It follows from (5.2) and the boundary conditions that v’*,0’ tx) (resp.
[, x)) crosses the line V=* at a unique point x (resp. x 1-x) with 0<x< 1.
Defining U’(x) by

,,o

we obtain a pair of solutions (U**’z v* -l,o x), ,1,0’ tx)) of (SP)o. Then the following theorem
holds.

THEOREM 5.2 [19]. Suppose that (A-0)-(A-5) hold. Let (U,*o’(x), v*,z
",o tx)) be a

solution with one mode of the reduced problem (SP)o. Then there exist some positive
constants eo and ao such that, for each fixed a (0, ao), an e-family of solutions U(x; e)
(u(x; e), v(x; e)) (C2([))2 of the problem (SP), exists, for 0<e<eo, which satisfies

lim u(x" e) t*’’1,0 ,X)
e$O

lim v(x" e) 1,0 \X)

uniformly in x I--I
uniformly in x I,

for any x>0, where I-(x-x,x + x) and x is the point defined in Remark 5.2.
Moreover ( u,( x; e), v(x; e)) is a continuously differentiable mapping from (0, eo ) (0, ao )
to (C2(f))2.

Remark 5.3. The image by reflection (u(1 x; e), v(1 x; e)) is another family of
one-mode solutions of (SP), which converges to (Ui,’(x), Vi,’(x)) as e $ 0. However
it suffices to consider the family of solutions (u(x; e), v(x; e)) in the following
discussions.

When we consider U(x; e) to be an a-family of solutions for fixed e, we can obtain
the following result.

LEMMA 5.3. For any fixed small e, U,(x’; e)=(u,(x; e), v(x; e)) converges to the
unique solution Secd.(lo, +) in the (C2([))-topology as a $ O.

Proof. It suffices to show that any sequence U,,,(x; e)(c $ 0) of Ua(x; e) has a
convergent subsequence which converges to the unique limit Sec(E0, +) for small e (see
Theorem 3.7, or Theorem 3.7’ in 6). It follows from our construction of singularly
perturbed solutions that U,(x; e) is uniformly C-bounded. Therefore U,(x; e) is uni-
formly bounded in C-norm because it satisfies (SP). Applying Ascoli’s theorem to
this, we can extract a Cl-strong convergent subsequence U, (x;e). By using the

n(k)
equations (SP) again, we can see that this subsequence is a C2-strong convergent
sequence whose limit is clearly a solution of the shadow system. Since the strictly
monotone increasing solution of the shadow system is unique for small e, its limit
solution must coincide with Se%(E0, +)"

In order to prove the next lemma, we need the following technical assumption:

(A-6) There exists a positive constant such that fv(U, )< 0 for u (h 1()’ h2())
and

Remark 5.4. All examples in 0 satisfy (A-6).
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LEMMA 5.4. For any fixed e with 0<e<e0 (if necessary, we take eo in Theorem 5.2
smaller), there exists a positive constant a-&(e) (<_ao) such that the inverse operator
(,)- of the following FrOchet derivative of (SP) at (u,(x; e), v,(x; ))"

(5.6)

d 2

vo)
dx2 fv( U,, vo)

d 2

gu( Ua’ t)a)
Ot dx 2 - gv( Ua t)a)

w

exists and is uniformly boundedfrom (C([))2 to (C2([))2 on (e, e0) (0, &(e)).
Proof. See Appendix 2.
LEMMA 5.5. For any e(0,e0), there exists a positive constant {o_ Zo(e) such that

(SP) has no solutions in the 7o-neighborhood of (u(x; e), v(x; e)) in (C (i))2 other than
itselffor 0 <a<&(e).

Proof. Applying the transformation w=u-u(x;e), Wz=V-G(x;e) and using
Lemma 5.4, we can easily prove the above lemma by contradiction. Therefore we leave
the details to the reader.

It follows from (5.4) and Remark 5.2 that

lim limv( x’, e) lim v*,,,o,x) *a$O e$O a$O

Therefore, for any x> O,

lim lim u,( x’, e) lim "l,Or*’",)" u*( x )
aS0 e$0 aS0

uniformly fn x I-x[x* x, x* + x], because

(see (3.23))

t/* a( [,zt/*, a/l (Vl,O’ x) o,’1,0

holds for any a. Thus combining the above results with Theorem 3.3 and Lemma 5.3,
we obtain the following commutative relation.

Remark 5.5.

d $0 a $0

=lim lim (u(x; d),v,(x; dl))-(u*(x), *).
a $0 d $0

6. From bifurcation to singular perturbation. We have already seen in 4 that the
structure of 1 is approximated well by that of for d -->l" On the other hand, we
have shown in 5 that (SP) has singularly perturbed solutions for sufficiently small d1.

In this sction we will show that ] is connected to singularly perturbed solutions when
a is small; i.e., the bifurcating branch from U continues to exist in until it arrives at
the solution (u(x; e), v(x; e)) of Theorem 5.2.

First we rewrite Theorem 3.7 in the following form:
THEOREM 3.7’. There exists a positive number such that SeCd(o, +) (resp.

SeCdl(,_)) consists of a unique element for 0 <d <1"
Now we can prove the main theorem (see Fig. 11).



BIFURCATING SOLUTIONS 585

THEOREM 6.1. Suppose that (A-0)-(A-6) hold. Then, there exists a positive constant

* such that, for 0<a<a*, exists globally with respect to d and coincides with the
singularly perturbed solutions (u,(x; dv), v(x; vFdT))and(us(l-x; V), v,(1-x; d))
of Theorem 5.2 for sufficiently small dl.

FIG. 11. From bifurcation to singular perturbation. The branches diverge in Hnorm as d $ 0 (though
remain finite in L-norm); however, we draw them in a finite region.

Proof. It is easy to verify that, for small c, E] is divided into two parts"

where ,+ (resp. tends to (resp. ,_) as c $0 in the sense of Theorem 4.10, +
Moreover E,,_ is the image of E, + by reflection at x- 1/2, i.e., any solution of El,_ can be
obtained in the form (d,u(1-x), v(1-x)), where (d,u(x),v(x)) is a solution of
E, +. Therefore it suffices to prove the theorem for the part E,, + of E.

First we take 81 in Theorem 4.1 as

8, <min{e,7},
where e0 and d are the constants which appeared in Theorem 5.2 and Theorem 3.7’
respectively. Then, for some fixed d with 81 <d <min{e, 7}, we can take a*(< &(dfd-7 ))
such that the distance between Seca(E +) and the singularly perturbed solutions
(u,(x; d), v(x; d)) in (C2(/))2 i’s saaller than 3,0=3,0(d) which appeared in
Lemma 5.5 for 0<a< a*. This is possible because both solutions converge to the same
solution Seca,(E0, +) as a $0 (see Theorem 4.1 and Lemma 5.3). The local uniqueness
property of Lemma 5.5 implies that Seca,(E,+) must coincide with (us(x; d),
v,(x; f7). This completes the proof.

Remark 6.1. We can see from Theorem 6.i that the asymptotic behavior of E as

d $ 0 is described by Theorem 5.2.
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Remark 6.2. Using the transformation T" of Lemma 2.1 and Theorem 6.1, we can
obtain the corresponding theorem for n for n_>2 (a* is replaced by a*/n2).

7. Concluding remarks. In this paper, we are mainly concerned about the global
existence of the bifurcating branch and its asymptotic behavior as d $ 0. Here we
comment on several points of our results.

(i) Stability. As for stability, we know that the bifurcation direction determines
stability near the simple critical bifurcation point (see, e.g., [5]) which corresponds to
the point (d,, U) of E. Then what about stability when the branch leaves the critical
point? We especially want to know the stability of singularly perturbed solutions. This is
a difficult problem; however, it seems to the author that Theorem 6.1 gives an insight
for this problem. Let us consider the special case where the linearized operator of (SP)
along E is invertible except at (d,, ), and never has pure imaginary ei_genvalues. In
this case Theorem 6.1 implies from the local stability result near (d,, U) that singu-
larly perturbed solutions (u(x; e), v(x; e)) are stable as stationary solutions of the
evolution system.

u
[---[ d, Uxx +f( u, v),

(P) 0<a<< 1.
v
Ot a

The detailed spectral analysis for (SS) is a key to solving the stability problem for (P).
(ii) No saturation case. If the assumption (A-l) is not satisfied, the situation is

completely different from ours. For example, in the case where the nonlinearity f is not
folding over, such as in the Gierer-Meinhardt model with no saturation (x=0 in
Example 2, see Fig. 12), the solution branch of the corresponding shadow system does
not remain bounded in the L-sense and the singularly perturbed solutions cannot be
constructed by our method. Therefore the assumption that zero level curve of f is
sigmoidal is indispensable for our study.

h

[a,h,=O

a
FIG. 12. Functional forms of Gierer-Meinhardt model with no saturation.
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(iii) The case where d2 is not large. In this case, the structure of the set of
bifurcating solutions of (SP) is more complicated than in Theorem 6.1. One reason for
such complexity is the appearance of double critical points (i.e., intersection of two
curves of (Cn)n= in 1), and the other is the occurance of secondary and tertiary
bifurcations. Fujii, Mimura and Nishiura [8] have recently clarified some aspects of the
mechanism of the global structure with the aid of a powerful numerical method (for
numerical aspects, see also [9]). However, we have not yet obtained a total understand-
ing of a global picture for (SP).

Appendix I. The relation between the position of a transition layer and the asymp-
totic form of/j=/j(E) as E ’ E(j*). We know from Theorem 3.3 that goes into the
point (E(*),*) as E q’ E(*). Let =(E) be an arbitrary smooth path in T, which
satisfies

lim }(E) =}*.
ETE(l*)

Then u(x; E,(E)) tends to the step function which has a discontinuity at x= Xc as
E E(*):

lim u(x;E,li(e))- I u’(li*)’ O<_x<x,
E?E(*) (Ur(*), Xc<Xl.

We study in the following how the position of x depends on the asymptotic form of
}(E) as E q’ E(}*).

First it follows from the asymptotic formulas (3.14) and (3.17) that x is de-
termined by the following relation:

(A.I.1) lim a[’/2((E))Ig(E((E))-E)= xc
E, EOO(},) a;’/-(li(e))log(Ey(li(E))-E) 1-x

Expanding E(.}) and E(}) at }=}*, we have

(A.1.2)

and

(A.1.3)
kr kn ,ln ),

where E-E(}*), k{-dJE(}*)/d}J and k-dJEr(}*)/d} (j-1,2,...n). It fol-
lows from (A-2) that k(>0 and k[<0.

Suppose that }(E) has an asymptotic form:

(A. 1.4) l(E)-l*+l,(E-E)+ll+(E-E)’+(l + o(I)),
(},+4=0) asEq’E, 0<a_<l.

Substituting (A. 1.4) into (A. 1.2) and (A. 1.3), we obtain

(A.1.5)

(A.1.6)

E[(l(E))-E-(kl, I)(E-E)+C(+a(E-E)I+a(1 +o(1)),

Er(l(E))-E-(kfll I)(E-E)+C+(E-E)I+(I + o(I)),
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where

(resp.
(resp. 0<a< 1,

+ (r sp. +

We note that C[+4=0 for 0<a< 1. Substituting (A.1.5) and (A.1.6) into (A.1.4), we
can see that if k 4 and k[14 1, i.e., =(E) is not tangent to the curves E-E()

1/2- 1/2.and E-E() at -*, the limit of the left-hand side of (1) is equal to a /a i.e.,
u(x; E,I(E)) tends to the step function u,(x) of Lemma 3.1 as E ’ E(5*). If the path
-(E) is tangent to the curve, for example, E-E?() of first order at -* (i.e.,
k(l--1 and C(+,4=0 for 0<a_<l), the right-hand side of (A.1.5) starts from
the second term. Therefore the limit of the left-hand side of (A.I.1) equal to

1/2-- 1/2(1 +a)% /a
In general, if (E) has an asymptotic form

n

(A.1.7) }(e)-}* + E lj(E-E)j+jn+(E-E)"+( +o(1)), 0<a_<l

j=l

and if (=(E) is tangent to the curve E=E(() of nth order at =*, we can see that
the limit of (1) tends to (n+ a)alr/2/a}/2. This means that the more two curves (- ((E)
and E-E() have a close contact, the more the region of x where
lim e, e=(,) u(x; E,((E))=ut((*), extends. Let us denote the limit of the left-hand side
of (A.I.1) by k, then the point of discontinuity x can be written as

(A.1.8) xc--P(k ),
where P(k)-k/1 + k. We note that P(k) is an strictly monotone increasing function
for k_>0 satisfying P(0)-0 and limkr P(k)-- 1.

Thus we obtain
PROPOSITION A. Let -(E) be a path in T which satisfies

lim (E)-*.
E E(I*)

Then, if the path -(E) is not tangent to both curves E-E() and E-Er(), we

have

lim u(x;E,li(E))-ut.(x),
EtE(*)

where u,(x) is the step function which appears in Lemma 3.1. If the path -(E) is
tangent to the curve E-E() (resp. E-E()) of nth order (and not of (n+ 1)th
order) at -*, and (E) has an asymptotic form such as (A. 1.7), then we have

lim u(x;E,li(E))-{ ut(li*)’ O<-x<Xc’
E$E(*) Ur(*), Xc<X<_ 1,

where x.-P((n+a)alr/2/a}/2) (resp. P(alr/2/{(n+a)a}/2})). Especially if -(E) is
tangent to the curve E-E() (resp. Er()) of infinite order at -*, we have

lim u(x;E,li(E))- ut(li*)’ O_<x<l (resp. x-O),
E’E(*) /gr(*), X-- (resp. 0<x< 1).
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Appendix 2. Invertibility of the linearized operator for small d. In this appendix
we prove Lemma 5.4 in 5 through a sequence of lemmas. First we show a lemma
which is a direct consequence of Lemma A.2.2 which will appear later.

LEMMA A.2.1. L,o is invertible for 0< e <_ for some positive constant , where

d 2

L,o e2+fu( Uo(X" e) (e))
dx 2

and

(Uo(X; e), (e))-lim (u,(x; e), v,(x; )).
aS0

COROLLARY A.2.2. For any with 0< < f:, there exists a positive constant -()
such that L, is uniformly invertible for <_ <_ , and 0 <_ <_, where

d 2

L ez+fu(Us(X" e) v(x" e)),a dx 2

Let us consider the following inhomogeneous linearized system of equations:

(LP) , d
gu

ot dx 2 - gv w

z

F

w(0) w(1) zx(O) z(1) :0,
where (F,F2)(C([))2, and (w,z)(C2([))2 are unknown functions. If we can solve
(LP) uniquely for any (F,F), it follows from Banach’s theorem that the linearized
operator Q is invertible. In what follows we solve the problem (LP) for e _<e_< and
0_<a_<a as defined in Corollary A.2.2. Operating (L,)- to the first equation of (LP),
we obtain

w+ ( ( fvZ ) r,
Substituting this into the second equation of (LP), we have

(A.2.1) --dZxx+gu{(L,,)- F,-(L,,)- (fvZ)} +gvz-F2
Since the operator d2/dx 2 is not invertible under the zero flux boundary conditions, we
decompose z as follows:

Z=/+Z*,

when is a constant function and fiz* dx--O. It is convenient to introduce the
projection P from C([) onto the range of the operator dZ//dx 2, i.e.,

Pu u fudx for u C([ ).

Using this projection, we obtain an equivalent system of equations to (A.2.1):

(A.2.2)a

(A.2.2)
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The equation (A.2.2)a is uniquely solvable with respect to z*. We denote its solution by
z*(e, a, rl; F, ,F2). Substituting this into (A.2.2)b, we obtain the following equation"

(A.2.3)

It is easy to see that G and 8G/8 are continuous functions for ee and
Noting that z*(e, 0,; F,F2)=0, we can see that if the coefficient of with a-0 does
not vanish for some e’, i.e.,

(A.2.4) (-gu(L,o)-’ fv + gv ) dx O,

then the implicit function theorem tells us that there exist positive constants 3 and a2

(Ga ) such that (A.2.3) has a unique solution (e, a; F, F2) for e’ 3 G e e’ + 3 and
0GaGa2. This implies the uniform invertibility of , on [e’-3,e’+3]X[0,a2]. We
can see from the above discussion that the problem (LP) for a-0 is given by

n ft(guW+gvn) dx fzF2dx
where is a constant function.

We will show in the following that (A.2.4) does not vanish for all small e, which
leads to the conclusion of Lemma 5.4. In order to do that, it suffices to prove the next
two lemmas. Here we introduce the orthonormal eigenfunctions in L2(I) and corre-

nsponding eigenvalues ( (x), % )n0 of L,0 , with (0) x(1) 0.
LM A.2.2.
i) O<o<Kexp(-C/e) as e O.
ii) o-Q as e 0 for n 1,

where K, C and C2 are positive constants independent of e.
La A.2.3.

f(C,o)-’fv- a 0.

Proof of Lemma A.2.2. For simplicity, we take the interval I in the space direction
to be (-1, 1), and the point of discontinuity x* (see Theorem 3.3) to be zero. Applying
the change of variables y-x/e to the problem L,0-, we obtain an eigenvalue
problem on (- 1/e, 1/e),

(EP) d
dy:

subject to zero flux boundary conditions. Letting e $ O, we have an eigenvalue problem
on

(EP)o
d2

where u(y) is a strictly monotone increasing function which is a uniform limit of
Uo(ey; e) (we extend u0 as a constant continuously to the outside of (-l/e, l/e) and
identify these two functions) and satisfies

(1.2.5) lim u(y)-u,(*), lim u(y)-u(*).
y-m
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We can see from (A.2.5) that -fu(U(y),l*) is a potential well. We denote the orthonor-
mal system and the corresponding eigenvalues of (EP) by {+[(y), o[}=0. Note that
eigenvalues remain the same by the transformationy= x/e and qn(y) 2’(ey). Since
our problem is autonomous and (e) is a constant function, (EP) with boundary
conditions of Dirichlet type +(1/e) +(-1/e) =0 always has simple zero eigenvalue as
a principal eigenvalue, and the corresponding eigenfunction is given by (d/dx)u0(ey; ).
After normalization we denote this eigenfunction by +,,z(y). Therefore we can see from
the shape, of the potential -f,(u(y),t*) that (EP)0 has a simple .zero eigenvalue (as a
principal eigenvalue) and the corresponding eigenfunction qg(y) does not change sign
on (-z, ), decaying in exponential order as lyl +. Moreover, both principal
eigenfunctions q0(y) and 0+2,z(Y) converge uniformly to %0(y) as e $ 0.

Now, byusing the well-known property of the Wronskian, we have
lie L lie

;’D(1.2.6) W(lTD,+eO)_l/e--oeO ’/ (y)4,(y)dy,

where W(., .) denotes the Wronskian. Since the potential -fu(u(y),l*) is of well type,
we can see by using the comparison method that

(A.2.7) q ( +1)-e resp. e,D E ) _<Cexp( C4 ase $0,

where C and C4 are positive constants independent of e. Substituting (A.2.7) into
(A.2.6), we obtain part i) of Lemma A.2.2. The second inequality of Lemma A.2.2 is a
direct consequence of the fact that zero is the simple principal eigenvalue of (EP)0.

Proof ofLemma A.2.3. Let us expand fv by the orthonormal set (qn }:

iv 2 n.
n--O

Then we obtain
OO

(A.2.8) (L,o)-l fv
n=0 0"2

Integrating (A.2.8) on I, we have

(A.2.9) f(L’)-’fvdx- fo fckdx +f f,rhndx

By using the Schwarz inequality and the ParsevN relation, the second term of (A.2.9) is
estimated as follows:

(A.2.10) f"_--q,dx< fvll
--1 0 -- L(I)"

It follows from Lemma A.2.2 that the right-hand side of (A.2.10) is bounded indepen-
dently with respect to e.

To determine the asymptotic behavior of the first term of (A.2.9), it is convenient
to introduce the following notation:

0()- (ulu(h,(),h2()),fu(U,)>O},
OS(e,)- {ylf(uo(ey;e), (e))_>0).
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OS(e,) denotes the interval where the eigenfunction kfl behave in oscillatory manner.
Since 0() is a compact set contained in (h (), h 2()) (see (A- !)), we can see from
(A-6) that there exists a positive constant x such that

fv( U, :i <__ -x for uO(:i), 1-*1-<-.
Therefore we have

i,- f,iv(Uo(X; ), (Uo( y.
_1/

<-"’l=fo (y)dy
s(e,)

< -C5el/2,
where C is a positive constant independent of e. Finally we have

dx-el/2fi/+:(y)dy>C6e’12
-1/e

where C6 is a positive constant independent of e. Combining these results and Lemma
A.2.2, we have

fe2+ C,C6E C,C6E
o dx-- - aseo Kexp (-CI/)

Thus we obtain the conclusion of Lemma A.2.3.
Finally we have to check the following

(A.2.11) g,(L,o)-lfdxl+ as e ;0.

We can see from (A.2.9) and the continuity of the integral with respect to e that it
suffices to show the following.

However (A.2.12) holds for almost all nonlinear g. In fact, if the left-hand side of
(A.2.12) vanishes, we can perturb g slightly so that (A.2.12) holds for the new g.
Therefore, generically speaking, the condition (A.2.12) always holds. Equation (A.2.11)
implies that (A.2.4) does not vanish for all small e, which completes the proof of
Lemma 5.4.

Remark A.2.1. In many applications (see Examples and 2 in 0), Igl is bounded
away from zero, i.e., Ig,(u(y), *)1>0 for some positive constant . In this case it
is clear that (A.2.12) holds since g(y) has a definite sign.
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Note added in proof. As for the open problems stated in the concluding remarks,
the author has recently succeeded in showing the stability of singularly perturbed
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solutions and the asymptotic behavior of the global branch as d $0 for the no satura-
tion case. For the details, see the following paper and the forthcoming ones: Y.
Nishiura, Global structure of bifurcating solutions of some reaction-diffusion systems and
their stability problems, Proc. Fifth International Symposium on Computing Methods in
Applied Sciences and Engineering, North-Holland, Amsterdam, 1982.
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ON THE COMPARISON OF SOLUTIONS OF RELATED PROPERLY
AND IMPROPERLY POSED CAUCHY PROBLEMS
FOR FIRST ORDER OPERATOR EQUATIONS*

KAREN A. AMES"
Abstract. Solutions of Cauchy problems for certain classes of first order operator equations are com-

pared with solutions of associated perturbed equations. We do not require either the original problem or the
perturbed problem to be well posed in the sense of Hadamard. The logarithmic convexity method is used to
derive H/51der stability inequalities relating solutions of the perturbed and unperturbed problems in a suitably
chosen measure. Several special cases are treated in order to demonstrate how the Lagrange identity method
can be employed in the comparison of solutions as well as to indicate how certain data assumptions and
requirements on the solutions can be relaxed.

1. Introduction. The aim of this paper is to compare solutions of Cauchy problems
for operator equations of first order with solutions of associated perturbed equations.
Neither the original problem nor the perturbed problem is required to be well posed in
the sense of Hadamard. The situation in which the original problem is improperly
posed and the perturbed problem well posed is referred to as the quasireversibility
method (see Latts and Lions [9]). One ill-posed problem which has been extensively
studied by this method is the initial-boundary value problem for the backward heat
equation (Miller [11], Ewing [6], Colton and Wimp [5], Showalter [14], [15]). In several
physically interesting problems, however, the perturbed problem is the one which
models the system under consideration and this perturbed problem may itself be ill
posed (e.g., see Coleman, Duffin and Mizel [4]). In such cases, both the perturbed and
unperturbed problems are determined a priori and one has no freedom in choosing a
comparison problem.

Much of the past work on the quasireversibility method has dealt with problems
for which an exact formal representation of the solution of both the perturbed and
unperturbed problems can be given. Other results depend on special properties of the
operators (e.g., Miller [11]). Our goal here is to obtain more general results which are
not so strongly dependent on the form of the operators in the equations and do not
require the perturbed problem to be well posed.

To make these ideas more precise, we shall be interested in comparing the solution
of an original Cauchy problem of the form

(1.1) Put+Mu=F(t,u), t [0, T), u(0) =fl,
with the solution of a perturbed problem of the form

(1.2) Pwt+Mw+eNlw=F(t,w), t [0, T), w(0) =f2
or

(1.3) Pwt+Mw+eN2w=F(t,w), t[0, T), w(0) =f2.
Here e is a small positive parameter lying in an interval 0_<e-<e0. The definitions

and properties of the operators and spaces involved in (1.1)-(1.3) will be made precise
in the next section. One wishes to determine a stabilizing constraint set such that if u

Received by the editors August 4, 1980, and in revised form July 2, 1981. This work was partly
supported by .the U.S. Army Research Office.

Department of Mathematics, Iowa State University, Ames, Iowa 50011.
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and w are both elements of this set and iff and f2 are "close" in the appropriate sense,
then the solutions u and w will be "close" over a determinable time interval. Of course,
if the equations describe a real physical problem, the constraint set must be realizable.

It is important to note here that for given data, the solutions of these kinds of
problems may fail to exist for some or perhaps all values of e in the interval 0_<e_<e0
which is under consideration. If we allow for small variations in the data over this
range of e values, then we can in part overcome this difficulty.

Logarithmic convexity arguments are used to compare the solution of problem
(1.1) (assumed to exist) with the solutions of either (1.2) or (1.3). We will show that if u
and w belong to the appropriate spaces of functions, then their difference in a suitably
chosen measure is of order e to some positive power which is a function of for
O<_t<T.

We emphasize that in order to establish our stability inequalities, the solutions of
the problems under study are assumed to exist. It is not our purpose in this paper to
discusss the question of existence. If we were assured of the existence of the solution w
for a sequence of values ek tending to zero such that 0<ek-<e0 and of the existence of
the solution u (in the appropriate space), then our results indicate that w would
converge to u in the chosen norm through this sequence of values as ek 0.

Sections 3 and 4 of this paper are devoted to the development of stability inequali-
ties for the problems specified in 2. We then consider several special cases in 5 in
order to indicate how the Lagrange identity method may be applied to certain equa-
tions.

In a forthcoming paper, we shall present some generalizations of results that are
established in [1] for second order operator equations. This subsequent paper will treat
Cauchy problems for an equation of the form Putt+Lut+Mu-F(t,u, ut) and the
comparison equation Pwtt + Lw +Mw+ eNw F( t, w, wt).

2. Statement of problems. Let H be a real Hilbert space with inner product (.,.)
and norm l]" ]1-(’, .)/2. We define XC_H to be a dense linear subspace of H and
denote by P and M two linear operators (bounded or unbounded) which map X into H.
We consider the following (generally ill-posed) problem

(2.1) Put+Mu-F(t,u), t [0, T), u(0) =fl,
where fH and T>0. For the development of our results, we make the following
assumptions"

(i) the operators P and M as well as the space H are independent of t;

(ii) P is symmetric and there is a constant ?>0 such that 2(pq, q,)_> 4’ 2 for all
qX;

(iii) M is symmetric;
(iv) u C([ 0, T); X);

(v) the nonlinear term F(t,u) satisfies, for Ul,UzCl([O,T);X), the uniform
Lipschitz condition

F(t, Ul) F(t, u 2 )ll _<x Ul- u2

where x is a nonnegative constant.

Here uCl([ 0, T); X) means that u’[ 0, T) H is differentiable in the strong sense and that for each
t[ 0, T), u, utX.
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Our goal is to investigate the relationship between the solution of (2.1) and the
solutions of each of the following two problems:

(2.2) Pw +Mw+ eN,w F(t, w), O, T), w(O) --f2,

(2.3) Pwt+Mw+eU2wt=F(t,w), t [0, T), w(0) --f2.
Here f2H and e is a small positive parameter. We assume that N and N2 are
symmetric linear operators mapping X into H and that they are independent of t. In
addition, we impose the restriction that N2 is positive semi-definite. The solutions of
both (2.2) and (2.3) are assumed to belong to the space C1([ 0, T); X).

For the purpose of comparing the solutions u and w, we define v =--w-u so that
v C([ 0, T); X) satisfies one of the following problems, depending upon whether (2.2)
or (2.3) is under consideration:

Problem A.

Pvt+Mv=-eNlw+F(t,w)-F(t,u ), t[0, T),
Problem B.

Pvt+Mv=-eN2wt+F(t,w)-F(t,u), t [0, T),

v(0) --f.

where

(3.3)

Here the Cauchy data f=f2-f are assumed to be small in the sense that there exist
nonnegative constants ki, 1,...,4 such that (Pf,f) <_ kl e2, I(Mf,f)[<_ k2e2,
I(Nf,f)l<_k3 e, and (N2f,f)<_k4e.

In the following two sections, we will develop stability inequalities for Problems A
and B using a.logarithmic convexity argument which has been widely employed in the
study of improperly posed problems (see Payne [12]). We propose to prove that if u and
w belong to the appropriate spaces of functions, then their difference v in a suitably
chosen norm is of order e to some positive power which is a function of for 0_< < T.

3. Inequalities for Problem A. In this section we prove the inequality which, under
certain stabilizing conditions, yields continuous dependence estimates for Problem A of
2. We now establish the following theorem:

THEOREM 1. Let u be a solution of (2.1) such that suPtto,r)llNlUll<_R for a
prescribed constant R and let w be a solution of (2.2). Assume also that a solution v of
Problem A satisfies ff(Pv, v) d,l <-R2 for a constant R 2 independent of e. Then there exist
computable constants C and R independent of e such that on any compact ,subinterval of
[O,T)

(3 1) f’(Pv v)dn<fe2[1-(t)]R2(t)
.0

where O <_ 6( ) <
Proof. Consider the functional

(3.2) d(t)-fot(pv,v)dl+(T-t)(Pf,f )+O2,

Q2_ fle232R + fllel (N1 f,f )l + f12( Pf,f ) + fl3l( Mf,f )l
and/3, fl,/32 and f13 are positive constants.

We show that as a function of t, tI) satisfies a second order differential inequality
of the form

(3.4) "- ( (I)’)2 -CI(I)(I)’ C2(I)2

v(0)=r.
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for computable, nonnegative constants 1 and c2. The solution of this differential
inequality then leads to the desired bounds. We have

(3.5)
d
dt -(Pv,v)-(Pf,f )-2 (Pvn,v)dl.

Substitution of the differential equation for v into the above expression yields----- 2 (Mv,v)drl-2e (NlW,V)dvl+2 (F(),w)-F(l,u),v)d.

A second differentiation followed by a reintroduction of the differential equation,
substitution of u/ v for w and integration results in

dt 2

(3.6)
fo’ f0’--4 (P%,%)drt+4e (NlU,Vn)d-2e(NlU,V)

-4 fo’(F(rt,w)-F(rl,u),vn)drl
+ 2( F( t, w)- F( t, u), v) 2(Mf,f)- 2e(N f,f ).

If we apply Schwarz’s inequality to the terms 4ef(NlU, Vn)d and-2e(NlU, V ) and use
the assumption that X2(p, )_> q, 2 for a positive constant , we find that

dt 2

To bound the two terms involving the function F(t, w)-F(t,u), we make use of
Schwarz’s inequality, the Lipschitz behavior of F and the hypothesis on the operator P
to obtain the following inequalities"

(3.8) 2(F(t,w)-F(t,u),v)-211vll IIF(t,w)-F(t,u)ll
_> -2x v 2 _2x)k2(pv, v)

and

(3.9)

1/2
tllvll dtllvn d/ /-4 (F(,w)-F(rl,u),vn)drt>---ax 2 2

In view of inequalities (3.8) and (3.9), we can rewrite (3.7) as

d2_>4 t(pv,,vn)drl 4eX tllNull2dr (evn,vn)dn
1/2

t(pl )d’-2eTtllN, ull(Pv,v)/2-4X t(pvn,vn)dl ,v

2xX2(Pv, v 2(Mf,f ) 2e(N f,f ).
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If we restrict u to belong to that class of functions satisfying sup/[0,T)l[ NlUI[--<Rl for a
prescribed constant R l, we are led to the following inequality"

" So’ (So’>_4 evn %)drl-4e,Riv (P% vn)d
dt 2

(a. o)
2aR, (, )’/- 2a(, )

-4xX(’(Pv,v)d)l/(’(Pv,v)d) l/

2(Mf,f ) 2e(N f,f ).
The quantity ,,_(,)2 can now be formed from expressions (3.2), (3.5) and (3.10).
We find that
(3.11)
e,"-(’)s+4’(ev,v)n-4x (f,v)n

/
--2eXRI(P,)I/2--4x ’(Pvn,vn)dn )dn

xe(ev, v ) (f,f ) ( f,f ),
where we have set

and Q -(r- t)(Pf,f)+ Q. We shall now indicate how the term

-4X(fd(P%,%)dn)/(fd(Pv,v)d)/ can be bounded below by an expression of
the form-S-’-(Pf,f). We have

2xX2{S2+(,)2}l12_2xX2(Isl+l,l)"
We note that S is nonnegative as a result of Schwarz’s inequality and that

I,’(ev,v)+(ef,f)o’+ 2(ef,f).
Hence,

D> -2aCS 2X2’-4X (U,f ).
After an application of the arithmetic-geometric mean inequality, we find that

-x,,(,ll/- x+(e,
where B is a positive constant. Noting that (Pv,) ’+ (Pf,f), we can rewrite (3.11)
as

4x+? x+? (e,I)+a(/,/l
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If we complete the square on the appropriate terms in the above inequality and discard
any nonnegative terms, we obtain

(
(fleZ2RZl+2e(Nf,f)+ 6x)2+- (Pf,f)+2(Mf,f)

Recalling the definitions of Ql2 and Q2 and observing that t>_Q>_Q2>_fle22R, we
find that the last two terms to the right of the above inequality are bounded below by
-al2 for a computable, nonnegative constant a I. In fact, if we set fl =f13 =2 and
fl2--6Xk2+ in (3.3), then a 24++ 1. Thus, there exist computable nonnegative
constants c and c2 (e.g., c-4X2+, c2-a) such that the given (t) satisfies an
inequality of the form (3.4).

We remark here that "computable" means that the constants are known functions
of T and the parameters appearing in the hypotheses on the operators and the function
F as well as any coefficients introduced by the application of. the arithmetic-geometric
mean inequality.

It can be shown (see Levine [10]) that if a solution (t) of (3.4) vanishes at some
value o in the interval [0, T), then it must vanish identically in [0, T). We may thus
assume without loss of generality that (t)>0 for all t[0, T). It follows that the
change of variable o e -C’’ transforms (3.4) into

(3.12)
d 2

d2 {ln[,o-c:/’] } >0.
Integration of (3.12) by means of Jensen’s inequality yields (in terms of the variable t)

(3.13) O( ) <_e-2t/c’[(0)]’-(’)[(T)e2r/’

where

--e -ct

--e -c’T

Since O(0)-Qt2 involves only terms of O(e2), it follows that (0) is O(e2). As has
been noted previously (see Pucci [13], John [8]), it is not sufficient to have (0) small in
order to obtain from (3.13) a stability inequality on compact subintervals of [0, T). To
ensure that (t) will be small for 0<t< T, we must restrict the class of admissible
solutions v(t). A suitable stabilizing class is clearly indicated by (3.13), i.e., the set

where R 2 is an a priori constant independent of e. It follows that we can then compute
a constant R such that

O(T)ec2r/,R,
and inequality (3.13) leads to the result

O( ) _< e-Ct/c’o[’-a(t)]R 2(t)3
from which the assertion of the theorem follows immediately.
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4. Inequalities for Problem B. An analysis similar to that employed in the previ-
ous section enables us to establish an analogue of Theorem for Problem B.

THEOREM 2. If U is a solution of Problem (2.1) satisfying suPt[0,T)IIN2u _<---Ro and
if v is a solution of Problem B which lies in the class of functions L--{v
cl([ O, T),X)" ff[(Pv, v)+e(N2v, v)]d,l<-Rl }, then the following stability inequalities
for in the range 0<_ < T hold:

(4.1)

(4.2)

fot( ev, v) d’l" AE2[1

fot( N2v v) drl<Ael-2(t)R2(t)2

Here A and the R (i 0, 1,2) are constants independent of e and 0 _< i(t)< 1.
The proof of this theorem rests on the application of logarithmic convexity argu-

ments to the functional

(4.3) (t)_fot ( ( Pv, v) +e( N2v, v) } d,l+ (T_ t){ ( pf,f ) + e( N2f,f ) } +Q2,

where

(4.4) Q2-fle2X2R2o+flle(N2f,f )+fl2(Pf,f )+fl31(Mf,f )l
and/3, ill,’" ",f13 are appropriately chosen positive constants. Since this functional can
be shown to satisfy a second order differential inequality of the form (3.4), the desired
stability estimates (4.1) and (4.2) can be obtained under the hypotheses of the theorem.
More precisely,

(4.5)
d
dt --(Pv’v)+e(N2v’v)- ((Pf,f )+e(Nf,f ))

Use of the differential equation for Problem B leads to the expression

d
2 (Mv,v)drl-2e (Nzun,v)dl+2 (F(l,w)--F(l,u),v)dl.

We then find

fo’ fo’=4 {(Pvn,vn)+e(N2vn,vn)} drl+4e (N2un,vn)dl-2e(N2ut,v)

+ 2( F(t, w)-F(t,u), v)-4 for( F(I, w)-F(I,u), vn) dl- 2(Mf,f ).

If we make use of assumptions (ii) and (v) as well as Schwarz’s inequality and the
restriction on the solution u(t), we generate the following inequality for d2/dt2:

(tt 2
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We now form

"-- (’)2_>$2 +4QI2 fot(pvn,vn)drl-4eXRoVd t(pvn,vn)d’o

(4.6) 2eXR0( Pv, v )1/2_ 2xXa ( Pv, v)

,v -,(,f).

Here

S2--4[ fot { (pvn,vn)+e(N2vn,vn) } drl] fot{ (Pv,v)+e(N.v,v) }

--4 t((pvn,v)+e(N2vn,v))d

is nonnegative as a result of Schwarz’s inequality and we have written Q=
(T--t)((Pf,f)+e(N2f,f))+Q. Application of the arithmetic-geometric mean and
Schwarz’s inequality to appropriate terms in (4.6) yields

,e"-(e’ls-x,s+4’(,)e-4Xo, ’(,)n

4x+ ,- ,x+? ((f,II+(,I)

+(I,I)+Bx].
Upon completion of squares, the previous expression leads to the inequality

"-(’)-c’-c,
where c and c are computable, nonnegative constants. Hence, it follows that for
Ot<T

(4.7) (t)<_e-t/,[(o)]l-(’[(T)er/",](t,
where 8(t)-(1-e-"t)/(1-e-"r). In the event that v, inequality (4.7) contains
the information that

( ) <_Aet -(t)IRn(’).
for computable constants A and R2 independent of e. This completes the proof of the
theorem.

5, Some special cases. In order to establish the theorems of 3 and 4, we made
use of the logarithmic convexity method. Although this method is more widely applica-
ble than the so-called Lagrange identity method (see [12]), it is nevertheless the case
that in certain special classes of linear problems the latter method requires less severe
data assumptions. In this section we specialize the operators F, N and N2, sketch how
these specializations lead to a less restrictive constraint class requirement and demon-
strate how data assumptions can sometimes be relaxed if we employ the Lagrange
identity method in the comparison of solutions.
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Throughout this section we shall assume that F is independent of the solution u.
The general linear problem of the form F=pu+d(t) where pH is independent of
and H for all t[0, T) may be reduced to this case by merely redefining the
operator M as M-37I-pI.

In the following examples we assume that P=I and, unless otherwise indicated,
retain hypotheses (i)-(iv) as well as the requirements on the operators N and N2.

5.1. Problem A with N =M2 and F--=0. The first problem with which we deal is

v,+Mv=-eM2w, t [o,r) v(0) =f.
We introduce a class of functions 6b= (q, cl([ 0, T),X) fd* ]lq,]] 2 dv/_<m2) for a pre-
scribed constant rn and some t*> T. Our results in this case can be stated in the
following corollary.

COROLLARY 1. Let u and w be solutions of (2.1) and (2.2), respectively, with P= I,
F----O, N --M2. Ifu6 and if w lies in that class offunctions for which ff llwllZdi<_n 2

where n is a constant independent of e, then the solution of (5.1) satisfies the following
stability inequality for 0 <_ < T:

(5.2) tll v 2 dl< Ce2(1-t/T)R22t/T"

Here C and R 2 are constants independent of e.
The proof of this corollary via the logarithmic convexity method is similar to

that of Theorem 1. The functional dP(t)-f[[v[[Zdl-k-(T-t)[[f[[Z+Q 2, where Q2__
flleZR -k- 22 mfl 2 _1_ 3 f 2 %_ 4 mf 2, can be shown to satisfy an inequality of
the form (3.4) with c-0. To establish this result, we use a slightly different expression
for d2tb/dt 2 than previously cited. Instead of (3.6), we take

(5.3)
d2=4 t[Ivnll2dl+2e t(M2u vn)dl-2e (M2un v)d
dt 2

2(Mf,f ) 2ell Mf 2_ 2e(Mf, Mf ).

The desired differential inequality is obtained by employing the Schwarz and arith-
metic-geometric mean inequalities in (5.3) and using the resulting expression in our
calculation of ,,_(,)2. The result is also contingent upon a restriction of the
solution u to an appropriate class of functions which will ensure that terms of the form
ff) llM2unllZdq and fdllM2ull2drt are bounded for t[0, T).

We show here that if u 2t and if its initial data satisfy a particular boundedness
condition, then the previously indicated integrals are bounded. To this end, we intro-
duce a function ,(t) C6 (t >0) defined as follows:

(5.4)
y(t) t, O<-t<_to <- T,

v(t)O, t>t1.

O<_y(t)<_l, to<_t<_t,

Then we have

tllM2unll2dvl "y(l)llM2unll2dq.

Noting that 3,()(t)-0 (for x-1,...,6) at both limits of integration and recalling that
M is a symmetric operator, we find that repeated substitution of the differential
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equation ut-Ji-Mu-O (now assumed to hold for 0_<t<tl) and integration by parts
yields

_1 fo-(M3u,M2u)It=o+’ V’(n)(M3u,M2u)dn

,, M

where O-(M3f,Mf). Since r(i(t) is bounded for t0, it follows that if we require
uff (choosing t*-tl) and 0 to be bounded, then we can compute a constant R such
that fdllMunlldnR. In a similar way, we can compute a bound for fdllMaulld.

Remark 5.1. If M is a negative semi-definite operator, then the data term 0 is
nonpositive and can consequently be discarded from the bounding inequality.

In addition to the restrictions on the solutions u and w, we must also assume that

f and My are O(e) and that Mf for a prescribed constant in order to
obtain (5.2).

The result (5.2) can be deduced from a Lagrange identity analysis of problem (5.1)
and, as we shall see, the requirements on the initial data can be somewhat relaxed. Let
us assume that v* is any solution of the adjoint equation of (5.1), that u* satisfies the
equation u-Mu* and that w*- u* +v*. For such functions, we have the following
identity"

which, upon integration, leads to the equation

((v u*)-(v* u))
o

If we assume Ot2t<T and choose v*()-v(2t-) and u*()-u(2t-), we find
that

en.
0

Application of Schwarz’s inequality followed by an integration from 0 to yields

After using Schwarz’s inequality again, we can manipulate the previous inequality to
obtain

(5.5)
+ et v 2 dn M2 U 2 dn
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Thus, 2 if u66" for t*> T, fllwll2dtn2 and the initial data are small in the sense
that f II- O(e), then there are nonnegative constants C and R such that

(5.6) tllvll2d<_CeR, O<_t<_-.
Here R is such that forllvll2dl<_R2. HOlder continuous dependence on the data for
[ 0, T) can be generated using (5.5) and (5.6) (see Payne [12]). Hence, we see that our

stability results for this particular case are actually obtainable under somewhat less
restrictive conditions on the initial data than needed in the logarithmic convexity
analysis.

One example of this case is the choice M=A, the Laplace operator. It is this
prototype that Latts and Lions used to illustrate the method of quasireversibility. If
we assume the equations for u and w hold in a bounded domain D C_Nt with a
sufficiently smooth boundary 0D and if we take as our boundary conditions u(x, t)-O
and w(x, t) Aw(x, t) 0 for x OD, then the resulting initial-boundary value problems
can be readily compared using the previous arguments. The results of Corollary thus
validate the quasireversibility procedure in this particular case. We note that since A is
a negative operator, the observation of Remark 5.1 is valid and allows us to establish
the stability inequality under less restrictive data assumptions. In addition, the a priori
requirement that fllwll2d<n in Corollary can be eliminated in this case. In fact,
this restriction can be dropped whenever w satisfies an equation of the form wt=
-[eG(M)+M]w where G(M) is a nonnegative operator and M is nonpositive. In these
situations, it is possible to bound ff w d in terms of for u = d.

Remark 5.2. The results of Corollary can be easily generalized to include the case
in which N Ek.J= cM.

5.2. Problem B with F=(t). We now consider problem (2.1) in the case where F
is independent of the solution u and compare its solution with that of problem (2.3). In
our analysis, we set F=(t) where Y is a prescribed vector-valued function. Using the
Lagrange identity method, we shall prove the following corollary. We remark here that
a proof via the logarithmic convexity method is merely a specialization of the argument
used in the proof of Theorem 2.

COROLLARY 2. Let u and .w be solutions of (2.1) and (2.3), respectively, with P=I
and F=(t). The initial data f corresponding to the difference problem is required to
satisfy f =O(e) and IINzf =O(1). In addition, we impose the requirements that

fd* N2 Z d,l <_n2 for a constant n and t*> T and that the operators M andN commute.

If u belongs to that class of functions defined by the conditions that fd*llNzulldvl<_m
and that the difference v w- u satisfies ff v 2 dl <-m for prescribed constants m and
m2, then it follows that for in the range 0 <_ < T

/"11 v o( E2(l-tIT’ ) and
"0 "0

Proof. We define v* and u* to be solutions of the respective adjoint equations
corresponding to the special case of Problems B and (2.1) under consideration and take
w* v* + u*. Then, we have

o =fo’{ (v,, +Mv*

* d,.

We must again require that u satisfies Utt--Mu-O for 0_<t<tl
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We again assume O<t<__2t<T; then the choices v*(l)=v(2t--rl) and u*(,/)=
u(2t-,/) allow us to write the previous expression as

IlvllZ+e(Nzv,v)<--(v(2t),f )+e(N2f, v(2t))+e tl(v(rt),Nzu,(2t-l))[dl.
Using Schwarz’s inequality and integrating both sides from 0 to t, we obtain after some
manipulation the following inequality

’(llvll2+e(N2v,v)} dn [11 fll+ellN2fll] f’llvll2dn
0

.7)

if we introduce a function (t)C (tO) as defined in (5.4), we can show by
substituting the differential equation for u and judiciously applying the arithmetic-geo-
metric mean and Schwarz inequalities that

0(5.al
B+ Nud+ Nad,

where B=(au,NMu)l=o and 1 and are nonnegative constants which are compu-
table from the bounds satisfied by ’(t) and "(t). We note that inequality (5.8) was
obtained under the assumption that NM MN. Hence, if we require B to be bounded,
the hypotheses on u and in the corollary are sufficient to guarantee that

f Nunll dR for a constant R. In view of this bound and the given restrictions
on and the initial data, the desired results can be deduced from (5.7).

Remark 5.3. If Na M for a positive integer j or if N is a linear combination of
such operators, then it is possible to establish a bound for f N2un

2d by assuming
that u satisfies the weaker condition f* Ilulladm for a prescribed constant m and
some t* > T. In order to do this, several additional conditions must be imposed on the
function (). It should also be noted that if M is a negative se-definite operator,
then the data term B is nonpositive. Since it may then be dropped from (5.8), the
boundedness condition on the initial data for u is no longer necessary.

One example to which these remarks are relevant is that of M= =-N. This case
is of particular interest when is the one-dimensional Laplacian and is a scalar
function of alone because of its connection with models of such physicN phenomena
as clay consolidation (Taylor [16]) and nonsteady shearing flow in second-order fluids
(UuilgoI [71).

Equations of the type w+w-ew (t) also appear in the theory of seepage of
liquids in fissured rocks backward in time [2] and in a theory of backward heat
conduction in a material for which the conductive and thermodynamic temperature do
not coincide [3]. In the first case, the reduced equation (e =0) models seepage of liquids
under elastic conditions while in the second, setting e =0 leads to the classical heat
conduction problem (backward in time).

6. Cneluig remarks. In tNs paper we have assumed that solutions of the
equations under consideration are C([ O, T); X). However, results similar to those
obtained here can most certainly be established for weak solutions. For certain classes
of equations, it is convenient to work with appropriately defined weak solutions since
they may exist, whereas classical solutions may not exist. (See Payne [12] and the
references cited therein.)



606 KAREN A. AMES

At this point, the reader may ask whether there are other perturbations of problem
(2.1) which would also serve as good or perhaps better approximations: if the function
F is independent of the solution u, we can prove the,.same type of results presented in
this paper using a perturbed problem of the form

Pwt+Mw-ePwtt=3(t), t[0, T), w(0)=f2 wt(0)=g2.

These stability estimates are obtainable from a Lagrange identity analysis similar to
those exhibited in 5.

Whether or not one could prove similar results for equations with nonsymmetric,
time dependent operators or for more general nonlinear problems is another question
to be pursued. We propose to determine to what extent we could generalize the
operators in the equations considered here and still guarantee HOlder stability. If we
are also willing to work with weaker norms, then it is possible that the desired results
can be obtained for a fairly broad class of operators.

Acknowledgment. The author wishes to thank Professor L. E. Payne of Cornell
University for his encouragement, guidance and patience during the preparation of
both this paper and the dissertation from which these results have been taken.
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THE DIFFERENTIABILITY WITH RESPECT TO A
PARAMETER OF THE SOLUTION OF A LINEAR ABSTRACT

CAUCHY PROBLEM*

DENNIS W. BREWER"
Abstract. The differentiability with repect to a parameter of the solution of a linear inhomogeneous

abstract Cauchy problem is considered by employing the theory of strongly continuous semigroups. Criteria
for differentiability are developedwhich allow the parameter to appear in unbounded terms of the generator.
Sufficient conditions are given for the solvability of an inhomogeneous Cauchy problem with zero initial
condition by the variation of constants formula. These conditions are used to show that the derivatives with
respect to a parameter satisfy certain sensitivity equations in time. The results are applied to the differentia-
bility of the solution of a linear delay differential equation with respect to its delays.

1. Introduction. The purpose of this paper is to consider the differentiability with
respect to a parameterp of the solution of the linear abstract Cauchy problem

(1) x’(t):A(p)x(t)+u(t), x(0) =x0

Differentiability results of this type are required for the application of gradient meth-
ods to parameter identification problems for control systems governed by equations
which can be formulated as abstract Cauchy problems. (See [2] for an example.) In [6]
this problem is considered for solutions of (1) in which A(p) is of the form A + B(p),
where B(p) is a bounded linear operator. In the present paper we wish to prove
differentiability under assumptions which allow the parameter to appear in unbounded
terms. In [}2 we consider the differentiability with respect to p of the solution of the
linear homogeneous equation

(2) x’( ) :A(p)x(t), x(O) xo

In 3 we obtain similar results for the solution of the linear inhomogeneous equation

(3) x(O)=O.
In 4 we prove that under certain conditions these derivatives with respect to p satisfy
inhomogeneous evolution equations called sensitivity equations. Section 5 concerns an
application of these results to the sensitivity of the solution of a functional differential
equation with respect to multiple delays.

2. The homogeneous equation. Let P be an open subset of a normed linear space
with norm I’1, and let X be a Banach space with norm I1" II. For every p P, let A(p)

be a linear operator on D(A(p)) in X. Throughout this paper we assume
(HI) A(p) generates a strongly continuous semigroup S(t;p) on X.
(H2) D(A(p)) D is independent of p.
(H3) S(t;p)x -<Me’’t x II, x X, >_ 0, p P, for some constants M and 0

independent of p, x, t.
If x0 D, then the solution of (2) is given by x(t)--S(t;p)x0. We will consider the

slightly more general problem of differentiating S(t;p)x0 with respect to p for any fixed
x0 X. Differentiation will be in the sense of Frrchet.
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We will assume that A(p)-A +B(p), where A and B(p) both have domain D
and A is independent of p. Fixing PoP and T>0, we assume B(p) satisfies the
following hypothesis"

(H4) For every p P, there is a constant K>0 such that

TllB(p)S(t;po)xl[dt<_gllxll, xD.

Note that (H4) allows B(p) to be an unbounded operator (see 5). It does imply,
however, that the linear mapping x B( p)S(.; P0)X from D into Ll(0, T; X) is bounded
on D. Let F(p) denote the bounded linear extension of this mapping to D-X. Let [11 III
denote the norm in Ll(0, T; X). Concerning F(p) we assume the following:

(H5) There is a closed subspace Y of X such that
(i) F(p)xo Ll(O, T; Y) for every p P, and
(ii) for every e> 0, there exists > 0 such that

[F(po +h)y- F(po)Y[ll-<ell y II
whenever y Y and [h[ _<.

The next theorem gives sufficient conditions for the differentiability of S(t;p)xo
with respect to p.

THEOREM 1. Suppose (H1)-(H5) hold. In addition, suppose

(H6) F( p )xo is Frchet differentiable with respect to p at Po.
Then for every [0, T], S( t; p )xo is Frkchet differentiable with respect to p at Po and

fotS(t-s;Po)[DpF(po)Xo](s)ds 0<t<T.DpS(t;Po)Xo--

Remark. Before beginning the proof of this theorem, some comments regarding
hypothesis (H4) are in order. This hypothesis is clearly satisfied for bounded perturba-
tions as in [6]. It is quite similar to one of the hypotheses employed by Hille and
Phillips to obtain a perturbation series, namely

(H4)*
B(p)S(t;Po ) bounded on D for t>0,

f0TIIn( )S(t; )11 oat< o.p p0

(see [8, p. 394] and following). Note that (H4)* implies (H4). In 5 we will discuss an
important application to delay differential equations for which (H4) holds but (H4)*
does not hold. Of course the perturbation series approach given in [8] yields derivatives
of all orders for a semigroup with respect to a perturbation, whereas here we obtain
only the first. Generally speaking, (H4)* seems best suited for applications to parabolic
partial differential equations, whereas (H4) yields a perturbation theory applicable to
delay equations and perhaps more general forms of functional differential equations as
indicated in 5. Hypotheses (H4) may not be applicable to hyperbolic partial differen-
tial equations or neutral functional differential equations for which the solution opera-
tor has no smoothing properties in time.
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This paper deals only with a constructive method for a linear abstract Cauchy
problem. Differentiability properties for solutions of various types of nonlinear equa-
tions have been investigated using fixed point properties of uniform contractions, e.g.,
[7, 2.41.

The author is indebted to the referees for some of the remarks made here.
Proof. Choose x D, P0, Po+ h P, and let w(t) S(t; P0+ h)x S(t; p0)x, t_> 0.

Then it is easy to see that w is strongly differentiable and satisfies w’(t)--A( P0 + h)w(t)
+[B(po+h)-B(po)]S(t;po)x,t>_O, w(0)=0. Note that for

[B(po+h)-B(po)]S(t;po)x
=A(po+h)(XI-A(po))-’S(t;po)(XI-A(po))X- S(t;po)A(po)x.

Since A(po+h)(?I-A(po))- is bounded by the closed graph theorem, [B(Po+h)-
B( po )]S( t; po )X is strongly continuous in t. Therefore, by standard arguments (e.g., [9,
p. 488]), we have

(4) S( t; po+ h)x- S( t; Po)X:fotS( t- s; Po + h )( B( Po + h) B( Po ))S( s; Po )X ds

whenever po+hP, t>_O and xD. It now follows from the definition of F that if
x D then

(5) S(t;po+h)x-S(t;Po)x--fotS(t-s;Po+h)[(F(Po+h)x)(s)-(F(po)x)(s)] ds.

Since F(p) is a bounded operator from X into L(0, T; X), it is easy to see that both
sides of (5) are bounded operators on X, and therefore (5) is true for all xX.
According to (4) and (H3), if C--Mer, then

(6) II s( t; p0 + h )x- S( t; P0 )x II-< CI IF( p0 + h )x- F( P0 )xl I.
Let e>0 be given; then by (6) and (H5) there exists 3>0 such that if Ihl, then

(7) S(t;P0 + h )y S(t; P0)Y II-< e C y II,

for all y Y.Therefore, again by (H5),

fotll[s(t-s;po/h)-S(t-s;po)] [(F(po+h)xo)(s)- (F(Po)Xo)(S)] lids

(8) <_foteC 11( F( Po+ h )xo )(s ( F( Po )Xo )(s )ll ds

<_eCl[lF(po+h)xo-F(po)xol[I, O<_t<_T, Ihl<_.

According to (H6) there is a number *l (0, 3) such that

IIF(Po/h)xo--F(Po)Xo--DF(Po

where DeF(Po)-Dp[F(po)Xo] is a bounded linear operator from the parameter space
6 into L1(0, T; X). Let M1 denote the norm of this operator. Then if Ihl _< n and 0_< t_< T
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the above inequalities yield

--fotS(t--s;Po)[DpF(po)h](s)dsll]lS(t;po/h)Xo S(t;Po)Xo

fotll[S( ’-s Po ;Po Po P0<_ +h)-S(t s )][(F( +h)xo)(S)-(F(

+ fotlls(t-s;Po)[(F(po+h)xo)(S)-(F(po)Xo)(S)-(DpF(po)h)(s)]llds
-< CI IF( Po + h )xo F( Po )xol I+ CI]IF( Po+ h )xo F( Po)Xo- DpF( Po )hill
-<cI IF( po / h )xo F( Po )Xo- DpF( Po )hill+ CI IDF( Po )hill
+ cI IF( po + h )xo F( Po )Xo- DpF( Po

<_ eClhl /eCM Ihl + eClh
This inequality yields the desired result.

The conclusion of Theorem becomes more transparent if we define a "derivative"
of the unbounded operator B(p) in the following way.

DEFINITION 1. Let/( p)" (/(p)) C Ll(0, T; X) - LI(0, T; X) be defined by

@(/(p))-- (weLI(O,T;D)’B(p)(w(.))eL’(O,T;X)}
and ((p)w)(t)-B(p)(w(t)), a.e. t(0, T). We then define

’( po ) (’( po )) c’(o, T; x)-(;’(0, T; X))
by

and

@(B’(Po))- {weLl(O,T;D).we(R)((po+h)) for Ihl sufficiently

small and/( p)w is differentiable with respect to p at Po}

B’( po )w- DpO( po )w.
COROLLARY 2. Suppose the hypotheses of Theorem hold with xo D. Then

S( Po)Xo O(B,( Po )) and

DpS(t;Po)Xo=fotS(t-s;Po)[B’(Po)(S(. ;po)Xo)](s)ds, O<_t<_T.

Proof. Since xo D, S(. ;p)xo (R)(/(p)) for p P by (H4). Furthermore, by
definition,

[/(p)(S(. ;Po)Xo)](t)-B(p)S(t;po)Xo-(F(p)xo)(t).
Therefore, by (H6), S(. Po )Xo o(B’(Po)) and

B’( po )( S( Po )Xo ) DpF( Po )Xo.
The result now follows from Theorem 1.

3. The inhomogeneous equation. Suppose u L(0; T; X); then the solution of the
inhomogeneous equation (3), whenever it exists, is given by

x(t)=ffS(t-s;p)u(s) ds.
o
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We will now consider differentiability with respect to p of expressions of this form.
THEOREM 3. Suppose hypotheses (H1)-(H5) hold. Fix u EL(O, T; X) and define

Q(t;p)-fotS(t-s;p)u(s)ds O<_t<_T, pEP.

Also define a mapping G(p) on L(0, T; D) by

[G(p)w](t)=fotB(p)S(t-s;po)w(s)ds O<_t<_T, pEP.

Then G(p) may be extended to a bounded linear mapping on Ll(0, T; X). Suppose
(H7) G( p)u E Ll(0, T; Y), p EP and
(HS) G( p)u is differentiable with respect to p at Po.
Then Q( t;p is differentiable at Po and

DpQ( t;po )=f0ts( t-s;po )[ DpG( Po )u] (s)ds.

Proof. First we show that G(p) may be extended to a bounded linear operator on
L(0, T; X). If p EP and w E L(0, T; D), then

I( p)w I--foTfol ( P )S( t-- ;Po )w(s )11 ds dt

=fo i
r

B(p)S(t_s;po)w(s)[[dtds

forfor-s B( p )S( t; Po )w(s )1[ dt ds

-o o
[[B(p)S(t;p)w(s)[[dtds

_<fo w()ll a-

by hypothesis (H4). Therefore G(p) is bounded on L(0, T; D) and so has a unique.
bounded extension to L(0, T; X).

Suppose w E L(0, T; D). Po + h EP; then by (4),

fot[S( t-s;po+ h)- S(t-s;po)] w(s) ds

foCfo’-S(t-s-’r;po+h)[B(po+h)-B(po)]S(’;po)w(s)drds
=fotfot-’S(r;po +h )[ B( Po +h)-B( Po)] S(t-s-;Po)W(S)drds

by Fubini’s thebrem. Therefore

(9)
foS( t-s;Po+ h )[G( Po + h )w](s) ds-foS( t-s;po+ h )[G( po)W] ds

for O<_t<_T, wEL(0, T;D). It is easy to see that both sides of (9) are bounded linear
operators from L(0, T; X) into X. Therefore (9) must hold for all w EL(O, T; X). In
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particular, for w-u we obtain

(10)
Q( t;po + h )- Q( t; po )=lotS( t-s;po + h )[G( Po + h )u- G( Po )u] (s) ds,

O<_t<_T, po,Po+hP.

Let e >0 be given; then there is a i>O such that

IIIG( po+ h)u- G( Po )u-- [VpG( PO )U] I 8[hl

whenever Ih[_<& In particular, if M2 is the norm of DpG(Po)U, then

[[[G(po+h)-G(po)ul[l<-lhl(e+M2), [h[_<B.

Therefore, by (10), (H5), (H7) and (7),

l[ Q( t; Po+ h )- Q( t; Po )-lotS( t-s;Po ) ( Vpa( PO )U )hi (s ds II
_<fo’l[ Ix(t-, ;po + h)- x(t-,;po)] [(G(po + h)u)(s)-(G(po)u)(s)] IIds
+ fotllS( t-s Po)ll [[(G(po +h)u)(s) (G( Po) u)(s ) [VpG((po)u)h](s)J[ds

/ cI I (p0/ hli
_<ef(e / Mz)lhl / eflhl

for [h[ sufficiently small. This estimate yields the desired result.

4. Sensitivity equations..We now consider the question of whether for fixed h 62,
the derivatives [DpS(t;po)xo]h and [DpQ(t;po)]h are solutions of abstract evolution
equations. According to Theorems and 3, both are of the form f) S(t- s; Po)f(s) ds,
where f is [DpF(Po)Xo]h and [DpG(po)u]h, respectively. A function of the form
v(t)- fS(t- s)f(s) ds, where S is a Co-semigroup generated by an operator A, is
sometimes called a weak solution of the abstract Cauchy problem

(11) v’(t):Av(t)+f(t), v(0)-0.

Note that v is well defined on [0, T] if fL(O,T;X). Unfortunately, there exist

f C([0, T]; X) for which v can be nowhere differentiable, e.g., f(t)--T(t)x, xD(A)
works if A generates a (Co) group. Iff C([0, T]; X), then v is strongly differentiable
and satisfies (11). (See [9, Thm. 1.19, p. 488] or [12, Lem. 6.1, p. 215].) If S is
holomorphic [9, Thm. 1.27; p. 493], or if S satisfies S(t)XCD(A), t>0 [5], [13], then
this hypothesis on f may be weakened. In [1] it is shown that v satisfies (11) in a dual
space setting for quite general f.

In the present context we wish to show that v satisfies (11) a.e. without assuming
f C or S(t)XCD(A), t>0. Instead we will take advantage of the special structure of
S and f already employed in 2 and 3. In [10, Lemma 6.2, p. 136] it is shown that if
fC([O,T];X) and v(t)D(A), then the right derivative of v exists at and satisfies
(11). The following theorem is an extension of this idea.
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THEOREM 4. Suppose fL(O,T; X) and A generates a Co-semigroup S(t) on the
Banach space X. Let v(t)-fS(t-s)f(s)ds, O<_t<_T. Suppose v(t)D(A) a.e. and
Av L(O, T; X). Then v is differentiable a.e. and satisfies

(12) v’(t)--Av(t)+f(t) a.e. t(O,T), v(0)--0.

The proof of Theorem 4 requires several preliminary lemmas. The first is a
vector-valued version of a result due to Titchmarsh. (See [4, Thm. 2.1.6, p. 92].)

LEMMA 5. Suppose z L]oc(R X) and

(13) lim fbllz(x+h)_z(x)lldx_ 0
h_0+ "

for every bounded interval (a,b). Then there is a constant c such that z(x)=c almost
everywhere.

Proof. Let Fn(x) n f/z(t + x) dt, n 1,2, 3,.... Then F, is continuous and (13)
implies that F, has a right derivative which is zero. (See [11, Thm. 3.2, p. 170] for a
similar argument). It is well known that any continuous function with a continuous
right derivative is differentiable. Therefore F, =0. By [11, Thm. 2.1, p. 166], each F is
constant. Since

F.(), ) )11 o asn

for every bounded interval (a, b), it follows that z is constant a.e.
The proof of Theorem 4 depends on a somewhat stronger notion of differentiabil-

ity than differentiability a.e.
DEFINITION 2. Supposef:R X. Thenf has a local derivative g if

lim bll-[f(x+h)-f(x)]-g(x)lldx-O
h--,0

for every bounded interval (a, b). The right local derivative off is defined similarly with
h 0 replaced by h 0+.

LEMMA 6. Suppose fGL]oc(; X) has a right local derivative g L]oc(t; X). Then g
is the local derivative off.

Proof. Let w(x) f0 g(s) ds for x . By 11, Thm. 3,3, p. 171], w is locally
differentiable with local derivative g. It remains to show that f-w is constant a.e. Let
z =f- w. Then

[f(x + h ) -f(x)] --g(x) dx+ [w(x+h)-w(x)]-g(x) dx.

Since this expression goes to zero as h 0+ for every bounded interval (a, b), the result
follows from Lemma 5.

Proof of Theorem 4. Note that v is continuous on [0, T] by the strong continuity of
S and the dominated convergence theorem. Extend v to by setting v(t)= v(0) for
<0 and v(t)= v(T) for t> T. We will show that v has a right local derivative g for
which g(t)=Av(t)+f(t) for a.e. t(0, T). The conclusion of Theorem 4 then follows
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from Lemma 6 and the fact that continuity and local differentiability imply differentia-
bility a.e. (See 11, Thm. 3.4, p. 171 ].)

If t, + h [0, T] and h>0, then

-[v(t+h)-v(t)]

f fotS(t+h-s)f(s)ds-l fots(t-s)f(s) ds,+hs(t+h_s)f(s)ds+_
h

ft+=- hS( + h s )f( s ) ds +- S( h ) l] v( )

=- hs(t+h-s)[f(s)-f(t)]ds+- [S(t+h-s)-I] f(t)ds

+f(t) +- [S(h )-1] v(t)- s(h-l[/(+l-(]e+ [s(l-/](le

+f(t) +- [S(h )-/] v(t).

Choose a constant C such that IIS(t)ll<-C for 0_<t_< T. Then

[(+hl-(l]-v(l-(l
<-c II(+l-(llle+ mx II[s(l-/](ll
-h O<--s<--h

+ -[S(h)-I]v(t)-Ae(t) a.e. t(O,T).

Therefore, if h > 0,

(14)

-[v(t+h)-v(t)]-Av(t)-f(t) dt

fT-hfh foT<-c IIf(s+t)-f(t)lldsdt+ max II[S(s)-I]f(t)lldt
-h o o O<_s<_h

+ [s(-/](l-(l .
The first term on the right is bounded by

0T-hl 010T-hC f0 f(t + sh ) -f(t)ll as at- c f(t + sh ) -f(t)ll dt ds,

where we extend f as zero outside (0, T) if necessary. Since the inner integral goes to
zero uniformly in s as h--, 0+ by standard arguments, this term goes to zero as h--, 0 +.
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The second and third terms on the right of (14) go to zero as h 0+ since their
integrands go to zero pointwise a.e. and are dominated by (C+l)[[f(t)[I and
(C+ 1)ll Av(t)]l, respectively. Finally, by definition of v,

- -[v(t+h)-v(t)]-Av(t)-f(t) dt

-h - T--h

-< max [[v(T)-v(t)[[+ff [[Av(t)+f(t)[ldt
T--h<---t<--T --h

which goes to zero as h--,0+ since v is continuous on (as extended above) and Av+f
is integrable on (0, T). These estimates yield the desired conclusion.

The following lemma gives conditions under which v is a solution of (12) in the
special case when the generator A(p0) satisfies the conditions of Theorem 1.

LEMMA 7. Suppose (H1)-(H5) hold. Let R(,) denote the resolvent of A(po), which
exists as a bounded operator on X for > o. Let Do-- (R()y:y Y, >o). In the
same spirit as (H4) we assume:

(H9) There is a constant Ko> 0 such that

orllA(po)S(t;po)xlldt<-gollxll,
NDo.

Then v(t) fd S(t- s; Po)f(s) ds is a solution of
(15) v’(t)=A(po)v(t)+f(t ) v(0) =0
in the sense of Theorem 4, for every f Ll(0, T; Y).

Note that

IlforA(po)S(t;po)xdt[[ ]]S(T;po)x-xll <_Kollxl[ for xD.

Hypothesis (H9) demands that this inequality hold with the norms brought inside the
integral for all x D0. The application given in {}5 has the property that (H9) does not
hold for all x D.

Proof. According to Theorem 4, it is sufficient to show that v(t)D a.e. and
A(Po)VL(O, T; X). Fix fL(O, T; Y) and let fx(t)=R(X)f(t), X>o. Then fx
L(O,T;Do). Define a mapping [Jw](t)=fdA(po)S(t-s;po)w(s)ds O<_t<_T, w
L(O, T; Do ). Using (H9) one can show, just as in the proof of Theorem 3 that
J L(0, T; D0) L(0, T; X) is bounded on L(0, T; D0). Therefore J may be extended to
a bounded linear operator on the smallest closed subspace of L(0, T; X) which contains
Ll(O, T; Do).

Let vx( ) fd S( s; Po )fx(s ) ds. By the dominated convergence theorem,

[[[fx-f[l[-0 as X--,

(16) and therefore

vx(t)-v(t) inX for0<_t<_T.

Since S(t-S;po)fx(s)L(O, T; D) for each t[0, T] and A(po) is closed, we have

A( P0 ) va(t) =fotA( Po )S( t-s;Po )fa(s ) ds- J( f, )] (t).
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Since fx L(0, T; D0) and J is bounded on L(0, T; o), we have

IIIJ(f )-j(f)lll- 0 asX .
Therefore, there is a subsequence ?k o such that

(17) A(po)vx(t)-[J(fx,)](t)J(f)(t ) inX

almost everywhere on (0, T). Since A(po) is closed, (16) and (17) together imply that
v(t)D a.e. t(0, T) and A(po)V=J(f)L(O, T; X). This completes the proof.

We are now in a position to prove the motivating result of this section.
THEOREM 8. Suppose (H1)-(H9) hold. Fix h6-fl and let Vl(t)-[DpS(t;po)xo]h

v(t)-[DpQ(t;po)]h, fl-[DpF(po)xo]h andf2-[DpG(po)u]h. Then Vl, I)2 are differen-
tiable almost everywhere on (0, T) and satisfy

v;(t)=A(po)vi(t)+fi(t ) a.e. t(O,T),
v,(O) -O

fori- l,2.
Proof. By (H5) and (H7), fl, fL(0, T; Y). The result now follows immediately

from Lemma 7.

5. An application. In this section we consider the differentiability with respect to

P-(P,P,’" ",Pn) of the solution of the delay differential equation

x’(t)-aox(t)+ a,x(t-p,)+u(t), t>0,
(18) k--I

x(0)-n, Xo-,

where p* >max{pk} >0 is fixed, R, akR, k-0,1,2,.-.,n, L(-p*,O) with
norm denoted by IIlll, xt(s)--x(t/s), t_>0, p*<_s<_O and uL]o(O,o). By a
solution x(t;p) of (18) we mean a function x’(-p*, +o)- R such that x is absolutely
continuous on compact subsets of 0, c) and satisfies the first line of (18) a.e. on (0, )
and such that x(0)-/and x(t)-(t) a.e. on (-p*, 0). It can be shown that (18) has a
unique solution x(t;p) for every pair of initial data (,l, P) R Ll(-p*, 0). This prob-
lem can be placed in a semigroup setting in a standard way. Define a Banach space
X= L(-p*, 0) with norm II(rl, )ll -I1 / II II . Let -" and let P be the cross
product of the interval (-p*, 0) with itself n times. For P-(P,P2,’" ",P,)P define the
operator A(p) in X by

D(A(p))- ((rl,p)X’p is a.c., 9’ L’(-p*,O), /-p(O)},

A(p)(l,pl- ( aoP(O)+ ap(-pl,p’
k=l

Then it is well known that A(p) generates a semigroup S(t; p) satisfying

(19) S(t;p)(rl,p)-(y(t),yt) t>_0, (,p) X,
where y is the solution of

(2o)
y’(t)--aoY(t)+ ay(t--p),

k=l

(Y(O),Yo) (/, P).

t>0,
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It may be shown by standard results that A(p) and S(t;p) satisfy (H1)-(H3). The
fact that w may be chosen independent of p for a fixed p* is verified by the estimates
made in [2]. Let D-D(A(p)) as above; then A(p)-A + B(p), where

B(p)(l,q)- ( a,q(-p),O), (l,q)D,
k--I

We now consider whether (H4) holds. Fix any T>0. Note that by (H3) and (19)
there is a constant C>0 such that ly(t)]<_CIl(,)ll for O<_t<_T, where y satisfies (20).
Fix P0 --(rl, r2,’" ", rn) P and let y(t) =y(t;P0) satisfy (20) withp --P0. Let A/- maxlahi.
Then

Lrll B(p)S(t;po)(,p)ll dt=Lrll B( p )( y( ),yt) dt

=for E aky(t-pk) dt
k-l

?l

<_ [a[y(t-p)[dt

k=l k=l

An(ll r +CTII(n,r)II)An(CT+ 1)11(,)11

for (/,) D. This verifies (H4). Note that using the notation of Theorem we have

(21) F(p)(rl,q)- ( ay(t-p),O)
k-I

for (/, p) X, where y =y(t; Po).
Note that the mapping

(,P)--’ E aky(t-pk),O
k--I

is not bounded as a mapping from X into X for 0<t<max(pk}. Therefore (H4)* does
not hold for this example.

We will now verify (H5). Let Y=R {0}. Then F(p)xL(O, T; Y) for xX and
p P. Furthermore, if h ( h 1, h 2," ", h ), then

I[Ir( po/ h )( /, 0)- F( Po )( x/, o) I-- fo al(z(t--rk--hk)--z(t--r,))
k--I

where z satisfies

(22)
z’(t)-aoz(t)+ akz(t-rk),

k--I

(z(Ol,zo)-

t>0,
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Since [z( )l <_ Cln[ for O<_t<_T, (22) implies that there is a constant C such that
[z’(t)l<_C[[ for a.e. (0, r). Fix k and assume hk>0. Then

folZ(t-r-h)-z(t-r)ldt
fo lZ(t-h 5-z(t ldt+f l (t-h 5-z(tSl t

_rk h

=lh l Inl(c+
The case h k< 0 is similar. Therefore,

][IF(po/h)(,O)-F(po)(n,O)lll<-C=lhl I1(,0)11,
where C_ is a constant and hI denotes E_-1h[. This inequality verifies (H5).

Note that (H7) is immediately verified by the definition of G and the subspace Y
for any u LI(0, T; X).

We next consider (H9) which was needed in the proof of Lemma 7. Calculation
shows that every element of D0 is of the form (,eX), where is a constant depending
on and -p*s0. If y satisfies (20) with P=Po and (y(0),y0)-(, eX), then

TII A(p)S(t;P0)(,ex)ll at

=aoY(t)+ ay(t--P)ldt+T:,
,[y’(t + s )1 ds dt

[aoY(t ) + agy(t--p)[ dt + 3XeX ds dt
k=l P

+ P ’ly,(s)ldsdt + ly’(s)ldsdt.
--p

The first, third and fourth terms are easily estimated using (18) and the techniques used
to verify (H4). Direct integration shows that the second term is bounded by p*ll
p*ll(, eX)ll. Therefore (H9) holds. Note that (H9) does not hold for all x D. This
proof depends on the monotonicity of the functions which appear as second coordi-
nates of elements of D0.

Suppose x0 D. Then it is not difficult to show, using [4, Thm. 2.17, p. 93], for
example, that F(p)xo is differentiable with respect to p at P=Po in the sense of
Definition and that

where y satisfies

(23)
y’(t)--aoY(t)+ aky(t--r),

k=l

(Y(O),yo)--Xo.

t>0,
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Therefore, by Theorem 1, S(t;p)xo is differentiable with respect to p at P-Po for
0 _< t_< T and x0 D and satisfies

k=l

Furthermore, Theorem 8 shows in this context that [DpS(t;po)xo]h-(v(t ), vt), where v
satisfies

v’(t)-aov(t)+ akv(t--rk)-- aky’(t--rk)hk, t>0,
k--I k--I

(v(O),vo)- (o,o).
Suppose uL(O, T; D). Then since B(p) is a difference of closed operators we

have by definition that

Therefore

fo’S(t- ;po)u(s)d .

(24) G(p)u- ( akx(t--Pk),O),
k=l

where x is the solution of

x’(t)-aox(t)+ akx(t--rk)+u(t), t>0,
(25) k=l

(x(0),x0) (0,0).
Since G(p) is continuous on L(0, T; X) and the solution of (25) depends continuously
on u, we have that (24) holds for all uL1(O,T; X). Since solutions of (25) are
absolutely continuous on (-p*, T), we have as above that G(p)u is differentiable at

P =P0 in the sense of Fr6chet and

k=l

where x satisfies (25).
Therefore, by Theorem 3, Q(t; p) S(t- s; p)u(s) ds is differentiable with re-

spect to p at p =Po for every 0_< t_< T, u L(0, T; X). Furthermore,

DpQ(t;Po)h fotS(t- s;po) akx’(s--r,)hk,O ds.
k--I

Theorem 8 shows that DpQ(t;Po )h (g(t), gt), where g is the solution of

g’(t)--aog(t)+ akg(t--rk)-- akx’(t-rk)hk, t>0,
k=l k=l

(g(o),go)- (o,o).

This application may be generalized in various ways. For example, no essential
difficulties arise if R is replaced by R or if Ll(-p*, 0) is replaced by LP(-p*, 0), p >-- 1.
These methods are also applicable to more general forms of functional differential
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equations. For example, in [3] a semigroup theory is developed for a class of linear
retarded functional differential equations. Hypothesis (ii) of [3] yields hypothesis (H4)
of this paper. This and other applications of the results presented here will be the
subject of further investigation.
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THE TWO-DIMENSIONAL EIGENVALUE RANGE
AND EXTREMAL EIGENVALUE PROBLEMS*

B. E. WILLNER" AND T. . MAHAR:

Abstract. If a(x) and b(x) are measurable functions on [0, 1] satisfying 0<a(x)<b(x), let C(a(x), b(x))
denote the class of functions (x) L[0, 1] such that a(x)<_p(x)<_b(x). Given such a p(x), let k(p) and
2(9) denote the first two eigenvalues of the problem y"+p(x)y=O, y(0)=y(1)=0. In this paper we
characterize the set (? (), 2 2(P)) as qo varies over C(a(x), b(x)). Explicit analytic and numerical results are
given when a(x) and b(x) are constant. The connection between this problem and the extremization of
functions of eigenvalues is also discussed.

1. Introduction. Consider the eigenvalue problem

(1.1) y"+kp(x)y:O, y(0) :y(1) :0
with p(x)> 0. The eigenvalues of this problem form an unbounded sequence X(p)> 0.
Iff(x,x2) is a real, differentiable function for x,x2>0, define the functional F(p) by

(1.2) F(p) :f((p),,z(p)).
Given measurable functions a(x ) and b(x ) such that 0<a(x )<b(x ) on [0, ], let

(1.3) C(a(x),b(x)):{p(x)L,[O, 1]:a(x)<_p(x)<_b(x)}.
The extremal eigenvalue problem for F(p) can be formulated as follows: for what
functions p in C(a(x), b(x)) does F(p) achieve an extreme value? Willner and Mahar
[1] and Gentry and Banks [2] derive general characterizations of those functions p in
C(a(x), b(x)) which extremize functions f(, ,..., ?N)" Willner and Mahar [3] and
Keller [4] investigate the problem of extremizing the ratio of the first two eigenvalues
when a(x) and b(x) are constant functions and give explicit characterizations of the
extremizing functions (x) as a function of the parameters a and b.

The extremal eigenvalue problem can be reformulated as a geometrical question.
Given a(x) and b(x), characterize the set

(1.4) A-- ((l(p),2(cp)):ep_C(a(x),b(x))).
As discussed in [1] and [2], A is compact. The extremal eigenvalue problem for
arbitrary f is solved once A is known, in the sense that it is then reduced to the calculus
problem of extremizing a function of two variables over a compact set.

In this paper we investigate the two-dimensional eigenvalue range A. After certain
general results are derived for arbitrary a(x) and b(x), we specialize to the case with
a(x) and b(x) constant to obtain additional results. The particular case a(x) ------ and
b(x)----4 is then studied numerically. A proof that the set A corresponding to C(1,4)
has been determined is given under an assumption on the correctness of the numerical
calculations. A characterization of the interior of A is also given. While the extremal
eigenvalue problem for N eigenvalues, N> 2, could be studied in a similar manner, we
leave this problem to some future investigation.

The analysis is based on the following observation: if the function f(x,x.) does
not achieve an extemum in the interior of A, the extremum must occur on the
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boundary. The condition that f have no interior extrema is

(1.5) IVj>O
in the interior of A. As we are interested in determining the boundary of A, we will
characterize those functions in C(a(x), b(x)) which extremize functions f satisfying
(1.5).

2. Results for arbitrary bounding functions. For (x) in C(a(x), b(x)), let ’l and, denote the first two eigenvalues of (1.1) with corresponding eigenfunctions y(x)
normalized by

foiyi
2- 1, i- 1,2.

Givenf satisfying (1.5), define the function

0f Of(2.1) g(,f,x)--- -xy (x)---xY(X)
with the derivatives of f evaluated at (,,). The results of [1], [2] and [4] include the
following theorem.

THeOreM 1. If f( (), ,()) achieves its maximum over C(a(x), b(x)) at (x),
then"

i) Up(x)-b(x) when g(U,f,x)>O,
ii) p(x)-a(x) when g(p,f,x)<O.

Iff achieves its minimum oer C(a(x ), b(x )) at q(x ), then:
iii) p(x)-a(x) when g(,f,x)>O;
iv) p(x)-b(x) when g(,f,x)<O.
We ill use Theorem nd Lemma 2.1, below, to characterize extremizing func-

tions (x).
LEMMA 2.1. The function g(,f,x) has either no zeros, one zero (simple or double),

or two simple zeros for x (0, 1).
Proof. If Of/Ox is zero at (,,,), then g has one double zero in (0, 1) since Y2 has

one simple zero there. If Of/Ox2 is zero at (,1,,2), then g has no zeros on (0, 1). In the
case that neither derivative off vanishes, we rewrite (2.1) as

-XlyI0f-2[ k20f/Ox2_i 2](2.2) g(cp,f,x)--,, +. .r

where r(x)=--y(x)/y(x). We take y(x) to be positive on (0, 1). The function yz(x) has
one simple zero at ff(0, 1); we take y>0 on (0,if). An elementary argument shows
r(x) is decreasing on (0, 1). Since r(ff)-0, r 2 is decreasing on (0,x) and increasing on
(:, 1). Now (2.2) and the monotonicity properties of r 2 show that g can have at most
one simple zero in (0, if) and in (if, 1).

Combining Theorem and Lemma 2.1, we obtain:
THEOREM 2. The function q:(x ) which extremizes f(l,k2) has the followingforms:

(2.3a) q(x)--a(x) or q(x)--b(x), 0_<x_<l

if g(q,f,x) neer anishes or has a double zero in (0, 1);

(2 3b) q:(x)- a(x) (b(x)), 0_<x<xo,

[ b(x) (a(x)), Xo<X_<
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if g has a simple zero at xo (0, 1);

(2.3c)
a(x) (b(x)), O-<x<xo,

b(x) (a(x)), Xo<X<Xl,

a(x) (b(x)), X <X "< 1,

if g has simple zeros at x0, x in (0, 1). The sign of g at x=0 and the nature of the
extremum determine whether q(x ) starts as a(x ) or b(x ).

We now use Theorem 2 to determine relationships between the eigenfunctions of
(1.1) when tp extremizes somef(Xl,X2) over C(a(x),b(x)). There needn’t be any special
relationship in case (2.3a), as it is always possible to extremize some f(h,h2) by
(x) a(x) or (x) b(x). This is called the no-jump case.

The possibilities in (2.3b) are called the one-jump (discontinuity) case. Since r is
decreasing on (0,Y) and increasing on (Y, 1), it follows that

(2.4) (y(0)y(0)

2 (Y2(Xo))2 (’(1))2>_> Y2
y(xo) y{(1)

if xo<Y (ff is the zero of Y2 in (0, 1)), while

(2.5) (< Y2(x0)
;(0) Yl(XO)

2

(Y(1))
2

< yi(1)

if <x0. Note that Y-x0 cannot occur here. The possibilities in (2.3c) are called the
two-jump case. We see from (2.2) and the definition of r that

(2.6) Y,(Xo) Y,(Xt)

and Xo< ff<x in this case.

3. Constant bounding functions. For the remainder of the paper, we assume
a(x)--a 2 and b(x)=b for some constants a and b. The constants appear as squares
for convenience; furthermore, we will denote the first two eigenvalues by ) and k22.

We use Theorem 2 in this special case to further characterize functions q which
extremize some f()l, , 2) over C(a, b2). In the no-jump case, the functions q0(x) a 2

and q(x)b2 extremize certain functions f; nothing more can be said here.
If q(x)C(aE, bE), then q(1-x)C(aE, bE) and )j(q0(1 -x))-)j(q(x)) for allj.

Thus, we may assume in the one-jump case that q(x) starts as bE and then switches to
a 2. The jump point of qg(x) is Xo, the location of the simple zero of g in (0, 1). We now
rule out the possibility Y<x0, being the zero of y_ in (0, 1), so the relations in (2.4)
always hold in the one-jump case. With q(x) as above (i.e., bE and then a), define

(3..1) Ij(x)-(y(x))2+?(x)yf(x), j--1,2.

If we assume ff<xo, then the relations in (2.5) hold. As the Ij. are piecewise constant,
we have

(3.2) I2(x-)_(Y(1))
E

(YE(X0) )
2

Ii(x-)-- y{(i) >
y(xo)
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However, using (2.4) and, the identity

,22(a2--b2)y(xo)- ( Y2(X) )
2

Yl(Xo )
’22(aZ-bZ)y21(Xo)’

we easily verify that we also have

I,(x- ) y,(xo)

Since (3.2) and (3.3) are inconsistent, we must have xo<ff and the relations in (2.4).
Using piecewise trigonometric representations of the ya.(x), the relations in (2.4) become

(3.4) sin}kzb/o )
2

(2)(sin’za(1--/o)
2

sin,bxo
< - <

snX;(i_Xo )
We now consider the two-jump case, so that

(3.5)
C
2 Ox<x0

qO(X)-- d 2 Xo<X<X
c2 x <x<

where c-a and d-b or c-b and d-a. Using piecewise trigonometric representations
of the eigenfunctions ya.(x), the extremization condition (2.6) can be rewritten as

(3.6)
(c) 2+ 2cot lC(1-Xl)

+ cot2k2c(1--Xl)

+ cot2 ,cxo

2+ ()2cot k2CX0

Thus, if (x) given by (3.5) extremizes some f over C(aZ, b2), we have Xo<ff<x and
(3.6) (xo and x are the zeros of g on (0.1)). It can be shown that xo- 1-x when c-a
and b-d, so that the extremizing function q(x) is symmetric about x-1/2 in this case.
As the proof is neither conceptually nor computationally enlightening, we omit the
details. The proof consists of a lengthy sequence of elementary, albeit obscure, argu-
ments. Details will be sent upon request.

We now summarize the results of this section. Assume the bounding functions
a(x) and b(x) have the constant values a 2 and b2. If q(x) C(a 2, b2) extremizes some
functionf(, )2) satisfying (1.5), one of the following possibilities must occur.

No-jump case.

(3.7) (x)--a2 or (x)=b2.
One-jump case.

(3.8) (x)-
b2 O<x<x’
a2 Xo<X<l

Xo<ff, and

(3.9) sin,zbxo <2 sin32a(1-Xo)_<
sin , bxo ? sin ? a(1 Xo)
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Two-jump case.

a 2

(3.10a) q(x)- b2,
a 2

xo- 1-x l, so (x) is symmetric about x-1/2;

b2

(3.10b) qo(x)- a 2,
b2

Xo < <x. Further,

(3.11)
1+(b)

9

cot2lb(1 -Xl)a

OXXo,

XoXXI
XIXI,

0--<X<Xo,

XoXXI
x<x<_l,

cot2lbXoa

cot2)k2b(1 X) + b 2

cotZ..2vX0h
a a

The numerical results of the next section show that extremizing functions q(x) need
not be symmetric about x-1/2 in this subcase.

4. Numerical results. In this section we present the results of numerical computa-
tions for the particular example a2= and b2-4. If there exists (Xo,X) such that a
function (x) can be described by (3.10a), we call it type 1; if by (3.10b), type 2. By
allowing the jump points to coincide either with each other or the boundary points 0
and 1, the no-jump and one-jump cases can be thought of as degenerate two-jump
cases.

Figure is a graph of the points in the x0,x-plane which are the jump points of
some extremizing (x). In principle, a separate graph should be provided for the type
and type 2 cases. However, since q0(x) and q(1-x) have the same eigevalues, we use
the region XI 1-xo to graph type points and Xl 1-xo to graph type 2 points.
Since x->Xo, no points appear for x <xo. The coordinates of all labeled points are
given in Table to four decimal places.

TABLE

First Second
xo x eigenvalue eigenvalue Type

A 1. 1. 9.8696 39.4784
A 0. 1. 9.8696 39.4784 2
B 0. 1. 2.4674 9.8696
B 0. 0. 2.4674 9.8696 2
C 0.8465 1. 9.1063 28.9270
C 0. 0.8465 9.1063 28.9270 2
D 0.1174 0.8826 9.2305 30.0674 2

P(S1) 0.1471 1. 9.1967 29.6929 2
P(S2) 0.1195 0.8805 9.1967 29.6929 2

P1 0.1910 0.4270 4.6804 25.4354
P2 0.2550 0.8760 6.9479 20.6787 2
P31 0.0098 0.1469 9.1993 29.7190
P32 0.1464 0.9692 9.2019 29.7442 2
P41 0.0182 0.1469 9.2007 29.7434
P42 0.1464 0.9552 9.1926 29.6642 2
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TYPE1

XO-AXIS

FIG. 1.

Type 1. In the nondegenerate two-jump case of type 1, we have x-1-x0. This
line is labeled $3. The end points, (0, 1) and (.5, 5), are labeled B and A respectively. At
B, W(x)--b2, while W(x)a2 at A. The one-jump case is given by x0(1-x)-0 and is
labeled S1. The point (1, 1) is labeled A since W(x)=a2 there. Any point on the line
segment from (.5,.5) to (1, 1) is considered an "A" point and corresponds to the
no-jump case. The one-jump case satisfies x0< and (3.9). Only points between A and
C along S1 satisfy these criteria. The dashed line from B to C indicates we already
know these points do not correspond to possible extremizers.

Type 2. In this case, points where x0- 1-x are called B since W(x)=b2. Simi-
larly, (0, 1) is labeled A. All points on BB are in the no-jump case. The one-jump case is
given by BCA as discussed previously, with no points on CA corresponding to extre-
mizers.

We have numerically determined two curves in the (x0,x)-plane which satisfy
(3.11) in the two-jump case. These are the open line segment AB and the curve
connecting C on the x-axis to D on the segment AB. The point C divides the
extremizing and nonextremizing one-jump cases. This second curve is labeled S.

In Figs. 2-5 we present the points in the (,,h2)-plane corresponding to W’s with
jump points as in Fig. 1. Some points corresponding to other, nonextremizing, W’s are
also shown. The coordinates of all labeled points are given in Table 1. Figure 2a shows
the image of Fig. 1. The curves corresponding to l-S are indicated, as well as the
points A-D. Figure 2b is a pictographic representation of Fig 2a using only straight
lines. The important features are highly exaggerated. A simple closed curve is formed
by 5:3 from B to A, S1 from A to P, and 2 from P to B. We define R as the closed
region bounded by this curve; subregions R1-R are defined as shown in Fig. 2c.
Figures 3, and 5 are blow-ups of the subrectangle from Fig. 2.
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25

//

FIRST EIGENVALUE

FIGo 2A.

FIG. 2B. Pictographic representation.
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$3

3

FIRST IGENVALUE

FIG. 3.

30.5

30.

29.5

29.

//
//

//

9.112 9.118
FIRST EIGENVALUE

FIG. 4.

9.124

9!9

913
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29.8

29.7

29.6 9!2
FIRST EIGENVALUE

FIG.5.

5. A for C(I, 4). We now prove that the region R in Fig. 2a is A, the two-dimen-
sional eigenvalue range, for C(1,4). Assuming that the numerical calculations are
sufficiently accurate, Newton’s method could be used to prove the existence of eigen-
values close to the computed ones. Numerical experience suggests that the computa-
tional accuracy can be substantially increased, so we assume the numerical results are
correct.

THEOREM 3. The region R is the two-dimensional eigenvalue range A for C(1,4).
That is, 2 ) R if and only if there exists q C(1,4) such that (1.1) has , and 2 as
its first two eigenvalues.

Proof. First, assume (kl,X2) belongs to A but not R, and let (1,,2) be a point
exterior to A and R such that it can be connected to (,2) by a curve which does not
intersect R. There exists (’-22) on this curve which is a boundary point of A. Let

)2 ..]_ ( ,Tn k 2 )2. The points(o,,rn)A converge to (,)2) and set fn()l,)2) (O,--)
Q i,2 A which minimize the f, must lie on one of the S-labeled curves. However, since
() , 2) is outside R, there exists >0 such thatf,_evaluated at Qn is no smaller than i
for all n. This is impossible since (%, rn) --’ l, ’ 2) R. Thus, if (? , ) 2) A, then
(),)2)R also.

Now, let --- ()kl,)k2) R. If lies on some S curve, it is in A by definition of the S
curves. If is not on any of these curves, it must be in one of the four subregions of R.
As all cases are similar, assume R1. Connect and P1 in R1 with an arc lying
entirely in R1. If A, there exists on this arc which is a boundary point of A. Let,A converge to ,,,-(o,,,’rn). Again consider minimizing the functions f,. The
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minimizing points Q, all lie on S curves. Since is in the interior of R1, the n are also
for n large. Thus, there exists i>0 such that the fn evaluated at Q, are no smaller than. But, , A, and so the f, at Q, must approach zero. Thus, R implies A.

Theorem 3 shows that R and A are the same, so we have determined the two-di-
mensional eigenvalue range for C(1,4).

THEOREM 4. Every point in the interior of R1 corresponds to a q of type 1, but not

type 2. Every point in the interior ofR2 corresponds to a q of type 2, but not type 1. Points
in the interior ofR3 and R4 correspond to a q of type and a q of type 2.

Proof. We define PC(l,4) as the class of functions (x) described in (3.5), with
c= and d-2 or c-2 and d= 1, such that 0<x0<xl< 1. Elements of PC(l,4) have
two jumps. By utilizing piecewise trigonometric representations of the corresponding
eigenfunctions yi(x) for (1.1), tedious algebraic and trigonometric manipulations can be
used to show that

if the extremization condition (3.11) is not satisfied. Here, x0 and x are the jump
points of tp and l, 2 are the first two eigenvalues of the corresponding problem (1.1).
Condition (5.1) guarantees that the implicit function theorem can be applied.

Let fl be the eigenvalue image of type elements of PC(l,4), so c- and d-2.
Assume ()k,)2) is not in l, but is interior to R1. Connect (3,)k2) to P1 21 with an
arc interior to R1. There exists a point on this arc which is a boundary point of 21.
Since R1, the implicit function theorem implies 621. Let n21 converge to .
The points n are generated by q, in PC(l,4) of type with jump points (XO, n,Xl,n).
Choosing subsequences if necessary, let x0,, x0 and Xl,,- x 1. Use (x0,x) to construct
q0(x) in PC(l,4) of type such q,-q in the Ll-norm. Now, =()kl(q0),Ykz(q)) by
continuity of the eigenvalues [5]. If 0<x0<x < and (3.11) is not satisfied, we have
the contradiction 21. If (3.11) is satisfied, or q0 is a degenerate two-jump function,
would be on an S curve, another contradiction. Thus, is not a boundary point of 21,
the final contradiction. Hence, ()kl,)2) in the interior of R1 implies (31,k2) in 21. By
similar reasoning, every point in the interior of R2 is the image of a type 2q0, while
points in the interior of R3 and R4 are images of a q of type and a q of type 2.

We now show that no point in the interior of R2 is the image of a type q.
Assume some type q0 has its eigenvalues in the interior of R2. As above, we then have
that every element of the interior of R2 is the image of a type . Let =(1,2) be a
point on $2 in the interior of the segment BP, and let n in 21 converge to . The
points , are generated by tpn in PC(l,4) of type with jump points (Xo,,,x,,).
Choosing subsequences, x0, x0 and x,, x, we use (x0, x 1) to construct in
PC(l,4) such that ,- in the L-norm. Thus, -(?(),?2()) by the continuity of
the eigenvalues [5]. If x0- 1-x1, is on $3, a contradiction. If is a degenerate
two-jump function, lies on AB along S1, another contradiction. Thus, (5.1) holds and
the implicit function theorem shows there is a neighborhood about corresponding to
a neighborhood about (Xo,Xl). This is false since no point of fl can lie outside A- R.
Similarly, no point of R1 corresponds to a tp of type 2.

6. Conclusions. This paper has characterized the set of points (?1(), ? 2(tP)) as
tp(x) varies over C(a(x ), b(x )). It seems curious that this question hasn’t been studied
already, since it is of theoretical interest to know precisely what the various eigenvalue
ranges are. Although a complete characterization has been given only for the case
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a(x)----- and b(x)--= 4, the general results suggest similar characterizations hold for
arbitrary choices of constant bounding functions. The case of nonconstant bounding
functions does not appear to be amenable to the same sort of detailed analysis.

The results presented above also provide a method, simple in principle and not
difficult numerically, for solving extremal eigenvalue problems with constant bounding
functions. Compute all pairs ((), 2()) with one of the possible extremizers given
in (3.7)-(3.11). A set of curves SR will be generated. The answer to the extremal
eigenvalue problem will lie on one of these curves if (1.5) is satisfied. If (1.5) is violated,
a piecewise constant with two jumps such that (3.11) is violated, or a one-jump
such that ff_<x0, will provide the answer. In all cases, the extremizing p will be
piecewise constant, have at most two jumps, and assume only the smallest and largest
allowed values.
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SEPARATED FLOW PAST A PLATE
WITH SPOILER*

ALAN R. ELCRAT

Abstract. The Helmholtz-Kirchhoff flow past a flat plate with a spoiler attached is studied using
conformal mapping of the hodograph image. The hodograph is a Riemann surface with polygonal boundary
and a theorem of Gilbarg showing how to map such a domain into a half-plane is used. The result obtained
actually solves an inverse problem and can be used to "shoot" for a solution of the direct problem. Some
numerical results for this procedure are presented at the end of this paper.

Introduction. This work is concerned with a two-dimensional potential flow model
for fluid flow past an obstacle with a flap or "spoiler" raised into the stream which
causes the flow to separate from its edge. This separation is modeled with the classical
Helmholz-Kirchhoff device of a free streamline extending from the points of separa-
tion to infinity. The particular configuration dealt with here is a flat plate at angle of
attack with a flat plate spoiler attached. This is intended to be a simple model of the
flow past an airfoil with a spoiler raised on its top surface.

The analysis given here is based on conformal mapping of the hodograph or
velocity plane and in its spirit goes back to Kirchhoff’s solution for a flat plate
perpendicular to the free stream [1]. The hodograph, however, is not simply covered
and must be thought of as a Riemann surface, so in detail this work is inspired by that
of Gilbarg and Serrin [2]. In fact, the piecewise linear boundary suggests the Schwarz-
Christoffel transformation, and a fundamental tool in what follows is a generalization
of these conformal maps to polygonal regions on Riemann surfaces by Gilbarg [3]. In
principle, a great number of flows past polygonal obstacles might be treated using this
device, but there are serious technical difficulties in computing the parameters needed
to determine the conformal mappings required. The problem dealt with here is just
simple enough to yield to relatively straight forward analysis, but, we feel, just com-
plicated enough to be an interesting addition to the large literature on this subject.

1. Preliminary results. First we state a specialization of Gilbarg’s theorem tailored
to our needs:

PROPOSITION. Suppose that ’=f(t) is an analytic function defined on the upper
half-plane Imt>0 and that f’(t):/=O except for a finite number ofpoints aj. Suppose that f
maps the upper half-plane onto a Riemann surface with a closed polygonal boundary
having interior angles fleer at the vertices, which are images of t= be, be real. Then

f’(t)=A 1-[ (t-aj)J(t-)Jl-[ (t-be)k-l,
j k

where % is the order of the zero of f’ at the point a in the upper half-plane and A is a
complex constant.

Gilbarg also gave a theorem which guarantees the existence of a conformal map-
ping of a Riemann surface satisfying certain hypotheses onto a half-plane. We need
only the above result, however, which states the form such a mapping must have if
there is one.

Received by the editors December 11, 1980.
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We also need the following result, which gives a sufficient condition that an
analytic function defined on the upper half-plane be a conformal map onto a Riemann
surface.

LEMMA. Suppose that f is analytic on the open upper half-plane and extends continu-
ously to the closed upper half-plane (as a subset of the Riemann sphere.) Suppose that
F =/(t3 (c)) is a closed curve made up of a finite number of Jordan arcs and that F
bounds a region R and a subregion Ro of R in such a way that the winding number
n(F,z)-2 for zERo and n(F,z)- for zR-Ro.

Suppose also that f’(t ) :# 0 except for one point o where f"(to) :# O. Then o=f(t0)
Ro, and we may think of the image of the upper half-plane as a two-sheeted Riemann

surface with a branch point at o. Further, f is a conformal map onto this Riemann surface.
Since n(F,’)=the number of times the value " is taken on by f in the upper

half-plane, we need only recall that f is two to one in a neighborhood of o in order to
see that ’0 qR-Ro. A slight extension of this argument shows that ’0 R0. In fact, if

’0 were on the bounday of R0 (which is contained in I" by hypothesis), then the
preceding argument can be applied to f restricted to the upper half-plane minus a small
neighborhood of the [R such that f(D-o to obtain a contradiction. The neighbor-
hoods on each of the two sheets are ordinary ones except at the point ’0, which lies on
both sheets, where the so-called "cyclic neighborhoods" [4] are used.

2. Statement of the physical problem. All flows considered here are two-dimen-
sional, irrotational and incompressible.

We are interested in the flow, constant and horizontal at infinity, past an inclined
flat plate with a spoiler, cf. Fig. 1, which turns the comer at the leading edge D,
stagnates at F and separates at A and B, the free streamlines extending to infinity (M).
Bernoulli’s equation, p + 1/2 Ivelocityl- constant, implies that the velocity is infinite at the
leading edge D. We use the following conventions:-u- iv, u, v Cartesian velocity components,

w-C+ iff, , potential and stream functions.

M

FIO. 1.

Then

dw

and ’, w are analytic functions. The method of solution which we will use is then based
on conformal mapping, and the first step is to use physical reasoning to discern what
the hodograph image ’ should be. Here the straight-line boundary of the flow, the
constant magnitude of the velocity on AMB and our .assumptions of stagnation at F
and nfinite velocity at D indicate, that ihe following image results, with the boundary
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winding around the bounded region inside ABFA twice. If we set r/=ln(’/v), we
obtain a polygonal domain (to which the generalized Schwarz-Christoffel formula can
be applied). On the other hand, if we assume that the stagnation streamline is given by

0 and that w--O at C, the velocity potential image is a plane slit along the positive
axis with the origin correspondingto C and the top and bottom of the slit correspond-
ing to CDFAM and CBM, respectively. The technique which we use here is to construct
a sequence of conformal maps which match the z- and ’-planes, the appropriate
matching of parameters determining a flow. The intermediate domain to which we map
is the upper-half of the t-plane. The w-plane is mapped onto the upper-half of a r-plane
by w--, so that the first nontrivial step in this procedure may be taken to be the
mapping of the -plane image of the hodograph onto Im >0.

F

D

FIG.2.

B

FIG.
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3. Mapping the hodograph. Gilbarg’s theorem tells us that a mapping of Imt>0
onto the domain of Fig. 3 which takes 0 to A, to B and o to F must satisfy

): b-d___=A (t-a +
dt VtL (t-c) (t-d)

for some complex A, some a+bi, b>0 and some real c,d with <c<d. Further, if we
integrate the right-hand side from 0, we have

)2 b2
(1) I=A t(t-a + dt

=fliVt=
and

(2) foa+fl---A
(t-a +b2

(t-c)(t-d)

with A necessarily real and negative. The integral (1) is given by a Cauchy principal
value when passes through c and d, and the required changes in argument of rl at
these values imply [5, p. 26]

)2 bEA (c-a +(3) d-c c(c-1)
and

)2 b2A (d-a +(4) d-c d(d-1)
1,

respectively. It is fortuitous that the integral in (1) can be done in closed form. The
steps, which will not be given in detail here, are to expand the rational part of the
integrand in partial fractions, substitute u such that du-dt/ and then use the
appropriate trigonometric substitutions. The result can be written, using (3) and (4), as

t--c ,/A 2/t(t 1) /d(d-1) +(2d-1)t-d
I=ln 2t-- t-d 2/t(t-1) /C(c-1) +(2c-1)t-c

where ! is the required antiderivative. Now, since I(0)- i, we have

=A[I(t)-i] -fli
and (2) implies that A--. It follows that

:e’(2t +2t(t--1))-(+#)/ (t--c)(2t(t--1) d(d-1)+(2d-1)t-d)
v (t-d)(2t(t l)c(c-1)+(2c-1)t-c)

The parameters a and b appear only implicitly throu (3), (4). We can check directly
to see that this function maps the real axis onto the boundary of the required hodo-
graph. Then the lemma of 1 implies that we do in fact have a emann surface of the
required type with branch point at (a+ bi), which is the conformal image of the upper
half-plane.
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Finding this mapping now reduces to finding a solution c,d of (3), (4) for given
a + hi, b> 0. Since (4) can be written in the form

)2 b2o+13 (c-a +(6) d=c+
r c(c- 1)

we may think of this as a single equation for c,

)2 2 b2
(7) G(c)-(c-a +b2 (d-a) +

=0,
/c(c-- 1) d(d- 1)

with d given by (6). We may assume that ct+ fl<r since this includes all feasible
geometries. Then, by observing the asymptotic properties of G for c near and o, we
see that G is positive near and ultimately negative. Therefore, the intermediate value
theorem implies the existence of c(1, o) such that G(c)=0 and (6) then gives the
required pair (c, d). Since every solution (c, d) yields a conformal map of the required
type and the mapping is uniquely determined by the conditions imposed by the action
on three boundary points, we deduce that these equations have a unique solution
<c<d< o.

For the practical determination of the mapping, we need only solve (7). This fact
together with the closed form expression for the integral in (1) are the features of the
problem discussed in this paper that allow a relatively straightforward analysis.

It should be emphasized here that there are as many different mappings and as
many corresponding " images as there are points a + ib, b> O.

4. An inverse solution o the physical problem. The solution of the flow problem,
based on the above mapping formula (5), can be outlined as follows. The functions ’(t)
and r=W define mappings of the hodograph and velocity potential planes onto the
upper halves of the and r planes, respectively. A correspondence between these is
given by

pr+q
r-+-s

where p,q,s are real. If we observe that r--O is mapped to t-c, and r=m to t=m,
where m is the unique value of (0, 1) such that ’(t)= %, we get

that is,

This implies that

Then

mr+ cs

-st + cs
gem

dr_s(m-c)
dt (t_m)2

dz dz dw dr_2 (c-m)s2(t-c)
dt dw dr dt (t_m)
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and, if we assume that z--0 when t--- 1,

(8) z(t) -e-i2(c-m)sv (t--m
dt,

where

(2t- +/t(t 1) )(,+t)/,( t-d)(2v/t(t 1) V/c(c 1)+(2c-1)t-c)
(2(t(--1)’/d(d-1) +(2d-1)t-d)

Note that the value of s is not yet determined. We will think of s as a scale factor, and it
will always be chosen so that the length IBDI is normalized to one. The direct solution
of the problem then reduces to finding (a, b) such IDFI and IFAI have specified lengths.
We have no theorem to present for the direct problem. To attack the problem directly
on the basis of IDFI and IFhl being functions of (a,b) seems hopeless from the
theoretical point of view. An indirect proof based on the existence of appropriate
conformal mappings may be possible, and we hope to return to this in a later work. On
the other hand, we will adopt the opposite point of view here and study the inverse
problem in which (a, b) is given and IDFI and IFAI are determined. From the theoreti-
cal point of view this problem is solved by (8). In the final section of the paper, we
present computational results for the inverse problem which can be thought of as
"shooting" computations for the direct problem. As a part of these, we calculate the
total lift and drag predicted by this model using an idea of Gurevich ([6, pp. 81-84]). In
fact, if X/ Y is the total force on our obstacle,

X+ iY=
-ipv2 (dz

2 y

If we write this in dimensionless form

X+iY

we obtain

where , is a small half circle in the upper half-plane centered at t= rn and F(t)=
g(t)/(t- rn )3. The residue theorem then implies that

( CD + iCy)( e -ai) rrg"(m)/fF( t) dt.(9)

This is the formula used in our computations.

5. Some computational results. Our calculations of various flow quantities were
done in the following steps.

1) Choose a, b> 0.
2) Calculate c and then d using (6) and (7).
3) Calculate m, the solution of Im ’(t) 0 for (0, 1).
4) Calculate the length IBDI using the integral over [1, d] in (8).
5) Calculate the lengths IDFI and IFAI and normalize using the previous step.
6) Calculate g"(m) and use (9) to obtain CD and CL.
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The equations in 2) and 3) were solved using the subroutine ZEROIN provided with
the book [7] of Forsythe, Malcolm and Moler. The integrals in 4) and 5) we computed
using the adaptive quadrature subroutine QUANC8 given in [7]. All computations were
done on the Wichita State University IBM 370-145 using double precision arithmetic.
The infinite integrals which give IDFI and IFAI were transformed to integrals over finite
intervals using a transformation du=dt/(t-m)l+ with the appropriate i>0 and then
calculated using QUANC8. A listing of the author’s program is available on request to
anyone interested in further details of the computations.

In our presentation of the results in Tables and 2, all values will be rounded to
two decimal places. For brevity we have included only some representative cases, and
only a, b among the various "nonphysical" parameters are given. We denote IDFI, IFAI
by LF, LS, respectively.

TABLE
15, fl= 30

a b LF LS

"’i.5 .5 ".16 .’19 .15

1.5 11 .05 .09 .11

’"1.0 ’19 .41 .09 .09

i.0 .17 ’.56 .i2 .09’
1.0’ .16 .67 .i4 .09

1.0’ .’15 ’.83 .1’7 .10

CD CL

.02

.18’

.11

.06

-.0i’

a b

1.0 .09

1.0 .085
1.0 .08

1.0 .077

1.0 .075

1.0 .0745

LF LS CD
’.52 .06 .04

.62 .07 .04

176 .08 .04

.87 .09 .04

.96 .10 .04

.98 .10 .0,

CL
.13

.10

.05

.01

.02

.02

It is also possible to obtain a value of LF greater than one for certain choices of
the parameters a and b. Our tentative interpretation of this outcome is that the flow
separates tangentially from the bottom of the plate before reaching the trailing edge.
Since we are not interested in this situation, we have not done the more detailed
calculations that would be necessary to justify this interpretation.

Acknowledgments. The author would like to gratefully acknowledge a number of
stimulating conservations with William Wentz, director of the Walter M. Beech Memo-
rial Wind Tunnel at Wichita State University, about the subject of this paper.
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POLYNOMIAL EXPANSIONS FOR SOLUTIONS OF
Du(x, 0 D,u(x, 0, r = 2, 3, 4,.-. *

HANS KEMNITZ"
Abstract. This paper is an extension of results by P. C. Rosenbloom and D. V. Widder [Trans. Amer.

Math. Soc., 92 (1959), pp. 220-266] concerning the expansion of a solution u(x,t) of the heat equation,

D u( x, t)= D u( x, t), in a series of polynomial solutions.
It is found that a polynomial expansion

E anl)r.n(X’t)
n--O

converges in an infinite strip It] <o, where the polynomials

Vr,n( x’ n E x’ t’
k! l!

k+rl--n

satisfy the partial differential equation Dfu(x,t)=Dtu(x,t ). Furthermore it is found that there exists a
solution of Df,u(x, t)= Dtu(x, t) which has a Maclaurin expansion in a strip Itl <o and which reduces to f(x)
for t-0 if and only if f(x) is an entire function of special growth. All the proofs need only elementary
calculus and make no use of fundamental solutions.

Introduction. In 1959 P. C. Rosenbloom and D. V. Widder [10] established the
result that a polynomial series

E anVn(X,t)
n--O

converges in a strip tl < o, where v,(x, t) are the heat polynomials

x k

n!
k! l!"

k+2l--n

This theorem contains a formula for o in terms of the coefficients an, analogous to
Hadamard’s formula for the radius of convergence for power series. The polynomials %
satisfy the heat equation, D2 u(x, t)= Dtu(x, t), and those series expansions do the same
in the whole strip of their convergence. D. V. Widder [12] showed in 1962 that there
exists a solution of the heat equation which is equal to its Maclaurin series in the strip
]t]<o and which reduces to f(x) for t=0 if and only if f(x) is an entire function of
growth (2, 1/4o).

In 1965 L. R. Bragg [2] found that a polynomial series in terms of

R.(x,t) F(//2+n) E F(/C2+j) j xZ(4t) "-J

j=0

converges in a strip Itl<o, where Rn(X,t) are called radial heat polynomials and
satisfying the radial heat equation

D2xU(X,t)+ l-! Dxu(x,t)--Dtu(x,t ), tz> 1.
X

The differential operator D+((t-1)/x)Dx is the Laplacian in radial coordinates
when t-n, a positive integer. D. T. Haimo [6] obtained the criterion that there exists a

Received by the editors January 22, 1981, and in final form September 19, 1981.
Wiesenstrasse 69, 7830 Emmendingen, West Germany.

640



SOLUTIONS OF Dfcu(x, t) Dtu(x, t), r= 2, 3,4,... 641

solution of the radial heat equation which has a Maclaurin expansion in a strip [t <o
and which reduces to f(x) for t= 0 if and only if f is an even entire function of growth

In 1971 F. M. Cholewinski and D. T. Haimo [3] studied the Laguerre heat
equation.

xDxu(X,t)+(a+ 1-X)Dxu(X,t)=Dtu(x,t), 2a>-l.

I hey found that a series expansion in terms of Laguerre heat polynomials

(n)F(n+a+ 1)(xe_t)n-k(l_e_t)kp.,(x,t)- k F(n-k/--d-1)k=O

converges in an unsymmetrical strip, i.e.,

In <t<ln 0<o<-+ 40 40 4

O.In
+40

<t< + c 4

D. T. Haimo [7] showed that there exists a solution of the Laguerre heat equation
which has a Maclaurin expansion in such an unsymmetrical strip and which reduces to

f(x) for t-0 if and only iff(x) is an entire function of growth (1, 1/4o). It is remarkable
that the determination of o for both the Laguerre heat equation and the radial heat
equation are completely equal because the polynomials are connected by the formula

pn,a(x,t)-R2n+2 xl/2e_t/2 e -t

4

Other papers in which such aspects are transfered to partial differential equations of
second order in one or several space variables include [4], [5], [8], [9], [11 ].

For a discussion of polynomial series it was essential to know the behavior of
vn(x,t ), R(x,t), pn,(x,t) as n . Therefore all proofs use nontrivial formulas of
special functions. For example, Rosenbloom and Widder [10] employ the Poisson
representation of the heat polynomials

+
Vn(X,t)-- f k(x-y,t)yndy,

where k(x, t) is the fundamental solution of the heat equation. In the present note we
give a method for estimating polynomials

xk

l)r’n(X’t)--n! k! l!
k+rl:n

by use of elementary calculus, in particular for the heat polynomials when r= 2. Our
estimates are not of the same quality as in [10], but they are sufficient to establish the
principal result:

If

lim sup
r. e [anlr/n
n o

then the series

an2
n--O
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converges in an infinite strip It <o (Theorem 1.6). An application of this result leads to
Cauchy problems for the partial differential equation (Corollary 2.5, Corollary 2.6)

D;u(x,t)=Dtu(x,t),
because v,(x, t) satisfy the equation for fixed r. The necessary and sufficient condition
for a solution of Dfu(x,t)=Dtu(x,t) which is equal to its Maclaurin series in a strip
Itl<o and which reduces tof(x) for t=O is that f(x) have growth (r/(r- 1), ((r- 1)/r)
(1/ro)l/(r-1)).
Now, we list the notation used in our study"

r fixed integer, r_> 2;
s integer with 0 _< s <_ r

N field of real or complex numbers;
Euclidean norm on ;

Dzu partial derivative of u with respect to z .
In [10] the heat polynomials ,(x, t) are defined by a generating function. In the

same way we obtain for x, t, z N
o zn

(0.1) exp(xz+tzr) , vr,.(x,t)-..
n=0

By use of Cauchy’s rule for multiplying power series, we obtain the explicit expression
[n/r] tk xn_rk

(0.2) %,,(x,t)--n! ,
k--( (-.--.),,k--0

where [n/r] means the largest integer <_n/r. Setting r=2, we get back the heat
polynomials, v2,(x,t)= v(x,t). For further reference, we note the following evident
properties of Vr, n(X, t) for n mr+ s, s (0,’’ ", r-- }:

(0.3)

(0.6)

(0.7)
(0.8)

(0.9)

(0.10)

(0.11)

m k xr(m-k)+s
Vr,n(X,t)--n! -. (r(m-k)+s)l’k=0

vr,(x,t)-x,
l)r,n(X,O)-X n,

(rm)
Vr,n(O,t)-- m! "t"’ s--O,

O, s:/:O,

gnl)r,n( X, ) t)r,n( gX, grt ),
IVr,n( X, )l <-Vr,n(lxl Itl),

f n’
Dxvr,n(X,t ) (n--1)! v’"-l(x’t)’

O,

f n!
Ott)r,n(X,t )- (n--r)! t)r’n-r(X’t)’

0,

Ofct3r,n( x, ) D t)r,n( X, ).

n>_r,
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1. Strip of convergence. In this section we show that the polynomial series

an(1.0) 2 -.. Vr,n( x, )
n--O

converges in a strip It] <o, where o is calculated with the aid of the coefficients a N.
For that, we need several simple preliminary results, based only on elementary calculus.

LEMMA 1.1. For n mr+s, 0<< +,
.,.(Ixl Itl) ( + Itl) Ixl exp Ixl"

n m s r6

Proof. By an induction argument for -0, 1,2,- ., it can be shown that, for fixed
r2,

()’,(,).
Recalling that nls (n+s)l, and using the above inequality with replaced by (m-k),
we obtain

k--mr

(r(m-k) +s) (r(m-k)) ]s -s ](m-k) (m-k)
Now, from (0.3), noting that Izl"/nt explzI, we have, for 0,

,(I/I,Itl): Itl Ixllxl<m-).. . (r(m-)+)’k=0

--m (r(m-k)+s)’k=0

,x,"< + exp-m r#

and the lemma is proved.An appeal to Stirling’s formula yields the inequality

<c(mr+s)/ (6+ltl)re (+)/r

m rm+s
where c is a constant which depends on 6. We thus obtain the following results:

COROLLARY 1.2. For n-- 1,2,3,..., 0<6< +, Ixl<R
v,,(Ix[,ltl)<Mn/2 ( (6+[tl)re )/"n[ n

where M is a constant depending on , r, R.
LEMMa 1.3. For n mr+s, O<(x/to)<+

Ir.n(XO. t0)l > Ix01 It01
n sl m

Proof. From (0.3) we obtain

I’r,.(Xo,tol: t x;x;-)

’ ’ (.(m--)+)’k=0

’to’m ’xo’ m m s ( x ) m-km’. sl. =0k’(r(m-k)+s)’’
Hence, since the value of the latter sum is at least 1, the proof is complete.
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COROLLARY 1.4. For n-- 1,2,3,. -, O<(x/to)< + o

[)r,n(Xo,to)[ >Mn-,/2( [to[re ) n/r

n! n

where M is a constant depending on xo and o.
Proof. By Stirling’s formula we obtain for n mr+ s

_
>C(mr-k-s)-1/2 [tolre (mr+s)/r

Cn -1/2 [to[re n/r

m! mr+s n

where C is a constant which depends on 0. Hence the proposition follows easily from
Lemma 1.3.

We are now in a position to show that if a polynomial series (1.0) converges at a
point (Xo, to) with O<(x/to)< +, then it converges in a strip Zo ((x,t)K 2"

THEOREM 1.5./f the series (1.0) converges at (Xo, to), O<(x)/to)< +o, then
i) the series converges absolutely in the strip
ii) the series converges uniformly in any compact region of
iii)

relto[
n

Proof. Since the series (1.0) is assumed to converge at (x0,t0), the general term
tends to zero as n--. oe. It follows that by Corollary 1.4

and hence

n/r

la.I <-cn’/ i o re n>_l

for some constant c which depends on xo and o. By use of Corollary 1.2 we have for

--(.l)r,n(X,t)Ct ito[
nl,

where C is a constant which depends on xo, o, 8 and R. But the series

nE1-- n [to[

n/r

converges for [tl<[t0[--. Since may be taken arbitrarily small, an application of
Weierstrass M-test completes the proof.

There exist series (1.0) some of which converge for all (x, t), while others fail to
converge when q=0. We define a number o as the radius of convergence, if the
polynomial series (1.0) converges in a strip Zo. Because the limiting case o=0 is not
interesting in further studies, we omit it, but o +oe can be included.
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THEOREM 1.6. If

then the series

has the followingproperties"

lim sup
re r/"

n+o n 0

E --.Vr,n(X,t)
n=0

i) if it converges in the strip Z, then
ii) it converges absolutely in the strip Zo;
iii) if it converges absolutely at some point (Xo, o), xo 4: O, then (xo, o) Zo;
iv) it converges uniformly in any compact region of Zo.
Proof. If 0<o0<o then the assumption (,) implies that, for n>_n(oo),

re%

Hence by Corollary 1.2 we have, for [x[ < R,

But the series

--Vr,n(x’t] +lt n/r

Oo

n 1/2
a+ It[ n/r

=1 0

n_>l.

converges for It] <%-. Consequently, for arbitrarily near 0 and oo arbitrarily near o,
we have ii) and iv). Now, suppose that the series (1.0) converges in the whole strip Z,
where o< z. Then in particular it would converge at (xo, o), 0 <(x/to)< +,
o< [tol < -. By Theorem 1.5, we obtain

lim sup
re

n--,o T[an[r/n[to[
The desired contradiction is evident and i) is proved. The property iii) follows in an
obvious way from Theorem 2.4.

It should be noted that Theorem 1.6 does not preclude the possibility of conver-
gence outside the strip Zo. This may happen, as in the example

(1.7) n mr+s, an-- (rm+s)’
(---1)m !’ sva0"

By Stirling’s formula

so that

(rm+s)! )r/rm+s((r- 1)m)! e r-1

lim sup
re, ’r/n--(r) r-I

n jan[ r
r-1

The strip of convergence is bounded, but by (0.6) the series (1.0) converges over the
whole t-axis.
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2. Polynomial expansions. In (0.11) we have noticed that the polynomials Vr, n(X, t)
satisfy the partial differential equation

(2.0) Dfu( x, ) Dtu( x, ).
We therefore would expect an analogous result for the polynomial expansion. The
precise answer is described in Lemma 2.1. Furthermore, we will see that polynomial
series are related to Maclaurin double series. This relationship allows polynomial series
to be used in solving analytic Cauchy problems of (2.0) as we do in Corollary 2.5 and
Corollary 2.6.

LEMMA 2.1. If
ani) u(x,t) -. v,,(x,t),

n--0

re r/nl<ii) lim sup -n--]a o

then Ur(X,t) satisfies equation (2.0) and is analytic, as a function of two variables, in the
strip Zo. The coefficients an have the determination

iii) an-Dur(O,O).
Proof. By Theorem 1.6 the series in i) converges uniformly in any compact region

of Zo. Hence u(x,t) is an analytic function in the whole strip Zo. Setting t-0

an n an".Vr,n(X,O)-- -.X
n

n=0 =0

where we have used equation (0.5). Then iii) follows from Taylor’s formula. For fixed
integer p

re
ja iln_lim sup -n- +p o,

which follows easily from ii). By applying Theorem 1.6 the series

]
n! v,,

n--0

converges uniformly in any compact region of Zo. Consequently, appealing to equa-
tions (0.9) and (0.10), we note that the differential equation (2.0) holds in the strip Zo.
In the following, we show that the expansion i) holds in some infinite strip Itl <o if and
only if u(x,t) is analytic, as a function of two variables, at some point of the x-axis
and satisfies the differential equation (2.0).

THEOREM 2.2. Under the conditons of Lemma 2.1 u(x,t) has the Maclaurin expan-
sion

x xmUr(X’t)-- am+rnm! n!m,n--O

Proof. From the hypotheses, it follows that the series

ak .v , (Ixl,ltl)
k=0
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converges absolutely in the strip Zo. Hence by (0.2)

ak xmtn o

rn! n!
k=0 m+rn:k m,n--O

and the result is established.
THEOREM 2.3. If 0>0, o>0, Ix[<0, Itl<o

i) O:ur( X, t) OtUr( X, ), Ur( X, t)

X
m+rn m! n!

xm n

a"n m! n!

then ur( x, t) can be extended to an analytic function U(x, t) in the strip Zo,

a" (x,t).ii) Ur(x,t)- --k. Vr,
k=0

Proof. Since a power series may be differentiated term by term, we have for Ixl <

XDtUr(X’t)k-- am’n+’ m--, n--.’
XmD;ur(X,t)- E am+r,nm[ n"

Comparing the coefficients we see that am,- am+r,O. Since the series in ii) converges
for Ixl < 0, It[ < o (and hence absolutely for 0<xo< O, 0< 0< o) we have

xg t
ak,o

xg t a,ov,,k(x to).Ur(XO,tO)-- 2 am+rn,Om, n’ m’ n’
re,n=0 k=0 m+rn=k k=0

But by Theorem 1.5 the latter series converges absolutely and uniformly in any com-
pact region of the strip Zltol.

Since o may be taken arbitrarily near o, we obtain an analytic function (x, t)
which is the continuation of Ur(X,t ). This completes the proof.

Now we have, from the expansions in Theorem 2.2 and Theorem 2.3ii, that the
series

k--O
converges in a strip Zo

if and only if

O xm tnE am+rn m! n! converges in a strip Zo.

THEOREM 2.4. If

then the series

re I’an’r/nlim sup
noz n o

Xm n

am+rn m! n!

converges in the strip Z, and, except perhaps when x-O, diverges for
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Proof. Suppose the Maclaurin series converges at some point (x0, to) with x0 4:0,
It01>o. Then, in particular, the series made up of the first r columns would converge
absolutely so that

S as+rn -. < ---,
n--O

whence

limsup
e la+rn[l/,

n--, n -It01
Combining these r inequalities gives

ir/nlim sup
re

a <<-

But this contradicts the condition of convergence for the related polynomial series. An
example of a Maclaurin double series, which converges in a bounded strip Zo but over
the whole t-axis, is given by (1.7). Theorem 2.4 proves also Theorem 1.6iii. Under the
conditions of Theorem 1.6, suppose the polynomial series also converges absolutely at
some point (Xo, to), xo#O, [t0[>o. Then the related Maclaurin series would converge
absolutely at the same point, but this contradicts (,).

Now, we can apply our results to solve the analytic Cauchy problems of (2.0). First
let us sum the Maclaurin series of Theorem 2.2 by rows. For that we need to define the
growth of an entire function [1, p. 11]. We say that an entire function

naO anf(/)- -. xn

has growth (ct, fl } if and only if

limsup (e) -l

then

COROLLARY 2.5. For o>0 andf(x) =o(am/m!)xm"

i) Iff has growth

{ _r r--l( )1r r ro

Ur(X,t) 2 o;nf(x)-’.
n--O

is defined in Zo and satisfies Du(x, ) Dt u(x, ), u( x, O) f(x ).
ii) If

x xmUr(X,t)-- 2 am+rn m! n!
ml’lO

converges in Z,, then u(x, O)=f(x) has growth

( r r-1 1) 1/(r- 11 }r-1 r
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Proof. The corollary follows immediately from the previous results and the equiva-
lence of

lim sup -n-- o

and

limsup(e)l/(r-1)_n ]a]/((_ ))_< ( ro

1/(r-- 1)

Now we sum the Maclaurin double series by columns.
COttOLLARY 2.6. For s--O,. .,r-- 1, gs(t) =o(arn+s/n!)tn:
i) If gs(t) converges for tl <, o> 0, then

r-- o rm+s
Ur(X,t).__ D[ngs(t) x

s=O m=0 ( rm + s )!
is defined in Zo, o min(a s 0,..., r- }, and satisfies

D;ur( X, ) Dtur( X, ), D;ur(O, ) gs( ).
ii)/f

Ur(X’t)’-- am+rn m! n!m,n=O

converges in Zo, o> O, then Du(O, t) gs(t) converges for it[ < %, o >_ o.

Proof. The corollary is an immediate consequence of the previous results and the
elementary relation

limsuprela.[r/.
n-c n o

if and only if for %_> o, s- 0,..., r-

lim sup
e ]arm+sll/m

rno m o

In [12] D. V. Widder pointed out that in general the classic Cauchy-Kowalewski
solution of Corollary 2.6 ii) is known to be valid only in a sufficiently small neighbor-
hood of the t-axis. For the heat equation he had obtained a solution "in the large" by
using the special version (r---2) of Corollary 2.6. Now we have the analogous result for
all partial differential equations (2.0).
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A SET OF HYPERGEOMETRIC ORTHOGONAL POLYNOMIALS*

RICHARD ASKEY" JAMES WILSON:

Abstract. Polynomials orthogonal with respect to IF(a + ix)I’(/+ ix)] on (-o, o) are found.

1. Introduction. At the Helsinki Congress (1978), E. M. Nikishin [6] pointed out
the importance of adding to the classical orthogonal polynomials other polynomials
that are orthogonal to specific weight functions and finding explicit expressions for
these polynomials and their three-term recurrence relation. One of us has given a large
class of such polynomials and their hypergeometric representations [9], and jointly we
have given the discrete case of even more general orthogonal polynomials which are
basic hypergeometric series [1]. The particular weight function Nikishin proposed was
[exp(2r-)-1]- on [0, ). We will not solve this problem, but remark that some of
the polynomials given by Wilson are orthogonal with respect to

exprv
exp(2)- 2sinh

on [0, o). This is the case a-1, b-c-1/2, d= 0, after a change of variables. Wilson’s
polynomials will be given in the next section.

There is another interesting set of orthogonal polynomials which are hypergeomet-
ric functions that can be obtained from the polynomials in [9]. To find them, recall the
Hahn polynomials

3F2(-n,n+a+fl+l,-x. 11 n-O, N.(1.1) On(x; a+ 1,-N ]’
They are orthogonal on x 0, 1,. ., N;
( .al 2; ul(X+ ) -0,x N-xx:0

A few years ago, W. A1-Salam asked one of us if all the orthogonality relations for
these polynomials had been found. It is reasonably easy to argue that they have been.
Here is the argument. If a set of polynomials (pn(x)} is orthogonal with respect to a
positive measure, then

(1.3) p,(x) :,p,+()+,p,(z)+ C,p,_(x),
with A,, B,, C, real and A,_ C,>0, n- 1,2,.... For the Hahn polynomials

(U--n)(n+o++ 1)(n+a+ 1) n(n+3)(n+U+ot++ 1)A,,- (2n+a+/3+l)(2n+a+/3+2) Cn- (2n+x+/3)(2n+x+/3+l)"
This is an easy limiting case of the recurrence relation in [1 ], and can be found in many
other sources. If N is not an integer, then lim,,.oA,,_lCn/n2--, so An_lCn>O,
n-1,2,..., cannot hold. However A1-Salam knew that this was not the complete

*Received by the editors July 16, 1980, and in revised form June 8, 1981.
tDepartment of Mathematics, University of Wisconsin, Madison, Wisconsin 53706. The work of this

author was supported in part by the National Science Foundation under grant MCS 78-07244A02.
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answer, since Bateman [2], Touchard [8] and Carlitz [3] had found other cases where
there was orthogonality with respect to a positive measure. For

p(x)--i (-n’n+l’7+ix" l) 0<7<13F2 1,23,

Carlitz [3] found an orthogonality relation equivalent to

foo pn(x)Pm(X)dx
=0, m=/=n.- sin2 try cosh2 rrx + cos2

rr3, sinh2 rrx

The case -1/2 was given earlier by Bateman [2] and Touchard [8].
It is not obvious that Pn(X) is real, but it is. This fact will follow from more general

results in the next section.

2. The orthogonal polynomials. To discover the more general set of orthogonal
polynomials observe that the weight function for the Hahn polynomials is symmetric
about the midpoint x N/2 when a =/3. When this is the case the coefficient B, in the
recurrence relation (1.3) must be a constant, and so it can be removed by translation.
After this translation the recurrence relation becomes

(2.1) XPn(X ) =AnPn+ l(X)-[- CnPn_ l( X),
and p,(x ) satisfies

p,(-x)=(-1)"p,(x).
Set

q,(x)--i"p,(ix),
so that (2.1) becomes

(2.2) -Xqn( x ) =A,,qn+ 1( X ) Cnq 1( x ).
If in (2.1) A and C are real and An_Cn<O, then in (2.2) An_(-Cn)>O. By a theorem
usually attributed to Favard [5, Chapt. II, Thm. 1.5] (see Stone [7,Thm. 10.27] for an
earlier treatment than Favard’s, and even earlier ones exist) the polynomials (qn(X))
are orthogonal with respect to a positive measure. In the current case, set

(2.3) Pn( X "[ ) n F
n n + 2a + 23’ 3’ x

+ 3" 23, 1).
The recurrence relation (1.3) becomes (2.1) with

(2.4) An (n+2y)(n+2ot+23’-1) n(n+2ot-1)
2(2n +24+23’-1) Cn= 2(2n +24+23’-1)"

Now An_lCn>0 when ct>0, 3,>0. The case a+3’= was treated by Carlitz.
To find the weight function in the general case recall the quadratic transformation

[4,2.1.5(27)]

(2.5) 2F a+b+1/2 ;t -2F’ a+b+1/2

In general this only holds in the connected component of the set where Itl< and
14t(1-t)l< containing the point t=0. When a---n, it holds for all t, since both sides
are polynomials. Take a=-n in (2.5), multiply by t-l(1-t)d-c- and integrate over
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[0, ]. The result is

(2.6) 3Fz b-n+1/2, d; 4F3 b-n+1/2, d/2, (d+ 1)/2’
For Pn(X; a, 7) this gives

(-b n+ot+7-1/2, 7-ix, 7+ix )(2.7) P2n(X; a,V)--(-1) 4F3 ct-+-T, V, V+1/2
Wilson’s orthogonality in [9] is

foPn(X2; a,b,c,d)Pm(X 2",a,b,c,d)
(2.8)

r(a+x)r(b+x)r(c+x)r(d+x)
F(2ix)

dx-O, m=/:n,

when a,b, c, d>0. This also holds when one of the parameters is zero. The polynomial
Pn(X 2) is defined by.

(2.9) p,,(x2"a b c,d)-4F3( -n’n+a+b+c+d-l’a+ix’a-ix" 1)a+b,a+c,a+d

Take c-0, d= 1/2, a-y, b-a. Then

(2.10) Pn(X;a,’)Pm(X;a,’g)lF(a+ix)F(7+ix)12dx=O, m=/=n,

when m and n are even. When one is even and the other is odd the integral vanishes by
symmetry, since P,,(-x ) (- 1)nPn(X ).

TO complete the proof use the quadratic transformation [4, 2.11 (19)].

2F1 a+b+1/2 _(l_2t)zF,
a+1/2, b+1/2. 4t(l_t )
a+b+1/2

and integrate to obtain

( 2a,2b, c (d-2c) ( a+1/2,b+1/2, c,d-c )(2.11) 3F2 a+b+1/2, d’ =4F3 a+b+1/2, (d+1)/2, (d+2)/2
when both series terminate. This is the same as

(-1)n+lx4F3[ -n, n+a+Y+1/2, ",{--ix, "y+ix. 1](2.12) P2n+I(X;a,Y)-
Y 1 a+T,y+1/2,7+l

This time take a-7, b-, c-1/2, d- 1. Wilson’s orthogonality relation (2.8) gives (2.10)
when rn and n are odd.

The L2-norm of the polynomials can be computed from Wilson’s results [9], or by
use of the recurrence relation (2.1), (2.4). It is

(2.13)
(1)n(2C)n(O+7--1/2)n Af=_= [P"(x;a’T)]2lr(a+ix)r(7+ix)12dx-(2.)n(2a+27 1) (0/-Jr- /-- 1/2)

where

a-f lr(.+ ix)r(, + ix)l dx-
r(.)r(. +i)r(r)r(r +i)r(. + r)r(i).
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There is a second way to obtain this result from (2.8). It is not necessary to take
a,b, c,d>O in (2.8). They can be complex with positive real parts, provided they occur
in complex conjugate pairs. Take a-- 3’ + iw, b 3’ iw, c-- a + iw, d a iw, x + w,,

To keep the polynomials real it suffices to consider

4F3[, -n, n+a+b+c+d-1, a+ix, a-ix. 1]](a+b) (a+c),(a+d)" " a+b,a+c,a+d

Divide by (2w)" and let w . The resulting polynomial is

(23’),(a+3’),injF2( -n’ n+2a+23’- l’ 3’-it )a+3’,23’

so the orthogonality relations (2.10) and (2.13) follow directly from Wilson’s ortho-
gonality without the use of quadratic transformations. We gave the first derivation
since the method can be used in other settings. Also it seemed to explain the real reason
for the existence of these orthogonal polynomials better than the second argument did.

There are special cases whose weight functions are interesting. When a-1/2, 3’-1,
the weight function is a constant multiple of x/sinh2rrx on (-o, o). Other choices of

k 2ct and 3’ give x[I.=l(x2+j2)[It=l(x2+(j-1/2))/sinh2rrx and x2II_(x +j)[I=l(X
+j2)/sinh2 rrx. There are similar extensions of the orthogonality relations of Bateman
and Carlitz which can be given if they are needed. However the symmetry and simplic-
ity of the weight function in (2.10) is so nice that it will probably be a more useful form
than most of its special cases.

This set of polynomials is probably the only one of the 3F2 Hahn polynomials
which is orthogonal with respect to a positive absolutely continuous weight function,
but we have not shown this.

3. Another set of orthogonal polynomials. The polynomials Pn defined in (2.9) are
polynomials of degree n in x 2, and so of degree 2n in x. It is natural to ask if it is
possible to explicitly find polynomials of degree 2n+ 1, n-0, 1,. ., so that the full set
of polynomials are orthogonal on (-, ) with respect to the weight function in (2.8).
The answer is yes. When one of the parameters vanishes (say d=0) the polynomials can
be given as hypergeometric series:

(3.1) P2n+l(x;a,b c)-x4Fj( -n’n-+-a-k-b-q-c’a-+-ix’a-ix" 1)a+b,a+c,a+l

For

o )] F(a+ix)F(b+ix)F(c+ix)F(ix)12f P2n+(x;a’b’c)P2m+(x;a’b’c F(2ix)
dx

2 p,(x 2", a b c, 1)pro( X 2", a b c, 1) r(a+ix)r(b+ix)r(c+ix)r(l +ix)
F(2ix)

2

and this vanishes when m 4 n by (2.8).
In the general case the best representation we have found for the odd degree

polynomials is as a sum of two hypergeometric series. They are given by

,a,b,c,d)xq2,,+(x;a,b,c,d) Pn+I(X2"
p,+(O;a,b,c,d)

Pn(X2;a,b,c,d)
Pn(O;a,b,c,d )
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Clearly q2n/l(X) is a polynomial of degree 2n+ in x and only odd powers of x
appear, so it is sufficient to show that

foqEn+ I(X; a,b, c,d )X2k+l

F(a+ix)F(b+ix)F(c+ix)F(d+ix)
2

dx-O, k-0, 1,-. -,n- 1.
F(2ix)

This is immediate from (2.8).
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ORTHOGONAL POLYNOMIALS, DUALITY
AND ASSOCIATION SCHEMES*

DOUGLAS A. LEONARD"
Abstract. This paper reconstructs and characterizes the Askey-Wilson orthogonal polynomials as those

having duals (in the sense of Delsarte) which are also orthogonal. It introduces the concepts of eigenvalues
and Delsarte’s duality to the study of orthogonal polynomials and provides those interested in P- and
Q-polynomial association schemes with a closed form for their parameters.

In [6] D. Stanton discusses in depth the q-Krawtchouk polymomials and their
relation to the classical root systems. In [1] R. Askey and J. Wilson exhibit a more
general set of orthogonal polynomials which are basic hypergeometric extensions of the
classical orthogonal polynomials.

P. Delsarte, in his work on association schemes [2], gives a notion of duality which
in light of the discussion in [5] is applicable to the study of orthogonal polynomials.
The duals of the Askey-Wilson polynomials are also orthogonal so it seems reasonable
to ask which orthogonal polynomials have orthogonal duals. Under the assumption
that there are sufficiently many polynomials to carry out all calculations, it is possible
to reconstruct the Askey-Wilson polynomials as essentially the only such.

Despite the caveat against characterization theorems at the. end of the Askey-Wil-
son paper, it is felt that this is a significant result in that it explains some of the
importance of the polynomials and of Delsarte’s duality. But more than that, it is
central to the characterization of P- and Q-polynomial association schemes (see [5])
suggested by E. Bannai and begun by Y. Egawa [3]. For this reason the main theorem
(found at the beginning of 2) is stated as a listing of eigenvalues and parameters for
association schemes rather than as a characterization of Askey-Wilson polynomials as
mentioned above.

1. Preliminaries. Except when otherwise noted, all unconstrained subscripts range
over 0, 1,... ,N, with N-- o allowed.

A sequence (Pn(Y)) of polynomials is called graded if degpn--n. A graded se-
quence (Pn(Y)) of polynomials will be called normalized relative to some function/z(x)
if Pn(I,t,(O))-- 1. The function/(x) will be called an eigenfunction if the n--P,(n) are all
distinct. The/n will be called eigenvalues. (Given a sequence of eigenvalues, there are
obviously many choices for an eigenfunction. This choice will not be important, as the
function is only a notational convenience.) Note that if (pn(y)) is a graded sequence of
polynomials and pn(/(0))v0, then (p(y)/p(l(O))) is a normalized sequence of poly-
nomials relative to/(x).

A normalized sequence (p,(y)) of polynomials will be called m-recurrent relative
to some eigenfunction (x) if it satisfies an m-term recurrence relation

m--I

(1.1) E Xk,iPk+l-i(IZ(X))--IZ(X)Pk(l(X)), O<_k<_N--1,
i=0

Received by the editors February 9, 1981 and in final revised form July 27, 1981.
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with po(l(x))- 1, p_l(/(x))- 0 and Xk,; constants satiSfying Em-li=0 Xk,i--/(0). In partic-
ular (see G. Szeg/3 [7] or G. Freud [4]), note that orthogonal polynomials are 3-recur-
rent; that is, when normalized as described above they satisfy a 3-term recurrence
relation

(1.2) b,p+(l(x))+a,p,(l(x))+ckPk-(t(x))--l(x)P(l(x)).
The coefficients bg, ag and cg are the connection parameters familiar in the study of
distance regular graphs (see [5]). This paper shall only treat 3-recurrence, since it is of
importance in the study of orthogonal polynomials. However, it should be noted that
the methods generalize easily to treat m-recurrence.

Two normalized sequences (p,(y)) and (p,*(y)) of polynomials with respective
eigenfunctions/(x) and/*(x) are said to be dual if

(1.3) pk(IXi --p( ).

In general (Pn(Y)) may have many duals. However, once the two eigenfunctions (x)
and/*(x) are chosen the dual sequence is unique, if its exists. This is the consequence
of the following.

PROPOSITION 1. Let (p,(y)) and (p*,(y)) be dual sequences of normalized polynomi-
als with eigenfunctions I(x) and t*(x) respectively. Then there exists a sequence (Mj)
with Mo such that

k j--1 j--1

Pk ( Y E M 1"I ( l* I*m ) 1] ( Y lm )
j=0 m=0 m=0

j--I j--I

p:(y)- II II
j=0 m=0 m=0

( Pk( Y )) and ( p’(y)) can be viewed as arisingfrom the series

N j--1 j--1

(1.5) p(k,i)- E mj I (*k--*rn) 1-I (i--m)"
j-0 m=0 m=0

Proof. Given any graded sequence (p,(y)) of polynomials and any sequence
(OmY+ tim) of linear polynomials, it is possible to write

j--1

(1.6) P(Y)- i An,j H (amY+tim)
j=O m=0

for some constants A,,j. as this can be viewed as a change of basis from (p,(y)) to
(II;-m-0(amY + tim))" Therefore it is possible to write

(1.7)

k j--1

Pk(Y)- E Ak,j H (Y--lXm),
j=O m=O

j--1

P’(Y)- Z A";, I (Y--tZ*m).
j=0 m--0
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Since all the eigenvalues and all the dual eigenvalues are distinct,

j--I

IZk,j I’[ (/Z,--/Z*m)4:0 for allj--<k,
m--0

j--I

i*,j-- H (i--m) =/::0 for allj_<i.
m--0

So it is possible to rewrite (1.7) as

(1.9)

k j-l j-1

Pk(Y)-E Mk, II (#-/X*m) 1-[ (Y--/Xm),
j=0 m=0 m=0

j--I j--I

P(Y)-E MY. I’[ (#i-# ) I (Y-#*m)l,J
j=0 m=0 m=0

By duality (1.3),

N j--1 j--l

--M.*.) H (l*k--t’t*m) H(1 10) 0 E (Mk,s ,,s
j=0 m=0 m=0

It is easy to show by induction that Mk,j= Mj.*,j for all k>_j and that M/*,j.= Mj,j for all
i>_j. So let M=M,=M*,. And since both sequences are normalized, M0-- 1.

2. Main theorem. The following theorem is constructive. The form of the proof is
discussed after the statement.

THEOREM. Suppose (pn(y)) is a normalized sequence ofpolynomials with eigenfunc-
tion I(x ), satisfying the 3-term recurrence relation

(2.1) bkPk+(l(X))+akPk(l(X))+cp_,(l(X))=l(X)p(l(X))

for some constants bk, ak, Ck with bk+ak+ck=p,(O). Suppose (p*(y)) is a normalized
sequence ofpolynomials with eigenfunction I*(x), satisfying

(2.2) bp+,(IZ*(x))+apk(t*(x))+cpk_,(t*(x))=#*(x)Pk(IZ*(x))
* with * *-for some constants b, a, ck bk +a +ck /*(0). Suppose also that (Pn(Y)) and

( p* ( y)) are dual, so

(2.3)
Then the eigenvalues and connection parameters (and dually the dual eigenvalues and dual
connection parameters) are given by:

(2.4) lzn- Bo + q
q-1 + __q"+- B2 ],BI q2--1

qk-_qk+2 qk k+2
q- e-q

q- e+dk
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where

(qk_l)(qk- 1) B B’(1 qZ)+B B+B2B’+B2B 2(q--1)(q:’7--- l" q -1

k+l qk+ ,
e0 + eB’+B q2-__- i e,-q (l+q) B{+B

q-12 k

B’ +B q- B’ +B qqa- ll
where

e-q(q+l)

and

qk-3_
B2 q2--Blqk- q2_ B’ +B q2_

ak-Bo-(bk+ck),
where it is necessary to take limits in the cases q- +-- (which correspond to repeated roots
in the quadratic equation arising from the 3-term recurrence in Proposition 2 ).

The multiplicities m in each case are gotten by

/97_(2.5) mi-
j=l C7

and the polynomials p(y) are given by

(2.6) Pk(Y)- X H ]’L-Jm YtXm
j=0 m=0 J m bm

The polynomials in (2.6) are those described by Askey-Wilson [1] though the
eigenvalues differ by an affine transformation. This does not affect the polynomials but
does allow the m to conform with the eigenvalues in the association schemes (hence
their names).

The proof is divided into three propositions. The first is used to determine the
form of v,=#,--/,_ and does not depend on the dual recurrence relation (2.2).
(Hence, it holds for any orthogonal polynomials having duals). The second proposition
gives a relation between the eigenvalues and the dual eigenvalues. The third pieces
together the results of the first two to determine v, under the assumptions of the
theorem. The theorem follows by solving for the eigenvalues and parameters in each
case.

PROPOSITION 2. Let (p,(y)) be a sequence of polynomials satisfying the 3-term
recurrence relation (2.1), with eigenfunctions I(x ) and dualpolynomials ( P’n( Y))" IfN >-- 9,
then (vn) satisfies a recurrence relation

(2.7) Avn+Bvn_ q-Cl,’n_2"-O 3<_n<_N-4

for some constants A, B, C with A =/= O.
Proof. Pk(Y) can be written as in (1.4). Equate coefficients of IIj-1m=O(Y--m) in

(2.1) to get the system of equations

(2.8) bkMnlak+l,n+akMnp,k,n+CkMnlak_l,n--Mn_llak,n_ +P,nMnlak,
for O<_k<N, O<_n<N, where/Zm,_ =0,/Zm,O= 1, M_ =0 and bN=O.
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It is now only a matter of judiciously eliminating variables to produce the desired
recurrence (2.7).

Let n-k+ in (2.8) to get

(2.9) ek=Mk+
Since M0- 1,

k+l,k+l

(2.10) Mj-1- H ’m-- bm
m--0

O<_k<_N-1.

j,j

Substitute this into (2.8) to get

(2.11) bkk+l,nJl-akk,nJr-Ckk_l,n--en_lk,n_l Jl-nk,n
Eliminate ak from (2.11) to get

(2.12)
bk/k+ l,n--1(+ l-- ) "- Ckk-1,n-1(--1-- )

E lJ’ k e 2 (13’ *k I"t n 1’ k 2 " ln lJ’ k

Eliminate c from (2.12) to get

O<_n<_N, O<_k<N.

l<_n<_N, O<_k<_N.

(2.13)

O<_k<_N.

Eliminate b from (2.13) to get

(2.14) for 3<_n<_N, O<_k<_N,

where

(2.15) fk ,n --[/)n(- *n-!)( *n-2 ) q- En-- (/’t*1]n--2 )--En --2( n-l* )]k,n -2

Eliminate/+ and/,_ from (2.14) to get

(2.16)

L,n--2 h,n--1 -Jr-/.t’n_ fk,n_ 2

*fk,n-3 L,n--2 .ql_ n--4L,n--3

fk,n 4 fk,n--3 "JI- *n--5fk,n-4

_.]._lj,, 2n-3fk,n-2
L,.-, + +

-}-#n-4fk,n-3
fk,n_2-F(p,*n_4+P,*n_5)fk,n_3

+ *t’tn-Sfk,n-4

-0

for 5 <_n<_N, O<_k<_N.

Let

(2.17) fn(y)--’n(Y--la*n_,)(y--l*n_2)+en_,(y--t*n_2)--en_2(y--#*_,),
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wheref(y)-,l(Y-l;)+eo. Then

f,-z(Y) f,-(Y)(Y--I*,-4)
+ (y)ln-3fn-2

(2.18)
fn- 3(Y) f,,-2(Y)(Y--1*-5)

+ P’n*-4fn- 3(Y)

L--4(Y) fn--3(Y)(Y--/Xn*--6)
-k-p,*n_5fn_4CY

f,,(Y)(Y--*-3)(Y--*-4)-- (n*-- 2 + n*--3 )fn--1( Y )( Y-- n*--4
+t*,_3f,_:(y)

f-(Y)(Y--*n-a)(Y--*-5)
+ (/*,-3 +/*-4)f-2(Y)(Y --/*n- )

-t- p,n*24 fn_3(y)
f,-z(y)(y- t*,- )(y-

+ (/x*-4 +/*n- )f- ( Y )( Y --/X*- 6 )
+/*-Sfn-a(Y)

is a polynomial of degree at most nine for 5<_n<_N. But it has factors y-, for all
k_>n- 4 from (2.16) and k-n- 5 by inspection. So if there are ten values for k, that is,
if N-n_>4, this must be identically zero. Equate leading coefficients to get

(2.19) Pn-- Pn-- 2 Pn--1
Pn--4 Pn--3 Pn--2

5<_n<_N-4.

Viewed as a system of dependencies among column vectors, this means that the
column rank is at most two. So if the first two columns are independent, this yields

(2.20)
v va v
/)2 /3 Pn--
Pl P2 Pn--2

-0, 5<_n<_N-4,

which is a nondegenerate 3-term recurrence relation. And if the first two columns are
dependent, then

(2.21) ’ ’n -0 5 <_ n <_N 4
Pl Pn--1

which is a degenerate 3-term recurrence relation. Either yields the result.
PROPOSITION 3. Suppose (pn(y)) and (p*(y)) satisfy the hypotheses (2.1), (2.2) and

(2.3) of the theorem. Then

(2.22) (/, -/_)(/k+ -/k_2) (+, -/,__)(k-/k_ l), 2_<k.

Proof. Let n k in (2.13) and divide by k,k_ to get-- , p*

Note that eg-e, and divide (2.23) by its dual equation to get

* -I -+vv _+ k-2 k k-t e_l e_2+e_3

When k-2, the right-hand side is 1. So induct on k2 2 to get the resuit.



669. DOUGLAS A. LEONARD

PROPOSITION 4. Suppose that (p(y)) and (p*(y)) satisfy the hypotheses (2.1), (2.2)
and (2.3) of the theorem. Then (,) and (,* ) must be one of the following:

1) ,-Fq-(1 +Gq2), u*-F*q-(1 +G*q2) with FF*qvaO
(2.25) or

2) v-Fq-(1 +Gr), v* F’q-"(1 +Gr) with FF*GqrvaO,

n--lrl"where

Let x and x
and y be the solutions to the dual (where x2 and/or y are zero if this is degenerate
(linear)). These can be chosen so that 1) if xi=yj-1 for any (i,j), then x =yi-; 2) if
Xi=/=yfl for any (i,j) but Xi--yj for some (i,j), then xi--y1. Then with q=x 1, qr-x,
q*-Yl and q’r*-y and z,= Z’_0 z t, from Proposition 2,

,--Dq"(1 +Er,), DqvaO, Evar 1,

,n*=D*(q*)"(1 +E*r*), D*q*=/=O, E*var*- 1.

From Proposition 3, v ,*+ ,+ 1,* K, a constant, so

(2.26)

(2.27)

(2.28)

(2.29)

(2.30)

nK-DD*(qq* [(q* q)+E(q*r qrn+l)

+ E*( q*r*+ qr* ) + EE*( q*r,r*,+ qr+

K(1-qq*)-DD*(qq*)"+’[Er"(q*-qr)+E*(r*)"(q*r*-q)
+EE*q*(rn(r*)n+’ +rn(r*)n+’ +rnrn*+l)

-EE*q(rn+l(r*)n/ rn+’rn* / rn+l(r*)n)],
K(1 qrq*r*)(1 qrq*) (1 qq*)

=DD*( qq*)"+3(r*)"+ 1( r* -r)E*(1- r+E )(q’r*-q),
K(1 qrq*r*)(1 qq*r*)(1 qq*)

n 3rn+ +E*)(qr-q ),=DD*(qq*) + ’(r r*)E(1-r* *

K(1 qrq*r*)(1 qrq*)(1 qq*r*)(1 qq*)--0.

If E-- E* =0, then from (2.26), q*=q or q-.
If E*=0, E:/:0, then from (2.27) q*---qr or (q/.)-l, SO by the choice of q, qr, q*,

q’r*, q*-q or q-i and dually, if E--0, E* re0.
So assume EE* vaO. From (2.30) and the choice of q, qr, q*, q’r*, K(1- qq*)--0.

So from (2.28) and (2.29) either r--4 or q’r*-q and qr:q*. If r:/: r*, then by the
choice of q, qr, q*, q’r*, q*--q or q-. If r-r*, then from (2.27),

(2.31) O=E(q*-qr)+E*(q*r-q)+EE*(q*-q)(1 +r)r,+,
so O=(q*-q)(l+r)rn+. So q*=q and r=l or E=E*, or r--1 and q*=-q or
E-E*.

Proof of theorem. Case 2) of Proposition 4 does not satisfy (2.14) with n 3 unless
it reduces to case 1),/,-/0+Z= ,j. and dually for/*. These can be written in the
form in the conclusion for some constants B0, B, B2, B, B’ and B’. In terms of these
and q,eo, e l, it is posssible to solve for bk, ck and a using (2.13) with n=2, (2.12) with
n-1 and (2.11) with n=0, respectively. (2.5) can be taken as the definition of the
multiplicities, and (1.4) and (2.10) give the form of the polynomials.
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SERIES OF ORTHOGONAL POLYNOMIALS
AS HYPERFUNCTIONS*

AHMED I. ZAYED" AND GILBERT G. WALTER:

Abstract. The convergence of series of orthogonal polynomials and of associated functions of the second
kind in a general setting is studied. Series whose coefficients satisfy an= 0(1 + en) are shown to converge in
the sense of hyperfunctions in the first case and to holomorphic functions in the second. The latter are shown
to be the analytic representations of the former.

1. Introduction. The location of the regular and singular points of the series

(1.1) E anPn(X),
n--0

where (pn(x)} is an orthonormal sequence of polynomials, is important in a number of
problems in physics. In particular, in the theory of potential scattering, the pn(x)’s are
Legendre polynomials, and the series converges to the "scattering amplitude" [4]. When
the p(x)’s are Gegenbauer polynomials, the series is associated with the "generalized
axially symmetric potential theory" [5].

For a very general class of orthogonal polynomials, namely, the Erd/bs class, the
series converges to a function holomorphic inside an ellipse with loci at -1 whenever
(see [2], [3])

lim lal /--< 1.
n---,

For such {an}, (1.1) will be regular at all points in [-1, 1].
Unfortunately, in many of the cases of practical interest, the coefficients do not

behave that nicely; often the best one can say is that p_< 1. In such cases the series (1.1)
at best converges on the real axis, and indeed may not converge at all in any classical
sense. However, there is an associated series, the series of functions of the second kind,

(1.2) anqn(Z),
n:0

which can sometimes be used to obtain a holomorphic function related to (1.1) [9], [11 ].
Even though (1.1) does not converge in any of the classical ways such as pointwise

or in the mean, there are more general concepts of convergence which could be used to
give it a meaning in these cases. It has been shown in [9] that if an:O(nP ) for some
integer p, then the series (1.1) converges in the sense of generalized functions and the
series (1.2) converges to a holomorphic function. Unfortunately, this is still insufficient
for a series with, say, an-nlgn, for which one must use a still more general concept of
convergence. This was done for Gegenbauer polynomials in [12].

In this work, we shall investigate the following two related problems:
(i) To find a concept of convergence sufficiently broad to include all series (1.1)

for which
lim la,,[/"<_
no

and { Pn} is a member of the Erd6s class.

*Received by the editors December 2, 1980.
California Polytechnic State University, San Luis Obispo, California 93407.

*University of Wisconsin at Milwaukee, Milwaukee, Wisconsin 53201.
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(ii) To find a relation between the holomorphic function given by (1.2) off the real
axis and (1.1) on the real axis.

We shall see that an appropriate space in which to attack the first problem is a
certain space of hyperfunctions. This will enable us to obtain results similar to those
obtained in [7] for trigonometric series and in [12] for series of Gegenbauer polynomi-
als, but with greater generality.

We first present a few of the basic properties of orthogonal polynomials and of
hyperfunctions, and then show that, under the conditions stated in (i), the series (1.2) is
the analytic representation of (1.1). A characterization of hyperfunctions will be given
and then used to study the local behavior of their analytic representations.

2. Some basic properties. In this section, we present some of the known basic
properties of both the orthogonal polynomials under consideration and the hyperfunc-
tions. Most properties of the former can be found in the book by Geronimus [2] and
those of the latter in the book by K/Sthe [8].

Let (p,,(x)) be a sequence of orthonormal polynomials on the real line with
respect to the probability measure arising from the monotone function a(x). That is,

fp,(x)Pm(X)da(x)-,,,,, n,m-O, 1,2,..-,
(2.1)

DEFINITION 2.1. The sequence (po(x)} is said to belong to Erd6s class E if da(x)
has support in [-1, 1] and a’(x) exists and is positive almost everywhere in [-1, 1]. All
such polynomials satisfy a recurrence formula

XPn(X) Pn+l(X)+otnPn(X) + "/n-, p._,(X), n--O, 1,2,- ,
(2.2) 3’n+l

P0(X)- 1, p_l(X)-0,

and have associated functions of the second kind

(2.3) qn(Z)__f_l p,,(X)
da(x), zC-[-1, 1], n-0, 1,2,.-.

xmz

The (qn(z)} satisfy the same recurrence relation (2.2) except that

qo(x):f’ Ida(x) q_l(x)--1
-1 X--Z

The q,(z) serve as the expansion coefficients of 1/(x-z) as well, and we have

q,,(Z)Pn(X).(2.4)
XuZ n--O

This series converges for { Pn(X)} in E whenever x is inside and z is outside an ellipse
with foci at -1 and [2].

We now turn to hyperfunctions, give their definition and outline some of their
basic properties.

Let I-[a,b] be a bounded interval and define the space (I) as follows" The
function belongs to (I) if there exists a complex neighborhood UD I such that is
holomorphic in U. Two such functions are identified if they agree on some neighbor-
hood of I. For each U as above, let A(U) denote the space of functions holomorphic in
U and continuous on U (the closure of U), with topology defined by the norm
4,11 t- SUpzt/],(z)l. There is a natural map from A(U) into (I).
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The topology of (I) is defined to be the finest locally convex topology on (I)
for which all these maps are continuous. Provided with this topology, the space (I)
becomes a nonmetrizable complete Montel space. Proofs and more properties may be
found in K6the [8] and Johnson [7].

The strong dual ’(I) of (I) is our space of generalized functions, which is
usually called the space of hyperfunctions on I. Since each Montel space is reflexive,
and the strong dual of the strong dual is the original space and its dual is a Montel
space, it follows immediately that ’(I) is also a Montel space.

The space ’(I) has a concrete representation which is given as follows: For
fH’(I), there exists a holomorphic function f(z) in C-I with (o)-0 defined by
f(z) ( f, 1/(t z)), where C is the complex sphere, I and z C I. The function
f(z) is called the indicatrix of f.

Conversely, each function f(z) that is holomorphic in C I withf() 0 gives rise
to a generalized function f in ’(1) in the following manner: If q(I), then f is
given by

( f ck ) --i ( z )ck ( z ) dz,

where is a path enclosing I lying in the region of analyticity of .
To guarantee the uniqueness of this representation, we identify any two holomor-

phic functions in C-l, say f and f, if their difference f-f is holomorphic in I.
Hence, we have a one-to-one correspondence between the space of generalized func-
tions ’(I) and the space of equivalent classes of holomorphic functions on C-I. In
fact, these two spaces are isomorphic [7].

Examples.
1. If a=b, i.e., I={a}, then the function (-1/2ri)/(z-a) defines the Dirac

i-function with support on {a}.
2. The characteristic function Xla,l of the interval I-[a,b] is defined as a hyper-

function (also denoted by Xta,l) by log((a-z)/(b-z))A(C-I), in which we con-
sider log(-z) a single-valued function of z C-[ 0, o) which assumes real values for
z (-o, 0). In this case, we have

-1 fr b-zq(z)dz(X[a,b], )---i log a’z

-2ri q’()
x-

-12ri fadX fvq(Z)x-z dz-q(x)dx.
3. Let fL[a,b]. The associated hyperfunction (also called f) is given by

( f q)-- fabf(x)(x)dx.
4. Let g be continuous and a(x) be of bounded variation on [a, b]. The hyperfunc-

tion gda is given by (gda, q,) = fb gq, da.
5. The indicatrix of p,, da considered as a hyperfunction is q,(z) (see (2.3)).
Now we should be able to exhibit the relationship between the orthogonal poly-

nomials and hyperfunctions.
Throughout the rest of this section, I will denote the interval [-1, 1] and the

orthogonal polynomials will be in the class E.
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THEOREM 2.1. Let (y, } be a sequence of complex numbers such that

li----n__,]ynll/n__<1.
Then (x) ,=o Yn Pn(X) belongs to }C( I).

Conversely, if (x)(I), then q has an expansion in terms of (pn(x)) with

coefficients satisfying the above condition.

Proof. See Geronimus [2, Thms. 9.8, 9.9], of which this is merely a restatement. In
fact, the series converges to q,(x) in the sense of %(1) and represents a holomorphic
function in an ellipse whose foci are at +- and the sum of whose semi-axes is R.

THEOREM 2.2. (i) Let {an) be a sequence of complex numbers such that
limn_ lan[l/n < Then the serieso n=oanpnda converges in OC’(I) to (say)f. More-
over, a ( f pn).

(ii) If f’(I), then the expansion coefficients off given by an--(f,p) satisfy
limn_ lanil / _< 1. Moreover, the expansion off converges to it in the sense of ’(I).

Proof. (i) Since the space ’(I) is weakly sequentially complete, it suffices to show
that the sequence SN-- NY,=oanpnda converges weakly, i.e., limN_o(SN, p) exists for all
q, %(I). From Theorem 2.1, we have for any 0%(I) the expansion

ok(x)- E 7mPm(x) with li-- lVmll/m<l.
m=O mo

Hence,
N 0(3

lim (SN,q>- lim E an E Ym(Pndt,Pm)
N oe N---, oe n=0 m--0

N

lim _, anyn- ., ann.
No n--O n--0

The last series converges since limn_lann[1/n<l. That an-(f,pn ) follows im-
mediately from the orthonormality of (

(ii) Since pn (I), an- (f,pn) is well defined. The series n=oanPndt converges
to fin %’(I) since n=0 7n Pn ) O, and hence

(f,)-- E anY,,-- E an(Pnda,)"
n=O n=O

To show that li--rn__,lanll/n<-l, we assume the contrary and let limnolanll/n--p>
and 2e-O-- >0. Choose(I) such that

dp(X)-- X "nPn(X), lim I’ynl 1/n--
n--O n--, o

Then, the series ( f, oh) Xn%0 an’Yn diverges since

lim lanVnl /n

which gives the desired contradiction.

3. Analytic representations of hypedunctions. We have seen that there exists a
one-to-one correspondence between ’(I), the space of hyperfunctions on I, and the
space of equivalence classes of functions that are holomorphic in C-I and vanish at
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In this section, we shall manifest the same relationship between the two spaces
expressed in terms of the orthogonal polynomials and functions of the second kind.

In order to conform with previous convention, we introduce:
DEFINITION 3.1. Let f’(I). Then the analytic representation ((the

indicatrix)/2ri) f(z) off is defined by

1( /f(z)-- f(t), --z zC-I.

The polynomials are still in the class E and the notation of [}2 remains unchanged.
THEOPaM 3.1. (i)f’(I) if and only iff=Y,__oa, p, da with li--’-,_,]a,l/"<_ 1.
(ii) The analytic representation off= Y,=oa,p, da ’(I) is given by

n--O

which is holomorphic in C- I, andf()-O.
(iii) Given a holomorphic function ](z) in C I with f() O, then there is a series in

the form (1/2ri)Y=oanqn(z) that converges to it. Moreover, this series is the analytic
representation ofsomef ’(I) andf-- Yn=0 an Pn da.

Proof. (i) This is a restatement of Theorem 2.2.
(ii) By definition, we have

1( /f(z)-- f, t--z

2ri an Pnda
n:0

t’z
o flpn(t? a do2ri :o -1 t-z

2 anqn(Z)"
n "--10

It is an easy matter to show that f(z) is holomorphic in C-I and f(o)-0, since
lim_ola[/_<l and q(z)-O[([6l-+e)] as n--,z, where z-1/2(6/1/6) and e is
arbitrary (see [2]).

(iii) Let f(z) be holomorphic in C-I withf(o)-0. Then

fv) (t)f(z)-

where is any path, negatively oriented enclosing I. By (2.4) we have

fvf(Z)-- EPn(t)(t)qn(z)dt-- 2 anqn(Z),
n--O

where the series converges uniformly for z outside of any ellipse with loci at -+ 1. Hence

(3.1) fvf(z)(z)dz- anfvqn(Z)dP(z)dz,
n=O
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where y is now another ellipse with foci at +1 lying entirely inside the domain of
analyticity of the function q)(z). But by Theorem 2.1, q)(z) has an expansion of the
form

(3.2) q)(z)- . ynpn(Z), lim [’tnll/n< l,
n--O no

and the series converges uniformly inside and on . Substituting this into (3. l) gives

(3.3) (z)(z)dz- 2i Z n Z m qn(z)P,(Z) dz"
n=0 m=0

Upon using the relation given by (2.3) we obtain

(Z)O(z)Nz-- Z an Z m re(Z) NZ
n=0 m=0

t--Z

--2 2 an 2 Ym (t dzda(t)
n=0 m=0

pn
t-- Z

n=0 m=0 -1 n=0

Since the last series converges for any sequence (n} satisfying (3.2), it follows that
limn]anJ/n by the argument in Theorem 2.1.

Hence, by (i), there is an f’(I) given by ZanPnda, and by (ii) its analytic
representation is (1/2i)Zanqn(Z).

4. e convergence theorem. In the last section, we established a one-to-one
correspondence between the hyperfunctions on [-1, 1] and their analytic representa-
tions given by

f= Z
(4.1)

Z ",qn(Z), z [-1,1l.
n=0

In this section, we examine the jump of f(z) across the cut [- 1, 1] in the global and the
local sense.

Globally, we shall show that limo( f(x + iy) -f(x iy)} =f. More precisely, if
is holomorphic on [-1, 1], then there exists a O>0 such that is holomorphic on
[-1- O, + O] and we have

+0
lim {f(x+iy)-f(x-iy)},(x)dx-{f,,) for all
yO --0

Locally, we shall show that limy_O(f(x + iy,)-f(x-iy))=f(x) pointwise for x
(a, b), wheref(x) is interpreted in a certain sense.

THEOREM 4.1. Let f andf(z) be defined as in (4.1). Then

where ) is taken so that [- O, + ta is inside the region of analyticity of
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Proof.

](z)--]()-- 2ri ] ak[qk(z)--qk()]
k=0

1 akfl Pk(t) da(t)-- f_l pk(t)
da(t)_

2ri
=0 -l t--z t--z

E ak p,(t) da(t)
r

=0 (t-x)2-+-y2

E ak p,(t)Py(t,x)da(t),
k--0 -1

where Py(t,x)=y/(r[(t-x)2+y2]) is the Poisson kernel for the upper half plane.
Since the series converges uniformly in the outside of any nondegenerate ellipse with
loci at +-1, it must also converge uniformly for all x for fixed y> 0. Hence, we can write

where

f_,+o
1--0

al p(t)Py(t,x)da(t)q(x) dx
k=O "-l--p -1

E af ((t+iy)-(t-iy)}p,(t)da(t)
k-0 -1

:(f,6(.+iy)--6(.--iy)),

[+o ,(x)
2ri( t-+- iY ) _

o X
+_ iy

It remains to prove that [(x+ iy)-k(x-iy)l--,(x) in the sense of (I), that is,
uniformly in some open set containing [-1, 1]. But this is a straightforward application
of Cauchy’s theorem. Indeed, let p be holomorphic in R where

R-((x,Y)l Ixl< l+p,
and let U be an open set containing [- 1, 1] whose closure lies in R. Then for x U

,(t) dt,(x)-
t-x

2ri -ie-- 1--p "ie-- 1--p + +p
+ f-ie--l--o)l)(t)d

-ie+ + p t- x

I +12+13+14.
As e--, 0 +, the first and third integrals approach 0 while the others satisfy

f,+(t+ie)-(t)dt+ /l+o ,#(t) dtI2 i ,_ o +--- x=O(1)+(x+ie)
and

I4- O(1) h(x- ie).
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5. Characterization theorem. Hyperfunctions have been characterized in many
different ways. In [7] Johnson shows that f is a hyperfunction on the unit circle T if and
only if there is a sequence (fn)n=0 of continuous functions on T such that

lim (n!ll fnll)’/n-O, f-- E f().
n n--0

If we move to the real line, we find the following characterization given by Baernstein
[1] for the analytic representation of hyperfunctions on any compact subset K of the
real line"

E
,=o (t-z)n+l

dt’ zK,

and f, ltp/"--,0 as n, p[l ). However, no explicit representation for the
hyperfunctions themselves has been given. One should not expect the nice characteriza-
tion given by Johnson to be carried over to K because of the behavior of the derivatives
of (fn } at the boundary points.

On attempting to characterize the solutions of the generalized axially symmetric
potential differential equation, i.e., GASP functions, we [12] gave a representation for
hyperfunctions on [-1, 1] by using the Gegenbauer orthogonal polynomials.

Analogously, in this section we give a characterization for hyperfunctions on [a, b]
by using the orthonormal sequence (p,). It will be shown that in [a,b] every hyper-
functionf can be written in the form

n--0

where (f,} is a sequence of continuous functions on [a,b] satisfying
lim,_(n!llfll)l/--O, g and g2 are hyperfunctions concentrated on [a] and [hi
respectively.

Throughout this section the norm I1" will denote the sup norm II-II .
DEVINIXION 5.1. Let (Pkda)(-n) denote the nth antiderivative of pgda, i.e.,

(pkda)(-")(x)
r(.)

p( )(x -da(t).

LEMMA 5.1. Let da have support in [-1, 1]. Then there exist c and b such that for
n > we have

I(pkd)(-n)(x)lcb"kl-n, kn-1.

Proof. Let R(t)-(t"-/F(n))H(t), where H(t) is the Heaviside function. Then

R(t)C-2[-2,2], and by Jackson’s theorem [6] there is a polynomial r(t) of degree
k- such that

iRn(t)__qr(t)l<__c)kn_ (n-1)n-2

(n--2)! k-Ln-4n-t<-cank-’

k>_n-1, n>l, -2_<t_<2,

where c and a are independent of n and k. Hence,

(Pkda)(-"’(x) flp(t)R,(x-t)da(t)
-1

fpk(t)(Rn(x-t)-r(x-t))da,
-1

-l_<x_<l.
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and

[(pkda)(-)(x)[ <_ [pk(t)lda(t) max IR(t)-r(t)[,
-2--<t--<2

from which the conclusion follows.
THEOREM 5.1. Let f be a hyperfunction on [a,b]. Then there are a sequence of

continuous functions ( fn } on a, b] and sequences of complex numbers (Cn), (d. } satisfy-
ing

lim (n !]Cn] )l/n-O- lim (n !]dn] )l/n,

(5.1) lim (n!ll fn II)l/n-O,
n---, o

such that

(5.2) f= E fn(n)-+- E Cn(n)(t--a) + E d.8(")(t-b)
n=0 n=0 n=0

and conversely.
Proof. We know that f can be written in the form

f= akPkda with lim lakll/k<_l.
k=0 ko

Johnson’s decomposition theorem [7] and its modified version [12] show that we can
find a sequence (ak,n) and a finite-valued function B such that

k B(e)en+c+2kn(5.3) ak- a,., la,.I <-
n=0 (n+c+2)!

for O<_n<_k, k-1,2,3,..., all e>0, and c is a positive integer that depends on the
orthonormal family { pk }. Then, by Lemma 5.1 "extended to [a, b ]", we have

I(Pkda)(-n)l<_Cbnk’-"
where b and C are independent of both n and k. Now we write

(5.5) in(X) E ak,n-c-z(Pkda)(-n)(x)
k--n--c--2

for a, b] and zero otherwise.
Except for a trivial modification when n- c/ 2, we have

.(x)l-< E la,.--211(pd)-")(x)l
k=n-c-2

B(e)enk-c-2 n-2 B(e)enk--2 (b a)C E kl-nbn-]-
n

n! nl (n--k-n--c--2

<-- Cb"
n’ + O(1

k=n-1 kc+l

Thus fn(x) is continuous in (a,b), right and left continuous at a, b respectively.. More-
over, we have

(n!ll fll)l/"<-[2B(e)]l/"eb for all e>O,

which gives (5.1).
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For any holomorphic function q on [a, b], we have by integration by parts

+(-1)n-l(pkdot)(-n)dp(n-l)l+(-1)nfab(pkda)(-n)dp(n)dx.
But for k>_n, (pda)(-")(b)-O; hence

fabp(x)’(x)d (-1)-l(pda)(-),/,(-)lo
j--k+l

+ (- llnfab( p, dal(-")q(’) dx,
from which one obtains

oo n

( fn(n)’) E ak,n--c--2 E
k=n--c--2 j=k+l

and consequently

(5.6)
E (fn(n),)

n--c+2

+(-1)n(fn,dp(n>),

(-1)J- ( pgdot)-) 11
b

E (-l)n(fn,dP(n))
n=c+2

oo oo n

+ E E ak,n-c-2 E
n--c+2 k--n-c-2 j--k+

(-1)’( Pg da)(-9>dp(9- >l"
The proof will be completed if we can show that the second series on the right-hand

side of (5.6) converges at the endpoints (say at b). But this is a straightforward
calculation if we observe that k(J)(b)-O(j!/8j) since q is holomorphic in some 6
neighborhood of b, and that

I( P,dt)(-J)( x )[ <_cbkl-.
Finally, it is not hard to see that

c+l m--I

dm_l--(-llm-l x . ak,k-j(PkdOt)(-m)(b).
j=O k=m-c-2+j

This characterization theorem enables us to investigate the local behavior of the
jump f(z)-f() at a point xo (a,b) as it is related to the behavior of the hyperfunc-
tion f at x0.

Since hyperfunctions are, in general, functionals, the phrase "behavior of f at x0"
may seem somewhat meaningless. Fortunately, there is an already available concept
known as "value of a generalized function at a point" that we shall employ to give
f(xo) a meaning. This concept has been extended to hyperfunctions on the unit circle
[10] and will be adopted here.

DEFINITION 5.2. The hyperfunctionfon a, b is said to have a value { at x0 (a, b)
if there exist a representation E=of(n) of f satisfying (5.1), a sequence of polynomials
(gn) of degree less than n and a sequence of complex numbers (yo) such that, for each
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e> O, there exists a 8 such that

X Xo)
n+l
_< forn!

n 1,2, 3,... and g(x0) 0. The value off at x0 is given by E-O)’n.
Simply, this definition says that each function fn has a Peano derivative "/n at x0

and that the convergence to that value is faster for larger n.
For the proofs of the facts that the series E ,n converges and that the limit is

independent of the representation ,fnn) off, see [10].
THEORE 5.2. Letfhave a value at xo (a, b). Then

lim ( f(xo+iy)-f(xo-iY)} -V.

Proof. From (5.2), we get

f(z)--
zv, t--z 2i t--z

n=0

where

(-1)"C( z )
=o (a z) +’ + ] (-1

n=0 (b--z)n+l

which is finite by Theorem 5.1.
Using the same arguments as in the proof of Theorem 5.1, in particular (5.6), we

can show that

f(z)-2ri n=0E (-1) n!Ja (t-z
V(z)+ V(z)+C(z),

where U(z) is holomorphic in the entire complex plane with the point a removed and
V(z) is holomorphic in the entire complex plane with the point b removed. In fact, it is
not hard to see that

lim U(z) 0 lim V(z).

Now we have

f(z)-f(e)-
2ri " (t--z) +1

n:O

+ (V(z)-v(e)) + (V(z)-v(e)) + (C(z)-C(e)).
Then, for x0 (a, b) we have

lim {f(xo+iy)-f(xo iy)}-yO=oyO

where

p(n)( t,xo,Y)__ (_l)nn![1 ](t--xo--iy) n+l (t--Xo+iY)n+

The remainder of the proof follows the same arguments as in the proof of the main
theorem in 10].
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THE STIELTJES SUMMABILITY METHOD AND
SUMMING STURM-LIOUVILLE EXPANSIONS*

LOUISE A. RAPHAEL

Abstract. The Stieltjes summability method for divergent integrals is defined. The name is derived from
its close relationship with the Stieltjes transform. After proving some basic properties, the Stieltjes summabil-
ity method is compared with Ceshro and Abel summability methods. The main result proves the Stieltjes
summability of eigenfunction expansions associated with a certain class of singular Sturm-Liouville systems,
and develops, using the Stieltjes means, a stable method of summing such expansions under perturbations of
the coefficients.

1. Introduction. One summability method which has been applied to

(1.1) a or anun(x )
n n

is given by
o an o Un(X )(1.2) l+,n or a,
n n

+b

where b is the summation parameter and ? an unbounded increasing sequence. The
latter series has been used to sum eigenfunction expansions associated with regular
Sturm-Liouville systems, where u(x) is an eigenfunction and ?n the corresponding
eigenvalue. We cite in particular the works of Hille [7], Tikhonov [13] and Titchmarsh
[14].

The first series in (1.1) has been studied by Hudak [8] under the name T-summa-
tion. Also comparisons of the first summation method (1.2) with Ceshro summability
were studied by Bromwich [4] and Moore [10] under a different formulation.

One natural extension of (1.2) to integrals on the half line is

fof(x)(1 +bg(x))-Wdx and fof(y)u,,(x,y)(1 +bg(y))-Wdy,

where g is a positive function increasing to . This leads to the formal definition of
Stieltjes summability:

DEFIXIO 1. Let f: [0, )--. C (the set of complex numbers) be a Lebesgue
measurable, locally integrable function and g a positive Lebesgue measurable function
monotonically increasing to c on [0, ). We say that ff(x)dx is Stieltjes summable
of order w> 0 to L (S(g, w) summable to L) if f0 f(x)(1 + bg(x))- dx exists for b> 0
and limb_0 ff(x)(1 +bg(x))-Wdx--L (finite) and write ff=L S(g, w).

Remark 1. In this paper ff(x) dx means lima_ fflf(x) dx, provided the limit
exists, or equals plus or minus infinity.

DEFIrITIOr 2. The Stieltjes means are defined by f0 f(x)( + bg(x))- dx.
Remark 2. If g(x)= x and w 1, the Stieltjes mean is closely related to the Stieltjes

transform (Widder [17]). The Stieltjes transform is a twice iterated Laplace transform.
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Engineering, Atlanta University.

Department of Mathematics, Clark College, Atlanta, Georgia 30314. Present address: Department of
Mathematics, Howard University, Washington, DC 20059.
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It was the transform used by Stieltjes (1894) in his infinite continued fractions research.
These transforms have been used for the moment problem on the semi-infinite interval
and in Pad6 approximants (Bender and Orszag [2]).

The following is a brief outline of the remainder of the paper. In 2 we prove the
regularity of the Stieltjes summability method and prove that it has the basic properties
common to the standard regular summability methods. In [}3 we compare the strength
of the Stieltjes, Cesro and Abel summability methods. In [}4 we obtain our main result
on the Stieltjes summability of a class of singular Sturm-Liouville expansions, and
develop, using the Stieltjes means, a stable method of summing such expansions under
the L2 perturbation of the coefficients.

2. Basic properties. We begin by proving that the S(g, w) method is regular, that
is, if ff exists then ff is Stieltjes summable to the same sum. In what follows, we
assume f, g, b and w are as in Definition (unless noted otherwise).

PROPOSITION 1. Ifff-- L, then ff-- L S( g, w).
Proof. The existence of f0 (1 + bg)-Wf follows from an analogue of Abel’s lemma

[3, pp. 473-475]. To prove regularity, we consider

fof(x)dx-fof(x)[l +bg(x)]-wdx-A-olim foAf(x)[1-(l +bg(x))-W] dx.

Let h(x)-1-(1 +bg(x))-w; so h is monotone and h<l. We choose M so that A>M
implies ]fl] < e. Then

and

lim

fo’f( x )h(x ) dx]<-

Finally,

lim sup
b-,0

finishing the proof.

fo’f(x )h ( x dx]

f?f(x)h(x)dx /E

fof(x)h(x)dx _< e + lim sup
b0

Example 1. The integral f exp(-x)dx= and f exp(-x)dx= S(x, 1). It is of
historical interest to note that Euler summed the divergent series f(b)- Eg__0( 1)k!bk

by rewritingf(b) as f exp(-x)(1 + bx)-dx [6, p. 26].
PROPOSITION 2. Iff>_ O, then ff-- limb0ff(x)(1 + bg(x))- dx.
Remark 2. As usual, we allow both sides to be infinite.

Proof. The proof follows from a simple application of the monotone convergence
theorem.

Consequently, every function f for which ff does not exist and which is S(g, w)
summable is oscillatory on [0, o). In the following corollary, we define f+-1/2([/] +f)
and f-- 1/2 ([/] -f) as is customary.

COROLLARY.
(a) If ff+ , ff-<, then limb_O ff(x)(1 / bg(x)) dx-- /
(b) Ifff+ o, ff , then limb_off(x)(1 /bg(x))-Wdx---.
Example 2. Some examples of S(g, w) summability are

cos(mx)dx-O S(x 1) sin(mx)dx-1 S(x 1).
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So

foeXp(imx ) dx S(x 1), f0 xsinxdx-O S(x 2, 1) (see [1 p. 232]).rn

These answers are in agreement with results obtained by other standard summabil-
ity methods such as Ceshro and Abel.

The next proposition states the strength of the S(g, w) method for a given g(x)
increases as the order w increases.

PROPOSITION 3. If v>w>0 and ff(x) dx L S( g, w), then ff(x ) dx L S( g, v ).
Proof. The proof technique is identical to that of Proposition 1, where now h(x) is

defined to be equal to [1 (1 + bg(x))V- ].
We now note that the Stieltjes summability method has the additive, homogeneity

and translative properties. (Translative means that ff S(g, w)-- ff+ fcf S(g, w) for
finite c > 0.)

Proposition 4, which follows next, gives a reason for choosing g to be a monotone
function increasing to in the definition of Stieltjes summability. Propositions 5 and 6
define the range of possible Stieltjes sums when f is fixed and g any admissible
function. Propositions 4, 5 and 6 below were proven by Professor Kenneth Davidson of
Waterloo University. The propositions are proven for Stieltjes summability of order
w-- 1, but they are true for order w> by Proposition 3.

PROPOSITION 4. Let f be real valued on O, ). Ifff+ o, ff--- o and L g,
then there exists g>0 such that limb-O fo(1 + bg)-f= L.

Proof. Let A. be disjoint subsets such that 0, )-=A and such that f,f- L,
fA.f-- 0 for n >_ 2, f.[/] a.< for n >_ 1. Set g- na. on A.. Then

foO
o an(l/bg)-1- E <- <

+n2anb -nn: n:l

So

fof(1 + bg)_l L
+ ba- L asb0.

PROPOSITION 5. Let F(x)-ff(t)dt, where f is real valued. If limxinfF_<L_<
lim sup F, then there exists a monotone g> 0 such that ff=L S( g, 1).

Proof. Choose Xo=0, xn’ such that F(Xn)L and bn=F(xn)-F(Xn_l) satisfies

E= [bn[ < o. Let a f."_, Ill. Define g as follows:

a on [Xo,Xl)
max{n2an,n+g[Xn_2,Xn_,)} on [Xn_l,Xn).

Then

f0lfl (1 + bg)-I _< ] an
n= + nanb

and so

fo bn - Ebnf(1 +bg)-’- E 1 +g(xn)bn--1 n=l

by the Lebesgue dominated convergence theorem as b0. But n=lbn--L, and the
theorem is proved.
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PROPOSITION 6. If g>0 is monotone, f is real valued and ff=L S(g(x), 1), then
for F(x)= ff(t)dt, limxinfF<_ ff=L S(g, 1)_<limx supF.

Proof. If h is monotone decreasing and limx_ h(x)=0, we write h(x)=f dh(t)
(Stieltjes integral). If f.h is absolutely integrable, then by Fubini’s theorem

fh dx f(x ) dh ( ) dx (x ) dx dh ( )

foF( )dh(t )--foNF(t )dh(t )+f F(t )dh(t ).

Now

h(N). inf F(t)<_f;F(t)dh(t)<_h(N).supF(t)t>N

and

inf F(t)<-JoNF(t)dh(t)<-(h(O)-h(N)).-- sup F(t).(h(O) h(N))
O<-t<-N O<_t<_N

With hb=(1 + bg)- =h,h b pointwise as b0, and

h(N). inf F(t)+ [h(O)-h(N)]. inf F(t)
t:>N t<_N

<- fhbdx <-h(N)’supF(t)+[h(O)-h(N)].supF(t).
t>_N t<_N

Let b 0 to obtain inft_>uF(t) _< L_< sup/_>uF(t), whence the desired conclusion follows
upon letting N .

3. Comparison theorems. The question of under what conditions Ceshro summa-
bility of order one implies Stieltjes summability was essentially answered for Fourier
series and integrals [4], [10]. First we call to mind one definition of the Ceshro
summability method for integrals.

DEFINITION 3. ff(x) dx is (C, 1)-summable whenever lim - fds fdf(x) dx
has a definite value.

The next three propositions are reformulations of theorems stated in [4], [10] where
g is as in Definition 1.

PROPOSITION 7. Iff(x) is uniformly continuous on [0, o) and ff(x)dx--L (C, 1),
then ff(x)dx=L S(g, w), w>_2.

PROPOSITION 8. If ff(X) dx L (C, 1) and limxo( + bg(x))- ff(y) dy 0 for
every b>0 and w >_ then f f(x ) dx L S(g, w), w_>l.

The next proposition gives a sufficient condition for integrals which are S(g, w)
summable to be convergent in the ordinary sense.

PROPOSITION 9. If ff=L S(g, w), w >_ and Ixf(x)l <M, where M is fixed and
positive, then ff(x)dx is convergent and its value is L.

We now set the order w of the generalized Stieltjes method to 1, g(x) to x and
compare Stieltjes summability with two Abel summability methods. Propositions 11, 12
and 13 generalize the results of J. Hudak [8] to divergent integrals.

DEFINITION 4. The integral ff is summable by the Abel method A(x) to the sum
L, if the Laplace transform of f, fexp(-xs)f(x)dx, converges for s>0 and
lim-.0 f0 f(x) exp(-xs) dx L. We write f0 f= L A(x) and say f0 f is Abel summable
to L.
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Similarly, ffis summable by the Abel method A(lnx) to the sum L, if the Mellin
transform of f, ff(x)x- dx ff(x) exp(-s In x) dx, converges for s > 0 and
lim_off(x)x dx-L. Here we write ff=L A(lnx).

For divergent series, it is known that Ceshro summability implies Abel summabil-
ity. This generalization for the integral analogue is false [6, p. 136]. However, if ff is
(C, 1) summable and f0 f(x) exp(-xs) dx converges for every s> 0, then f0 f is Abel
summable to the same sum [6]. Similarly, the next proposition states that Abel summa-
bility plus convergence of ff(x)(1 + bx)-dx for b>0 implies S(x, 1) summability to
the same sum. Consequently, there is no natural chain of summability strengths without
extra conditions.

So that this paper will be self-contained we now state a test for uniform conver-
gence of improper integrals which is analogous to Dirichlet’s test for infinite series [15,
p. 23].

PROPOSITION 10. The integral ff(x, s)ck(x, s) dx is uniformly convergent if (x, s)
is such that is continuous, k(x,s) tends to zero monotonically and uniformly with
respect to s, and if lff(t, s) dt is less than a constant independent ofx and s for all x.

In what follows the Stieltjes mean ff(x)(1 + bx)-dx will be expressed as a twice
iterated Laplace transform

f(x)(1 +bx)-dx-- exp - f(x)exp(-xs)dxds.

PROPOSITION 11. Ifff=LA(x) and f0(1 4- bx)-fconvergesfor b>0, then ff=L
S(x, 1).

Proof. Let F(s) f0 f(x) exp(-xs) dx. As F(s)L when s 0, there exists a 3 > 0
such that IF(s)-Ll<e for 0_<s_<3. Moreover, - fo exp(-s/b)ds ff(x)exp(-xs)dx is
bounded by some positive number, as the Stieltjes transform ff(x)(1 +bx)-dx is
equal to this twice iterated Laplace transform and the Stieltjes transform converges for
b> 0. Thus

f0f(x )(1 + bx )-’dx- LI- fo exp(-)fo f(x)exp(-xs)dxds-L

<- exp f(x)exp(-xs ) dx L ds
-b

+ f0
oo s oo

+f exp(-)fo f(x)exp(-xs)dx

--<ell--exp/-’lt) 3 3

as b0 and e0, where Ifflx)exp(-xs)dx[<M.
PROPOSITION 12. If the integral fflx) exp(-s In x) dx converges for s, 0<s< 1,

then

f(x ) exp(-s Inx ) dx sin,n.,rrs bS_ x ) + bx

for 0<s< 1.
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Proof. The integral fo f(x)(1 + bx)- dx- ff(x)x-SxS(1 + bx)- dx converges uni-
formly for O<s< 1, and O<e<_b<_r< oe. As

fobs-l(1 +bx)-db rx-S(sinrs O<s<l,

then

sin ’s rb- f(x )(1 "- bx )-ldx db

-(r -l sin rS)fof(x)frb-1(1 + bx)-ldb dx

rr-’ sin rrs f(x) bS-1(1 +bx)-’dbdx

f(x )x dx f(x )exp(-s Inx ) dx

as e-0 and r.
PROPOSITION 13. If G(s ) ff(x ) exp(-sIn x ) dx converges for 0<s< 1 and ff---

L S(x, ), then ff-- L A(In x ).
Proof. By the definition of A(lnx), it suffices to prove that IG(s)-LI approaches 0

as s0, 0<s< 1. Given any e>0, choose 8>0 such that Iff(x)(1 +bx)- dx-Ll<efor 0< b_< i. By Proposition 10 ff(x)(1 + bx)- dx converges uniformly for b>. By
Proposition 12 f b- ff(x)(1 + bx)-dx is bounded by some positive number M for
0<s< 1. So

as s 0 and e - 0. Then ff(x)x dx --, L as s --, 0. Thus, ff(x) dx is summable by the
A(ln x) method to the sum L.

4. An application. Tikhonov used a variational principle [11] to construct a stable
method for summing regular Sturm-Liouville eigenfunction expansions [13]. In this
section we extend Tikhonov’s results by developing a stable method for approximating
real-valued L2[ 0, ) functions pointwise by regularizing their singular [0, c) Sturm-
Liouville eigenfunction expansions. The spectrum of the singular system, unlike that of
the regular system, has a continuous component. The methods of proof are analogous
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to those of Tikhonov. My special thanks go to Dr. Mark Kon of Boston University,
who suggested some of the techniques which have been used.

Let S-L denote the following modified Sturm-Liouville singular system:

-f"(x)+ q(x)f(x)=Xf(x),
f(O)-- O,

and let q(x) be a continuous, uniformly bounded (-M<_q(x)<_M), real valued LI[ 0,
function.

Example 3. In S-L, let q(x)=0 or q(x)=[coshZx] -1. Both of these are sometimes
interpreted as potential energy in the one-dimensional SchriSdinger equation.

Three observations are made about S-L. First, on L2[ 0, o), the S-L operator is
self-adjoint and hence its spectrum is real. Secondly, S-L falls into the limit point case
at infinity of the Sturm-Liouville problem on [0, oe). Lastly, according to [9, pp. 206,
211] the spectral function p()t) is-absolutely continuous for ?>0, that i dp()t)=
p’()k) d)k, )> 0.

For q as in S-L, the negative part of the spectrum is discrete and bounded from
below, and may be empty. [9, Thm. 3.1, p. 209]. An example of the latter possibility is
given by q(x)>_O. We denote the associated orthonormal eigenfunctions by
where the index set may be infinite, finite or empty.

For ?t>0 and q as in S-L, the spectrum of S-L is continuous in (0, oe) [9, Thm. 3.2,
p. 211]. The associated (unnormalized) eigenfunctions, denoted by (ux(x)}x>0, are
defined by ux(0)-0 and u,(0)- 1.

Now as the spectrum is continuous for ?>0 and the spectral function O()) is
absolutely continuous there, any real-valued L2[ 0, oe) function f can be written as the
sum of its discrete and continuous parts. That is,

f(x)"EF,u,,(x)+ F,ux(x)dp(k),
n

where the expansion coefficients are

F,,.-. u,,(x)f(x)dx, u (x)f(x)ax

and denotes L2 convergence as the upper limit of summation or integration becomes
infinite.

Let (u,(x)}ve s be a complete system of eigenfunctions as described above, with S
the spectrum of S-L. We fix fL2[ O, oe), let ,>0, and let f* L2[ 0, ) be such that
f-f* 2< Y" That is,

(4.1) f*(x).EF*u,,(x)+ Fux(x)do(X),

where

F* Fv + A,, , spectrum

and the errors (A.) satisfy the inequality
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In general, direct summation of (4.1) does not yield a stable method for obtaining
a pointwise approximation to f even at continuity points of f. This is because there can
exist a continuity point x0 of f and an e>0 such that for any />0, there exists an f*
such that

IIf-f*ll2_<7 and (Xo)-f*(xo)l>e.
For this reason, the problem of summing Sturm-Liouville eigenfunction expan-

sions belongs to the class of ill-posed problems [12].
By using variational methods, the problem of finding a stable method for ap-

proximating f pointwise is transformed into a problem of finding a function belonging
to a special class of functions which minimizes a given functional. Following Tikhonov’s
method for solving ill-posed problems, consider the functional (in the variable function

v(a,f,f*)-a fo ([ f’(x)]2 + q(x)f:Z(x))dx + (F,,-F*):+fo(Fx-F):dp(X)
n

where a k7, k is a positive constant, and , is as in (4.2). The role of a as a function
of V is essential in this discussion.

We will use heuristic methods to minimize the above functional, and will show
rigorously that the minimizing function satisfies the requirements for a stable ap-
proximation.

To find the minimizing function f=f* L:[ 0, o) such that f*(0) 0, f*()< o,
we take the first variation, denoted by :
(4.3) 6(aA)-2a fo[-f"(x)+q(x)f(x)](3f )dx,

6(B)=2 E (rn-rn*)(t3rn),
(4.4) n

6(C)--2 fo(Fx-Fl( 3Fx ) do( )t ).

So (4.3) and (4.4) imply that the minimizing functionf=f satisfies the equation

(4.5) a[ f"(x)-q(x)f(x)] -[f(x)-f*(x)] -0
or

withf(0)=0 andf(o)< o [16].
To find the expansion coefficients of f* with respect to the eigenfunctions {u},

we multiply (4.5) by u(x), integrate, use the self-adjointness criterion and solve the
resulting equation

a[-h,F,*,,, F2*, + r* -0.
We thus obtain

(4.7) F*,--

so that

(4.8) L*(x) E u.(x)+
n
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satisfies (4.5) and f*(0)=0, f*(oe)< , +an::)/=0. Before show_ing that (4.8) repre-
sents a stable method of finding a pointwise approximation to f, we introduce more
notation.

Let L be the self adjoint operator of (4.6) defined by

L(f(x))--f"(x)+ q(x)+l]f(x)
with q as in S-L, and in particular -M<_q(x)<_M for some M>0. Let Gq+/(x,s) be
the Green function of L(f(x))=O.

If we definef by

F f0 Fx(4.9)
--akn un(x)’Jr- -t-aN ux(x) dp(X ),

n

and A(x) similarly, then

(4.10) f$(x)=f(x) + A.(x).
Not being able to calculate Gq+ /(x,s) directly, we calculate the Green function

for

(4.10)’ -f"(x)+12if(x)--O, i--1,2, f(0)--0, f(m)<m,

where 12--M+a >0 and l-M+ a, and a is sufficiently small. The Green function
for (4.10)’ is

li

-t,x sinh(lis) for s <x/e
_t;, sinh(lix) for s >x/e i= 1,2.

LEMMA 1. Gm+l/a(x,s)<__Gq+l/a(x,s)<__G_M+l/a(x,s) when -M+ a >0.
Let M>0 and I x 1, x + r)] C R +. In Lemma 2 we choose a such that 0< a<

and aM< 1.
LEMMA 2. The following hold as a andM approach 0+

(a) ff+nGq+,/.(x,s)ds-a[l_*/+O(a)] 1+O exp I-aMa
1/ot(X s)Ns--O(a3/2)(b)

x-*/Gq2+l/a(X,s)ds--a3/20 exp-2r/
a

(d) Oq2+/(x,s)ds-a3/20 exp-21
+*/ a

(e)
x-*/

2 fx
1/2

Gq+ /a( x, s ) dS q- Gq2+ /a( x, s ) dS

if aM>O.
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(a)

+G_+/.(x,s)ds

1- )

=a[l+0(a)] 1+O exp -r/
a

Replacing a/(1- aM) with a/(1 + aM), we have

x+n (( l+aM ))G+l/(x,s)ds-a[l+O(a)] 1+0 exp -n

And as Gq+/ is sandwiched between GM+/ and+/we have (a).
(bl

= M 1-exp -4x
-M

+g M 1-2exp -2x +exp -4x

Similarly f G+/(x,s)ds- 0(/) and thus (b) is established.

(c
x

2a_+/.(x,s)s

=g i-M exp-2n -exp (-4x+2n) -M- l+aM exp -2x (x-r/)

-aM=a3/2[l+O(a3/2)]O exp -27 a
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Similarly

GM+l/a(x,s)ds-0/3/20 exp-2
a

and so (c) is proved.
(d)

fx
exp -2r/

a
exp (-4x- 2,/) 0/aM

-2exp(-2(

=0/3/20 exp

Thus (d) is proved.
(e) follows from adding the orders of (c) and (d), which is

a3/20(exp(- 2 r/(1 aM )/a )),

and taking the square root, which is a3/40(exp(-(1- aM)/a )).
The main result of this section says that a sequence of Stieltjes means as in (4.8),

(f*)>0, formed from approximating an L2[ O, oe) functionfby f*, c_onverges pointwise
to f on the set of continuity points of f, as long as a and f-f*ll are scaled
appropriately. That is, if for any >0 we choose an approximating La[ 0, oe) function

f* such that f-f*ll -<’, then if f* is related to f* as above, and if 0/-ky 2 for some
k> 0, then

lim f*(x) lim F* ( ) lim [ F ux(x)dp(X)=f(x)
0 aO 1-k-0/Xn un-x--l-

a- n a-o Jo
at any given continuity point x off. We note that above, f* depends implicitly on y.

LEMMA 3. Iff*(x) L2[ 0, o), andf* is as in (4.8), then

aq+l/,(x,s)f,(s)ds x>O(4.11) f*(x) -under the above assumption about q(x).
Proof. We first show that the right-hand side of (4.11) is continuous. Since G(x,s)

is continuous in x and s, it suffices to show that

f2Gq+,/(x,s)f*(s)ds--,O as M--,

uniformly in x on bounded x-intervals, which follows after an application of the
Cauchy-Schwarz inequality, and the bound in Lemma 1. To show that f*(x) is
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continuous, we write

b l+av

where now the integral includes the discrete sum over negative eigenvalues, which are
obtained from jumps in the total spectral function p(,) over negative u. Here -b is a
finite lower bound for the spectrum of S-L, and u,(x) for ,<0 is a solution of the S-L
equation, satisfying u(0)-0 and u’(0)- 1. The correct normalization for the eigenfunc-
tion is included in p(,). Since u(x) is continuous in , and x, it suffices to show that

F*u"(x)do(,)-O asM
l+av

uniformly in finite x-intervals. This follows by the Cauchy-Schwarz inequality and the
fact that

1+, do(,)-O asM,

uniformly in x on finite intervals ([9, Corollary I, p. 116]).
Let the operator A* be defined by setting A*f* equal to the right side of (4.11),

and A by

f_oF*u(x)A "f* - --dp(v).
b l+a,

Since the ranges of both A and A* consist of continuous functions, it now suffices to
show that A* and A coincide as linear operators in the Hilbert space L2[ 0, ). By the
Parseval equality, it follows that A is bounded. To show that A* is bounded, we note
that a_M+l/,(x,s)<_e -tlx-sl, where I=[-M+-J] 1/2. By Lemma 1, it thus suffices to
show that

foA * "f*(x) e

is bounded. The integral on the right is a convolution, and the boundness of A*
becomes clear upon application of the Fourier transform.

It now suffices to show that A and A* agree on a dense subset of L2[ 0, ), say on
C[ 0, ). We then show that if f* C[ 0, o), then both A,f* and A*f* solve the
differential equation

(413) _y,,+(q+ 1) ,- y-

is not in the spectrum of L--d2/dx2+ q, theSince, for sufficiently small a,
solution is thus clearly unique and given by A*f. A fairly standard argument involving
differentiation under an integral shows also that A,f* solves (4.13), so thatA f*--A*f*,
for f* C,.[ 0, ). The proof is then complete.

Also, the solutions for (4.10) can be represented as

f*(x)---dl foGq+l/a(x,s)f*(s)dS
(4.14) L(x ) l Gq+ /(x, s )/ ( s ) ds

foGq+l/a(x,s)A(s)dsAo(x)- 
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PROPOSITION 14. Let L2[0, ex)) be real valued. Let k>0 and ot--k’y 2. If i is
continuous at x (0, o0), then for any e>0 there exists a !>0 such that (x) -f(x)l < e

for any L[ O, )function f* such that

IIf*--flIL=--llAIIL=-- A%+ Adp(X)

Proof. To prove the proposition we use arguments analogous to Tikhonov’s [13].
The idea of the proof is to find estimates for [/’*(x ) -f(x )1 -< ](x ) -f(x )1 + IA(x )l and
to show that these estimates converge to 0 as a --, 0 (3, 0).

We first bound IA(x)l, By the Cauchy-Schwarz inequality and the proof of
Lemma 2(b)

(4.15)

[So 1IA(x)l-<l IIAIIL= GqDl/a(x,s)ds _3’_ O(3/4) O(1/4)---0 as a0.

Let I=[x-l,x+l], and =(a) such that as a0,0 and exp(-a-/2)a-1/4

0. Let w()=sPif(x)-inflf(x). As 0, w()0. In finding upper and
lower bounds forf we use an order argument.

Let K=[O,x-]U[x+, ). From (4.14),

1x+n

-.

--[f(x)+w(n)][(l+O())] 1+0 exp -n

+ % f c ,/.(x, s ) ds

=[/(x)+w(n)](l+O()) 1+0 exp -n

+fO exp -n

by Lemma 2(a), (e) and Cauchy-Schwarz. Silarly,

f(x)[/(x)-w(n)](l+O()) 1+0 exp -n

-I/110 exp -n

]:(x)-f(x)l<_w(l)(i+O(a)) 1+O exp -ll a
(4.16)

+11/11 a-?sO exp -n a

as a0 for w() 0 since -/40(exp(-l -M)/))0 and f t is bounded.

Thus,
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Finally combining (4.15) and (4.16), we see that

as a--,0 if IIAII L2--<, --k’2, and the proof is complete.
COROLLARY. Let fL[ O, oo) be real valued and fn* be a sequence of functions in

L[0, 00) such that f* -/1!2-’/n--’0. Let a,-k,2n for a fixed k>0. Then
at any point of continuity off, where the Fourier coefficients off,*,,, are related to those of
fn* by (4.7), with a a

In particular, this corollary states that the singular S-L eigenfunction expansion of
any L2[ 0, o) function f is Stieltjes summable to f on the set of continuity points of f
(let f,* =ff-).
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INTEGRATION OF INTERVAL FUNCTIONS II. THE FINITE CASE*

L. B. RALL"
Abstract. Caprani, Madsen and Rail [Siam J. Math. Anal., 12 (1981), pp. 321-341] have shown previ-

ously that the use of interval values leads to a simple theory of integration in which all functions, interval and
real, are integrable. Here, a simplified construction of the interval integral is given for the case that the
integrand and interval of integration are finite; the interval integral is shown to be the intersection of the
interval Darboux sums corresponding to the partitions of the interval of integration into subintervals of equal
length. A rate of convergence of these interval Darboux sums to the interval integral is given for Lipschitz
continuous integrands. An alternate approach to interval integration in the unbounded case via finite interval
integrals is presented. The results give theoretical support to interval methods for the solution of integral
equations and finding extreme values of functionals defined in terms of integrals.

1. Introduction. The construction of the interval integral, given in the general
case in [1], can be simplified drastically in the case that the interval of integration is
finite and the integrand is a bounded interval function. (Definitions of the necessary
concepts will be given below.) In particular, the use of the extended real number system
is not required, so all computations can be done by ordinary interval arithmetic [3], [4].
Furthermore, it is not necessary to consider all partitions of the interval of integration
into subintervals as the partition into subintervals with equal lengths will be shown to
suffice. This eliminates an inherently nonconstructive portion of the definition of the
interval interval, the formation of the so-called interval Riemann sums.

In addition to the simplification of the construction of the interval interval in this
case, rates of convergence of the Darboux sums based on the equipartition of the
interval of integration to the interval integral will be derived for sufficiently smooth
integrands. Another approach to improper interval integrals will also be given.

2. Interval functions. Following the definitions in [1], an interval function Y
defined on an interval X= [a, b] assigns the interval value

(2.1) Y(x): [y(x),.ff(x)]

to each real number x X, where y,)7 are real functions called respectively the lower and
upper boundary functions (or endp&nt functions) of Y.

The vertical extent of Y on X is defined to be the interval

(2.2) V Y(X)-[ xexinf {y(x)},_ xexSup {)7(x) } ].
In this paper only intervals of integration with finite width w(X)=b-a and

bounded interval functions such that w(X7Y(X))< +oo will be considered. This is the
finite case.

The notation Y=[y,)7] will also be used for interval functions. Real functions y
may be identified with -he interval functions y=[y,y] with equal endpoint functions,
which are called degenerate interval functions [1].

Received by the editors February 9, 1981. This research was sponsored in part by the U.S. Army
Research Office under contract DAAG29-80-C-0041, and by the Danish Natural Science Research Council
under grant 511-15849.

Mathematics Research Center, University of Wisconsin, Madison, Wisconsin 53706.
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3. Interval integrals. In general, the interval integral of an interval function Y
over the interval X=[a,b] is the interval

(3.1) fxY(X)dx--fatY(x)dx-[Sxy-(x)dx’ fx .F(x)dx],
where ]xy(x)dx denotes the lower Darboux integral of the lower endpoint function y
over th-e-interval X and ]xf(x)dx gives the upper Darboux integral of the upper
endpoint function )7 over X [2]. As these Darboux integrals always exist in the extended
real number system, it follows that all interval (and hence all real) functions are
integrable in this sense. The definite and indefinite interval integrals have many proper-
ties similar to those of the Riemann integral [1].

The construction of the interval integral, carried out in Ill in the spirit of interval
analysis, is done in three steps. The first step consists of partition of the interval X into
subintervals X-[xi_,xi], i- 1,2,- .,n by means of points

(3.2) a--Xo<Xl <_ Xi_lXig. --Xn_l --xn--b
to obtain the partition

(3.3) An--( Xl,X2," ",X.)
of X and the corresponding interval Darboux sum

(3.4) Y(X)- w(Si). VY(X,).
A i=l

Next, for each positive integer n, let 0n denote the set of all partitions (3.3). The
interval Riemann sum of order n is then defined to be

(3.5) Zr(X)- 0 Xr(x).
n A. 6"0, A.

Finally, the interval integral of Y over X is given by

(3.6) f r(x)ax- r(x),
"a n--1 n

which is nonempty, as the interval Riemann sums form a decreasing sequence of
nonempty closed sets [1], and agrees with (3.1). This construction will be simplified in
the finite case.

4. The finite case. The interval integral (3.6) will be said to be finitely defined if
the integrand Y is a bounded interval function and the interval of integration X--[a, b]
is finite. The equipartition A of g is defined by the points

b-a
(4.1) xi--a+ ih, h-, i-O, 1,... ,n,

n

so that

b-a w(X)_h i-1 2... n.(4.2) w(Si)-xi-xi_l------

The corresponding interval Darboux sum is

(4.3) 2 r(x)-2 -w(x)
A n i=1
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THEOREM 4.1. In the finite case,

(4.4) fbr(x ) dx f"l Y(
"a

Thus, this construction requires only the formation of the single interval Darboux
sum (4.3) for each positive integer n and skips the (nonconstructive) calculation of
interval Riemann sums (3.5) entirely. Furthermore, (4.4) agrees with the definition of
the interval integral given by R. E. Moore [2], [3], in the case that the endpoint
functions y,fi of Y are assumed to be continuous. Theorem 4.1 will be proved in 6
based on rsults on subintervals established in the next section.

5. Two lemmas on subintervals. The first lemma simplifies the proof of the mean
interval-value theorem for interval integrals over a finite interval of integration.

LEMMA 5.1. If Zi-[ci,di]cZ-[c,d are finite intervals, i--1,2,- .,n, and
with ni--10li 1, then

(5.1) tiZiCZ.
i--1

Proof. This follows at once from the elementary inequalities

(5.2) a<_otla + t2a2 + d-Otnan<__otlbl d-2b q- +tb<_b
for convex combinations of real numbers. Q.E.D.

On the assumption that Theorem 4.1 holds this gives the mean interval-value
theorem [1] for the interval integral (4.4) as

(5.3) 1
V y(x,)_ L c v y( x)

H
l--l

by Lemma 5.1 and from (4.4)

(5.4) [by(x)dx--w(X). (’] L-w(X). ,
"a n--1

where Yc V Y(X).
The excess width of an interval Z-[c,d] over a subinterval Z’-[c’,d’] C Z is

defined to be

(5.5) e(Z,Z’)-max(c’-c,d-d’}.
It is evident that

(5.6) e(Z,Z’)<_w(Z)-d-c.

A symmetric interval is an interval S .of the form S-[-s,s], where s_>0.

LEMMA 5.2. If Z’C Z, then for each symmetric interval S-[-s,s] with s >-e(Z, Z’),
one has

zcz’+s.

In particular,

(.8) Z C Z’+ [-w(Z), w(Z)].

Proof. The inclusion (5.7) follows from the definition (5.5) and the definition of
interval addition [2], [3]; (5.8) follows immediately by (5.6). Q.E.D.
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6. Proof of Theorem 4.1. It is to be shown that definitions (3.6) and (4.4) of the
interval integral agree in the finite case. Set

(6.1) I= ["] ] Y(X).
n-l n

As the interval integral (3.6) is contained in each Darboux sum a Y(X), it follows
that

(6.2) faby(x) dx C Y(X), n 1,2,...,
n

and thus

(6.3) faby(x)dxCI ("] Y(X).
n--1 n

Suppose that a partition point p, xi_ <_p<xi is introduced into an interval Xi. By
Lemma 5.1, one has

(6.4) w[xi_,p]. VY([xi_,p])+w[p,xi]. VY([p,xi])Cw(Xi)" VY(Xi).
Consider an arbitrary interval Darboux sum EAm Y(X) for some positive integer m. For
each n>_m, the partition points x, x2,. "’,Xm_ of the interval Darboux sum are
interior to at most m-1 subintervals of E, Y(X), with total length not exceeding
((m- 1)/n)w(X). After deletion of these subintervals from An, the remaining partition
points of A will belong to the subintervals of A m. By (6.4) and Lemma 5.2,

(6.5) Y(X)C E Y(X)+ (m-1)w(X) [-w(VY(X)),w(Vr(X))].
n A n

As (6.5) holds for each partition A m and positive integer n>_m, from (3.5),

(6.6) Y(X) C Y(X) + (m 1)w(X)
n

n m

w(vY(X))’[-1,1].

As w(vY(X))< +o, taking the intersectioin of both sides of (6.6) with respect to n
gives

(6.7)

From (6.7) it follows that

ICx Y(X) + [0,0]-’ Y(X).
m m

(6.8) I C 2 Y(X) =fat’Y(x) dx.
rn=| m

Comparison of (6.3) and (6.8) yields (4.4). Q.E.D.
This result can also be established using the relationships expressed in terms of

elementary integrals of step functions as upper and lower limits of the interval Darboux
sums [1] as in [2, pp. 54-56].

7. A rate oI convergence for smooth integrands. As in ordinary interval analysis,
an interval function Y-[y,fi] is continuous if the real functions y,f are continuous.
Similarly, Y is Lipschitz continuous if a Lipschitz constant L>0 exi-ts for both y and )7,
that is, ly(x) -y(z)l-<Llx zl and If(x) -f(z)l <- Llx z] for x, z X.
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Interval integrals of continuous interval functions can be expressed in terms of the
Riemann (R) integrals of their endpoint functions [1 ]:

(7.11 fabY(x ) dx

One may also write
n

(7.2t (R) (xldx- 2 (R) xldx
i=1

for a Riemann integrable function y and a given partition A of X=[a,b]. If y is
continuous, then on each subinterval Xi, i- 1,2,..., n,

,y((7.3) (R) x)dx=y(ti)(xi-xg_,)--y(lg)w(Xg), liX
i--

[2, p. 209]. Furthermore,

(7.4) Vy(X,.) ci, d [y(/ ),y(’;)],
Thus, if y is Lipschitz continuous, then

(7.5) d’w(X)-(R)faby(x)dx-[y(f)-y(i) "w(Xi)<L’w(Xi)2

and

(V .6) (R)faY(X ) dx- c w( Xi ) [ y( ti ) y( rli )] w(Xi) <-- L. w(Xi)2.

Applying (7.5) and (7.6) to )7 and y respectively for the equipartition with w(X)=
w(X)/n gives the following inequali-y for the excess width of n Y(X) over the interval
integral (7.1) of Y.

TrIEOREM 7.1. If Y is a Lipschitz continuous interval function, then

(7.7) e Y(X) bY(x) dx <
n

n

The use of interval Darboux sums as approximations to the interval integral is an
extension of the crude method of upper and lower Riemann sums [5] for the approxi-
mation of the integral of a Riemann integrable real function. The Darboux sums are
generally easy to inclose and give rigorous upper and lower bounds for the value of the
integral, but the rate of convergence as given by (7.7) is slow. Of course, the use of
partitions other than the equipartition may be of benefit in some cases, but for smooth
functions, the improvement may be marginal. For example, for

(7.8) Y(x)-[O,3x], f’[O,3x]dx-[O, 1],
0

the equipartition for n-2 gives

(7.9) ] Y([0,1I)- 1/2 0, +1/2[0, 3] [0, ] [0,1.875 I.
2

The interval Riemann sum in this case corresponds to the use of the partition point
x 1/v- and has the value

(7.10) 22 Y([0, 1])- : --[--[0, 3]. 1--S 0, 3---- C [0, 1.846].
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Although this is better than (7.9), extra labor was required to determine the optimal
partition, and this additional effort increases rapidly with n.

8. Inner improper interval integrals. In [1] an interval integral was said to be
unbounded if its value is an infinite interval. These unbounded interval integrals arise if
the integrand or the interval of integration is unbounded. Relationships were developed
in [1] between the value of the finite endpoint of a semi-infinite, or improper interval
integral and the improper Riemann integral of the corresponding endpoint function of
the integrand. Here, an approach to improper interval integration will be made via
finitely defined interval integrals.

Case I. Y(x) is an unbounded interval function on a finite interval of integration
X--[a,b]; that is, X7 Y(X)= +, w(X)< +z. Here, the functions

(8.1) YN(X)-- Y(x)N[-N,N]
are defined for each positive integer N. The corresponding finitely defined interval
integrals

(8.2) INY(X)--fabyN(X)dx, N--1,2,3," ",

are finite and may be obtained from (4.4). For M>N,

(8.3) 1NY( X) CIMY(X),
because the interval integral is inclusion monotone, and YN(X) C YM(X) for M>N [1 ].
The inner improper interval integral in this case is defined to be

(8.4) (I) by(x)dx-- lim INY(X)C Y(x)dx,

the inclusion following again from YN(X)C Y(X) and inclusion monotonicity of the
interval integral. It follows that the inner improper interval integral exists (in the
extended real number system) if the interval of integration is finite. The following
examples are taken from [1].

(a) Y(x)=x-/3, a real function, X=[0, 11.

(8.5) INY([O, 1]) foN-3 +f -,/3 -2 -2Ndx
-3
x dx-1/2[3-N ,3-N ].

Thus,

(8.6) -1/3 3 3(I) x dx - - -1/3 [ 3
C X dx---,m

(b) Y(x)=x-, X=[0, 11. Here,

(8.7) inY([O, 1]) fo f -1Ndx+ _x dx-[l+lnN, l+lnN]

and

(8.8) (I)fox- dx-[, l =folx- dx,

an infinite integral. The standard definition of the improper Riemann (IR) integral of
real functions over a finite interval ([2, p. 88]) gives the following result.
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THEOREM 8.1. If the endpoint functions y,y of Y have improper Riemann (IR)
integrals over the finite interval X= a, b], then

(8.9)

Of course, in case Y is bounded, or the real function y is bounded and Riemann
(R) integrable, one may take

(8.10) (I) f’Y(x ) dx-f’Y(x ) dx, (IR)fy(x)dx-(R)faY(x)dx,
respectively.

Finitely defined interval integrals may also be used to construct an improper
integral over infinite intervals of integration. For simplicity of notation, take Y(x)- [0, 0]
outside X and the interval of integration to be the real line R-[-, ].

DEFINITION 8.1. If

(8.11) I+Y= N001im (I) foNy(x)dx, I_Y= N--,-001im (I)f;Y(x)dx
exist, then the improper interval integral of Y over R-[-c, ] is defined to be

(I)f r(x)d-+ Y+_Y.(8.12)
--00

Justification. By use of the rules for extended interval arithmetic given in [1], the
interval (8.12) is well defined if the limits (8.11) exist, as the formulas [o-m, .I-I-
m, ], [., m o] [., o] resolve any "indeterminant forms" which may arise. The
actual interval of integration may be indicated in (8.12) if different from R.

The following example is also taken from [1 ].
(c) Y(x)--e-, X=[0, o]. Here,

(8.13) (I)foN(-e-’)dx=foN(-e-)dx--[-1 +e-N,--1 +e-N],

and, since I_Y= [0, 0],

(8.14) (I) (-e-X)dx-I+ Y= [-1,-1],

a finite interval, while the value of the interval integral [1] is the infinite interval

(8.15) (-e ) dx- [-c, -11.

Finally, the definition of the improper Riemann integral over an infinite interval
of integration ([2, p. 94]) gives the following result.

THEOREM 8.2. If the endpoint functions y, of Y have improper Riemann integrals
over R-[-, ], then

(8.16) (I)f:Y(x)dx- (IR)f:y_(x)dx, (IR)ff(x)dx].
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ON THE EXISTENCE AND UNIQUENESS OF A LOCAL
CLASSICAL SOLUTION OF AN INITIAL BOUNDARY-VALUE

PROBLEM FOR INCOMPRESSIBLE NONHOMOGENEOUS VISCOUS
FLUIDS*

BUI AN TONt

Abstract. The existence of a unique local solution {u, X7p,p, X} in the space of HSlder continuous
functions of the initial boundary-value problem

Ot
u. Vu-V{X(x,t)Vu}+gradp of, V.u=0 oax(0,r)

u(x,t)=O onlG(0, r), u(x,0)=0 onG,

and of the initial-value problem

a---O-0+u.gradp=0, p(x t)>0 onG(O,T) (x 0)=0(x) onG
)t

with

aX
at -u.gradx=0, X(x,t)>O on G(O,T), X(x,O)=Xo(X,po(X))

is shown. G is a bounded open subset of R3. The method of successive approximations and Lagrangian
coordinates as developed by Solonnikov are used.

Introduction. The.purpose of this paper is to show the existence of a unique local
solution in the space of functions with Hrlder continuous derivatives of an initial
boundary-value problem for an incompressible nonhomogeneous viscous fluid.

Let u,p, X be the velocity, the density and the viscosity of the fluid respectively.
The motion of the fluid is described by the initial boundary-value problem

(0.1)
p -+(u-V)u -V(X(c,t)Vu}+Vp-pf onQr=G(O,T),

V.u-0 on Qr, u(x,t)-O onSr=OG(O,T ),
u(x,O)-O on G,

where G is a bounded open subset of R with a smooth boundary OG.
The conservation of mass is expressed by the initial-value problem

(0.2)
op

p(x,t)>o OnQT, p(x,O)-po(x)>O onG.

We shall assume that the viscosity does not change along a fluid particle path, i.e.,

(0.3) X--+u. VX-0, X(X,t)>0 on Qr, x(x,O)-xo(X,po(X)) on G

where X 0 is the initial viscosity.
The system (0.1)-(0.3) is the well-known Navier-Stokes equations when p and X

are both constants. For nonhomogeneous fluids with constant viscosity, the pioneering
work is due to Kajikov [1 ]. He proved the existence of a weak global solution as well as
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that of a strong solution of (0.1)-(0.2), the problem of the unicity of the strong solution
remaining open. For a precise definition of weak and strong solutions of (0.1)-(0.2) we
refer to [5].

In [5] Lions has shown the existence of a weak global solution of (0.1)-(0.2) using
the Galerkin method and estimates of Kajikov’s type when X is constant. By a different
approach using the method of successive approximations and the compensated com-
pactness argument of Murat, the writer has proved in [9] the existence of a weak global
solution of (0.1)-(0.2) when X is a function of 0. It is a special case of (0.1)-(0.3) and
includes the problem of a mixture of two liquids with varying concentrations.

For nonhomogeneous fluids with constant viscosity, using L’-estimates with p> 3,
LadyZenskaya and Solonnikov [4] have shown the existence of a unique strong local
solution of (0.1)-(0.2). When G is a bounded open subset of R2, Kajikov has proved in
[2] the existence of a unique global solution of (0.1)-(0.2) by applying an inequality due
to Rabinowitz.

In this paper we shall establish the existence of a unique local solution
(u, gradp, o,X) of (0.1)-(0.3) in C2+’(2+)/2(QT,)X Ca’a/2(QT,)X CI+,(I+)/2(QT,),
where Qr*--G(O, T*) for some 0<T*<T. We shall use the method of successive
approximations and Lagrangian coordinates. The approach taken in this paper has
been used by the writer in [10] for the equations for the theory of shallow waters and by
Tani [7] for the equations of the theory of compressible fluids. It seems new in the case
of incompressible fluids, even for the Navier-Stokes equations, and allows us to prove
the existence of HOlder continuous solutions without invoking the cumbersome machin-
ery of the theory of hydrodynamic potentials. In the use of the Lagrangian coordinates
we shall follow Solonnikov’s approach.

In 1, the notation and the main results of the paper as well as a detailed outline of
the proof of the main theorem are given. The transformation relating Lagrangian and
Eulerian coordinates is studied in 2. The existence of a unique global solution of a
simple linear initial boundary-value problem is proved in 3. We consider in 4, a
linear initial boundary-value problem of the type (0.1) with V replaced by X7w A(w)V,
where A(w) is a matrix related to the transformation from Eulerian to Lagrangian
coordinates. The proof of the main result is carried out in 5.

1. Let G be an open subset of R with a smooth boundary OG of class C2+. Set
Dj=O/Oxj, _<j_<3 and denote by: Qr=G(O,T), Sr=OG(O,T), 0<a< 1,

H(u; Qr) sup {lu(x,t)-u(y,t)l
(x,t)=/=(y,t)

(x,t),(y ,t) in Qr

H(u; Qr) sup (lu(x,t)-u(x,s)l
t=/=

x ,t),( x,s) in Qr

By Ca’a/Z(QT) we mean the space of functions u(x,t) in C(0-r) having finite
norm

IlUllc"’"/(Q-)= llUllc(Q) +H(u; Qr)+H/2(u; Qr).

Similarly with u and Vu in C(Qr), we denote by

u c’ +," +’/=(QT-- U C(QT + Oju
j=l

.ql_ nt(1 +o0/2( u; Qr)
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when the right-hand side is finite. Set

3

+ H’+a)/Z(Dju; QT)+ IIDDulIc,/ZQ)
j=l j,k=l

The main result of the paper is the following theorem.
Tno 1.1. Let f be a vector function in C’/(QT),Po be a scalar function in

C +(G) with

0 <m g.l.b. O0 O0(x) l.u.b. Oo M.
G G

Let X o be a scalar function in C +([m, M] G) with

0<c g.l.b. XoXo(n,x) 1.u.b. XoC2
[m,M]G [m,MIG

Then there exist:

(i) a nonempty interval (0, T*) with T* T,
(ii) a unique {u,gradp,o,X) in C2+a,(2+a)/2(QT, ) Ca’a/Z(QT, )

C+,+/(Qv,) C+,+)/(Qr,),
a solution of (0.1)-(0.3).

Remarks. 1) It will be clear from the proof of the theorem that if { f, O0, X 0} is in
Ck+a’(k+a)/Z(QT) C2+k+a C+k+([m,N] G) for k a positive integer, then
{ u, gradp, O, X} will be in the appropriate space.

2) The general problem of nonhomogeneous viscous heat conducting fluids with
nonzero diffusion coefficient is still open.

We shall now give a detailed outline of the proof of Theorem 1.1.
Step 1. It will be carried out in 2. The basic transformation

(1.1) x + )ds-X(,t)

relating Eulerian coordinates X(Xl,XE,X3) to Lagrangian coordinates (,2,3)
will be studied. Let

w(,s)ds, j,k3.

Conditions on w and on T so that the matrix U((, t) ((a((, t))) has an inverse are
given. Some simple estimates on U and on its inverse are established.

Step 2. In 3 we study the initial boundary-value problem

oo +  q-OoI, on

on Sr, on a.

Step 3. Let (T+ T)lWllc+,.,/(e,O<2B< 1- with small. We consider
in 4 the linear initial boundary value problem

Oo --- Vw(X OVwv } + Vwq-Oof,

v(,t)=O onSr, v(j,O)=O

Vw.V- g onQr,

on G.
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Vw is the operator
3

A(w)V u-iv Z a/,(li,t) +, l_<k_<3,
j=l

where a/k are the entries of U-l.
Step 4. We construct a sequence {v", Vq"}, solutions of the initial boundary-value

problems

Ovn

v .v"-O onQr,0o---- Vn-l(X0V,-, ) + V,_,q" P0f, V,_,

v"(gs,t)-O onSr, v"(j,0)-0 onG forn-l,2,--.,

where Vn A(v")V.
With the estimates obtained from Step 3, we show that there exist:
(i) a nonempty interval (0, T*) independent of n,

(ii) a constant K independent of n such that

vn
c-+.,<=+o>/-(Q.) / Vq" c,./=(Q.) <-- K.

Let n + and we have (v, Vq}, a solution of

Ov
Po -- Vv(XoVvv} + Vvq=Pof, Vv "v-O

v(,t)-O On ST., V(,0)--0 on G.

on QT*,

Returning to the Eulerian coordinates via the transformation (1.1) we get the
theorem.

2. Let w be a vector function in C2+a’(2+a)/2(QT) with w-0 on ST, and consider
the one-parameter family of transformations

(2.1)

of G into Gt. Set

x- +fo’W t)

(2.2) a+k(, ) ik +fo 0- wk( s ) ds <_j k <_ 3

where 6/, is the Kronecker delta function.
The matrix U(, t) ((aJ(, t))) is the Jacobian of the transformation X connect-

ing Lagrangian coordinates to Eulerian coordinates x. In this section we shall study
U. It is known that without any further condition on w det(U)4:0 only for small t. We
express that restriction by assuming

(2.3) (T+ ZO)llwllcZ+.<2+,/2(oT) <_i< 0<2fl< 1-a.

PROPOSITION 2.1. Suppose that (2.3) is verified. Then

<det(U( t))< 3
2- forO<_t<_T.

Proof. We have

jk- max
j,k

<--aJk(, ) <_8/, + max
j,k C(Qt)
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With (2.3) we get

-_1<1 31 6(2 6( _< det(U(, t)) < + 31 + 6(2 + 6(3_<-3
2 -2"

LEMMA 2.1. Let w be in C2+’(2+’)/2(Qv) and satisfy (2.3). Let aJk(,t) be given by
(2.2) and U(, t) (( aJk(, ))). Then

1) IlU-Illc,+.<,+VZ<Qr)2,
2) A c,+.,<, +a)/2(QT) C
3) A I c,+..,+.,/2<QT) <-- C2 U-I c’ +".(’ _<2c2a.

C and C2 are independent of 6 and of w. A(, t) denotes (U*)-I.
Proof. This is Solonnikov [6, Lemma 4, p. 1332].
LEMMA 2.2. Let v, w be two vector functions in C2+a,(z+a)/2(QT) satisfying (2.3). Let

Uv, U be the Jacobian of the transformation (2.1) corresponding to v and to w respec-
tively. Then for any e>0 there exists (e)>0 such that

+ c(e)tll v- w II c=+,,=+=,/=<a.> as.

Similarly

c(e) and cl(e) are independent of 0< < T.
Proof, Cf. [6, Lemma 5, p. 1333].
LEMMA 2.3. Suppose the hypotheses of Lemma 2.2 are satisfied. Then

1) -7 UW
C(Qt ]]c(Qt

2) - (Av-Aw)

/fv(,o)- w(,o).

+ c(e) fotll v w c=+,(z+.,/=(e,)as

Proof. Cf. [6, Lemma 5, p. 1333].
LEMMA 2.4. Let w be as in Lemma 2.1. Then

Ilvwllca)
forO<_t<_T.

Proof. Since:

we have

vw(,t)- vw(,o) + ( vw(, t)- vw(,o)),

IlvwlIc<Q)- vw(., 0)11 c<) + t( +,)/2 L/II vw c,+,,(,+.v=<a,)ds

-< Vw(,, 0)11 c(G) + t(1 +a)/2 w c=+o,(2+,)/=(Q,).
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Set

Then

LEMMA 2.5 Let v, w be as in Lemma 2.2 and let f be a vector function in Ca,a/2(QT).

(i) fWllf.,./2(a,)Cl

for any e>0 and O<_t<_T.

c(e) is independent of t.

Proof. This is [6, Lemma 7, p. 1351].

3. In this section we shall show the existence of a unique solution of the linear
initial boundary-value problem

Ov
(3.1) Po()---- V {Xo(,Po())Vv) + Vq--Po()f, V "v--g on Or,

on on .
It is Step 2 of the proof of Theorem 1.1 as outlined in 1.
The main result of the section is the following theorem.
THEOREM 3.1. Let Po,Xo be as in Theorem 1.1, let f be a vector function in

C",a/2(Qv) and g be a scalar function in CI+a,(I+a)/2(QT). Suppose that
(i) -7 .b+h in the generalized sense on Qv with the vector function b in

C"’"/2(Qv) and the scalar function h in C"’"/2(Qv),
(ii) g(, 0)=0 and fag()d-O.
Then there exists a unique solution (v, Vq} of (3.1) in C2+a,(2+a)/2(QT)X

C"’"/(Qv). Moreover,

IIvlIc+,,(2+o)/2(QT) 4-IIvqllc,,,/(QT)<_K(f,g,b,h; T).

K depends only on the bounds of 0o, X o. (f, g, b, h; T) is the expression

f co,o/=(O) / g c,+,,(,+o)/=(O) + b co,o/=(a) 4- h

First we have the proposition
PROPOSITION 3 Let g be as in Theorem 3.1 Then there exists u in C2+’’(2+")/2

(Qr)
such that

XT.u=g onG, u.n=O on,G;

n is the unit exterior normal vector to 3G. Moreover,

Ilullc:+,,(+,)/(QT) <KL(O,g,b,h; T).

Proof. Consider the Neumann problem

Oq=O onOG.Aq--g onG, On

There exists a unique u X7q,, solution of the problem and

u(., t)ll c:+o(m-<g g(’, t)ll c,+.(G).
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K is independent of t. It is easy to see that

u- v- v, ( fJ(l,y)g( y,t ) dy

where N(l,y) is the Neumann function whose singularity is of the form I--y1-1. Since

)t v’b+h,

ou
-S x7 ,N(,)b(,)+ (,).+ (,)h(,)e

It follows from the Hopf-Korn inequality

Dull <-K( b c,,,/-(QT) / h c,,,/2(QT) )-’ C.,/2(QT)

Combining this with the above estimate we obtain the stated result.
PROPOSITION 3.2. Let u be as in Proposition 3.1. Then there exists a vector function co

in C2+’(2+)/-(Qr) such that

V.co=0 on Qr, co=-u On ST.
Moreover,

IIllc:+,,(+,)/2(Or) <g(o,g,b,h; T).

Proof. First let us note that w. n-u. n-0 on 0G. The compatibility condition is
verified. The proposition is reduced to the standard construction of a solenoidal vector
taking prescribed values on the boundary. Cf. [3]. It is known that such co exists and

o C=/,,(=/,,/=(QT) <--K u

Taking into account Proposition 3.1, we get the stated result. Set

(3.2) F-of-o (u+0) + v {X0v(u+)}.

Applying Propositions 3.1-3.2 we have

(3.3) IlFllc,,,/:(o_T) <_K( f,g,b,h; T).

With v--w+u+ co, the initial boundary-value problem (3.1) may be rewritten as:

Ow
(3.4) Oo X7 (Xo(,Oo())Vw} + Vq-F, X7 .w-O on Qr,

w((,t)=0 on St, w((,0)=-u((,0)-0((,0) on G.

First let us consider the special case when O0, X 0 are both constants.
LEMMA 3.1. Let u, co be as in Propositions 3.1-3.2 respectively. Suppose that Oo, X o

are two positive constants. Then there exists a unique solution {w, Vq} in
C:Z+’’(2+a)/:Z(QT)X C"’"/(Qr) of (3.4). Moreover,

Ilwllc2+o,(=+o)/2(Q)/ Ilx7qllco,o/(Q) <_g( f,g,b,h; r).

Proof. The lemma follows from well-known results of the theory of Stokes equa-
tions and from (3.3).

We now establish an a priori estimate for the solutions of (3.4).
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LEMMA 3.2. Suppose all the hypotheses of Theorem 3.1 are satisfied and suppose that
(w, Vq) is a solution of(3.4) in the space C2+"’(2+)/2(Qr) c’/2(Qr). Then

IlwllC2+,z+)/g(QT)+ Ilvqllc,/Q)KL( f,g,b,h; T).

Proof. 1) Let {’k} be a finite partition of unity corresponding to an open covering
{Gk} of G with supp(’k) in Gk and diam(Gg)_<. Let k be a fixed but arbitrary point
of G, N G and set

P--Oo(k), X-Xo(k,P), Wk--kW, Fk--kF, qk--kq"

We have from (3.4)

(3.5)
p -wg- V (XVWg) + Vqk--k, V .w,-- Vk’W on Qr,

wg(,t)-O on $7-, wg(,0)-’gw(,0) on G,

with

--Fk+(Po--PO)-w--qVk V/jgX oVW-- V (X oVa’g" w} + V ((Xo-Xgo)VWg}.

2) Since

)-7 (w" V’k)-- V’k" {F--pIvg+P’V(XoVW)},

we may write it as V-/7+/7, with
3.-- -gp)’Dj+ E X op)lDjw,,D,,k,

n--1

 -oa’F. vL+gv. {oa’

(3.6)

An elementary computation shows that

l_<j_<3,

3

j,n=l

II/711C,/-(QT) + Zll

K is independent of ,, k.
Using an argument as in Proposition 3.1-3.2 and then by applying Lemma 3.1, we

obtain by a standard argument (after taking into account (3.6))

(3.7)
w C2+a,(2+a)/2(OT) .ql_ vq

<_K{(f,g,b,h; T)--Ilqllc.../2(Q)+ Ilwllc,+..,,+.)/:(Q)}.
3) We now estimate q. It is clear that q is a solution of the Neumann problem

(3.8)
on G,

on OG.
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The compatibility condition is satisfied and the solutions of (3.8) are defined up to
an additive constant. We shall take the solution with zero constant. An integral
representation of the solution is known:

(3.9) q(,t)--- VyN(,y) F-po- + V(XoVW) dy,

where N(,y) is the Neumann function whose singularity is of the form [--y1-1. An
integration by parts yields

q(l,t)-- V,N(,y) F-po dy+ VN(,Y)XoVwdy

+

Applying the CNderon-Zygmund kernel theorem to the second integral and
Young’s theorem to the other two integrals, we get

"qIIL2(Qr)<--K( ]’Fl]c,,/2(OT)+llt L2(Qr)

(3.10)

<-K (f,g,b,h; T)+

4) Since Qr is bounded, the following natural injection mappings are all compact:

C +,,2+,)/2(Qr) c C +", +")/(Qr) Q C"’"/2(Qr ) eL(Qr).
Thus, it is known that for any e>0 there exists M(e)> 0 such that

and

(3.11)

Similarly,

(3.12) ow

Taking into account (3.9)-(3.12) we obtain from (3.7)

(3.13) Ilwllc=+o,+o,/(Q.)-t-llvqllc,,/(Q.)<_g{(f,g,b,h; T)/llwll2()).
It is rather trivial to check that

Ilwll L2(Q.) <-K( f,g,b,h; T).

The lemma is proved.
Proof of Theorem 3.1. 1) Since Po, X 0(, Po()) are two time-independent positive

functions, the Galerkin method gives the existence of a unique weak solution w of (3.4)
with

ess sup I[ w(., t)[[
Ot<_T
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Letj be the Friedrichs mollifier with respect to and denote by w =j*w, F=j*F.
It follows from (3.4) that

(3.14) Po --- V’ {XoVW} + X7q-F, X7 .w-O on Qr,

w(,t)=0 on Sr, w(,0)=-u(,0)-o(,0) on G.

We may rewrite it as

Ow(3.15) -V(X0VW}+Vq-F-o0 Ot V’w-O onG, w(,t)=0 onG

for almost all on (0, T).
The elliptic problem (3.15) satisfies the complementary condition of Agmon,

Douglis and Nirenberg; cf. [8, p. 33]. Since F=OoOW/Ot is in L2(Qr), w is in
L2(0, T; W2,(G)). On the other hand,

are in L2(QT) for all k_>0.

Thus by the above arguments (Ok/Otk)w is in L(0, T; W2’2(G)) for all k_>0. Applying
the Sobolev imbedding theorem we obtain w and Ow/Ot in Ca’a/Z(QT). Hence F-
Oo Ow/Ot is in C’’/2(Qr).

Using now Schauder’s estimates for (3.15), we get {w, Vq} in C2+a’(2+a)/2(QT)X
C,/(Qr).

Applying Lemma 3.2 we have

(3.16) IIwIIc+.,2+,/2(QT) + Ilvqllc,/2(aT)K6(F,g,b,h; T).

Since

fllc./2(eT)cllFIIc,/2(eT)Kl( f,g,b,h; T),

we obtain

(3.17)

The different K’s are all independent of e.
Let e--, 0 and we have by taking subsequences

(w, Vq} --,(w, Vq} in CZ+V’(2+v)/2(Qr) Cr’Y/Z(QT)
for 0<y<a. It is clear that {w, Vq} is a solution of (3.4) and hence (v=w+u+o, XTq}
is a solution of (3.1).

In view of (3.17) we also have

w c=+o.2+o,/=<Q) / VN co.o/2<Q) <--g( f, g, b, h; T ).

It is obvious that the solution is unique. The theorem is proved.

4. Let w be in C2+a’(2+a)/Z(QT) with w(, 0)=0 on G and

(T+ TB)llwllc2+..,2+o,/2(OT)<_6<- for 0<2/3< 1--c.
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Consider the initial boundary-value problem

(4.1) Oo-- Vw(XOVwV)+ Vwq=Oof Vw-V-g on QT,

v(,t)=00nST, V(,0)=0 on G,

where Vw=A(w)X7 with A(w) as in Lemma 2.1.
In this section we shall show the existence of a unique solution of (4.1). It is Step 3

of the proof of Theorem 1.1 as outlined in 1. The main result of the section is the
following theorem.

THEOREM 4.1. Let f, Po,Xo be as in Theorem 1.1, let g be as in Theorem 3.1 and let w
be as above. Then there exists a unique solution (v, Vq) inCE+a’(2+a)/2(QT) X Ca’/2(QT)
of (4.1). Moreover,

c2/o.,2/o/2Q) / XTq co.o/2Q) <--K f, g, b, h; )

K is independent of with 0 <_ <_ T; it depends on the bounds of Po, X o. is as in Theorem
3.1.

We shall use the method of successsive approximation. Consider the linear initial
boundary-value problems

)v

-Oof+(I-A)vq"-I-(I-A)V (X 0Vv"-’ )-Av (X o(/-A) Vv"-l )
(4.2) =f" on QT,

V.v"--g+(I--A)v.v"-l=g" on QT, v"(,t)--0 on ST,
v"(,0)=0 on G, n=l,2,.-..

LEMMA 4.1. Let (v, X7q} be an element of C2+’2+)/2(QT) Ca’a/2(QT) with
v(, 0)=0 on G and v(,t)=0 on ST. Suppose all the hypotheses of Theorem 4.1 are

satisfied. Then for each n there exists a unique (v", XTq") in C2+a’(2+a)/2(QT)X
Ca’a/Z(QT), a solution of (4.2).

Proof. 1) We havef in Ca’a/Z(QT). Since A(,O)=I, gl(,t)=g(,t)+(I-A)X7
v is zero at t= 0. The compatibility condition

fag’ , ) dl- O

is verified. Indeed, since v(, t)= 0 on ST, with our hypothesis on g it suffices to check
that

f4V vd-O.

Let u(x,t)=v(x-l(,t),t), where

Then AXT. v X7x u and u(x, ) 0 on OGt. Therefore

f4V vd O.
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We have Og’/Ot--Og/Ot+(O/Ot){(I-A)XT.v} in the generalized sense on QT. We
now show that

g
=v.bl+h,t

with b, h in C’"/2(Qr). Let us note that

where VA is a vector with components ,=l(O/)j)(ajk), _<k_<3. So

vo
v (Avo) v

0-- ((I-A)V } V .(I-A)--- V" - + -(vA)’v+

=V.((I-A) Ov OAvo}+ 0 Ov
Ot Ot -(vA)’v+ vA" Ot

Thus,

(4.3)

bl-b+ (I-A) v h’-h+ -(vA).v+ V’A"Ot Ot Ot

2) Applying Lemma 2.1, we have

OA IlvOlIc<Q,)+KIIvwlIc<Q,)IlvOlIc.,./=<Qt)"

Since v(, 0) 0, we may write

v0

Thus,

(4.4) Ilvllc.,/Z(at)

Also, with w(, 0)-0 on G, by Lemma 2.4

(4.5) Vw C(Qt --t (1 +)/2 w c2+.,(2+,)/2(Qt)

Noting that

_<K w c’ +",<’

we have from (4.3) by taking into account (4.4)-(4.6)

(4.7)
b c.,/-<a,) IIb c.,./-<a,) +K( { v c2+a,<2+ot)/2(at)

-+ fotll v c-+o,<=+o)/:<a,:) ds }
K is independent of t.
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3) For h, we get

(4.8) +

c(ot)

!Ca,a/2(Qt) IIvllco,)

 (VA) C(Qt)
IIvllc,/2(Qt).

Since V2w(,t)-V;w(,t)-V2w(,O)+ V2w(,0) and w(,0)-0 on G, it is
easy to check that

(4.9) -(VA
Also,

(4.10)
Ca,e/2(Ot)

_<K w c=+,=+t)/2(at)

Moreover,

(4.11) VAII c,=/2Q,) + IIvA II c(at gt w c+,=+/=<a,) KS.

From (4.9)-(4.11) we obtain by using (4.8)

(4.12) IIhllc,/=at)llhllc,,/Z<at)-+-Kllvllc(at)llvllf2+,z+=)/=<at).
With (4.4) we get

(4.13) II hill

It is trivial to check that g is in C+a,(+a)/2(Qt).
Applying Theorem 3.1 we get the existence of a unique solution (vl, XTq l) of (4.2).

Repeating exactly the same arguments with (v, X7q} replaced by (vn-l, XTqn-}, we
get the solution {v", Tqn}. The lemma is proved.

Proof of Theorem 4.1.1) Set V"=v"-vn-, P"=q"-q"-. From (4.2) we obtain

(4.14)

Po

v.vn-(I-A)v.Vn-1

V(XoVVn}+ve"

--(I-A)Vpn-I-(I-A)v {XoVVn-} -Av {Xo(I-A)VVn-’}
on Qr, V"(/j,0)-0 on G, vn(s,t)-O

on QT,
on ST

From Theorem 3.1 and from (4.7), (4.13) we have

V cz+.=+,/=(a,) + VP"

_<g (ll pn- Ca,a/2(Qt) + vn- C2+a,(2+a)/2(Qt) + tll vn-1 C2+a,(2+a)/2(Qs) ds }.
Take K ) and sumng from n- to N we get

A,(t)2 IIvellf,/=(a,)+llgllcz+,,z+,/z(Ot)+ AN(S)ds
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where
N

n=l

It follows from the Gronwall lemma that A(t)< for all 0Nt T. Thus,

{e", Vq"} {e, Vq} in Ca+’(+)/2(Qr) X C’/2(Qr).
It is trivial to check that {v, Vq} is a solution of (4.1).

2) We now establish an estimate for {, Vq}. Applying Lemmas 2.2-2.4 we have

(4.15) NK(
+K(ll vn-1 cz+,(z+.)/Z(Qt) + vqn-lll c,/2(Q,)}.

For Og"/Ot= . b + h n, we obtain as in (4.7) and in (4.13) the estimate

b

(4.16)

Applying Theorem 3.1 we have

(4.17)

Let n + m and take K6_< 1/2. It follows from the first part that

v c=/,=+,/=(a,) / XZq co,o/Z(a,) <--2K( f, g, b, h; t) + fotll v c2/o,=+o,/2(Os)as.

It follows from the Gronwall lemma that

v c=+,=+o,/2(O,) / XZw Ca,et/2(Ot) K( f, g, b, h; ).

K is independent of t. It is now clear that the solution is unique.

5. In this section we shall carry out the proof of Theorem 1.1. Consider the linear
initial boundary value problems

Ov
,i)n

(5.1) 0o- V.-,{XoVn-, } -+- Vn-lq Oof --1

vn(,t)--O on Sr, v"(,0)-0 on a,
with

’7n-- g onQr,

n- 1,2,. .,

and f"-(li,t)=f(li+ fotl)n--l(,S)ds,t).
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LEMMA 5.1. Let f, O0, X o be as in Theorem 1.1. Let g be as in Theorem 3.1 and v be
an element of C-+"’-+)/2(Qr) with v(,0)--0 on G, v(, t)--0 on $7,. Suppose that

(T+ T)ll v f2+,(z+=vz(aT)4< - 0<2fl<l--a.

K is independent of n. The expression is as in Theorem 3.1.
Proof. 1) Let v be as in the lemma. Then it follows from Theorem 4.1 that there

exists a unique {v, Vq} in C2+’2+)/2(Qr) C’/2(Qr), a solution of (5.1). More-
over, by Lemma 2.5 we have:

v c=+,,=+,/ZQ,) + XTq Ca,a/2(p_.t) K( f, g, b, h; ).

K is independent of t. Thus, there exists a nonempty subinterval (0, T*) such that

{ T* + (T*) } v’ <_K{T*+(T*)}(f,g,b,h; T*)_<6<-.
2) Repeating the same argument with v instead of v, we get

v2
C2+a,(2+a)/2(at) + q2 C,=/2<a,) K f, g, b, h; t)

for 0_< t_< T*. Again,

with the same T* as before.
By induction we get the lemma.
THEOREM 5.1. Let f, Po, X 0 be as in Theorem 1.1. Then there exist
(i) a nonempty interval (0, T*),
(ii) a unique (v, XTq) in C2+a’(2+a)/2(QT,)>( C’/2(Qr,), a solution of the initial

boundary-value problem

Ov _Vv( (,Oo())Vvv} + Vvq Oof(5.2) Oo -- X o

v(,t)=0 on Sr, v((,0)=0 on G,

with Vv=A(v)XT, where A(v) is as in Lemma 2.1 and

that

Vv’V=0 onQr,,

)fv=f + v(,s)ds,t

Proof. 1) Let {vn, Vq } be asin Lemma 5.1 with g=0. It follows from the lemma

(5.3) )n 6=+.2+)72Q,) + Vq c,/=<a,)<_K

for 0_< t_< T*. The constant K and the nonempty interval (0, T*) are independent of n.
Since Qr* is bounded we have by taking subsequences

{vn, Vq’} --,{v, Vq} in C2+’2+/2(Qr, ) C’"/2(Or, )

<--K{ T* + (T*)t)( f,g,b,h; T*)_<<

Then there ex&t:
(i) a nonempty interval (0, T*) independent of n,
(ii) a unique solution (vn, Tq ) of (5.1)for each n.
Moreover,

IIv"llc=+o,,=+,/2o,) + Ilvqnllc,/2<a,> <--K6( f,g,b,h; T*).
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for any 0<3,<a. In view of (5.3) it is clear that (v, Vq} is also in C2+a’(2+a)/2(QT,)X
Ca,a/Z(QT,), and it is trivial to check that (v, Vq} is a solution of (5.2).

2) We now show that the solution is unique. Suppose (v, Vq} and (w, Vr} are two
solutions of (5.2) with all the properties stated in the theorem. Set uv-w and p- q-r.
Then we have

(5.4)
0u

Oo 37 Vv(X oVvU} + Vvp

oo( fV-f) + ( /t( w) -et( v )) vr
+ v{xo(a(v)-a(w))vw} +(a(v)-a(w))v {Xoa(W)VW} on Q.,

Vv.U-(a(w)-a(v))v.w on Q., u(,t)=o on S,-, u(,o)-o on6.

Applying Lemmas 2.2, 2.3 we obtain

+]](A(v)-A(w))V

L is a constant independent of e and of t.
As shown earlier in Lemma 4.1, the expression g=(A(w)-A())V, w satisfies the

compatibility conditions of Theorem 3.1. We now consider:

Og_ 0
Ot 0- ((A(w)-A(v))V "w} v "b+h

in the generalized sense on Qr*.
As in the proof of Lemma 4.1, we have

b-(A(w)-A(v))-- + -(A(w)-A(v))w,
h--v {(A(w)-A(v))} - V -7(A(w)-A(v))’w.

Applying Lemmas 2.2-2.4 we obtain

L is independent of e, t. Since u(, O)= 0 and

C2+’’{2+’)72(Q,) c C’+’’{’+’)/2(Q,) c C(Q,)
are all compact,

u c’

Thus

(5.6) Ilbllc..,,/z(ot) { )tllullc+_<L ell u c-+o.,+ov=(o_,) 4- c( e ,(2+,)/2(Qs)

-+-II(A(w)-A(v)) V.w

<--L {ellullc=+.,2+,/2,Q,, / c(e) fotllullc,+o.,=+o,/=<Q.,ds }
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Similarly,

From Lemma 2.5 we get

(5.8) fv--fW]lc,,/2(Qt)<--L(ellullc2+,,,,2+,/2(Qt)+c(e) fotllullc2+,,e+,,/2(Q,)ds )
The different constants L are all independent of e, t.

Applying Theorem 4.1 and taking into account (5.5)-(5.8) we obtain, by a trivial
argument,

u c=+,=+o/=<a, + II Vp c,/=<a,> <--K foll u c=+,=+o/=<a> as,

for 0 _< t_< T*. Hence u XTp 0. The theorem is proved.
Proof of Theorem 1.1. 1) Let u be in C2+"’(2+)/2(Qr, ) with u-0 on St,, and

consider the ordinary differential equation

.(5.9) -s Y(s;x,t)-u(Y(s;x,t),s), Y(s;x,t)

for every (x, ) in Qr,, 0 _< s _< t.
Since u is in C2+’2+)/2(Qr, ), there exists a unique solution curve passing

through (x, t). Set

-Y(O;x,t).
The mapping (x, t)--, (, t) is a 1-1 mapping of Qr, onto Qr* and of St, onto St,.

The inverse of that mapping, we denote by x- X(, t). Set

v( li, ) u( X( li, ), ).
Equation (5.9) implies that

d(5.10) ss
Thus;

fott) S

An elementary computation shows that (0.2) may be rewritten as

O (,t)-O, (,O)-Oo() onG.(5.11)

Hence (, t) Po().
Similarly, (0.3) becomes:

o

Thus, o(, t) X o(, Oo()).
Finally, (0.1) may be expressed as

v
(5.13) Oo - Vv(X OVvv } + Vvq-- Oofv,

v(!,t)=0 on Sr,, v(,0)=0 on G.

U’v-v=0 on QT*,
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2) From Theorem 5.1 we have a unique solution {v, Vq} of (5.13) in
C2+’,(2+’)/2(Qr,) C’,’/2(Qr, ).

Then with

u(x,t)-v(X-’(x,t),t), p(x,t)-q(X-’(x,t),t),
p(x,t)-Po(X-(x,t),t), X(x,t)-Xo(X-(x,t)),Po(X-(x,t)),

we have a unique solution {u,7p, p,X) of (0.1)-(0.3). Clearly {u,7p, p,X) is in
C2+,(2+)/2(Qr,)x C,/2(Qr,)x C+,(+)/2(Qr,)x C+,(+)/2(Qr, ). The theo-
rem is proved.

Acknowledgment. The writer is indebted to the referees for their comments.
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TRAVELING WAVE AND MULTIPLE TRAVELING WAVE SOLUTIONS
OF PARABOLIC EQUATIONS*

PATRICK S. HAGAN*

Abstract. We consider scalar equations Ut-"f(Uxx,Ux,U with f(a, fl,7) >- 1. We first determine the
stability of the monotonic traveling wave solutions u(t,x)--(x-ct, c). We then study the continued ex-

istence and bifurcations of these solutions as the wavespeed c varies. We use these continuation results to

explore the connection between the initial conditions u(O,x) and the wavespeed(s) of the resulting solution

u(t,x).

1. Introduction. We consider scalar equations

(1.1) ut=f(uxx,ux,u), where -3-af(a,,7)_>l for all a,,7.

An example of such an equation is ut=[q(u)ux]x+c(u)u+r(u) with q(u)>_ 1, which
occurs when a quantity is governed by diffusion, a transport/convection term and a
reaction term.

In [1] we considered the nonmonotonic traveling wave solutions u--(x-ct) of
(1.1). We found that most of these solutions are unstable to all nonpositive and to all
nonnegative initial perturbations. Now we consider the monotonic waves.

First we will obtain sharp stability results for these waves. These results, combined
with those in [1], permit the stability of any traveling wave u=(x-ct) to be de-
termined by inspection of its trajectory in the phase plane of

(1.2) ’--v, f(v’,v,)+cv=O.

We will classify the monotonic solutions of (1.2) as S S, N--, S, S--, N or N N
according as whether (-),0 and (+ c),0 are both saddle points, a node and a
saddle point, a saddle point and a node or both nodes. For each of these classes, we will
suppose that a monotonic solution of that type with a speed co exists. Then, as c varies
from co we will determine the continued existence and bifurcations of monotonic
solutions of the same class.

These continuation results will show the sharpness of the stability results. They
will also be used to explore the relation between u(O,x) and the qualitative behavior of
u(t, x). Specifically, for a large class of initial conditions, we will find that for any fixed

(1.3) lim u(t, 1 + ct)
t

fro if c<c,
(DI if c <c<c2,

m-1 ifCm_ <c<cm,
m if Cm< C,
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where m_> 1. Here 0,"" ",, are distinct constant solutions of (1.1) and c < C2 <’’" <
Cm. We will determine m and the wavespeeds cj from u(O,x). In particular, if m> we
will call u(t, x) a multiple, or stacked, traveling wave.

Finally, the existence and stability of any particular type of traveling wave solution
will be shown to be a generic property of (1.1).

2. Mathematical preliminaries. We assume that f satisfies:
H1. For some A>0 and for all a,b,c, the derivatives f(a,b,c), fE(a,b,c) and

fa(a,b, c) exist and are H/51der continuous with exponent A in all arguments.
H2.f(a,b,c)> for all a,b,c.
H3. At every u where f(0, 0, u) 0, f3(0, 0, u) v 0.
The last assumption guarantees that every singular point in the phase plane of

(1.2) is an ordinary saddle point, node, spiral point or center. In the Appendix we will
extend the stability results to the case of f(0, 0, u)=--0 for all u. This case often occurs in
shock models [2].

To simplify later exposition, we now define Bx2 as the set of all functions 6(t,x)
which have k, 6t, kx and /xx existing, continuous and bounded for all in [0, T] and all x
for every T>0. For convenience, we also introduce the following theorem at this point.

THE MAXIMUM PRINCIPLE. Assume that H1 and H2 are satisfied. Let u(t,x) and
v( t, x) be any functions in B which satisfy

ut--f(Uxx,Ux,U)>--vt--f(19xx,19x,V) forallx, forallt>_O.

1) If u(O,x)>_v(O,x) for all x, then u(t,x)>_v(t,x) for all x andfor all t>_O.

2) If c(t) is continuously differentiable, if u(O, x) >_ v(O, x) for all x >_. / c(O) and if
u(t,+c(t))>_v(t,+c(t)) for all t>_O, then u(t,x)>_v(t,x) for all x>_+c(t), all t>_O.

The proof of this principle is standard (see, e.g., [3], [4]) and will be omitted.
The above theorem motivates the definitions of fi(t,x) and u(t,x) as an upper

function and a lowerfunction of (1.1) if and only if f and u are in B2 and satisfy

(2.2) ft--f(fxx, fix, f) >0 for all x, for all t_> 0,

(2.3) ut--f(Uxx,Ux,U)<O for allx, for all t_>0.

We will obtain most of our results by first constructing suitable upper and lower
functions f(t, x) and u(t,x). Then we will use the maximum principle to conclude that
f(t, x) _> u(t, x) -> u(t, x) for all solutions u(t, x) satisfying f(0, x) _> u(0, x) _> u(0, x). This
procedure has been widely used [5]-[10] for equations of the form ut=Uxx+ h(u).

3. Some preliminary results. Here we introduce some well-known results about
monotonic traveling wave solutions of (1.1) and then use these results to establish
useful upper and lower functions.

Suppose that u (x ct) is a solution of (1.1). Then (x), v ’(x) satisfies
(1.2). Consider the phase plane representation of the solutions of (1.2) at any fixed
value of c. The singular points in this phase plane are the points 0, 0 with f(0, 0, 0) 0.
We note that:

1) if f3(0, 0, 0)<0, then 0, 0 is a saddle point at each c;
2) if f3(0, 0, ,o)>0, then ’0, 0 is a node, spiral point or center depending on the

value of c.
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Now suppose that is monotonic and bounded. Let if_ ff(-o) and+ =(+ o).
Then _,0 is either a saddle point or a node, as is + ,0. Following [11, Chapt. 13], we
define

(3.1) k_(c)=-
-j2 +- V/( f2 +)2-4f ./-3

with k- (c) _<k- (c),

where f/-f(0, 0, q_), i= 1,2, 3. Then, as x-o the asymptotic behavior of if(x) is
given by:

1) if _, 0 is a saddle point,

(3.2) q(x),q_ +aexp[k(c)x] asx -o;

2) if _, 0 is a node, then typically (x) decays at the usual rate

(3.3) q(x),,q_+aexp[k-(c)x] as x-o ifk-(c)=/=k(c),
q_+axexp[k-(c)x] as x-o ifk-((c)-k(c),

but it may decay at the accidental rate

(3.4) q(x),-,q_+aexp[k(c)x] as x

In (3.2)-(3.4), a is some nonzero constant.
Similarly, we define

_+ )2 4./q. .3+kl,2(c) 2f with k-(c)>-k- (c)

where ff =f/(0, 0, +), i-1,2, 3. Then, as x--, + the asymptotic behavior of (x) is
given by (3.2), (3.3) or (3.4) with _, k-(c) and k(c) replaced by q+, k-(c) and
k-(c). Moreover, the asymptotic formulas for q;(x) and qd’(x) as x-,_+ are obtained
by differentiating the formulas for (x).

Finally, suppose that is nonconstant and monotonic. Then clearly, q(x)_>0 for
all x or ’(x)_<0 for all x. Also, from the uniqueness of solutions of (1.2), it is easily
shown that ff’(x)=/=0 for all x. Moreover, the asymptotic formulas for qd(x) and
show that k"(x)/rk’(x) goes to either k-(c) or k(c) as x- and goes to k-(c)
or k-(c) as x-, +. Thus Irk"(x)/ck’(x)l is bounded. Similarly, for any x0,

I(x)

_
I/’(x) is bounded for all x _< x0 and I(x) q+ I/’(x) is bounded for all

xxo.
We now establish the following lemmas with these facts.
LEMA 1. Assume that HI, H2 and H3 are satisfied. Suppose that u-q(x-ct) is a

bounded increasing in x solution of (1.1). Let h o be any constant and let be any four
positive constants small enough so that

(3.6) f(0,0,_+z)v0 forallzv0in [-e-,e-],
(3.7) f(0,0,+ +z)v0 for all zv0 in [-e-,e-].
Then u is a lowerfunction and is an upper function of (1.1), where:

1) ifq_, 0 and q+, 0 are both nodes,

(3.8) u(ho, t,z) ct- ho ),
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2) if

_
0 is a node and +, 0 is a saddle,

(3.9)
u_(e? ,ho,t,x ) q(x-ct-h(e- ,t))-q(e- ,t) (d(x-ct-h(e- ,t))-q_ ) /(q+ -_),
fi(ef ,ho,t,x =(x-ct+h(e ,t))+ q(ef ,t)(d(x-ct + h(ef ,t))-_ }/(if+ q_),

3) if q_ 0 is a saddle and d+, 0 is a node,

(3.10)
u(e-,ho,t,x)=--q(x-ct-h(e,t))-q(e,t)(q+-q(x-ct-h(e ,t)))/(ff+
fi(e-,ho,t,x)--q)(x-ct+h(e ,t)) + q(e ,t)(q)+ -q)(x-ct+ h(e t)) )/(q)+ q)_)

4) if q)_ 0 and q)+ 0 are both saddles,

u( e- e- ,ho, t,x =_dp(x- ct- h( e, )) q( el ){1
ff(e,e,ho,t,x)--dp(x-ct+ h(e2,t)) + q(e2,t){1

In the above, h ( e, ) and q( e, ) are

(3.12) h(e,t)--eK(e)[1-e-tS()]+ho,

e- +ee--e- tanhx[x-ct-h(e,,t)]),
e +e tanhx[x-ct+h(e2’t)]

q(e,t)----ee-tS(),
where K(e) and s(e) are some positive constants that are bounded as e --+ O. Also, in (3.11)
e 1/2(e? +e-), e2--1/2(e +e- ) and x>0 is any sufficiently small constant.

These upper and lower functions at t-0 are sketched in Figs. 1-4. As t- ,
q(t)--, 0 and h(t) constant. So, the upper and lower functions in Figs. 2-4 eventually
look like the ones in Fig. 1. We note that the functions in (3.11) were constructed
previously in [5] for equations of the form ut- uxx+ h(u).

Proof. We prove only that ff(e],ho, t,x ) in (3.9) is an upper function. Very similar
calculations show that the other functions in parts 2), 3), and 4) are upper and lower
functions. The functions in part 1) are solutions of (1.1), and so they are also upper and
lower functions.

We need to show that (e,ho, t,x ) satisfies (2.2). For simplicity, we define
7q(e,t)=--q(e,t)/(q+-_). We have

if-- q)-+- 7/(q)-- q)_), if,--(h,-c)(1
(3.13) :x- (1 + ?/)q’,

We define
(3.14)

C; sup
o_<,/_<( ,o)

all x

If([1 + ct]q)",[ + t] q)’, q)_ +[1 i-- 1,2,3.

We can also define the positive constant s-1/2 min_?<_z<_(-f(0,0,q+ +z)/z} since
f3(0,0,q+)<0, f(0,0,q+)-0 and f(0,0,q+ +z)4:0 for all zvO, -e- <_z<_e. Finally,
since q,"(x)/qd(x) is bounded, we define m- suplqd’(x)/q(x)].

Using (3.13), we find that

ff f( ff ff ff >-- h q)’ + q ( q) q) ) Cglq)’ +f( +" q)’ q) )
(3.15) -f([1 + ]4)",[
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n

FXG. 1. The upper and lower functions when _, 0 and ok+, 0 are both nodes N).

q,__N
x O,x)

S--dp+

FIG. 2. The upper and lower functions and u at t--0 when _, 0 is a node (N) and oh+, 0 is a saddle
point S).

C U

N

FIG. 3. The upper and lower functions and u at t-O when q_,0 is a saddle point (S) and q+ ,0 is a

node N).

a(e,e, ho,O,x)......

4,_ s
X

s -dp+

FIG. 4. The upper and lower functions ff and u at t--0 when q_ 0 and ok+, 0 are both saddle points.

For x-ct-h>_xo and x0 large enough, this gives

fit--f(ffxx, fix, if) >-htq)’ +
(3,16)

-(C2 + c)?/4,’ + s?/(4,- q,_).

>(Clm-+-C2+c).Since?// s/,wenotethat(2.2)issatisfiedforallx ct h >_xo if h t_
Similarly, for x ct h <_ xo, (3.15) yields

(3.17)
Since (4,(x)-4,_)/4,’(x) is bounded for all x<_xo, we can let

n=--sup
xx

Thus, if h t_>[Clm+Cz+c+(C3+s)n]?t, then (2.2) is satisfied for all x-ct-h<xo._
Therefore, we select K-[Cm+ C_ + c+(C +s)n]/s in (3.12). Then ff satisfies (2.2) for
all x, all t_> 0 and is an upper function.
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The upper and lower functions in Lemma will lead to sharp stability results for
q,(x- ct) unless q,(x) decays at the accidental rate to a node as x - or as x + .
For these exceptional.solutions, we now obtain sharper upper and lower functions.

LEMMA 2. Assume that HI, H2 and H3 are satisfied. Suppose that u q(x-ct ) is a
bounded, increasing in x solution of (1.1). Let q_ =--q(-o), let q,+ ----q,( + ) and let the
four constants k 2(c) be defined by (3.1) and (3.5). Finally, define ks(X) and s(X) to be
any functions in C satisfying

(3.18)

/s(X)=_e, qN(X)=_e, x<_O,

I_<s(X)_<2 O__<PN(X)_<2 O_<X_<I,

O<_q(X)_<2,
O_<x_<l,

qs(x) _---- 2, ,N(X)--O, l<_x.

For any sufficiently small e>0 and tS>0, the following ff and u are upper and lower

functions of (1.1)"
1) if dp_, 0 is a node, if k-((c)4 k(c) and if dp(x) decays to dp_ at the accidental rate

as x - -o, then
a) if dp+, 0 is a saddle point,

(3.19) (e,8,ho,t,x)=--dp(x-ct+h(t))+,l(t)+s([k-((c)+e][x-ct+h(t)]),
lb) if ck+ ,0 is a node,

(3.20) (e,8,ho,t,x)--dp(x-ct+h(t))+,l(t)+N([k-{-(c)+e][x-ct+h(t)]);
2) if dp+ ,0 is a node, if k’(c)=/=k-(c) and if dp(x) decays to ok+ at the accidental rate

as x + o, then
2a) if ok-, 0 is a saddle point,

(3.21) u(e,15,ho,t,x)--dp(x-ct-h(t))-,l(t)bs([k-(c)-e][x-ct-h(t)] ),
2b) if dp_, 0 is a node,

(3.22) u_(e,15,ho,t,x)=dp(x-ct-h(t))-,l(t)N([k-(c)-e][x-ct-h(t)]).
In the above equations

(3.23) rl(t)--e4eE/Ae-e3t, h(t)--ho+KSeE/A(1-e-e3t),
where K is a positive constant, h o is arbitrary and A is the H61der exponent in H 1.

Proof. Lemma 2 follows from calculations like the ones which established Lemma
1. []

These new upper and lower functions are very similar to the ones in Lemma for
the corresponding cases, and they look like the functions sketched in Figs. 1-3. The key
difference is that when q,(x) decays to a node at the accidental rate, the upper and
lower functions in Lemma also decay to the node at the accidental rate. However, the
ones in Lemma 2 decay to the node at an exponential rate that is only e larger than the
usual decay rate.

4. Stability. We first show that a constant solution u=--o is stable if o, 0 is a
saddle point and is unstable otherwise.

THEOREM 3 (stability of constant solutions). Assume that H1, H2 and H3 are
satisfied, and let u =--dpo be a constant solution of (1.1). Then there is an eo>0 and k>0
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such that:
1) Suppose that qo, 0 is a saddle point. If u(t,x) is any solution of (1.1) in B that

satisfies
(4.1) -ee-kt<_u(t,x)--o<_ee -kt for allx

at 0 for some 0 <_ e <_ eo, then u( t, x) also satisfies (4.1) for all >_ O.
2) Suppose that rko, 0 is a node, spiral point or center. If u( t,x) is any solution of

(1.1) in B2x that satisfies either

(4.2) qo+Ssechkx<_u(O,x) forallx or

(4.3) rko-sechkx>_u(O,x ) for all x

for any > O, then u(t, x) also satisfies

(4.4) eo<-Iu(t,x)-qo[ forsome x andsome t>_O.

Proof. If q’0, 0 is a saddle point, then f3(0, 0,q,o)<0. Let k -1/2f3(0, 0, q’o)- Then
there is an e0> 0 such that f3(0, 0, qo+ h ) < k for all Ih < e0. Clearly, (h, t) =-- rko + he -kt

is an upper function for all O<_h<_eo and is a lower function for all -eo<_hO. So,
suppose that u(t, x) is any solution of (1.1) in B which satisfies lu(0, x) q(x)l < e for
all x and some 0< e_< eo. Then

(4.5) t(-e,t)<_u(t,x)<_ft(e,t) for allx

is true at t-0. So, the maximum principle implies that (4.5) remains true for all t_>0.

This establishes (4.1) and stability.
Now suppose that q0, 0 is a node, spiral point or center. Define u(h,t,x)=qo+

hett sech kx, where/ 1/2f3(0, 0, o)>0 and where k>0 will be selected later. We find
that

(4.6)
u__t-f(U_x,,U_x,U_.)-he’t(sechkx){-1/2f3 +f2ktanhkx +fk2(1-2 tanh2 kx) )

+O([he,tsechkxl’+a).
Here f,.=--f/(0, 0,qo), i= 1,2,3, and A is the HOlder exponent in H1. Let k>0 be chosen
so small that the quantity in braces is smaller than -1/4f3 for all x. Then there is an Co>0
such that ut-f(Uxx, Ux, U_)<_O for all x whenever O<het<_eo

So, let u(t, x) be any solution of (1.1) in Bx2 which satisfies _.u(i, 0, x) _< u(0, x) for all
x. The maximum principle implies that u(8, t, x) <_ u(t, x) for all x and all > 0 with
0<ett<- eO. This establishes (4.4) when u(0, x) satisfies (4.2). The case of u(0, x)
satisfying (4.3) is treated similarly.

We now determine the stability of increasing in x solutions q(x-ct). Decreasing
solutions can be treated by first applying the transformation u--,-u to (1.1) and to
u=qffx-ct).

THEOREM 4 (the stability of monotonic waves). Assume that H1, H2 and H3 are

satisfied. Suppose that u=qffx-ct) is a bounded increasing solution of (1.1). Let
q(-), let q+--q(+) and let the four constants k2(c) be defined by (3.1) and (3.5).
For every e>0, there is a 8(e)>0, such that if u(t,x) is any solution of (1.1) in Bx that

satisfies

-,3(e)w-{-(x)<_u(O,x)-q,(x)<_ +,3(e)w-(x) for all
(4.7) -,3(e)w-(x)<_u(O,x)-,l,(x)<_ +,(e)w-(x) for allx_>O,
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then for all >- O, u(t, x) satisfies
-ew-(x-ct)<_u(t,x)-q(x-ct) <_ +ew(x-ct) for allx<_ct,

(4.8) --ew(x--ct)<_u(t,x)--q(x--ct)<_ +ewf (x--ct) for all x>_ct.

Here w-(x) and wf(x) are defined by
1) if q_, 0 is a saddle point then w- (x ) w (x ) 1;
2) if q_, 0 is a node and q(x) decays at the usual rate as x-, then w-(x)--

w-(x)--e7’)x if k-(c)vk(c)andw(x)--w(x)--(1-x)ek7e)x ifk-(c)-k(c);
3) if q,_ ,0 is a node and q(x) decays at the accidental rate as x-, then

w-(x)--e’) and wf(x)-e’-()+P if k-(c)vk(c) and w(x)--w-(x)--e’7c)x

if k-(c)-k(c). Here 0 can be any sufficiently small positive constant.

Similarly, w-(x) andw(x) are defined by
) if q+, 0 is a saddle point, then w- (x ) w(x) 1;
2) if q++, ,0 is a node and q(x) decays at the usual rate as x / , then w-(x)--

w(x)=_e, ) if k-(c)vk-(c) and w-(x)--w(x)--(1 +x)e) ifk-(c)-k-(c);
3) if q+, 0 is a node and q(x) decays at the accidental rate as x + o, then

w-(x)=--e’’)x-P and w(x)=--e) if k-(c)vk-(c) and w-(x)--w-(x)--ec)x
if k-(c)- k- (c). Here O can be any sufficiently smallpositive constant.

Crudely speaking, this theorem shows that bounded monotonic solutions u-
q,(x-ct) are stable to all perturbed initial conditions u(O,x) which are near to q(x) for
all x and also

1) decay asymptotically to q_ at the usual rate as x-- if q_, 0 is a node and
q,(x) goes to q_ at the usual rate;

2) decay asymptotically to q_ at a rate faster than the usual rate and no faster
than the accidental rate as x- if q,_, 0 is a node and q,(x) goes to q,_ at the
accidental rate;

3) satisfy the analogous restriction if q+, 0 is a node.
Later we will find that Theorem 4 is sharp in the following sense" Suppose that

u(O,x) decays to a node at an exponential rate different than the one(s) allowed by the
theorem. We will find that then u(t,x) would evolve either into a wave with a speed
different than the speed c of q(x-ct) or into two or more stacked traveling waves. In
either case, lu(t,x)-q(x-ct)l would not remain uniformly small for all t.

Also, in 8 we will find that the stability results in Theorem 4 are generic.
Proof of Theorem 4. Suppose that q(x) does not decay at the accidental rate to a

node as x- or as x /o. Select constants e>0 and h0>0 and let (e, ho, t,x )
and u(e, h 0, t, x) be the appropriate upper and lower functions in Lemma 1. [If part 1)
of the lemma applies, take (e, ho, t,x ) to be (ho, t,x); if part 4) applies take
(e, ho, t,x ) to be (e,e, ho, t,x ). Define u similarly.] For all e>0 small enough, ff and _u
are an upper and a lower function of (1.1). Thus, let u(t,x) be any solution in B2 that
satisfies

(4.9) u(e, ho,t,x)<-u(t,x)<-(e,ho,t,x ) for all x

at t-0. The maximum principle shows that (4.9) is also satisfied for all t_>0. This
immediately implies a type of stability since e> 0 and h 0>0 can be taken as small as we
wish. Inspection of the formulas in Lemma for ff and u and of the asymptotic
formulas (3.1)-(3.5) for q,(x) shows that (4.8) implies the stability claimed by Theorem
4 for the nonaccidental cases.

Now suppose that q,(x) decays at the accidental rate to a node as x- or as
x / . For these cases the theorem is proven by repeating the above arguments with
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ff and u replaced wherever possible by the functions if(O, e, h 0, t, x) and u(0, e, h 0, t, x) in
Lemma 2. []

In the Appendix we extend Theorems 3 and 4 to the case of f(0, 0, u)--0 for all u
and also point out other extensions.

Many authors [5]-[10], [12], [13] have extensively investigated monotonic waves in
equations of the form ut- Uxx"" h(u). For example, in [5] asymptotic stability results are
obtained for solutions u-(x-ct) of this equation when q(-+ oe), 0 are both saddle
points. Also, in [14] asymptotic stability results are obtained for solutions u-rk(x-ct)
of ut- Uxx+ h(u, Ux). However, the class of initial perturbations u(O,x)-(x) treated
in [14] is much more restrictive than the class allowed by Theorem 4.

In each of the next three sections, we will assume that a monotonic S S, N S or
N N wave exists. Then we will explore the implications of its existence.

5. S S waves. We first show that S--, S waves are unique, modulo translations
in x.

TI-IEOREM 5 (existence for S S waves). Assume that HI, H2 and H3 are satisfied.
Suppose that u-q(X-Cot) is a bounded, increasing in x, solution of (1.1). Let

_
(- oe), let + rk( + ) and assume that rk_ 0 and q+, 0 are both saddle points of (1.2).
If u (x ?t ) is a monotonic solution of (1.1) with rh(-o) rk_ and q( + ) +, then
there is a constant h such that q(x- ?t)-q(x- Cot-h) for all x and all t. In particular,
C C0.

Proof. At any c, all solutions u-rk(x-ct) of (1.1) with (+ m)-O+ are repre-
sented by a single trajectory in the phase plane of (1.2). Thus, at any c there is at most
one monotonic solution u-q(x-ct) with O(+oe)-O+ and (-)-_, modulo
translations in x. By using phase planes, one can also show that there is at most one
speed co at which a monotonic solution u-rk(X-Cot ) of (1.1) with O(+oe)-O+ and
(-)-_ exists. We shall not show this here because it is an immediate corollary of
the next theorem. V3

We now show that the existence of a monotonic S S wave (x- Cot) implies that
for a large class of initial conditions u(O,x), the solutions u(t,x) must travel with speed
co. First we introduce the definition that u(t, x) travels with speed co if and only if

(5.1) lim u(t,+ct)- {*0 for alll if c<co,

t otZ (1 for all / if c> co
r/fixed

where q0 and q are distinct constant solutions of (1.1).
TI-IEORE 6 (wavespeed for S- S waves). Assume that H1, H2 and H3 are satisfied.

Suppose that u=(X-Cot) is a bounded, increasing in x, solution of (1.1). Let

_
(-), let + q,( + ) and assume that

_
0 and +, 0 are saddle points in the phase

plane of (1.2). Let 2 be any four positive constants small enough to satisfy (3.6) and (3.7).
If u(t, x) is any solution of (1.1) in B2 satisfying

(5.2)
for all x_< -x0,

for all x_> +x0,
for all x

for any xo, then u(t, x) travels with speed co.
Proof. Select constants _e,2 that satisfy _e- >e-, _e- >e-, _e- >e-, _e- >e-, and that

are small enough for u(e_,e_,ho, t,x ) and ff(e_,e_,ho, t,x ) in part 4) of Lemma to
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be a lower and an upper function of (1.1). Now (5.2) implies that for some h 0

sufficiently large

(5.3) u(e_-,e_-,ho,l,x)<_u(t,x)<ff(e_,e_,ho,t,x ) for all x

is true at t-0. Thus, the maximum principle implies that (5.3) is satisfied for all t_>0.

Examining (5.3), (3.11) and (3.12), we note that for any e, q(e,t)-O and h(e,t)
constant as + c. Hence, (5.3) becomes

(5.4) dp(X--Cot--h(el, +))<_u(t,x)<-rk(X-Cot+h(e2, +))
asymptotically as + oe, and (5.1) is satisfied with 0-- and

Clearly results analogous to Theorems 5 and 6 hold for decreasing in x, S--, S
waves u q(x Cot).

6. NS waves. Now we assume that u-k(x-Cot, Co) is a bounded, increasing in
x, solution to (1.1). We also assume that _--(-o,Co), 0 is a node and that
(+ oe, c0), 0 is a saddle point in the phase plane of (1.2) at c-c0.

First we note that +, 0 is a saddle point for every c and that _, 0 is an unstable
node at every c_< Cmax, where

(6.1) Cmax--2(f (0, 0, _)f3(0, 0, _) -f2(0, 0, _).

Let v+(k,c) be the phase plane trajectory of the solutions of (1.2) that go to + ,0 zs
x + o. For c<-Cmax, let v_(,c) be the trajectory of the solutions which decay to_, 0 at the accidental rate as x -oe. Select o as any point with

_
<0<+, such

that there are no singular points , 0 with

_
<-<0-

Suppose that (x, co) decays to

_
at the usual rate as x --, -o. Then 0<v+ (fro, c)

<v_(0,c). Now v+(rk, c) and v_(rk, c) are continuous in c when v+(rk, c)4:O and
v_(rk, c)4=O. So there is a /J>0 such that 0<v+(,c) for all o_<<+ and 0<
v+(rko,C)<V_(o,C) whenever Ic-c01_< , c<--Cmax. Since there is no singular point ,0
with -<-<0, the phase plane shows that for all ]C-Col<_i, c<-Cma, v+(_,c)-O
and 0<v+(,c) for all _<<ff+. Thus, for each c with [C-Co[<_8, c<_Cmax, there is
an increasing (in x) solution u-(x-ct, c) of (1.1) which has (+ ,c)-+ and
which decays to

_
at the usual rate as x -o. Moreover, since +, 0 is a saddle point,

at each c there is at most one monotonic solution u-(x-ct, c) with (-,c)-_
and (+, c) +, modulo translations in x.

Now assume that k(X, Co) decays to

_
at the accidental rate as x-oe. A

somewhat similar phase plane analysis shows that there is a/J>0 such that for each c
with Co-<_C<Co, there is a monotonic solution u-rk(x-ct, c) with (+,c)-+
and which decays to

_
at the usual rate as x--oe. Moreover, it shows that no

monotonic solutions u-rk(x-ct, c) exist with (-m,c)-_ and (+oe,c)-+ for
any c> c0.

Define (c l, c) as the largest open interval containing co such that for each c in
(c,c2) there is a monotonic solution u-rk(x-ct, c) with (+oe,c)-+ and which
decays at the usual rate as x - -oe. If c > -oe, then at c- c either"

1) there is a monotonic solution u-(x-ct, Cl) with (+ ,Cl)-+ and which
decays at the accidental rate to

_
as x --, -oe; or

2) the trajectory v+(,Cl) intersects, but does not cross, the v-0 axis at at least
one point o in (_, +).

For if neither 1) or 2) occurred, then continuity arguments like those above would
show that there is a monotonic solution u--rk(X--Clt, Cl) with (+ oe,Cl)-+ and
which decays to

_
at the usual rate as x
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The first possibility cannot occur, because it would imply that there are no
monotonic solutions u-,h(x-ct, c) with (-c,c)-_ and (+o,c)-+ for C>Cl,
contrary to assumption. Thus, the second possibility must occur. Let ,h0i), i-1,- -,m,
be all the points between ,_ and + at which v+(, c1) -0 and let

(6.2) q_-q,o)< qo’)< < (/)(0m) < (0m+ 1)
+

For each i- 1,. .,m, q,0i), 0 is a singular point. In fact, it must be a saddle point since
the trajectory v+(q,c) both enters and leaves q,),0. Thus, as c decreases to c,
the monotonic NS wave u-q(x-ct, c) bifurcates into m+ monotonic waves u-
q(i)(x-ct,c), i-O, 1,...,m, where q(i)(-,c)-q and q(i)(+ ,CI)--(/)(0i+1). More-
over, q(O)(x C lt, c ) decays to q_ q0) at the usual rate as x --, -.

Since U--q(O)(X--Clt, Cl) is a monotonic N--, S wave, we can apply preceding
results. Thus, we learn that for each c in some interval (c, c), there is a monotonic
N--, S wave u-q()(x-ct, c) with q(o)(+ ,C)--(01) and which decays to q_ =qo) at the
usual rate as x-. So as c decreases past el, we can describe the bifurcation as the
monotonic N S waves q(x-ct, c) shedding m>_ monotonic S S waves qi)(x-ct, Cl),
i- 1,. .,m at c-c, leaving the monotonicNS waves q)(x-ct, c). Moreover, if there
is no intermediate saddle point q,, 0 with q,_ <q< q,+, then no bifurcation can occur. So
el must be in this case.

The c-c2 case is analyzed similarly. One finds that either c2 -Cmax, which is where
the unstable node q_ ,0 changes into an unstable spiral point, or that there is a
monotonic solution u-(X-Czt, Ca) with ("- 3,2)--+ and which decays to q,_ at
the accidental rate as x -.

We now note that no monotonic solutions u-qffx-ct, c) with q,(+ , )-q,+ and
q,(-,c)-q_ exist for any c<_c nor for any >. This follows from v+(q,c) being
increasing in c at each q with v+(q,)>0 for all q_<q<q,+ and from v_(q,c) being
decreasing in c at each q with v_(q, c)>0 for all

The following theorem summarizes these results.
THEOREM 7 (existence for N S waves). Assume that H1, H2 and H3 are satisfied.

Suppose that u-qffX-Cot, Co) is a bounded, increasing in x, solution of (1.1). Let
q_=q(-,c0), let q+q(+,c0) and assume that q_,O is a node and q+,O is a
saddle point of (1.2) at c- co. Then there is a c >_- and a c2 <-Cma such that for each c
in (c, c2), there is a unique (modulo translations in x) monotonic solution u-q(x- ct, c)
of (1.1) with q(-,c)-q_ and q(+,c)-q+. Also, for any c<_c and c>c:, no
monotonic solution u q(x ct, c) exists with q(-, c) q_ and q(+ , c) q+. Fur-
thermore,

1) q(x, c), q(x, c) are both continuously differentiable in c;
2)for all c <c<c2, q(x,)q_ at the usual rate asx -;
3) if c2 <Cmax, then q(x,2)q- at the accidental rate as x--.
Ifc>-, then there are m>_l saddlepoints q),O with q_ --q0)<q0)< ((0m)

<qom+l)-----q+. As c decreases to c, q(x,c) bifurcates into m+ monotonic solutions
u-qi)(x-clt, C) with i)(-,c,)-qoi) and qi)(+,c)-qoi+l), i-O, 1,...,m. In
particular, if there is no saddle point d, 0 with q_ <q< + then c --c.

We now find how the speed of u(t,x) depends on u(O,x).
THEOREM 8 (wavespeed for N S waves). Assume that H1, H2 and H3 are satisfied,

and suppose that u-q(x-Cot, Co) is a bounded, increasing in x, solution of (1.1). Let
q_--q(-oZ,Co), let q+ =q,(+ ,c0) and assume that q_, 0 is a node and q+, 0 is a
saddle point of (1.2) at c-co. Define k-(c) by (3.1) and also define c and c2 as in
Theorem 7. Finally, let e >0 and e >0 be any constants small enough to satisfy (3.7).
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Suppose that u( t, x) is any solution of (1.1) in B2 that satisfies

(6.3)
q)_<_u(O,x)<_q)+ +e for allx,

q)+ -e? <_u(O,x)<_q)+ +e for all x>_xo,

for some xo. Then
1) if, for any c with c <c< c2, there is an a and a fl such that

(6.4) for all x<--xo

(6.5) lu(O,x)-q,_le-(c)< for all x<-xo,
then u( t, x) travels with speed c;

2) if there is a fl> 0 such that

(6.6) for all x<--xo
then u( t, x) travels with speed c2.

Roughly speaking, if u(0,x) satisfies (6.3), then the speed of u(t,x) is governed
solely by the asymptotic decay rate of u(0, x) as x -o" the slower the decay rate, the
faster u(t,x) travels to the left. Part 2) shows that all solutions decaying faster than
exp{ +k-(c2)x} as x--oc (including solutions with u(O,x)=--q_ for all sufficiently
small x) travel with speed c2. So, part 2) is an extension of the results obtained in [9],
[10], [12], [13].

One can also obtain one-sided results. Namely, if u(O,x) satisfies (6.3) and (6.4),
then u(t,x) travels no faster than speed c. If u(O,x) satisfies (6.3) and (6.5), then u(t, x)
travels no slower than speed c.

Proof of Part 1). Assume that u(t,x) is in Bx and satisfies (6.3)-(6.5). Select
constants l>e, 2>e small enough so that f(0,0,q,+ +z)v0 for all z4:0 in
[-l, +2]. Now Theorem 7 shows that there is a monotonic solution u-(x-ct, c)
with q(-oz,c)-q,_ and q(+ o,c)-q,+. So part 2) of Lemma yields the upper and
lower functions ff(2, h 0, t, x) and U(l, h 0, t, x) for the wave q,(x ct, c). Equations
(6.3)-(6.5), (3.9) and (3.12) imply that, for some h 0 sufficiently large,

(6.7) u(l,ho,t,x)<-u(t,x)<-ff(2,ho,t,x ) for all x

is true at t-0. The maximum principle now implies that (6.7) holds for all t>_0.

Examining the definitions of u and ff in (3.9), (3.12) exactly as we did for (5.3) in the
S S case, we find that (6.7) implies that u(t, x) travels with speed c.

Part 2). Assume that u(t,x) is in B and satisfies (6.3) and (6.6). For each 3’ in
(el’ 2 ]’ define u(e, h 0, 3’, t, x) and if(e, h 0,3’, t, x) as the upper and lower functions
u(e, ho, t,x ) and (e, ho, t,x ) defined in (3.9) for the monotonic wave u-q(x-3’t,3’).
Select gl > e- and gz> e- as before.

First, note that for each c <3’<c2, (6.3) and (6.6) imply that, for some constant
ho(3’),
(6.8) k_<_u(t,x)<_(2,ho(3"),3’,t,x ) for allx

is true at t-0. The maximum principle then implies that (6.8) is true for all t_>0. This
shows that for every c< 3’ and every 3’ in (cl, c2),
(6.9) lim u(t,l+ct)-q_ for all/.

t--- o

Thus, (6.9) is valid for all c< c2.
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We now must show that, for every c> c2,

(6.10) lim u(t,,l+ct)-q,+ for all

which will complete the proof. Choose any c> ca, and let be any sufficiently small
constant with 0< <c-c2. A continuity argument similar to the one used for Theorem
7 shows that if >0 is small enough, then there is a nonmonotonic solution u-
q(x (c2 + i)t, C2 nt" i) which has (+ oe, C2 -t-" ) t+, has q(x(i), C2 -+- i) t_ for some
x(8) and has q’x(X, c2 + i)>0 for all x _> x(8). Furthermore, (1.1) is autonomous so we
can take x(8) 0.

We define
(6.11)

_b/(l, X0, 2 -Jt-, t,X ) rl)( x-- ( C2 + )t- h( ), ca + )
--q( ) (*(x-- ( ca + 8 )t- h( ), c2-+- ) -*_ }/(q+--q_),

where h(t)--xo+gK(1-e-t) and q(t)--ge -t. A calculation very similar to the one
used to prove Lemma shows that there is a K>0 and s>0 such that _ut-f(_uxx,_u,_u )
_<0 for all x>_(c2 +8)t + h(t) and all t_>0.

Since u(0, x) satisfies (6.3), clearly

(6.12)
,__<u(0,x) for allx,

U(I,Xo,C2--’8,0,X)u(O,x) for allx_>x0.

The maximum principle shows that u(t,x)>_q,_ for all x and for all t_>0. Since
u( g, x0 c2 + , t, x) q,_ at x ( c2 + )t+ h(t), we can again apply the maximum prin-
ciple. This yields

(6.13) bl(t,x)lg(zl,Xo,C2--t-,t,x) forallx>_(c2+)t+h(t), allt_>0.

Finally, we note that (t,x)--+ +2e-" is an upper function for sufficiently
small/>0. Since (6.3) shows that

(6.14) u(t,x)<_+ +2e-"t for allx

at t-0, the maximum principle implies that (6.14) is true for all t_>0. Since c> c
together (6.14), (6.13) and (6.11) establish (6.10).

Suppose that u(0, x) satisfies (6.3) and that u(O,x)q,_ + a e kx as x--, -. If
c--o, then Theorem 8 yields the speed c of u(t,x) for every k>0. However, if

c > -, then Theorem 8 yields the speed only for k>k-(c). One naturally wonders
how u evolves if 0<k<k-(e1).

To answer this assume that u-q,(x-ct, c), c <c<_c2, are a family of monotonic
NS solutions of (1.1). Let q,_ q,(-o, c), let q,+--q,(+ o,c) and assume that c >-z.
From Theorem 8 we know that q,(x,c) sheds at least one monotonic SS wave at
c-c1. We consider only the typical case" we assume that at c-c, u-q,(x-ct, c) sheds
only one monotonic S S wave u-q,(x-ct, Cl), leaving the family of monotonic

’<c< where ’<c < Here q, (-oe c)-q,N-S waves u q,l(X ct, c), c _c2, Cl c2.
q,(+oe,c)-2(-oe,Cl)-0 and q,2(+oe,Cl)-q,+, where q,0,0 is some saddle point
with q,_ < q’0< q’+.

Now let e->0 and e->0 be any constants small enough to satisfy (3.7). Suppose
that u(t,x) is any solution of (1.1) in Bx2 that satisfies (6.3) for these e-, e-. Also
suppose that for some a > 0, fl> 0,

(6.15) a<_[u(O,x)--,_]e-()x<_fl for all x<xo
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for some co with c’ <co<1" We will show that u(t,x) evolves into two stacked traveling
waves: an upper wave with speed 1 and a lower wave with speed c0.

Select > e- and :>e- small enough so that f(0, 0, / + z) 4:0 for all z 4:0 in
[-g, g2]. Lemma shows that for some k sufficiently small

(6.16) ff+(?z2,ho,t,x)=--dp2(,Cl)+1/2(2,t)(1 + tanhk)
is an upper function, where x c + h(g2, t) and where h(g2, t) and ?/(g2, t) are
given" by (3.12). Further, let 3’ in (c,c2) be chosen arbitrarily near c. Then Lemma
shows that

(6.17) u+ (gzl,ho,Y,t,x)--dp(z,y)--q_(gzl,t)((z,7)--ck_ }/(th+
is a lower function, where z=--x-,lt-h(g,t) and where h(g,t) and q(gl,t) are given
by (3.12). The upper and lower functions in (6.16) and (6.17) will enable us to show
that the upper part of u(t,x) travels with speed cl.

We now construct upper and lower functions with speed co For our lower func-
tion, we will use

(6.18) u- ( ho, t,x ) =--ch(X- Cot- ho, co ).
To construct an upper function, consider the ph_ase plane of (1.2) at c0. Select q,>q_ so
that , 0 is not a singular point for all in (q_, q,]. Let (q,, a) be the trajectories of the
solutions which decay to q_, 0 as x and which have v(q, a) a. In particular, let
v(q,ao) be the trajectory of dPl(x--cot, Co). Consider v(q,ao+rt ) for small />0. For
r/> 0 small enough, the phase plane shows that v(q, a0+ r/) > 0 for all q_ < q,<q+ + g2.
Let u-q,(X-Cot, Co,rt) be a solution of (1.1) represented by v(q,Cto+r/). Also let
be the smallest x at which q((r/), Co, r/)-q+ + g2. Then for all >0 sufficiently small,
q(X, Co,rt) decays to q,_ at the usual rate and q,(X, Co,t ) is increasing in x for all
x _< (r/). Finally, note that fi(g., t) q+ + g2e-’t is an upper function of (1.1) for all
small enough/>0. For our upper functions at c-co, we will use both

ff-(,1,ho,t,x)--ck(X-Cot+ho,co,,1) for allx<_Y,(,1)+c0t-h0,
(6.19)

if(g2, t) q+ + g2e-’t for all x.

t

FIG. 5. Relation (6.20) implies that u(t, x) must remain in the shaded region for all t>0.

Since u(t,x) satisfies (6.3) and (6.15), for each ,>c we can choose h o so large that

u+(?l,ho,l,t,x)<-u(t,x)<-ff+(g2,ho,t,x ) for allx,

(6.20) u-(ho,t,x)<-u(t,x)<-ck+ +2e-’t for allx,

u(t,x)<-ff-(rl,ho,t,x ) for allx<_Y,(rl)+c0t-ho,
is satisfied at t-0. The maximum principle now implies that (6.20) is true for all t_>0.
Relation (6.20) is illustrated in Fig. 5 for large. Specifically, (6.20) implies that u(t,x)
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must remain in the shaded region for all time. Since 3’ can be chosen arbitrarily near c,
u(t,x) clearly evolves into two stacked waves: an upper wave with speed e and a lower
wave with speed co

Now, suppose that at some C’l>- the secondary NS waves ql(X-Ct, C) shed
another monotonic S-S wave 12(x-ctlt,’l), leaving the family of N-.S waves
q(x-ct, c), c’’<c<_c’2’, where c’’ <c’ <c’. Then if u(O,x) satisfies (6.3) and (6.15) for
some 0 with ’(<Co<’<c, similar arguments show that u(t,x) evolves into three
stacked waves: an upper wave with speed c, a middle wave with speed c’ and a lower
wave with speed co

Similarly, if further bifurcations occur as decreases, then some solutions will
evolve into four or more stacked traveling waves. Note that only a finite number of
bifurcations can occur as c--, -, because there can only be a finite number of saddle
points between q,_, 0 and q,+, 0.

The following theorem summarizes this discussion.
THEOREM 9 (stacked waves in the NS case). Assume that H1, H2 and H3 are

satisfied. Suppose that u q(x-gt, ) is a bounded, increasing in x, solution of (1.1). Let
q_ ----q(-, ), let q+ =--q( + ,) and assume that q_ O is a node and q+ O is a saddle
point of (1.2) at c=6. Define c, c2 and k-(c) as in Theorem 7 and assume that e >-c.
Let the n>_ speeds at which the waves q(x-ct, c) bifurcate be c------c)>c2)> >c
Finally, assume that each bifurcation is into exactly one increasing in x S S wave
Ua’(i)g’--ci)t,c ) and a family of increasing in x NS waves U.rNsX--Ct
Ci+ I) <c<_c2i+ ’), where ci+ ’) <ci) <c2i+ l) and where c’+ ’)=-- -. Define q0)>q01)>

> qo") by qo) q,+, q%)s(-,c)= q_, q%)s(+ ,c)= qs(-,c
qsi)t + ci))--qoi- l) i--1 n.

Let e >0 and e] >0 be any constants small enough so that (3.7) is satisfied. Let
u(t, x) be any solution of (1.1) in B2 and suppose that for some Xo>O, t>0 and fl > O,
u(O,x) satisfies (6.3) and (6.15) for some co in (cJ+l),c[J)) for some j>_ 1. Then u(t,x)
evolves into a stack ofj+ waves with speeds ci), i-1,...,j, and co. Specifically, for
every *l

lim u(t,l+ct)-

if

if co< c<_
ifc<co.

i-- 1," ",j-- 1,

We note that Theorem 9 resembles some of the results in [5], [8].
For any particular case, the contents of Theorems 8 and 9 can be summarized in a

diagram like Fig. 6. These diagrams are constructed by
(i) drawing k=k(c) with dashed lines, drawing k=k-(c) for <2 with a solid

curve and drawing k= k-(c) for 2 <<--Crnax with dashed lines if c2 <Cmax;
(ii) marking the curve k= k-() with x’s for all <c2;
(iii) marking the point 2, k-(c2) with an x and drawing the solid vertical line

c:c2, k>k-((c2);
(iv) drawing solid vertical lines c-ci), O<_k<k(ci)) and marking the points

k-O, c-ci) with x’s, where c-c) are the speeds (if any) at which the
monotonic N- S waves shed a monotonic S S wave.

Then the points c,k of the monotonic solutions u=(x-ct, c) have been marked with
x’s, where k is given by q(x,c).-q_ +aekx as x-o. Moreover, note that each
horizontal line k k intersects the solid lines and curve at rn _> speeds c >c_ >- > cm.
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- rk(c)

’d?(x c2t, c

\

/

"<’- k(c)

k

C2) C1) C Cmax

FIG. 6. Summary of Theorems 8 and 9 for a monotonic N S wave with c < Cmax which sheds one S- S
wave at c-cl) and another at c--c2).

The upshot of Theorems 8 and 9 is that if u(O,x) satisfies (6.3) and if 0<a<
[u(0,x)-q_]. exp(-kx)</3 then u(t,x) evolves into a stack of m waves with speeds ci,

i-1,...,m.
The results for S N waves are essentially the same as Theorems 7, 8 and 9. In

fact, if u-q(x-ct, c) is a S N wave, then the transformation x--,-x, c-c applied
to (1.1), (1.2) and u-q(x-ct, c) reduces the S N wave to a N- S wave.

7. NN waves. The following theorems are the analogues of Theorems 7, 8 and 9
for monotonic NN waves. The proofs of these theorems are omitted since they
involve no new ideas.

THEOREM 10 (existence for N N waves). Assume that H 1, H2 and H3 are satisfied.
Suppose that u-q(X-Cot, Co) is a bounded, increasing in x, solution of (1.1). Let
dp_--(-, Co) let oh+- oh(/ , Co) and assume that _, 0 and ok+, 0 are both nodes of
(1.2) at c-co. Finally, assume that Cmin< Cmax, where

Cmax -2{ f,(O, O, q_)f3(0, O, 4,_)} ’/2--f2(0, O, q)_),
(7.1)

Cmin---- 4- 2 ( fl(O, O, 4’+)f3(0, O, 4’+) } ’/2-f2(O, O, q+).

Then there is a c and a c2 with Cmin<l <2<max such that for each c in (Cl,C2)
there is a family of increasing in x N N solutions u k(x ct, c, a), 0< a <_ 1, of (1.1).
Moreover,

1) ok(x, c, a) and dpx(X, c, a) are differentiable in c and
2) q,(-oc, c, a)-

_
,ok(+ o, c, a)- ck+ and the phase plane trajectories v(, c, a) of

dp(x,c,t) are increasing in at each k in (ff_,q)+);
3) ep(x,c, 1) decays at the accidental rate either as x-o, as x +, or both.

Further, there is at most one in (c,c2) such that (x,?, 1) decays at the accidental rate

both as x -o and as x
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4) at each c in (c,c2) the trajectory v(,c,a) at tx-O intersects the v-O axis at
n >_ saddle points koi), O, i-1, n. Letting q)_--=qo)<q)o)< <qon+l)--q+, the
trajectory v(k, c, O) represents n + monotonic solutions u- (i)(x- ct, c) with q)(i)(-, c)
--koi) and (i)(+,c)-koi+l) i-O,...,n. Specifically, k()(x-ct, c) is a NS wave
and k(n)(x ct, c) is a S N wave;

5) if C >Cmin there is an increasing in x S N wave u--CksN(x--ct, Cl) which decays
to ok+ at the accidental rate as x + and also has q,_ <SN(-c, Cl) < ok+. If C2 < Cma
there is an increasing in x NS wave U--Ns(X--C2t C_) which decays to ok- at the
accidental rate as x - and has ok- < kNS(+ c c < ok+

6) if u--(x--ct, c) is a monotonic solution of (1.1) with dp(-,c)-ck_ and
b(+ ,c)-k+, then Cl <_C<_c2. Additionally, if c <c<c2, then there is an in (0, 1] and
an h such that k(x ct, c) (x ct + h, c, a) for all x and all t.

THEOREM (wavespeed for NN waves). Assume that H1 H2 and H3 are
satisfied. Suppose that u-q(x-Cot, Co) is a bounded, increasing in x, solution of (1.1).
Let ok- ok(- c, co), let k+ ok( + , Co) and assume that both ok-, 0 and k+, 0 are nodes
of (1.2) at c-co. Let Cmin, Cmax, C and c_ be as in Theorem 10 and let k,(c) be defined
by (3.1) and (3.5). Finally, assume that Cmin <Cmax.

Suppose that u( t, x) is any solution of (1.1) in B.
1) Iffor some c in (Cl, c2 ),

q_<u(O,x)<q+ forallx,

(7.2) O<a<[u(O,x)-q_]e-k;)< forallx<_O,

0<3’<[4)+--u(0,x)]e-k?()x<8 for al!x>O
for some x, fl, y, , then (t, x) travels with speed c.

2) Iffor some c in (c, c2), #)(x, c, 1) decays at the accidental rate as x - and at
the usual rate as x - + and if

#)_<(O,x)<#)+ for allx,

(7.3) [u(O,x)-ck_]e-k7c)x<a forallx<_O,

O<fl<[q,+--u(O,x)]e-k?c)x</ for allx>_O,

for some a, fl, y, then u( t, x) travels with speed c.
3) Iffor some c in (Cl, c2), (x,c, 1) decays at the accidental rate as x + and at

the usual rate as x -, and if
q_<u(0,x)_<q+ for all x,

(7.4) O<a<[u(O,x)-q,_]e-7cx<fl for allx<_O,

[+--u(O,x)]e-k?)x<v for all x>O,

for some a, , 7, then u( t, x) travels with speed c.
4) Iffor some c in (c, c2), (x, c, 1) decays at the accidental rate both as x - and

as x + and if
q,_ <_u(O,x) <_q+ for all x,

(7.5) [u(O,x)--ck_]e-k7(c)x<a forallx<--O,

[k+--u(O,x)]e-kc)x< forallx>--O
for some a, , then u(t, x) travels with speed c.
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Roughly speaking, if u(0, x).- q_ + a exp(k-x) as x -m, if u(0, x) q+ +
b exp(-k+x) as x + m and if

(7.6) k- >_k-( ( c*), k+>_-k-(c*) forsomec* in (c,c2),

then Theorem 11 yields the speed c of u(t,x). If (7.6) is not satisfied, then u(t,x)
evolves into a stack of two or more traveling waves. The following theorem gives
precise results for the simplest case. The treatment of the other cases is similar.

THEOREM 12 (stacked waves in the NN case). Assume that H1, H2 and H3 are

satisfied. Suppose u=ck(X-Cot, Co) is a bounded, increasing in x, solution of (1.1). Let
k_--ck(-,Co), let q,+--q(+ ,Co) and assume that q,_,O and ok+ ,0 are both nodes of
(1.2) at c-co. Let Cmin, Cmax, cl, c2 and k ,2(c) be defined as in Theorem 11 and assume
that Cmin<Cmax Finally, let dPNs(X--Ct, C) and dPsu(X--ct, c) be the NS and S--,N
waves represented by the trajectory v(ck, c, O) in Theorem 11. Suppose that thus does not
shed any S S waves for all c<_c

2 and that SN does not shed any for all c >_c. Then
us(-, C) q,_, thus( + o, c)=q0 for all c<_c2 and ksu(-O, c)=qo, hsu( + , c)-- q+
for all c >_ c for some saddle point ko, 0 with q,_ < ko<ok+.

Suppose that u(t, x) is any solution of (1.1) in B2x satisfying

(7.7)

_<u(0,x)<+

a< u(O,x ) --dp_] e-k-x< fl for all x <_ O,

for all x >_0

for some positive constants a, fl, 7, 8,k- and k+ If k- and k+ do not satisfy (7.6), then
u(t, x) evolves into two stacked waves with speeds cL and cU. That is, for all

(7.8) lim u(t,,l+ct) q’o
if c<cL
if CL<C<Cu
ifCu<C,

where
1) if k- k-((c_) for some c_ <_ c2, if k+ -k-(c+) for some c+ >- e and if

c_ < c+, then cL c_ and cu c+
2) if k- k-((c_) for some c_ <c and if k+ >_ k

and
3) if k- _>k-(c2) and if k+ --k-(c+) for some c+ >c2, then CL--C2 and Cu=C+
Theorems 11 and 12 are illustrated in Figs. 7 and 8 for the case where c Cmin and

c2 =Cmax, where the underlying N--. S wave thus does not shed any S S waves for
c<_c and where the underlying S N wave SN does not shed any S--, S waves for
c>_c. Additionally, for Fig. 7 we have assumed that for each c with c <_c<_c2, the
N-N wave oh(x-ct, c, 1) decays at the usual rate as x--,-o and at the accidental rate
as x --, + o. For Fig. 8 we have assumed that there is a g in (cl, c2) such that the N--, N
wave q(x gt, ?, 1) decays at the accidental rate both as x

In each figure we have plotted k-(c), -kj.+ (c), i-1,2, j= 1,2, with dashed lines.
We have also marked with x’s the points (k-,k+) for the monotonic waves u=
k(x-ct, c), where qffx, c)--q_ +aek-x asx-o and q,(x,c)ck+-be-+ as x
determines k- and k+.
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FIG. 7. Summary of Theorems 11 and 12 when the NN wave d?(x-ct, c, 1) decays at the usual rate as
x- and at the accidental rate as x + for each c in [c, c ].

Assume that u(0, x) satisfies (7.7) for some k->0, k+ >0. For the case treated by
Fig. 7, Theorems 11 and 12 imply the following:

(A) Suppose that the point k-, k+ is marked with an x. Let u-(x-ct) be the
wave represented by the x. Then u(t,x) travels with speed c, which can be determined
either from k--k,2(c) or k+ -k,2(c).

(B) Suppose a single trajecto_ry c_rosses the point k-,k+ in Fig. 7. Follow the
trajectory until it reaches a point k-, k+ marked with an x and let u-q(x-?t) be the
wave represented by the x. Then u(t, x) travels with speed .

(C) If neither A nor B occurs, then two trajectories_cross the point k-, k+ Follow
these trajectories until they reach points k--,/+ and/-,/+ marked with x’s and let
q(x- ?t) and q(x-ct) be the waves represented by these x ’s. Then u(t, x) evolves into
two stacked traveling waves" o_ne wave between q(-z) and q,(+ ) with speed ? and
one wave between (-oz) and q,(+ o) with speed ?.

Fig. 8 summarizes Theorems 11 and 12 for its case similarly. For any other cases,
the evolution of u(t,x) into traveling and stacked traveling waves can be similarly
found in terms of k-, k+ and summarized in diagrams like Figs. 7 and 8.
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k(c2)

FI(3. 8. Summary of Theorems 11 and 12 when theNN wave q)(x-?t, 0, 1) decays at the accidental rate

both as x--)- and as x--) + for some in c l, c2].

8. Generieity. The following theorem shows that the existence of any particular
type of traveling wave is generic.

THEOREM 13 (genericity). Assume that H1, H2 and H3 are satisfied and assume that
u-q)(X-Cot ) is a bounded, increasing in x, solution of (1.1). Let q)_=q)(-c), q)+ =--
q,(+ ) and suppose that g(Uxx,Ux,U ) is any function that satisfies HI. Then there is an
eo>0 such that, for each e in [0, eo],

(8.1) ut=f(ux,ux,u)+eg(u,ux,u)

has an increasing in x solution u q(x- c(e)t, e). Moreover,
1) q)(x,e), c(e), q)(-c,e) and q)(+,e) are continuously differentiable in e with

4)(x, 0)----q)(x), c(0)-- co, (-, e)--

_
and q)(+ ,0)--q)+

2) q)(-, e), 0 is a saddle point [node] of

(8.2) ,’-v, f( v’, v, q)) + eg(v’, v, q)) + c( e)v--O

if and only if q_, 0 is a saddle point node of (1.2) at c Co;
3) q)(+ c, e), 0 is a saddle point node of (8.2) tf and only if q)+ 0 is a saddle point

[node] of (1.2) at c- Co;
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4) q(x, e) decays at the usual rate [accidental rate] as x--+- if and only if q(x)
decays at the usual rate [accidental rate] as x--+ -. Similarly, q(x, e) decays at the usual
rate [accidental rate] as x--, + c if and only if q(x) decays at the usual rate [accidental
rate] as x --+ + .

Now Theorem 4 yields exactly the same type of stability for the solution u-
q(x-c(e)t,e) of (8.1) as it does for the solution u-q,(X-Cot) of (1.1). The only
difference is that the constants k ,2(c0) must be replaced by their analogues k ,2(c(e), e).
Roughly speaking, Theorems 4 and 13 show that the existence and stability of any
particular type of monotonic traveling wave are generic. Similarly, the results in Theo-
rems 5-12 are generic also.

Appendix. Here we extend the stability results of Theorems 3 and 4 to the case of
f(0, 0, u)=--0 for all u and point out some other extensions of these theorems.

THEOREM 14 (stability of constant solutions). Assume that H and H2 are satisfied
and that f(O, O, u)-O for all u. Let o be any constant. Then u(t,x)=--o is a constant
solution of (1.1). Furthermore, if u( t, x) is any solution of (1.1) in B2x that satisfies
(A.1) qo-e<_u(t,x)<_qo+e for allx

at t-O for some e, then (A. 1) is true for all >_0.

THEOREM 15 (stability of monotonic waves). Assume that H1 and H2 are satisfied
and that f(O, O, u)--O for all u. Suppose that u-q(x-ct) is a bounded, increasing in x,
solution of (1.1) that satisfies

(x ) (-o) + ae-X+ o[e(k- +lx] as x- -o
(A.2)

q(x)-q,(+)-be-k+X+oLe-(k++)x] asx--. +,

for some positive constants a, b, k-, k+ and p. Also assume that the asymptotic behavior of
qd(x) and q"(x) is correctly obtained by differentiating (A.2). Let r/>0 be any constant.
Then for every e> 0 there is a (e)> O, such that if u(t, x) is any solution of (1.1) in B2x
that satisfies
(A.3) lu(O,x)-q,(x)l<_a(e)e-lxl for allx,

then lu(t,x)-q,(x)l<_e for all x and all t>_O.
Theorem 14 is proven by noting that for any e>0, ff--q0 + e and u--q0-e are

solutions of (1.1) and then using the maximum principle. Theorem 15 is proven by first
showing that for all small enough e>0, there is a K>0 such that

u(e,3,ho,t,x)=--(x-ct+h(t))+rl(t)seche[x-ct+h(t)], where
(m.4)

,l(t)__g4e2/me_e3t h(t)_ho+K3el+2/a(l_e_dt)
is an upper function for all small enough >0, and is a lower function for all large
enough 3< 0. The theorem then follows from the maximum principle.

when f(0, 0, u) 0, (1.1) often has important unsteady solutions, whose stability
can be determined via the maximum principle. For example, the stability of the N-wave
solutions of Burger’s equation can be found [4] by this approach.

Theorems 3 and 4 can be extended to many other classes of equations which
possess maximum principles. For example,

foTfYg[s,y,u(t s x-y)]dyds)(A.5) u, -f Uxx u u
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has a maximum principle if fl(a,b,c,d)>_l and fa(a,b,c,d) g3(ct, fl,’y)>’0 for all
a, b, c, d, ct,/3, ,. Similarly, the equation

(m.6) u -f( Uxx Uxy Uyy, ux, Uy ,u)
has a maximum principle if flcos20+2f2cosOsinO+f3sin-O >_ for all 0 and all argu-
ments of f. Also, the system

(A.7) U’--fg(Uxkx),Uxk,ff), k--1,... ,m,

has a maximum principle if for each k, fl{_> and Of{/Ou{t>_O for all 14: k. These
maximum principles can be used to find the stability of the monotonic solutions
u(t,x)-q(x-ct) of (A.5), of the monotonic planwaves u(t,x,y)-q(klx+k2y-ct)
of (A.6) and of the monotonic solutions ff(t,x)-q(x-ct) of (A.7). These extensions
are developed in [4].
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GLOBAL EXISTENCE AND BOUNDEDNESS OF SOLUTIONS
TO THE EXTENSIBLE BEAM EQUATION*

W. E. FITZGIBBON?

Abstract. The theory of semigroups of linear operators and the recently developed theory of cosine
operators is used to provide a variation of parameters representation of solutions to the equation governing
the transverse motion of an extensible beam and to insure L boundedness of these solutions.

We use the theory of semigroups of linear operators and the recently developed
theory of cosine operators to provide a variation of parameters representation of
solutions to the equation governing the transverse motion of an extensible beam and to
insure the L2 boundedness of these solutions. Specifically, we consider the equation

0X4 " 0X2

subject to the boundary conditions of the form

(2) u(0, t) u(1,t) Uxx(O,t)-- Uxx(1,t) -0.
Equation (1) was proposed by Wionowsky-Kreiger [30] for the transverse deflection of
an extensible beam whose ends are held a fixed distance apart. The boundary condi-
tions correspond to the ends of the beam being hinged. Boundary conditions ap-
propriate for a beam with clamped ends would have the form

(3) u(O,t)-u(1,t)-ux(O,t)-ux(1,t)-O.
Our methods apply equally well to clamped ends, but in the interest of brevity, we limit
our discussion to boundary conditions of the form (2). The model differs from the one
appearing in elementary treatments in that a nonlinearity has been introduced to
represent the change in tension of the beam.

Nonlinear beam equations have been the subject of much recent activity. Ball [1]
uses a Galerkin method to obtain weak solutions to (1) and obtains classical solutions
by placing further restrictions on the regularity of initial data. In [5] Dickey demon-
strates that the model allows a description of dynamic buckling of the beam. Ball [3]
and Dickey [6] study the dynamic stability of equilibria of damped versions of (1).
Additional treatments of related equations appear in [2], [18], [19], [28], [7], [8].

We treat (1) as an abstract second order differential equation. One way to view
abstract second order equations is to rewrite them as first order systems. Our references
for this approach shall be Goldstein [12], [13], [15], [16], Pazy [20] and Webb and Travis
[23], [25]. An alternative to the first order system approach to abstract second order
differential equations is provided by the developing theory of cosine operators. Here
the reader is referred to Fattorini [9], [10], [11], Da Prato and Giusti, [4], Goldstein [14],
[16], Travis and Webb [23], [24], [25], [26] and Webb [28].
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We now reformulate (1) as an abstract equation. We require that a, r >0, the sign
of fl is unrestricted. As subsequent analysis shall reveal, we lose no generality by
assuming a-1. In what follows X shall denote the Hilbert space L2[0, 1]. We define
A"XXby the equation

au-u’"’,
(4) D(A) (u Xu’, u", u"’ are absolutely continuous,

u’"’ X and u(0) u(1) u"(0) u"(1) -0).
It is known [8] that A so defined is a positive self-adjoint operator on X. The eigen-
values are of ()n-(nt)41nZ+) and the corresponding eigenvectors are (Zn(S)- sin nrs] n Z+ s [0, 1]). Moreover, we have the following explicit spectral rep-
resentation for A"

)4(5) Au (net ( u,z, ) zn.
n--I

Fractional powers of A are also positive self-adjoint operators and may be computed

(6) AVu- E ((nrr)4) v (U,Zn) Zn-
n--I

Specifically,

)2 _Utt(7) A1/2 (n" (u,z,,)zn-
n=l

and

(8) AI/4u-- E (n’a’)(u,zn)z,.
n=l

We observe that

(9) )2 2 ,A1/4 All4 212 E (nq’l" (U,Zn) (AI/4u U) ull
n=l

We now define a nonlinear function F:XXby

(10) Vu-(+(A/4u,A/4u))A/Zu.
In this setting (1) becomes

(11) (t)+Ax(t)+rx(t)=O, x(0)= q,

We remark that the boundary conditions (2) are accounted for in the specification of
the domain of A.

We now convert (11) to a first order system. Toward this end we make D(A) into a
Banach space XA by imposing the Euclidean graph norm

(12) x A (ll Ax 2 + x 2)l/z,
and we introduce the Banach space " by defining

(13) f(--XAX
with

[[[1), 1] -= ([I (]0 --II 1 2) 1/2.
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We define an operator A"’" using the operator matrix

0,)(14) A- ( -A 0

with D(A)-D(A)D(A/2). It is known [16] that so defined is the infinitesimal
of a strongly continuous group (7(t)I- <t< ) of linear transformationsgenerator

on X. The nonlinear operator F is used to define an operator F:XX in the following
fashion:

(15) ft-( FuO ) for fi-[u,v] ’.

It should be clear that there exists a positive nondecreasing function L(.), so that

(16) II/u- Pu2 _<L(R)II a --a2 whenever al, a2rand supll a _<R.
We seek solutions to the first order differential equation:

(17) a’(t)=Ja(t)-P(t), a(o)-0-[w,q D(J).
If r and r2 project " onto its first and second coordinates, respectively, we see that
(17) has matrix representation

1, r2a(t) F(fi(t))
d qa(t) [(18) - r2a(t )

It is clear that (11) is the second coordinate of (18).
We are now in a position to obtain the following global existence and boundedness

theorem.
TrlEOREM 1. Let . and P be defined via (14) and (15) respectively. If go q, q

D(), then there exists a unique continuous function fi:[ O, o)X which satisfies

(19) f(t)- "(t)YCO-fot(t-s)’u(s)ds a(0) go

For a.e. t[ 0, ), ft’(t) exists and satisfies (17); consequently, there exists x(.): 0,)X
which satisfies (11) for a.e. 0, ). Moreover, there exists a constant K which depends
on fl, x, II+ll and IIAl/2qoll so that

(20) sup 1l2(t)ll_<K
/E[0,)

and

(21) sup IIAl/2x(t)ll<_K.
/E[ 0,o)

Proof. The local Lipschitz continuity of/ allows us to use the standard application
of the Banach fixed point theorem to obtain local existence and uniqueness of solutions
to (19). The usual arguments permit us to continue these solutions to a maximal
interval of existence [0, trx ). To see that the maximal interval of existence is infinite,
we show that the solution of (19) can be continued beyond any finite interval of the
form [0, T). The bounds which allow this continuation are the desired global bounds
(20) and (21). The function fi(.) is Lipschitz continuous on any compact subinterval.



742 W.E. FITZGIBBON

Consequently, the reflexivity of " implies that ’(t) exists for a.e.t. We observe that

h-s)(s)+ ds
h h h

’(h)-I fot.(t_s)u(s)dsh

It is clear that limh_O(ib(t / h)2o- (t)o)/h-/(t)o and that

lim ftt+h(t+h-s)u(s)ds-t(t)h0

for all t. The existence of ’(t) and the closedness of A imply that fd
D(J) and that

h-01im f(h)-lh (t(t-s)u(s)ds)= fot’(t-s)’l(s)ds
and we thereby obtain the a.e. existence of solutions to (17). Writing out the second
component and using the definition of F (9) we have:

(22) 5(t)+Ax(t)+(fl+x(Al/4x(t),A/4x(t))A1/2x(t)-O.
We take the inner product of (22) with 2(t) to obtain

(23)
2(t),x(t)) + Ax(t),2(t)) +(fl+r(A1/4x(t),Al/4x(t))(A/x(t),2(t))

+
d d A1 (t)[[2 --f12 d A1 2 d AI 4----l[.(t)[[2+’-[[ /2x + "[[ /4x(t)[I +-d-l[ /4x(t)[[-0.

Integrating (1.22) on [0, l, we obtain
r Al 4[lYc(t)ll2-t-llA/2x(t)ll-t-llA/4x(t)[[-+-[[ /4x(t)[[

(24)
--< 112(0)112 / Al/2x(O)ll 2 + B A1/4x(O)[I 2 .._ .. Al/4x(O)ll 4.

If /3<0, the quantity flllA/ax(t)ll+llA1/4x(t)ll 4 may be negative. However, we
observe that the function y= fix2+ x/2x4 is bounded below and that the bound only
depends on fl and x. Recalling that x(0)=q0 and 2(0)=p and observing that IIA1/4q[I
can be bounded in terms of IIAl/aqll, we have produced our desired bound for II(t)ll
and IIA/x(t)ll. We remark that this bound is independent of t. These bounds insure
that F(t)ll is bounded, and we can use the variation of parameters formula (19) to
find limt- fi(t). The local existence theory will carry the solution beyond T.

For notational convenience we specify (.):[0, m)--, X,

(25) 3 ( ) flAl /2x( ) + ( A /4x( ),A /4x( ) ) hl/2x(t).
The following lemma will be used to insure further regularity of x(. ).

LEMMA 1. If 3(. ):[ 0, )-X is defined via (25), (-) is continuously differentiable.
Proof. We observe that the continuity of (.):[0, o)X insures that (.) is

continuous. A glance at (18) reveals that x(t) D(A) for a.e. 0, o). If we can show
that T>0, AI/2yc(.)L(O, T,X), we can use the closedness and maximality of A/-
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together with the continuity of 2(.) to insure the continuity of A1/2.(’). Having
obtained this continuity, the differentiation of (.) becomes a computational triviality.
Thus our proof rests on establishing an L bound for A/22(oe). We take the L2 inner
product of (22) with A/-2(t) to obtain:

( 2( ),Al/:Zx( ) ) -q- ( Ax( ),Al/:Z2( ) ) nt- ( Al/2x( ),A’/:zYc( ) )
q- x ( A1/4x(t),A1/4x(t),hl/4(t) ) ( A1/ax(t),Al/29 (t) )

(26) d d d-- - A’/42( )[12 +- - ll A3/4x( )[12 + - A1/2x( )ll 2

+ (A/4x(t),A/4x(t)) -llA/2x(t)]]2-O.
We observe that IIAl/Zx(t)ll 2 is bounded, and we can produce a bound for IlA3/ax(t)ll 2

by integrating (26). Taking the inner product of (22) with A2(t), we have

(2(t),A2(t)) + ( Ax(t),A2(t)) + fl ( Al/-x(t),A2(t))
-I- i ( a /4x( ),Al/4x( ) ) ( A /2x( ),Ayc( ) )(27)

d Al 2 d d=-11 /2(t)ll -t--llax(t)ll2-1 lla3/4x(t)ll
+ - (Al/4x(t),A’/4x(t)) - (A3/4x(t),A3/4x(t))-0.

It is apparent that the boundedness of IlAa/4x(t)ll - permits us to obtain the desired
boundedness of 11Al/=2(t)[[ 2 by integrating (27).

We now introduce the notion of cosine operators. Our treatment will be most
cursory. For a thorough discussion of the subject, the interested reader is referred to
Webb and Travis [24], [25], [26].

DEFINITION 1. A one-parameter family (C(t)[ < < c } of bounded linear
operators mapping a Banach space X into itself is called a strongly continuous cosine
family if and only if:

(i) C(s+t)+C(s-t)=2C(s)C(t) for all s,t(-o, m);
(ii) C(0)- I;
(iii) C(t)x is continuous in for fixed x X.
The infinitesimal generator of a strongly continuous cosine family (C(t)l- < T

< oe } is the operator A: X--, X defined by the equation

d: c(o)x,
dt(28)

D(A ) x X: C( )x is twice continuously differentiable).
In [27] it is shown that the infinitesimal generators may be equivalently characterized as

(29) Ax-lim
2(C(h)x-x) D(A)-{xX: lim

2(C(h)x-x) }-0 h h-o h 2
exists

Associated with every strongly continuous cosine family {C(t)] oe < < }, we
have a strongly continuous sine family {S(t)l-m <t< oe }, where S(t) is defined by
the equation:

(30) S( )X-fotC( s )x ds.
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Webb and Travis [24] show that if (.):[0, oc)X is a continuously differentiable
function, then there exists a unique function w:[ 0, oc) X satisfying

w(t) C(t)x + S(t)y +fts(t-s )(s) ds.
.’o

Moreover, w(.) is twice continuously differentiable and satisfies the abstract inhomoge-
neous equation

(31) d2w’t’=Aw(t)+(t),(
w(O)-x w’(0) =y.dt

The operator A defined by (15) is self-adjoint. Therefore [16] it is known that -A
is the infinitesimal generator of a family of cosine operators. The following result is
now immediate.

THEOREM 2. Let X--L2[0, 1] and suppose that A:XX is defined via (15). The
operator -A is the infinitesimal generator of a strongly continuous cosine family (C(t)

oct< oc ); let (S(t)l oc < < oc ) be the associated sine family. If ([ q0, q D(A)
D/A1/) and (.): [0, oc)X is defined by (1.24), then the solution to (1.10) has varia-
tion ofparameters representation

x(t)-C(t)qg+S(t)/-fotS(t-s)(s)ds t>--O.

Moreover, x(. ):[ 0, oc)X is twice continuously differentiable.
Subsequent to the submission of this manuscript, we learned of the existence of

[20] by Holmes and Marsden. In the course of an extensive analysis of chaotic oscilla-
tions of a forced beam, they obtain global existence and boundedness for (1). We
acknowledge the priority of their result and point out the difference in our approach.
Holmes and Marsden obtain global existence and boundedness by utilizing energy
functionals to extend smooth local semiflows on Banach spaces. We extend our local
existence results via computations involving fractional powers of operators. Hopefully
this approach will be useful for more complicated nonlinear problems. We also use
cosine and sine operators to provide a variation of parameters representation for (1)
and to insure additional regularity. To our knowledge this is the first application of
cosine operators to the beam equation. We remark that the theory of cosine operators is
incomplete. Hopefully, as the subject develops it will prove to be a useful tool for
analyzing and computing solutions of beam equations.
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ON THE STRUCTURE OF SOLUTIONS TO A:u u WHICH SATISFY
THE CLAMPED PLATE CONDITIONS ON A RIGHT ANGLE*

CHARLES V. COFFMAN"
Abstract. Let u be a nontrivial solution of A2u=,u (?>0) on the quarter circle {(x,y):O<x,y, x2+

y2< and suppose that

u(x,O)--Uy(X,O)--O, O<x<l, u(O,y)=ux(O,y):O, 0<y<l.

We show then that on any ray through the origin u(x,y) either vanishes identically or oscillates infinitely
often as (x,y) (0, 0).

1. Introduction. In the course of their numerical study of the eigenvalue problem
OuA2u--Xu inS, u--3-n-0 on OS

on the unit square S, Bauer and Reiss [1] found that the first eigenfunction possesses
nodal lines near the corners. The principal purpose of this note is to provide an
analytical verification of the presence of such nodal lines.

We understand that it was A. Weinstein who first questioned whether the funda-
mental eigenfunction of the clamped plate might possess nodal lines. This issue was
again raised by Szegt [11] (see also [5]) in connection with an isoperimetric problem. To
the best of our knowledge, the only prior complete analytical demonstration of the
existence of nodal lines for the fundamental eigenfunction is that given for the case of
an annulus by Duffin and Shaffer [6], [7]. This work showed that, moreover, the
fundamental eigenvalue need not be simple; the details can be found also in [3].

Our study will be strictly local in nature; that is to say, we confine our attention to
a function u- u(z) satisfying

(1.1) A2u=Xu (X_>0)
inside the quarter-circle

(1.2) (z’O<lzl<l, largzl<- }
and satisfying for 0< r<

Ou r(1.3) u(rei)---(re’)--O when 101- ,
Our main result is the following.
THEOREM 1.1. Let u be bounded and of class C4 on the set (1.2); assume moreover

that the second order partial derivatives of u are square integrable on (1.2), that (1.1) holds
on the interior of (1.2) and (1.3) holds for 0<r< 1. Then for any fixed 0o, 1001 <, u(rem)
either oscillates as r 0 or vanishes identically.

This result was proved for biharmonic functions (i.e., for ?--0) in [2], and we shall
make use here of certain of the results from that paper. As in [2] our approach to the
problem is based on the study of the transform

gt( p, 0 ) folrp- u( re’ ) dr.

Received by the editors December 15, 1980. This research was supported in part by the National
Science Foundation under grant MCS 77-03643.

Department of Mathematics, Carnegie-Mellon University, Pittsburgh, Pennsylvania 15213.
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In the latter part of the paper, we construct certain special elementary solutions of
(1.1), (1.3). We then discuss the expansion of the general solution in terms of these
special solutions. This expansion generalizes the expansion for the biharmonic case
which is discussed in [2] and which was introduced by Kondrat’ev [9].

There is a considerable literature concerning behavior of solutions to elliptic
boundary value problems near an angular or conical point of the boundary. We
mention in particular the extensive discussion by Grisvard in [8]. The behavior of
eigenfunctions of the Laplacian at an angular point is discussed by Merigot in [10].

2. The transformed equation. Here we will summarize a number of results from
[2]. We shall assume that the function u which is under consideration is bounded and of
class C4 on the set

Qp-{z’O<lzl< p [argz]< )--4 (0>1)

and that its partial derivatives of second order are square integrable on Qo" We assume
also that u satisfies the boundary conditions

0u 0(2.1) u(rei)=-(re )--0, 0<r<0,

We define the transform

(2.2) a(p,o)-folr’-(re)dr, Rep>0.

The justification of the steps which follow will be deferred to 7.
From the definition (2.2) one has

fo’ +Aa d4ft(P’O) 2(p +2p+rp udr= + 2.
dO 4 dO 2

+ (p4+4p + 4p2)fi(p, 0) -f(p, 0),
where f(p, O) is a polynomial of degree three in p whose coefficients are continuous
functions of 0 (for the explicit expression see [2]).

If in addition to the conditions indicated above, u satisfies also the differential
equation (1.1) on Qo, then u( p, 0) satisfies

(2 3)
d4/ 2 2)-+2(p +2p+ +(p4 2- +4p3 +4p )fi=f(p,O)+Xfi(p+4,0)

and the boundary conditions

Off
(2.4) a(p, 0) -- (p, 0) -0, {0I-.

As was found in [2], the Green’s function Kp(O,q) that corresponds to the dif-

ferential expression on the left in (2.3) and the boundary conditions (2.4) is given by

Kp( O, qg ) ( D( p ))- {
(2.5)

p,-i p, p,

+ w (p,O)

-<0<<-,
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and

(2.6) 0)
where for p =/= O, 1, -2

(2.7) w(p,O)=
(p+ 2)sinp(0+-) -p sin (p+ 2)(.0+-)

4p(p+l)(p+2)

and

(2.8) D(p)=
p+ + cosp - p + cosp

p+l p(p+l)(p+2)

3. Analytic continuation of i(p,0). Throughout the remainder of the paper,
whether explicitly stated or not, u will always be assumed to denote a solution of (1.1),
(1.2) on Qp (p> l) satisfying the conditions set down in the preceding section. The
transform (p, 0) defined on the right half-plane by (2.2) admits an extension, also to
be denoted by fi(p, 0), which is meromorphic in p on the entire plane. The result is as
follows.

PROPOSITION 3.1. Let u be a solution of (1.1), (1.2) on Qp and satisfy the conditions
set down in 2. Let gt be defined by (2.2). For each fixed 0 (101 <{), ft(p,O), is analytic in p
on the right half-plane and admits a single-valued extension which is meromorphic in p on
the entire plane.

Proof. The analyticity in the right half-plane follows from the boundedness of u
and the definition (2.2).

The transform is extended as a solution of the boundary value problem (2.3), (2.4),
and for the purpose of making this extension, we use the representation

(3.1) t(p,O)-f/4K?( O, tp)[ fp(p, tp)+ fi(p + 4, tp)]

Using (3.1), fi(p, O) is extended inductively from the set S to the set S,+ , where

Sn- (p :Rep>-4n}, n-0, 1,2,.-..

The results of this procedure are made more explicit in the following assertion.
PROPOSITION 3.2. Let u be as in Proposition 3.1 and let denote the extension of its

transform (2.2) to the entire plane. Iffor a given 0o, Po is a pole of( p, 0o), then Repo< 0
and

(3.2) D(Po+4n)=O

for some n--O, 1,2,.... Moreover, if ft(P, Oo) has a pole at Po and (3.2) holds, then
t(p, O) cannot be regular at Po+ 4n for all values of O. Finally, if

RePo<0 and D( po ) O,

then the residue at Po of t( p, O) has the form

(3.3) Ap( cosp__.___O cos(p+2))rcos( +2)
r

cosp - p -
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or

(3.4) Ap ( sinp____O sin( p + 2)O )r
sin( + 2) rsinp p -according as Po is a zero of the first or the secondfactor on the right in (2.8).

Proof. We note that in the inductive extension of fi by means of (3.1) we will have
fi( p, 0) regular at P0 unless either Po is a root of D(p)--0 so that Kp is singular at P0 or
fi(p +4,p) is singular atp =po for at least some values of p; by induction it is clear that
in the latter case P0 must be a left-translate by a multiple of 4 of a root of D(p)--0.
Note that none of these roots occur on the imaginary axis so that all poles of
must lie in the open left half-plane.

Finally, suppose that P0 is a root in the left half-plane of D(p)= 0. Since all of the
zeros of D(p) are simple, it follows from (2.5), (2.6), (2.7) and (3.1) that (p-po)ft(p,O)
is bounded in the neighborhood of P0. It readily follows that

v(0)= lim (p-po)ft(p,O)
PPo

exists and is a solution of

d419(3 5)
dO4

(3.6) --2(p+ 2P0+ 2) d2v-+ (p+ 4p3o +4p)v- O,

dv r
v(O)--d-d(o)-o, 101- .

As a solution of (3.5), (3.6) must have one of the forms (3.3) or (3.4) as indicated;
the final assertion of Proposition 3.2 is proved.

4. Green’s function estimates. These estimates are embodied in the following
lemmas.

LEMMA 4.1. There exists a constant M such that for I 1,101 P va 0 there holds

(4.1) [D( p )gp( O, q9 )1 <_MLpl-4eIlmpl(r-IO-wl).

Proof. This can be read off directly from (2.5), (2.7) and (2.6).
LEMMA 4.2. There exist constants c,M such that

(4.2) [D(p)[-I _<M[p[4e-,rllmpl,
provided

(4.3) ]Imp]>c
and

(4.4) -[Impl-<Rep<-

Proof. This estimate follows from (2.8) and the relations

cosp --+(p + 1) _> cosp -IPl-1
and

I osp [Imp[)- sin2 ([Rep[).
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LEMMA 4.3. There exists a constant M such that (4.2) holds provided

(4.5) Rep -(4n 1), n 1,2, .
Proof. When (4.5) holds we have

cosp----(p+ 1) -11 +Rep[2+ sinh -Imp -+Imp

the assertion therefore follows directly from (2.8).

5. Estimates for (p,O). We shall now show that t/(p,0) has at most polynomial
growth as poo in a suitably restricted way. It will then follow from Liouville’s
theorem that t/(p, 0) cannot be entire unless it vanishes identically in p.

LEMMA 5.1. Let S be a set in the complex plane such that

and (4.2) holds on

pS implies p+4S

for some constant Mfor which (4.1) also is valid. Let u be as in Proposition 3.1, and let
satisfy

(5.1) 0<,rM2< 1.

Then there exist constants k, k2 depending only on u andM such that for p S,

(5.2) la(p,O)l<_k,pl3/k=, 101_<1/4.
Proof. First, the structure of the function f(p, 0), as described in 2, implies the

existence of constants Cl, C2 such that for all p and 101-< ,
(5.3)
Secondly, since u is bounded on Qp, we have

(5.4) Ift(p,O)l<_c3, Rep>-, 101< 
for some constant C3. In view of the hypothesis concerning the set S, we can combine
(4.1) and (4.2) to obtain

(5.5) Igp(O,P)l<M2, PS1, 101,1wl-<1/4.
From the representation (3.1) and t’,3), one, therefore, has

<M2(CI[3q"C2)-+--M2 sup la(p+a,p)l(5.6) la(p,O)l_ 2 Il-<r/4

for p SI.

Suppose now that p S and 1/2 > Rep> -- so that p S and Re(p + 4)_> 1/2; then
(5.1), (5.6) and (5.4) imply

(5.7) la(p,O)l<_-M C, IPl3+C2)+C3, Rep>--, 101_<.
The proof will now be completed by induction as follows. Take

(5.8) k rM2C k2 rM2C2+ C

<1SI-(p’pS, Rep--)
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and note that with this choice of kl, k2, (5.7) implies (5.2) for Rep_>-. Now let

7

and suppose that (5.2) holds for

(5.9) pS, Rep_>,.

For

(5.10) pS, ,- 4_< Rep_<,,
one then has from (5.6) and the assumed validity of (5.2) when (5.9) holds that

[a(p,O)l<---MZ(Cllp[3+Cz)+ M(klPl3+k2)
or taking into account (5.1)

[a(p,0)l_< -M2C, + -k, Ip[3+ -M2C2+ k2.
It follows from this last inequality and (5.8) that (5.2) extends to the set (5.10), and
thus, the validity of (5.2) for all p S follows by induction.

PROPOSITION 5.1. Suppose that for a given o, (P,8o) is entire. Then u(re)
vanishes identically in r.

Proof. We define the set S as follows" pS if Rep > 1/2 or if p satisfies either (4.3)
and (4.4) or (4.5). It is clear that translation by 4 .carries S into itself, and it follows
from Lemmas 4.2 and 4.3 that with an appropriate choice of M the inequality (4.2) will
hold for pS, Rep_< 1/2. It follows from Lemma 5.1 that (5.2) holds on this set S
provided satisfies (5.1). Since S contains squares with center at zero and with
arbitrarily long sides, it follows from the Liouville estimates that fi(p, 00) must be a
polynomial if it is entire. However, the transform (2.2) of a bounded function cannot be
a polynomial other than the zero polynomial. This completes the proof in the case
where (5.1) holds.

For the general case, i.e., ? positive but not satisfying (5.1), let e>0 be chosen so
that

We then write

e4.q’l’M 2< 1.

ft(p,O)-- rp-lu(rei)dr+ lrp-lu(rei)dr

=ep rp-lu(erei)dr+ rp-lu(re )dr.

Since the second integral on the right is an entire function of p for all 0, the function
u(ereio) will have an entire transform if u(reo) does. The former function satisfies
(1.1) with , replaced by e4k, and thus, the preceding argument implies that

lrp- u( ereiO dr =--0

if fi(p, 00) is entire. By the uniqueness of the transform, u(r, 00) must therefore vanish
identically for 0< r< e, hence, by analyticity, for 0< r< 1. This completes the proof.

COROLLARY 5.1. If for a given 0o, u(rei) vanishes of infinite order as r O, then
u(rei) vanishes identically for 0<r< 1.
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COROLLARY 5.2. Let the residues of (p,O) at the roots in the left half-plane of
D(p)-O be given by (3.3) or (3.4). Then u(rei) is completely determined by the set of
numbers

{Ap’D(p)-O, Rep<O).

Proof. Corollary 5.1 is immediate since the vanishing of infinite order of u(reo)
implies that the transform (2.2) is entire for/9--00.

By Proposition 3.2, if all of the constants Ap are zero, then the transform must be
entire; thus, Corollary 5.2 follows.

6. Oscillation of u(rei). Theorem 1.1 follows from Proposition 5.1 via a theorem
of Doetsch, [4, p. 59], (see also Widder [12, p. 58]). Suppose that, for a given 00, u(rei)
is nonnegative for small r. By Doetsch’s theorem then, the integral

lrp-u(reio)dr-- e-ptu(e-pt+io)dt

if it fails to converge for all p must have a real pole on its abscissa of convergence. By
inspection we see that D(p), given by (2.8), has no real zeros; thus in view of
Proposition 3.2 we conclude that the integral can have no real poles and hence must
converge for all p. Finally, if the integral converges for all real p, then fi(p, 00) is entire
and hence, by Proposition 5.1, u(reio) must vanish identically.

7. Justification of the transform method. The details of this justification are very
similar to those for the biharmonic case as treated in [2]. Accordingly, we consider here
only those aspects in which the present case differs from that treated in [2].

LEMMA 7.1. There exist constants Kl, Ka,. ., such that if u satisfies (1.1) in a region
and

lu(z)l<-M,
then for a partial differential operator m m,/xkym-k of order m and z f,

IO u( z )l
where d dist(z, f] ).

Proof. We prove the inequality for the case m 1, 1. Clearly there is no loss of
generality in taking ,= 1, (elementary consideration show that the constants K are
independent of ), and the general step in the inductive proof of the lemma is the same
as that in [2].

Suppose that f is a disk of radius R centered at zero. The function u admits an
expansion of the form

u(rei) E (J(r)(AncosnO+BnsinnO)
n--O

+In(r)(C cosn0+D sinn0) },

and

(7.1) 0u(0)_
Ox +C,).
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Since the terms Jl(r)cosO and Ii(r)cosO are orthogonal over the disk to the remaining
terms in the series, we have

( f0R 2 foRJ1 fo)r A Jl (r)rdr+2A1C1 (r)ll(r)rdr+C? Rl?(r)rdr
(7.2)

<_ lu(rei)12rdrdO<_qrR2M2.

Since fI(r)rdr>_fJ(r)I(r)rdr, fJZ(r)rdr and R-4foIzl(r)rdr as R0, it
follows from (7.2) that

(AI-t-C1)2<_KM2R-2

for some constant KI. The desired inequality now follows from (7.1).
It follows from Lemma 7.1 that a partial derivative of arbitrary order of u(rei)

grows no more rapidly than some negative power of r as r 0 and 0 remains fixed. This
suffices for the justification of the steps leading to (2.3).

Since our hypothesis in [}2 includes square integrability of the second-order partial
derivatives of u, it follows that the integral

2 On 2

r-dr
is bounded independently of 0 on 101-< }. One can readily conclude from (2.1) that

O-(p,O)O when 0--+__+
for Rep sufficiently large; the other boundary condition presents no problem.

8. Special solutions. In this section we shall construct certain special solutions of
the problem (1.1), (1.2). These special solutions can be characterized by the following
property: at all but one of the roots in the left half-plane of D(p)=0, the transform
(2.2) of the solution u of (1.1), (1.2) is regular for all 0 [-, ]. By Corollary 5.2 of
Proposition 5.1, such a solution is uniquely determined to within multiplication by a
constant. Here we shall actually only consider those special solutions of this type whose
transforms have a pole at a zero of the first factor on the right in (2.8). These are the
solutions which are symmetric in 0. The solutions which are antisymmetric in 0 are
related in the same way to the zeros of the second factor on the right in (2.8); their
construction is similar.

We put

(8.1) hp(r)- (2k)’F(p+2k+3) -k--O

and

(8.2) - ( Ip+2( r ) +Jp+2( r ))

gl(r)- Y (2k+l)’F(p+2k+2) -k=O

l-(I(r)-Jp(r))2

Note that

hp(r)cos(p+2)O, gp(r)cospO

are solutions of the partial differential equation (1.1) for ;k 1.
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We seek a function of the form

(8.3) O(r,O)- (Anhp+4n(r)cos(p+an+2)O+Bngp+4n(r)cos(p+an)O)
n--O

with Rep >0, which satisfies

Op( r, O ) Op( r, O ) --O, 101- .
If we put/9-- in the expression on the right in (8.3) and then use (8.1) and (8.2),

we get a power series in r whose coefficients must vanish if Op is to vanish for 101-
We proceed similarly with the expression for Op(r,O) that results from (8.3). We are
thus led to the following system of equations:

An sinp Bn cosp r r(8.4) I’( p + an + 3) F( p + an + 2)
sinp Yl,n + cosp - Y2,n,

rr Bn( +4n)sinp rAn( p + an + 2) cosp - p -(8.) r(p+an+3) + r(p+an+2) =csp-Y3’n+sinp y4’n’

where Zi,0-- 0, i-- 1,2, 3, 4, and for n_> 1,

i (-1)k+lAn-k(8.6) X"n- (2k)’F(p+4n-2k+ 3)’k--I

k(-1) Bn_k(8.7) ]2,n (2k + 1)’F( p + 4n 2k+ 2)’k-I

(8.8) (-1)k+ l( p+4n-4k+ Z)An_

(-1)+(p+4n-4k)B-(8.9) :’- (2+ i)f(e+4,,-2+)k=l

LENNA 8.1. Let Rep>0. The infinite system of equations (8.4), (8.5), n=0, 1,2,-.-,
admits a solution with Ao, Bo4 0 if and only if
(8.10) p+ +cosp g -0.

Proof. The determinant of the coefficients of An and B, on the left in (8.4), (8.5) is

p+4n+ +cosp -(8.11) F(p +4n + 2)F(p + 4n + 3)"
In order that (8.4), (8.5) admit a nontrivial solution when n=0, it, obviously, is
necessary that (8.10) hold. Conversely, if (8.10) holds and (Ao,Bo) is a nontrivial
solution of (8.4), (8.5), n =0, then since (8.11) does not vanish for n_> 1, the infinite
system can be solved recursively.

LEMMA 8.2. Let Rep>0, and let (8.10) hold. If (An,Bn), n=0, 1,. ., is a nontrivial
solution of (8.4), (8.5), then there exists ix>_ such that

n!lhnl n!lB"l -O(1)(8.12)
lF(p+4n+3)l, nF(p+4n+2)l

as n o.
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Proof. Suppose that the expressions on the left in (8.12) are bounded by M for all
values of the index less than n. We first estimate El, n, defined in (8.6), as follows

IEl’nl<--Mk=l (2k)’(n-k)’+4n-2k+2[.... [p+4n-4k+3

< MIn-1 (k-1)!(n-1)[p+n+3[-’+l-(n-1)tn-2I0+31 k_, (2k)! k
(8.13)

M#n-1 )
n-1

<-2(n-1)!lp+2n+2llp+3 1+
[p+n+3[

< Mg e

-2(n- 1) !go + 2n+ 21 lp+ 31
Similarly,

(8.14) Mtz e
’:2’n’ < 2(n- 1) !lp + 2n+ 11 Ip+ 21

Mix e
(8.15) 1I:3’1-< 2(n ) !lp + 31’

M e
(8.16) lz4,,I-<2(n l)![p+2l

It follows from (8.10) that

(8.17) sinp cosp - _< [p+2 21 1/2

We recall that the determinant of the coefficient matrix in (8.4), (8.5) is given by (8.11).
If we now solve (8.4), (8.5) for A taking into account (8.10), and use the estimates
(8.13)- (8.17), we get

[Anl<]F(p+4n+3)[ MIx"-e{ Ip+4n[ 1}4n "(n--l)! 21p+2n+l[+-

<Mt"-lelF(p+4n+ 3)l<MnlF(p+4n+ 3)]2nl

provided/_> 1/2 e. The inductive estimate for B,, is similar.
THEOREM 8.1. Let Rep>0, and let (8.10) hold. Then there exists a nontrivial

function Op(r,O) of the form (8.3) definedfor r>0, 10[ and satisfying

and

Op(r,O)-Op(r,O)-O, r>0, I01----.
The series on the right in (8.3) converges uniformly on ((r, O) lrl < R, 101 ) for any real
R. For any )t > O, the transform

folrq- lop( )tr, O ) dO
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has poles at -p- 2, -p- 6, -p- 10,. ., and not elsewhere. Finally,

r-Rep-2Op(r,O)--O(1)
as r 0 uniformly in O.

Proof. It is clear from inspection of (8.1) and (8.2) that

Ir( p + 4n + 3)[r-gep-4-lhp+4n( r )[
and

Ir(p +4+ 2)lr-gep-4"-2lgp+4(r)l
can be bounded independently of p and n on any interval of the form (0,R). For a
fixed p, the trigonometric terms which appear in (8.3) are bounded on 101 _< indepen-
dently of n. In view of these uniformities, it follows from Lemma 8.2 that if (A,,
satisfy (8.4), (8.5), then the series (8.3) converges uniformly for 101 _< , r<R for any R.

The remaining assertions of the theorem are proved in a straightforward way.

9. Expansion theorem. We begin by normalizing the functions that were con-
structed in the previous section. Let p satisfy (8.10) with

Rep>0,

and take for a solution of (8.4), (8.5), n 0,

2p+2r(p+3)ao-ao(p)- go go(p)- 2P+r(p+2)
cos( p + 2) cosp

Henceforth, Op(r,O) will denote the function (8.3) that results from this choice of A 0,

Bo. We then will have

Op(rO)_rp+2(cospO cos(p+2)O )cos( + 2) r
+ O(rRep+6)

cosp p

as r 0 and the residue at -( p- 2) of the transform of Op(r, 0),

folrq- lOp( r, O ) dr,

will be

cospO cos(p+2)O )r cos( +2)rcosp- p -With the indicated choice of Ao(p), Bo(P), the constant M in the estimates
(8.13)-(8.16) can be taken to be

2Rep+3/2lpl-1/2
(since Icosp {[, Icos(p + 2)-1>_2-/2[p1/2), giving

Next we note that

n!lA.(p)l n!lB.(p)l
l.lF(p+4n+ 3)l l.F(p+4n+2)

2Rep+3/2

[pl-’/2lcos(p + 4n + 2)01 IPI-’/21cs( P + 4n )01
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are bounded on 10l independently of n and p so long as (8.12) holds. Taking into
account the first assertion in the proof of Lemma 8.1, we have therefore

o /n (r)Rep+2(9.1) 1%(r,O)[ 2Rep+5/2rRep+2K E -(. r4n(-g - etr4,
n--O

where K is independent of p.
Suppose now that u satisfies the assumptions set down in 2 and that in addition u

is an even function of 0. It is clear then from Proposition 3.2 that the poles of the
transform fi do not occur at the roots in the left-plane of the second factor of (2.8). We
can estimate the residues of fi at the zeros of the first factor of (2.8) by the methods of
5. Indeed, if p is a root in the right half-plane of (8.10) and the residue at -(p- 2) of fi
is

cosp0 cos(p+2)0 )ap - cos( + 2) rcosp - p -then for sufficiently small, we will have the polynomial estimate

lapl<-flpl,
where C of course depends on u. This estimate, together with the uniformities for the
functions Op which were established above, enable us to prove the following.

THEOREM 9.1. Let u be as in 2. Assume also that u is even in O. Then the series

2 ap-p/4-1/2 %(kl/4r, 0),
p

where the summation is over the roots in the right half-plane of (8.10), converges uniformly
to u on 10[< , 0<r<e, for some e>0.

REFERENCES

[1] L. BAUER AND E. REISS, Block five diagonal metrics and the fast numerical computation of the biharmonic
equation, Math. Comp., 26 (1972), pp. 311-326.

[2] C. V. COFFMAN AND R. J. DUFFIN, On the structure of biharmonic functions satisfying the clamped plate
conditions on a right angle, Adv. in Appl. Math., (1980), pp. 373-389.

[3] C. V. COFFMAN, R. J. DUFFIN AND D. H. SHAFFER, The fundamental mode of vibration of a clamped
annular plate is not of one sign, Constructive Approaches to Mathematical Models, Academic Press,
New York, 1979.

[4] G. DOETSCH, Laplace-Transformation, Dover, New York, 1943.
[5] R. J. DUtFIN, Some problems of mathematics and science, Bull. Amer. Math. Soc., 80 (1974), pp.

1053-1070.
[6] R. J. DUFFIN AND D. H. SHAFFER, On the modes of vibration of a ring-shaped plate, Bull. Amer. Math.

Soc., 58 (1952), pp. 652.
[7] On the vibration of a ring-shapedplate, Dept. of the Air Force Tech. Rep. AFS-TRIG, Carnegie

Inst. of Tech., Pittsburgh, PA, 1952.
[8] P. GRISVARD, Behavior of the solution of an elliptic boundary value problem in a polygonal or polyhedral

domain, Numerical Solution of Partial Differential Equations III, Proc. of Third Symposium
(SYNSPADE) Univ. of Maryland, 1975, Academic Press, New York, 1976.

[9] V. A. KONDRAT’EV, Boundary problemsfor elliptic equations with conical or angular points, Trans. Moscow
Math. Soc., 16 (1967), pp. 227-313.

[10] M. MERIGOT, Rdgularitb des functions propres du laplacian dans un cbne, C. R. Acad. Sci. Paris, Ser. A,
279 (1974), pp. 503-505.

I1 l] G. SZEGO, On membranes andplates, Proc. Nat. Acad. Sci. U.S.A., 36 (1950), pp. 210-216.
[12] D. V. WIDDER, The Laplace Transform, Princeton Univ. Press, Princeton, NJ, 1946.



SlAM J. MATH. ANAL.
Vol. 13, No. 5, September 1982

(C) 1982 Society for Industrial and Applied Mathematics
0036- 410/82/1305-0005 $01.00/0

SOLUTIONS FOR A FLUX-DEPENDENT DIFFUSION MODEL*

JONATHAN BELL’, CHRIS COSNER* AND WILLY BERTIGER

Abstract. We study a one-dimensional continuous analogue of a system proposed by Mitchison to model
vein formation in meristematic tissues of young leaves. The signal concentration satisfies a diffusion equation
where the diffusion coefficient changes according to a differential equation which is flux dependent. We show
that the system possesses a unique, global solution. We then examine the stability of the steady state solution
which depends on a source strength parameter k>0. For k sufficiently small, the steady state is linearly and
L stable. But as ff passes through a critical value, the stability changes and a Hopf bifurcation takes place.

1. Introduction. There is strong evidence suggesting that a flow pattern underlies
vein development in plants. Mitchison [5] has derived a model from experimental
evidence that a signal flows from a source in such a way that the capacity of a given
pathway to transport this signal increases with the flux it carries. His model is spacially
discrete, and it generates a well-defined pattern of strands. Thus, this flux-dependent
facilitation seems to be a satisfactory hypothesis for many features of vein develop-
ment.

Since the full model is very complicated to analyze, Mitchison proposed in an
appendix to [5] to consider a continuous version of his model. Neglecting polar trans-
port which he incorporates in the spacially discrete model for certain numerical experi-
ments, the continuous model takes the form

ODi-f( Di,Di
Os ) i- 1,2.

Here s(t, Xl,X2) is the signal concentration, and DI,D2 are diffusion coefficients for
flux parallel to x and x2 axes, respectively. He then chose a specific form for f and
showed that small disturbances from rest could grow.

An appealing aspect of the flux-dependent diffusion is that such a mechanism may
lead to a very rich variety of pattern formation of importance in other contexts which
can not be modelled effectively by classical reaction-diffusion systems. This new diffu-
sion mechanism can be viewed as an alternative to the chemotaxis mechanism.

In this paper we analyze the spacially one-dimensional version of the above model
which is the simplest continuous model which possesses the flux-dependent diffusive
behavior that Mitchison has proposed. Hence, the system we consider is

---x d-x 0<x<l, t>0,

Od_o__f d+g( dos)-x’
Os _, s(x,O)_so(x) d(x,O)_do(x)s(x,O)--O, d-x x:l
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where g,so and do are sufficiently smooth and is a positive constant. Thus the left
boundary is a sink and the right boundary is a source of constant flux.

In the next section we specify conditions on g and show that the system has a
solution and that it is unique. We obtain the solution by changing variables, construct-
ing an iteration scheme and bounding the iterates and their derivatives to obtain
convergence. If the initial data are positive, then the iterates are also and hence so is the
solution. The approach used to obtain existence and uniqueness is similar to that used
by Fateeva ].

In the last section we study the steady state solution. In particular, there can be a

c>0 such that for 0<<b the steady state is linearly stable, while for >b the
steady state is unstable. More complicated situations than this can also occur. We give
a condition which guarantees that the steady state solution is asymptotically stable in
the L2-norm for >0 small. We then show that as b passes through c we obtain a
Hopf-like bifurcation. That is, for 0<-c small, there bifurcates from the steady
state a spacially dependent solution with a time oscillatory mode.

Since we consider only the one-dimensional model in this paper, our problem does
not directly relate to the physical problem Mitchison addresses, but it does give
indications of what to expect analytically from a more complete model. In particular,
one can obtain oscillatory concentration changes from the diffusive mechanism alone.
For the reason stated, this work has to be considered preliminary to the more physical
model. The two-dimensional system seems to require methods of analysis different
from those used here.

2. Solutions to the problem. The object of this section is to show the existence and
uniqueness of solutions to the system

(2.1)
st--(dsx)x, (x,t)(O, 1)(O,T],

1]x(O,T]

subject to the boundary and initial conditions

(2.2)
s(O,t)-O, d(1,t)Sx(1,t)-+, t[0, T],
s(x,O)--So(X), d(x,O)-do(x), x[O, 1].

We will assume that So(0) 0 and do(1)SOx(1) , that do(x) _>o>0 and that do and so
are smooth. We will also assume that the function g in (2.1) is smooth with all
derivatives bounded on N and

(2.3) O<go <_g(li)<-Go
for some constants go and Go.

To solve (2.1) we must introduce a new variable. Consider the system

(2.4) wt_dwxx+-[g(w____)_ llw on (0 1) (0 T]

dt=-d+g(w ) on [O, llx(o, rl
with

(2.5)
wx(O,t)=O, w(1, t)--q,
w(x,O)=wo(x)=do(x) ox(X), d(x,O)---do(x ).

We will assume that do and so are such that Wox(O) O, wo(1) /, Woxx(1) 0 and that
the additional compatibility conditions obtained by applying O/Ox, 2/x2 and O/Ot to



760 JONATHAN BELL, CHRIS COSNER AND WILLY BERTIGER

the first equation in (2.4) and substituting in the initial and boundary data at t-0,
x 0, are satisfied.

LEMMA 1. Suppose that w(x, t) and d(x, t) are classical solutions of (2.4), (2.5) with

d(x,t)>_ko>O. Let

W(l’t)
d.(2.6) s(x, t)

Then s( x, ) and d(x, ) satisfy (2.1), (2.2).
Remark. If s and d satisfy (2.1) and (2.2) and the compatibility conditions follow-

ing (2.5) hold, then w ds also satisfies (2.4) and (2.5).
Proof. It is clear that s(x, t) and d(x, t) satisfy the initial and boundary conditions

(2.2). Also, since (2.6) implies that dsx= w, it follows that d satisfies the second equation
in (2.1). Differentiating (2.6) with respect to yields

(2.7) st= -(it)
Solving for w in (2.4) yields

Integrating with respect to x and using the fact that wx(O, t)= 0, we have

x

Combining (2.7) and (2.8) yields s,=Wx=(dsx)x, the first equation in (2.1).
To solve (2.1) and (2.2), we solve (2.4), (2.5) by an iterative process and then

obtain s via (2.6). The iteration is as follows: let w(x,t)do(x)Sox(X); let d(x,t)
do(x); then define d and w inductively to be the solutions of

(2.9)

in (0, 1) X (0, T] with the initial and boundary conditions

Observe that (2.9) consists of two independent linear equations. If d-l and w- are
H61der continuous and d-(x,t)l>O, then (2.9) and (2.10) can be solved for w
and d, and w and d will also be H61der continuous. Also

+

e-o+e- goe dmin(go,o)>0.

Thus, since do and so were assumed to be smooth and do(x,t)>_6o, it follows that the
iteration is well defined. The compatibility conditions following (2.5) insure that the
iterates w N, and dN also, are smooth enough on [0, 1][0, T] for the computations
needed to bound their derivatives uniformly in N. (See the discussion following [2,
Thm. 2, 3].) Inequality (2.11) provides a uniform lower bound on the iterates dN; a
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similar computation, using the upper bound for g() in (2.3) together with (2.11) yields,
for all N,

(2.12) IdU(x,t)[<_Do
for some constant Do depending only on g() and do(x ). Since dN is bounded below
and ]gl is bounded, it follows that for some constant H0 independent of N,

(2.13)
dN

To see that IwNI is also uniformly bounded, we use a maximum principle argu-
ment. The following lemma is closely related to [2, Thm. 5, 1] and [6, Chap. 3, Thms.
5-7].

LEMMA 2. Suppose that u(x, t) is a classical solution of
(2.14) L[ u] --ut-a(x,t)Uxx-b(x,t)Ux-C(X,t)u--f(x,t )
in (0, 1) X (0, T], with

(2.15) ux(O,t)-O, u(1,t)-0, u(x,O)-O.

Assume that the coefficients of L are bounded and continuous, with c(x,t)<_Ko and
If(x, )l <- Fo. Then there exists a constant Mo Mo(Ko, Fo) so that

(2.16) lu(x,t)l<_Mo on [0,1]X[0, T].
IfKo -co < O, then Mo Fo/co.

From Lemma 2 we obtain bounds for wu.
LEMMA 3. Suppose that wN(x,t) is a solution of (2.9), (2.10) and Wo(X is smooth.

Then there exists a constant Wo Wo(wo, Do) independent ofN, so that

(2.17) IwN(x,t)I<_ Wo
Proof. Let u-WN- WO. Then u satisfies the equation

ut-dN-luxx +[g(wN-1)/dN-1 -1]u+ dN-1woxx_+_[g(wN-l)/dN- 1]Wo"
It follows from (2.3) and (2.11) that for some H0 independent of N,

(2.18) Ig(wN-’)/dN-’- IIH0.

Similarly, IdN-lWOxx+[g(wN-1)/dN-I--1]WoI is bounded by a constant depending
only on w0 and D0. Also ux(O, t)= 0 and u(x, 0)= 0, u(1, t)= 0; thus Lemma 2 applies to
u and we have lu[<_Mo(wo,Do). Finally, IwNl<_lul /suplw01, which yields (2.17).

The next step is to obtain estimates on the derivatives of wN, dN which are
independent of N. The a priori bounds will allow us to prove the uniform convergence
of the sequences (wN) and (dN) and via the Arzela-Ascoli theorem the convergence of
subsequences of the derivatives of wN and dN occurring in (2.9). Taking the limit of the
subsequences then yields a solution to (2.4).

LEMMA 4. There exist constants D and W independent of N such that for all N,
IwNI <_ W, and IdNz l<--D in [0, llX[0, T]. Similarly, there exist constants D2 and W2 such
that [wANx[ _< W2 and [dxNl <_02.

Proof. To estimate Wx
N and dN, we first obtain a uniform bound for wN on the

parabolic boundary of (0, 1)(0, T], then use a result from [3] to obtain a bound for
wN on the interior and finally bound dN in terms of the bound on wN. The second
derivative estimates follow similarly.
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Let u wN- w0; then

ux(O,t)--O, u(x,0)-0 u(1,t)-0.
As in Lemma 3, there exists a constant Mo so that lul_<Mo. If we set LN[u]---ut+
dN-uxx, then

i -1 u- d Wo+ -1 wo

which implies that

u ]l <- noMo/Eo,
where Eo is a constant depending on Ho, wo and Do.

Let v-e-/. Then by (2.11), LU[v]-dV-a2v>_min(go,8o)a2 in [1/2, 1][0, T]
since ds- _> min(go, 8o)- Thus,

( HoMo+Eo ) 1/2

LN[+---U+*)]>O in [1/2 ,1] [0, T] forc_> nn(0)
Furthermore, assume that a is large enough so that e’/E>Mo+ 1. Then +-u+<e’/2

on the parabolic boundary of (1/2, 1) (0, Tl, so by the maximum principle, +/- u + v<
e/ throughout [1/2, 1][0, T]. Thus -+u+>0 for x- 1, or +-u+ae’/a>_O at x- 1.
Therefore lu l<_ e /2 at x- 1, which implies that at x- 1, + Iwo(1)l. Note
that from the initial and boundary conditions we can estimate IwN] at x-0 and at t-0
independent of N. Thus, on the parabolic boundary of (0, 1) (0, T], we have

Iwx l--<ere"/ + sup Wox(x)l no.
x

Let vN-wN. We have vN<_ Vo on the parabolic boundary of (0, (0, T] indepen-
dent of N. Differentiating (2.9) with respect to x yields

dN-l x"
Equation (2.19) is in divergence form, and the inhomogeneous term is of the form
z/x, where Izl_</-/01,V0. We thus may apply [3, Chap. III, Thm. 7.11 to conclude that
for some V independent of N,

(.20) sup IwNI-- sup Ivl V2 W1.
[0, 11X [0, T] [0,1] X [0, T]

Hence [w[ is bounded uniformly with respect to N. The uniform boundedness of dff
follows by differentiating the second equation of (2.9) with respect to x to obtain
dx--dx+g’(wV-)w-. Since Iw-[_<Wl, the argument leading to (2.12) may be
repeated to obtain [dff] _< D.

To bound wA at x- 1, note that since wN(1, t)--, Wf(1, t)--0; SO at x-- 1, wA can
be computed explicitly in terms of dv- and wN- l.Since [wv- [ is bounded and dN-

is bounded above and below uniformly, it follows that [w(1, t)[ is uniformly bounded.
At x-0 we have w(0, t)-0 so we can estimate [w(0, t)l via the same argument used
to bound IwAN(1, t)l earlier in the proof. To bound WAUx in the interior, let N-- Wrx.N We
have

(2.21) tN--(dN--IN)xx+ ([ g(wN--I) llwN ) --(dN-lxN+dNx -lN ) -b]
\ [.

N-
XX

X
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where

dN-I x"
The second equation in (2.21) is in divergence form and dxN-I and/ are uniformly
bounded, so again [3, Chap. III, Thm. 7.1] yields a uniform bound for WNx N as in
(2.20). A bound for dxN is obtained from the bounds on wN and lower order terms just
as the bound for dxu was obtained from that for Wxu.

Remark. Since WN, WcNx and dN are uniformly bounded, it follows that wt
u and dtu

are also.
LEMMA 5. The sequences (wv) and (dU} defined by (2.9) converge uniformly on

[0, 1] [0, T].
Proof. Let IN--wN--wN-I, cN--dN--dN-I and hN-- g(wN)/dN- 1. We then have

(2.22) vtN- dN- ’VUx + hu- vu+ cN- ’WAUx + ( hu- hu-z )wu-1

on (0, 1)(0, T] with vx(O,t)-v(1,t)-v(x,O)----O. But

hN_,_hN_2__ [g(WN-I) g(wN--2)] +g(wN--2)
dN_ dN-2dN-l

and g(wN- 1) g(wN-
_
) FVvN- where

(2.23) FC(x,t)--folg’(wN-I +(1--)wN-2)d,
so we can rewrite (2.22) as

(2.24) vtu dN- ,VUx + hN- ll)N 29. F(VvN- + F2NcN- 1,
where FN--FVwN-/dN-l and FV--w/N-l--wN-lg(wN-2)/dN-ldN-2. Similarly, on
(0, 1) (0, T] we have

(2.25) cu -CN+ FoNt)N-1

with cN(x, 0)--0. It follows from the a priori estimates of Lemma 4 and from (2.13)
that there exist constants ko, k l, k2 and Ho such that for all N,

(2.26) IFj.Ul<_kj, j-O, 1,2, ]hUl_<Ho
Suppose that a >H0; then -a + hN-< -or +H0<0 for all N. Let N--- e-attN and N--
e-atcN. We have

(2.27)

Let

ttN dN- lxN + [--O -+- hN-l]N 2f_ F(VbU-I + F]Veu- ,,
eN-- -(1 + a)eN+F#N-

pN= sup I1, qN- sup I1
0_<x_<l 0_<x_<l
O<_t<_T O<_t<_T

It follows from (2.27) and the fact that N(x, 0)--0 that

,N-- e-(l +a)t fote(l +a)zF#( x,,r )eN- l( x,,r ) dt.
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Hence, by (2.25) we have

(2.28) qU_ sup IoUl<-- 0p
0_<x_<l
O<_t<_T

Since 1N satisfies homogeneous initial and boundary conditions, it follows from (2.26),
(2.27) and Lemma 2 that

U k pN-1 .+. k2q.U-1(2.29) p suplt3Nl_<
O __/_/0

But (2.28) implies that qN--l<--kopN--2 SO (2.29) yields

k pN-1 ..]_ kok2 pN-2pU<_
a-Ho

Choose a large enough such that a-Ho>_3 max(k,kok2}, then

<1(2.30) pN__ ( pN--1 +pU--2 ).
Let P--max{p,p2}. Then by (2.30), pZk+l<_(_)kp and p-+<_()kP. Thus, since
p>_0, we may write pN<2p=(-)N< and conclude that the series o pNN--1 N=I

Nconverges. By (2.28) the series EN= qN also converges. It follows that the series YN=
and E (N converge uniformly. Since vN= etON and cN- et(N and e at is bounded onN=I

cNtN and EN=[0, T], the series EN= are also uniformly convergent on [0, 1][0, T].
But wN--Wo+E=I v and dU-do+E_c, so the sequences (wN) and (dN) con-
verge uniformly.

We can now prove the main result of this section.
THEOREM 1. Suppose that So(X ) and do(x ) are smooth functions such that the

compatibility conditions following (2.5) are satisfied. Then there exists a unique solution to
(2.4) and (2.5), and hence to (2.1) and (2.2), in [0, 1][0, T]. Since T>0 was arbitrary,
the solution, in fact, exists and is unique throughout [0, 0, o).

Proof. By Lemma and the remark following that lemma, it suffices to consider
(2.4), (2.5). By (2.12) and Lemma 3, dN and wu are uniformly bounded. Lemma 5 and
the remark following imply that wu and dN are uniformly HOlder continuous with
respect to x and t.

Thus the coefficients of (2.9) are uniformly bounded and HOlder continuous. The
Schauder theory of parabolic equations (see, for example, [3, Chap. IV]) then asserts
that wN and wt

u are uniformly HOlder continuous. Equation (2.9) implies that dtu is
uniformly HOlder continuous. By the Arzela-Ascoli theorem, we can choose subse-
quences (wuk} and (dNk) of the iterates defined in (2.9) so that { NkWx }, (wtN*}, and
(drNk} converge uniformly on [0, 1] [0, T]. By Lemma 5, the sequences (wN*), {WN+ },
(dN*}, (dN*+I} converge uniformly on [0, 1][0, T], since the original sequences {wN}
and (dN} converge. Passing to a limit as k- in (2.9) yields a solution to (2.4), (2.5)
in [0, 1][0, T].

To establish uniqueness we use an argument similar to that used in proving
Lemma 6. Suppose that the pairs of functions (w,d) and (w2,d2) both satisfy (2.4)
and (2.5). Let u-w-w2, c-d-d2. Then in (0, 1) (0, T],

ut-wlt-W2t-dlWxx-d2w2xx-+-[ g(Wl----)-
w1-

g(w2---) llw2(2.31) dl d2

=dlUxx+CW2xx+
g(wl) u-- w2.d,
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We have

g(w,) g(wz)=g(w)-g(wz) +g(w2)( )d d d d

and

g(W1) g(W2)(W1 Wl)fo1g _OWl+_l-Or___dO.

Let f(x,t)- f) g’(Ow +(1-O)w2)dO; let f2(x,t)--g(w2)w2/dd2. Then (2.41) may be
written as

(2.32) ut__dlUxx._l..[ g(w,) u+w2f,u+(W2xx+f2)c.dlt

Also,

(2.33) ct--c+f,u.

Let M0- max(suplw, I, suplw21), M, suplw2xxl, F, suptf, I, F2- supV2l. These con-
stants will exist and be finite since (2.4) and (2.5) and the compatibility conditions on
the data insure that w and w2 are smooth and bounded and d and d2 are bounded
from above and below. Let Ho-supl(g(w)/d 1) Suppose that a>H0; let ft-e-"tu
and -e-atc. Then

(2.34)
ft -dfixx+([ g(w’)d, 11- +W2fl+(W2xx+f2)O,

gt---(a+ 1)?+ffi.
Also, fi(x,0)-fi(1,t)-0, fi(0, t)-0 and O(x,0)-0. Let Uo-suplfi[ and Co-sup[O[. By
Lemma 2, (2.34) implies that

or,Vo+(+F)Co
(2.35) U0- sup[a[ <

Estimating from (2.44) by integrating, as in (2.11), yields

(2.36) Co- suPll F,Uo.
Combining (2.35) and (2.36) yields

Uo[MoF + ( M, +F2 )Fl](2.37) 0<U0<

Choose a>Ho large enough so that [MoFI+(M+F2)F]/(a-Ho)<I; then (2.37)
implies that Uo- 0, wNch implies, via (2.36), that Co- 0. Hence fi- 0, so u- c-- 0,
so Wl=W2 and dl--d2, which proves the uniqueness assertion of the theorem.

3. Analysis of the steady state. In tNs section we exane the behavior of the
steady state solution to system (2.4)-(2.5). It is easy to check that the unique steady
state solution is given by

(3.1) w=+, d--g(+).
Thus, the steady state solution to the original problem (2.1)-(2.2) is

(3.2) -g(+), d=g(,).
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We examine the linear stability of this steady state by linearizing (2.4) about the
solution (3.1). Thus, consider

(3.3) t-g(q)Wxx+qg’(q) q D--, t-+g’( w.

Also, W(x, t) satisfies

(3.4) x(0, t)-0, (1,t)-0.
Here g’(p) means . Assuming (W,D)-eXt(W(x),D(x)), then (3.3)-(3.4) reduce to

(3.5) Wxx+t2W=O, Wx(O)-O- W(1),
where

(3.6) /x2 ( qg’(q) )g() g(k)(l+2)-X
Therefore we have nontrivial solutions if and only if//,--p,n--(n +1/2)qT", n an integer, and
this corresponds to ,-’n, which from (3.6), satisfies

(3.7) ,2 T,(q)X + U(q) 0,

where

(3.8) Tn(q)=--qg’(q)/g(q)-l-g(q)r 2 n+- U,(p)-----g(q)r 2 n+-
Hence

(3.9) 2X,-2- T(+) --+T2(q,) 4U(+).

Thus, (3.1) is linearly stable if and only if Re(,)<0 for all n and unstable if there is
an integer m such that Re(Xm)>0. From (3.7) we see the following holds:

LEMMA 7. (w, d) (q, g()) is linearly stable if and only if T(/)<0 for all n, if and
only ifg’(+ ) g(q )< ( rr 2/4)g2( ).

Remark. Since g is bounded away from zero for positive arguments, we see that for
p sufficiently small, the inequalities in Lemma 7 are guaranteed to hold.

It would be expected, at least for q small, that the steady state would not only be
locally but also globally stable. This can be indicated formally by considering the
problem (2.4)-(2.5) with g replaced by a piecewise constant approximation. We have
been unable to obtain such a global stability result in the general case, but we can show
asymptotic stability in an L2 sense. We do this by considering the equivalent problem
(2.1)-(2.2) with steady state solution (3.2).

LEMMA 8. (S, d ) (qx/g(q), g(+)) is asymptotically stable in the L2-norm provided

[ GI <(3.10) 8- [G’D+ g() +g,zqx )

Remark. The constants appearing in (3.10) are those defined in the previous
section. Condition (3.10) is clearly satisfied if k is sufficiently small and 0 is suffi-
ciently large. When q=0, (3.10) is not needed.

Proof. Let

(3.11) c(x,t)-d(x,t)-g(), r(x,t)-s(x,t)-x
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where s and d are solutions to (2.1)-(2.2). Since r(0,t)=--0, it follows that r(x,t)=
frx(li, t)dli. Also, rt=st--(dsx)x and ct=dt----c+g(dsx)-g(4, ). Applying the mean
value theorem, we have

ct= -c+ g( x, )[ dsx-/
or

[(3.12) ct---c+(x,t ) drx-g(---
where (x,t)=g’(t) for some depending on ds. Now compute

dr01 2 f01r (,t)d= r(dsx)xdli.

Integrating by parts and using the boundary data and (3.11), we obtain

d fo’ foldsxd-,r(1,)- rxd

1 ld( )= rx(,)d- rx g() rxd

Crx] d.
Similarly, multiplying (3.12) by c and integrating, we obtain

d5 g (,)d= -l+g(,)g +gdcrx

UsingG supg’ and odDo and Cauchy’s inequality, we have

dt (r + )d Crx+ -1+ GI+

o 4+ ao+ +-1 c: d.g() g()

Since via the Cauchy-Schwarz inequality we have

2 fo’r2 dli<fr2 dli,u., 0
by choosing e> 1/28o we may write

d foil 2 c2 f01{ ( ) e

27 g(r + )d_< -o r:+ g aZo+g ) +-

Hence, if we choose 1/28o<e<21o, then there is a K such that

droll 2 c2 f01( + )_<-r (+)e,

which implies asymptotic stability.
Within the class of g’s we have been considering, it is not difficult to find

examples where either the inequality in Lemma 7 holds for all q>0 or else there are
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such that the inequality is violated. For example, for 0 </3 small, let

then it is easy to verify that there are at least two q such that

_292)-q-
For very large or very small q, the inequality holds. Thus, when q increases through the
smallest such q, the steady state becomes unstable, but as q is increased further, the
steady state eventually is "restabilized."

Consider a g with at least one such value, and let the smallest positive one be
denoted +c. Thus, we have the steady state solution linearly stable for 0<+<+c, while
in some neighborhood of k with q>q the steady state solution becomes unstable. We
are interested in the nature of this change of stability as q passes through q. At p q
(3.8) implies T0(qc)=0, Tn(+)<0 for n>0 and Un(q)>0 for all n. Thus, if we define
0=rg(p)/2, then -i0. For n>0 we have Re()<0. Also, for -c+e,

( e g’(+c))+O(e2) as e-0,(3.13) X3(+)-T(+)eio 2 g(+)
so we suppose g is such that T(ffc)>0. As we vary q through q, the ) cross the
imaginary axis with nonvanishing imaginary part and all other eigenvalues have nega-
tive real parts. It is in this respect that we mean the bifurcation is a Hopf-type
bifurcation [4]. Linearized stability theory predicts the steady state loses its stability via
an exponentially growing function of of rate O(T)(4,c)e). But this behavior cannot
represent the solution very long since the nonlinear terms become important.

To indicate the type of behavior we expect for 0<q-q<<e, consider the solution
to (3.3)-(3.4) for q, k. We can write it in the form

-A0
g’(+c)(1-iw0) e"tcos--+c.c.+d.t.,(3.14)

/ +0
where A0 is an arbitrary constant, c.c. means complex conjugate and d.t. means
(exponentially) decaying terms. For q +,.--e>0 sufficiently small, the structure of the
solution (w, d) of (2.4)-(2.5) should be similar to (3.14) but should grow at an exponen-
tial rate of O(et). Our approach to analyzing the local bifurcation problem is to employ
a formal two-timing perturbation approach. Details of the asymptotic solution will
appear elsewhere. We will just indicate the approach here. Replace w by w-qc and d by
d-g(q) in (2.4)-(2.5) to obtain

(3.15) wt-(g(+c)+d)wxx+(4’+w)[ g(4’+w)-l]g( c)+d
dt--d-g(+c)+g(+c+W)

with

(3.16) wx(O,t)-O w(1,t)---+c"
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Define --et and let

(3.17)
w--ew,(x,t,z)+e2w2(x,t,’)+O(e3), d-edl(X,t,’)+e2d2(x,t,r)+O(e3).

Upon substitution of (3.17) into (3.15)-(3.16) and equating powers of e, we obtain a
sequence of problems of the form

(3.18) t-- Wlx(O,t,’r)--O Wl(1,t,’)--

(3.19) de -- d2
+’)L

dl W_x(O,t,)-O, w2(1,t,’)-0,

etc., where the operator E is defined by the right-hand side of (3.3) and L is a nonlinear
term involving just (Wl,dl). Solving (3.18) yields a solution of the form

qT"X

Wl--(Ao(’r)eit-+ 1)cos --+ c.c. + d.t.,
qTX

dl--(Ao(’r)zceit+rc)COS --+ c.c. + d.t.

with z,.--g’(p,.)(1-ioo)/(1 +o) and r--rg(pc)g’(p)/4. Ao() as a function of the
slow time variable is determined at the next stage in the perturbation procedure.
Substitution of (3.20) into (3.19) yields the form for % which must be orthogonal to
solutions of (3.18), since the problem is self-adjoint. This gives a solvability condition
for determining Ao(r), and so the form of the lowest order perturbation is completely
Specified.

Therefore, as p passes through Pc, the signal concentration evolves to a time
periodic oscillation of approximate period 2r/o0 but which has slow modulation and
amplitude changes on the time scale --O(1).
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NONUNIFORM SEMI-INFINITE GROUNDED GRIDS*

A. H. ZEMANIAN"
Abstract. Semi-infinite resistive grounded grids are countably infinite electrical networks that arise from

the discretization of the partial differential equation governing the minority-carrier density in a doped
semiconductor. If the doping varies with depth from the surface of the semiconductor, the grid’s resistances
also vary with distance from the inputs to the grid. This nonuniformity prevents the use of the characteristic-
resistance method for determining currents and voltages. A computational method for making such a
determination is presented herein. It is based upon the theory of infinite continued fractions whose entries are
positive operators on a Hilbert space. It is also know that the solution given by the method is precisely that
solution for which the power dissipated in the network is finite. Finally, the method is extended to RLC
networks, and this allows the computation of transient responses in semi-infinite grounded grids of positive-real
impedances.

1. Introduction. The purpose of this work is to examine the behavior of a certain
class of countably infinite electrical networks. Although individual networks in this
class can be highly complex, the prototype of this class is comparatively simple and
results from the discretization of a certain partial differential equation relating to
semiconductor behavior. Therefore, to motivate our work, we first indicate why the
prototype is of interest in the theory of semiconductors.

The partial differential equation that governs the minority-carrier density/J in a
doped semiconductor is

(1.1) V2-’Dwhere z is the minority-carrier lifetime and D is the minority-carrier diffusion constant
[9, p. 99]. Ordinarily, the doping concentration, and therefore as well, varies with
distance from the surface through which the impurities are introduced. (There are of
course lateral variations along the surface where the p-n junctions appear, but these
variations disappear just below that section.) Because of this, no closed-form solution
for (1.1) exists, and computational techniques must be used to get an approximate
determination of 8. However, the standard techniques, such as difference methods or
finite-element methods, lead to excessively large computer times when the full thickness
of the semiconductor wafer is modeled.

An alternative possibility is to assume that one surface of the wafer is at infinity
and then make use of the theory of semi-infinite transmission lines. This approach was
explored in [17] in the case where the doping does not vary with position. It led to the
adaptation of the characteristic-resistance method to semi-infinite grounded grids, the
kind of electrical network that arises from the discretization of (1.1). In fact, if the
spatial variations for (1.1) are in only two dimensions, we get a square grid of resis-
tances, all having the same value, with branches connecting the nodes of the grid to a
common ground; the resistances of the latter branches represent the quantity rD. This
is illustrated in Fig. 1, where a and the ck denote conductances. For constant doping,
the ck are all the same; otherwise, they vary. The h are current sources representing the

Received by the editors October 14, 1980, and in revised form July 30, 1981. This work was supported
by the Air Force Office of Scientific Research under grant AFOSR 80-0205.

Department of Electrical Engineering, State University 0f New York at Stony Brook, Stony Brook,
New York 11794.
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electrical excitation of the semiconductor at its surface. In the case of three spatial
dimensions, we get the same configuration except that we now have a cubic grid.

This is the motivation for the problem attacked in this work. We wish to determine
the currents and voltages in a semi-infinite grounded grid where the grid’s resistances
are allowed to vary with distance from its input section. We even allow resistances to
vary in a certain restricted fashion for spatial displacements that remain equidistant
from the input section. Our analysis is immediately extendable to far more complicated
grids than the prototypical square or cubic grids mentioned above. Herein, we allow
this generality.

ho

0

\

\

’,,.

FIG 1.

The basis of our computational method is the theory of infinite continued fractions
whose elements are positive operators on a Hilbert space. Those operators represent the
admittances and impedances of -ports consisting of sections of the grid lying parallel
to the input section. The -ports are connected together to make a semi-infinite ladder
whose input impedance is the aforementioned continued fraction. Our analysis of the
ladder network yields that unique set of voltages and currents for which the total power
dissipated in the network is finite. By using the theory of Laurent operators, we also
obtain a computational procedure for calculating the currents and voltages in the
original grid.

All of this is extendable to grounded grids whose branches are positive-real
impedances. We end this paper by indicating how the transient responses of such
impedance grids can be computed. The solution we now obtain is characterized by a
finite-power condition applied this time to points on the real positive axis of the
complex-frequency domain.

Before proceeding, let us explain some of the notation we will be using. If H is a
Hilbert space, [H;H] denotes the Banach space of bounded linear operators that map
H into H. By an "operator" we will always mean a member of H; H] for some H. The
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symbol is used to denote either the number one, or a function whose range is the
singleton { }, or the identity operator in [H;H]. Which meaning that symbol has in a
particular case will either be stated or will be clear from the context in which it is used.
If A is an operator, W(A) denotes the numerical range of A:

W(A)- ((Ax,x):xH, ]]xl]-- 1),
where (a, fl) is the inner product of the elements a and fl in H. The symbol (a,/3) will
also be used to denote an open interval between the real numbers a and/3; once again,
which meaning (a, fl) has in particular cases will be either clear or specified. The
symbols [a, fl], [a, fl), and (a, fl] denote closed and semiclosed intervals with the
endpoints a and ft.

2. Semi-infinite grounded grids. The type of grounded grid we shall examine is
indicated symbolically in Fig. 2. We have a sequence of infinite networks, which for the
sake of illustration we indicate as being contained in a sequence of hypothetical boxes.
We number these boxes by k-1, 3, 5,.... We have shown only three nodes in each
box, but it is understood that each box contains an infinity of them. The following is
assumed.

BOX BOX 5

=’I

L_

h gt r2 gs
FIG 2.

BOX 5

Rule I. Every node is connected to a ground node through a positive conductance
whose value ck is the same for all the nodes in a particular box. The ck can vary from
box to box, that is, as k varies.

The nodes of a given box are connected together by conductances, which we have
not shown in Fig. so as not to clutter up the diagram. We assume that the graph of
these interconnections within each box is isomorphic (in a graph-theoretical sense) to a
uniform structure S, which we specify in Rule II. S need not be the same for every
box. Let n be a positive integer (possibly greater than three) and let R" denote real
Euclidean n-space. The lattice points of R" are the n-tuples p (p ,... ,p,), where each
p is an integer.

Rule II. The nodes of each S occur at all the lattice points p of Rn; n is the same
for every S. We number the nodes by their lattice numbers p. The degrees of the nodes
of a particular Sk are finite and all the same, but those degrees can vary as k varies.
Every branch of S is a positive conductance. Moreover, in a given S, if node p is
connected to node q through a branch of conductance a, then every nodej is connected
to nodej+ q-p through a branch with the same conductance a.

Thus, when n= and S is connected, S is simply a series of connections of
conductances a that extends to infinity in both directions. When n--2, an infinity of
possibilities arises. One of them is shown in Fig. 3, wherein a, a2 and a denote
conductance values. Still more variety in possible configurations for the Sk arises as n
increases beyond 2. Rule II implies that all the branches of S can be partitioned into a
finite number of classes such that two branches are in the same class if and only if they
are parallel, that is, if and only if the difference between the incident-node numbers of
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one branch is equal to or the negative of the difference in the incident-node numbers of
the other branch. We denote these classes of branches in Sk by Fk,, where/- 1,- .,j.
The single conductance value for all the branches in a given F is denoted by a.

01 i.// 01 // 0i,//

// a, I/ a, /

I/ / a, ,,

I/ a, / a, !/
_=:? --"

FIG 3.

Referring to Fig. 2, we impose still another condition.
Rule III. The nodes of box k are connected to the nodes of box k/ 2 in the

following fashion. A node of box k is adjacent to a node of box k+ 2 if and only if the
nodes have the same lattice number. Moreover, the branches connecting two consecu-
tive boxes are all purely resistive and have the same resistance value, but that value is
allowed to change as k changes. Furthermore, current generators are connected from

ground to the nodes of the first box; these current generators are not in general the
same.

Note that, under the three rules, Fig. is a special case of Fig. 2.

3. Existence and uniqueness of solutions. We wish to examine the solutions of
the countably infinite electrical networks satisfying the above three rules. By a solution
we mean a set of branch currents and branch voltages that satisfy Kirchhoff’s node and
loop laws and Ohm’s law. However, such networks have in general an infinity of
solutions [14]. This is because power can be injected into the network from infinity. On
the other hand, practical considerations (i.e., there is really no such thing as an infinite
network--the idea is simply a mathematical convenience) dictate that the "natural"
solutions are those that obtain their power only from the sources within the network.
But, a particular infinite network may even have an infinity of natural solutions; see

[15]. In this section, we shall impose conditions on our network that insure the existence
of one and only one natural solution.

For a subsequent purpose, we shall allow our branch conductances to be operators
on a certain Hilbert space. In particular, let H be any real Hilbert space. 12(Hr) will
denote the real Hilbert space of vectors

where every element x is a member of Hr, the superscript T denotes matrix transpose,
and

Ilxll- ’ IIxl12 <.
m=l
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The inner product of two members a and b of 12(Hr) is

(x,y)-- E (Xm,Ym)"
m=l

Here, IIx and (Xm,Ym) are of course the norm and inner product in Hr.

Another set of conditions we will employ are the following.
Conditions A. The currents and voltages of the network are members of Hr. Each

branch is a parallel connection of a (possibly zero) current source hH and a
conductance g which is a positive invertible operator mapping H into Hr. There are no
other current sources and no voltage sources. (Actually, voltage sources can be incorpo-
rated by making a Thevenin-to-Norton transformation.) The numerical ranges of all the
conductance operators are uniformly contained in a fixed compact subinterval of the
open half-axis (0, oo). The current sources (with any appropriate indexing) comprise a
vector in 12(Hr).

In [17, Thm. 2.2] we proved the following theorem. It was established by modify-
ing the circle of ideas concerning infinite electrical networks first introduced by Flanders
[31.

THEOREM 3.1. Let N be a connected infinite electrical network which is locally finite
except possibly for one ground node; the ground node may be of infinite degree. Assume N
satisfies Conditions A. Then, there exist a unique vector v 12(Hr) of branch voltages and
a unique vector /2(Hr) of branch currents such that Kirchhoff’s node and loop laws and
Ohm’s law are satisfied.

(When the ground node has infinite degree, it is not required to satisfy Kirchhoff’s
node law, that law being an assertion only about nodes of finite degree [12, p. 275].)

This theorem may be applied to any network satisfying Rules I through III, where,
now, H is the real line, so long as the current-source values at the left-hand side of Fig.
2 are quadratically summable and all conductance values are contained in a compact
subinterval of the open half-axis (0, m).

4. m-ports and Laurent operators. The network in any box of Fig. 2 can be
viewed as a grounded m-port, where the two terminals of each port are the ground
node and one of the nodes within the box. In order to make use of Theorem 3.1., we
shall restrict the voltage and current vectors of these m-ports to the Hilbert coordinate
space 12r=12(Rl) but will alter the indexing of the components of any vector in 12r to
conform with Rule II. Let N" denote the set of lattice points in Rn; that is, each
member of N is an ordered n-tuple P=(Pl,’" ",P,) whose entries are integers. A
member of 12r will now be an n-dimensional array (ap :p N"} of real numbers ap such
that

ap
pN

Thus, the inner product of two members a-{ap} and b-{bp} in 12r is the n-tuple
infinite series

(a,b)- X apbp.
pGN

A bounded linear mapping F of 12r into 12r has a matrix-like representation, but it
should be borne in mind that its matrix [Fp,q], where p,qN", is a 2n-dimensional
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array of real numbers. Thus, if y= Fx, where y=(y,... ,Yn)12r and x=(x,... ,x,,)
12r, then

yp-- Fp,qXq.
qN"

Of course, not all 2n-dimensional arrays of real numbers will represent bounded linear
mappings of 12r into 12r [5, p. 126], but those we encounter below will do so.

Now consider the k th box of Fig. 2. As an oo-port, it has a conductance operator
whose matrix representation can be determined by making a nodal analysis, gk has the
structure of a Laurent matrix [1 ]; that is, upon letting (g/+)p,q denote the p, q entry of
the matrix representation for gk, we have for every p, q,m N"

(4.1) ( gk)p, q-- ( gk)p+m, q+m"
This is an immediate consequence of Rules I and II.

Moreover, gk truly is a bounded mapping of l+ into 12r. Indeed, for x--(Xq} l: r,

we may write the following, where every summation is understood to be over Nn.

[[gkx[[2--E E (gk)p,qXq
P q

By virtue of Rule II, for each fixed p one finds only a finite number, say v, of nonzero

(g)p, g as q traverses Nn. Moreover, in view of (4.1), the same values appear whatever p
is; the values merely shift their indices as p changes. Let M be a bound on those values.
By applying Schwarz’s inequality to the inner summation of the last expression and
taking into account all the zero values of (g)p, g, we get

IIg+xll<_M+,+ lx,,,l+--M-v=llxll .
m

This verifies our assertion.
A Laurent operator is a member of [12r; 12r] that satisfies (4.1). We have proven

that g+ is a Laurent operator.
Moreover, we can show that each gk is positive and invertible by examining its

numerical range. For any x l+ r,

(4.2) (gkX,X)--2
q

By using the aforementioned properties of (g)p,q, it is not difficult to see that the
right-hand side converges absolutely and therefore can be rearranged. According to
Rule I, the branch connecting node p to ground has conductance G>0. It therefore

into the summation in (4.2). Now, consider any branch that isintroduces the term CXp
not incident to the ground node. Assume that it connects node p to node q and that its
conductance is a>0. That branch introduces the following terms into the summation
(4.2):

):22 a(Xp x 0.aX2p 2aXpXq
-q- axq q

Now, we can partition all the branches that are not incident to ground (that is, all the
branches in S+) into a finite number of classes Fk, where --1,2,...,j+, as was

explained in 2. The branches of any class all have the same conductance, say, a.
Thus, (4.2) can be rearranged into the following expression.
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Jk

E ]2(4.3) (g/x,x) c ,x a, --Xqb
p =

where Pb and qb are the indices of the nodes incident to the branch b in class Fk,. By
Rules I and IV, ck >0 and a,>0. Hence,

(gx,x)>-GIIxll 2.
This proves that g is positive and invertible.

Actually, the branches connecting two consecutive boxes also comprise an -port.
We take the two nodes of each such branch as one of the ports of the -port, and we
number those ports in the same way as the nodes which they connect. According to
Rule III, all those branches havethe same positive resistance b (k is now even).
Therefore, the co-port has the resistance operator r-bl, where is the identity
operator on 12,; that is, the element (r)p,q, where p,qN’, of r’s matrix representa-
tion is

forp-q,
(rk)p,q- 0 for pvq.

Thus, each rk is a positive invertible Laurent operator too.

5. A ladder network of operators. Because of the grounded nature of the g
-ports (k odd) and the disconnected form of the r c-ports (k even), we can connect
them into the infinite ladder network of Fig. 4 without violating the port conditions.
We shall analyze the network of Fig. 2 by a two-step procedure consisting of an
analysis of Fig. 4, in which the individual -port currents and -port voltages are
vectors in 12,, followed by a determination of the interior branch currents and voltages
of each -port to get the branch currents and voltages of Fig. 2. To do so, we shall
impose two further assumptions on Fig. 2.

2 4

z3 Y4
FIG 4.

Rule IV. (i) The vector h of current-source values hp, p N", at the input of Fig. 2
is a member of lzr.

(ii) There exist two real numbers a and ,/with 0<a<,< such that the conduc-
tances-to-ground c satisfy a_< c_<7 for all odd k, the conductances ak, of the branches
inside each box that are not incident to the ground node satisfy

Jk

/=1
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for all odd k, and the resistances bk of the branches between the boxes satisfy a<_bk<_’
for all even k.

We now show that Rule IV(ii) insures that the numerical ranges of all the opera-
tors gk and rk are uniformly bounded according to

(5.1) W(g)C[a,fl], k odd, W(rk)C[a,fl], k even,

where a is the constant in Rule IV and 0<a<fl< oc. Since in this case we will also
have W(r(l) C[f1-1, a-l], the assertion in Conditions A concerning the numerical ranges
will be satisfied.

For the gk we can argue from (4.3) as follows. Since

)2_<2X 2 _+_2 2
XPb Xqb Pb Xqb

we have

(5.2) (&,x x)<c,[lx[[2+ E a,, , (2Xp2+2x 2 )qb

i b F
But, by Rule II, all the node voltages are traversed by Xp and by Xq, as b traverses F.
Therefore, the right-hand side of (5.2) is equal to

Jk

ckllxll2+4llxll 2 a.
=1

So, our assertion for the gk follows when we set fl 5y and then invoke Rule IV(ii).
Since gk is a strictly positive operator, this result on its numerical range also

implies ([4, p. 62], [6, p. 145]) that for all k

(5.3) g;1  a-l.

The same conclusions for the r follow immediately from Rule IV(ii) since r bl,
where now denotes the identity operator on lzr.

NOW, refer to Fig. 4 again. The next tNng we want to show is that the driving-point
impedances z, where k is odd, and the driving-point adttances y, where k is even,
exist and are positive invertible Laurent operators on lr. For n > k, we let z and y; be
the corresponding driving-point impedances and admittances when the ladder network
is ternated at its n th element. To treat the driving-point impedances and admittances
simultaneously, we introduce the immittance notation:

, j-2,4,6,

and

k-1 3 5.-. n>kZk(5.4) f-[y;, k-2,4,6,. ., n>k.

The driving-point immittances of a finite (or infinite) ladder network are given by a
finite (or infinite) continued fraction. That is, for n <

(5.5) f --fk ._ fk+ .qt_ ._ --n
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The inverse of a positive, invertible, Laurent operator and the sum of two such
operators are again positive, invertible and Laurent. Therefore, every fn also has these
properties.

Now, Laurent operators commute [1]. This fact coupled with the fact that the
numerical ranges of all the gj and ) are all contained in the interval [a, fl], where a>0,
allows us to invoke a theorem of Fair [2] to conclude that, as n- , (5.5) converges in
the uniform operator topology. Its limit fk is the driving-point impedance z or the
driving-point admittance yff depending on whether k is odd or even.

For n>k+2

Since W(fk) and W( fk+ ) are both contained in a, fl ], where 0<a<B< oe, and since

f+2 is a positive operator, we may invoke the spectral mapping theorem to write the
following set inclusions, where the right-hand sides denote closed or half-closed inter-
vals.

q_W(fk+, f,+2) C a

W
fk+l "-fk+2n

( )W fk At-
fk+l fk+2+ C a,B+

I IIW(f’)C
B+-

Since, for every x 12r (flx,X) (fX,X) as n-o o, we can conclude that

(5.6)
fl+-

In fact, we have established most of:
THEOREM 5.1. Assume Rules I through IV for the grounded grid of Fig. 2. Then, the

driving-point impedances and admittances f of the corresponding ladder network of
operators shown in Fig. 4 exist as the limits under the uniform operator topology of the

infinite continuedfractions

(5.7) fff f, + f,+, + f,+2 +’""

The f are all positive, invertible, Laurent operators whose numerical ranges are uni-

formly bounded according to (5.6).
Proof. There is only one thing left to prove, namely that each fff is a Laurent

operator. An operator in [/2r; Izr] is Laurent if and only if it commutes with the shifting
operator Sq, for every qN [1, Thm. 2]. Sq is defined as follows: Let xlzr and for
pEN" let xv be the pth element of x. Then, by definition, SqX-y, where yp=Xp_q.
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Since each f" is a Laurent operator, we have under the uniform operator topology that
as

Sqf <--Sqf=fSq-->fSq.
This completes the proof.

6. The solution of the ladder network. Assume that the current source h of Fig. 4
is a member of 12r. We now apply Kirchhoff’s laws and Ohm’s law to determine the
l-valued currents and voltages in Fig. 4.

For k 0, 2, 4,. ., Kirchhoff’s node law applied to the nodes of Fig. 4 yields

i+=i-g++.

-z i Therefore,By Ohm’s law, + /

(6.1) ik+2=Okik,
where

(6.2) 0h gk+l k+l

Here, denotes the identity operator on 12r.
For k-- 1,3,5,. -, Kirchhoff’s loop law applied to the meshes of Fig. 4 and Ohm’s

law yield

tk+Z--t)k--rk+lik+l, ik+l :Y+ l)k

and thus

(6.3) v,+:z =Okv,,
where

(6.4) 0,- rk+ lyff+

Given h 12r in Fig. 4, these equations allow us to determine every voltage and
every current in that ladder network recursively. In particular, for k-- 2, 4, 6,

(6.5) ik--Ok_2Ok_4" Ooh
and, for k- 3, 5, 7,.

(6.6) Vk--Og_zOg_4. Ov, V--zh.
Our next objective is to establish several properties of the operator 0h. By Theorem

5.1, zff+ (k even) and Y+I (k odd) are Laurent operators. So too are gk+1 (k even) and

rk +1 (k odd). Furthermore, the composition and sum of two Laurent operators are also
Laurent operators. Hence, 0h is a Laurent operator for every k.

LEMMA 6.1. If A,B [H;H], where H is a Hilbert space, and if A is positive and
commutes with B, then their numerical ranges satisfy W(AB) C W(A)W(B).

Proof. The square root A1/2 commutes with every operator that commutes with A.
Therefore,

(ABx,x)=(BA1/x,A1/x) W(B)llhl/2xll 2-- W(B)(Ax,x).
Our lemma now follows immediately.

We now examine some numerical ranges. Let k--0,2,4,.... According to (5.6)
and (5.1),

aW(y+:)C l+etfl’
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Therefore,

Since we are dealing with positive Laurent operators and Laurent operators commute,
we can invoke Lemma 6.1.

W(Y+Eg;+)C ( a 1__

It can be seen from Fig. 4 that

(6.7)
Therefore,

)-1 -1 )-1zk+, (g,+, +Yk+2 --gk+,(1 +y+zg7+

--(l+Yk+2 g;-,)-’gk+lZk+l

c 1+-; 1+
/ q_ 0/fl2

The last closed interval is contained in the open interval (0, 1). So, in view of (6.2),

(6.8)

+0/-lfl+fl2’ +0/2

This shows that 0, is a positive, invertible, strictly contractive operator with

(6.9) IlOzll

For k 1, 3, 5,.-., (6.7) is replaced by

y+,- (r,+ qt- Zk+ 2 )- 1.
We can now apply the same argument to (6.4) to obtain (6.8) and (6.9) once again. This
establishes:

TI-IOREM 6.1. Under Rules I through IV andfor eery k 0, 1,2,. ., 0 is a positive,
invertible, Laurent operator in [12r; 12r] satisfying (6.9).

Note that, by Rule IV(ii), a is independent of k.
We can now show that the solution given by (6.5) and (6.6) is precisely the one

dictated by Theorem 3.1. Indeed, let the H of that theorem be 12r. Since there is only
one current source, the vector of current sources is a member of 12(12r ). We have
already noted in {}5 that W(g)c[mfl] and W(r[1)C[fl-l,0/-l]. By the analysis in the
second and third paragraphs of this section, the solution given by (6.5) and (6.6)
satisfies Kirchhoff’s laws and Ohm’s law. The rest of the hypothesis of Theorem 3.1 is
clearly satisfied except perhaps for the requirements that the vector of all branch
voltages and the vector of all branch currents be members of 12(12r); this we now verify.

Summing over all odd k and using (6.6), we get for the vertical branches of Fig. 4

] vz 2= v 2 ._]__ Ov 2 + 030v 2 ._+_ O030v 2 _}_ ....
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By (6.9), 0k K--(1 -- 0/2)-1 < for every odd k. Therefore,

IIvl12-<(1 -+-g2-qt-g4-qt-g6-qt- )llvll 2

=(1 -K2)-111 Vl 2<.
For the horizontal branches of Fig. 4, we have vk ri, where now k is even. Summing
over all such k and using (5.1) and (6.5), we get

] IIvll2- r,i, 2-<fl2 IIill 2

( h / Ooh = / O2Ooh = / OaO2Ooh = / )/3 2

(1--g2nt-g4--g6-qt-

So truly, the vector of all branch voltages is a member of 12(lzr).
Quite the same argument shows that the vector of all branch currents is also a

member of 12(12r ). Thus, we have:
THEOREM 6.2. Under Rules I through IV, the solution for the network of Fig,. 4 given

by (6.5) and (6.6) is the unique (finite power) solution dictated by Theorem 3.1.
As was promised at the beginning of 5 we now have a two-step procedure for

determining the solution for the grid of Fig. 2. We first determine the solution for the
operator network of Fig. 4 and then determine the interior branch currents of each
m-port to get the currents in the branches of Fig. 2. However, there is one more thing
we should verify; namely, the solution for the grid of Fig. 2 given by this two-step
procedure is the same as the solution specified by Theorem 3.1 when that theorem is
applied directly to the grid of Fig. 2 with Hr now being the real line. This can be
established in a completely straigtforward way. The details of the argument are spelled
out in 18, 5].

7. A computational procedure. So far, we have established the existence and
uniqueness of the solution in 12 (i.e., the finite-power solution) for the network of Fig.
2. However, the question remains how one might compute the numerical values of the
voltages and currents in the network, given the current sources hj of Fig. 2. For this
purpose, we use (6.6) to compute all the node voltages, from which all the currents in
the grid can be determined. The first step is to determine v 12r, and this is facilitated
by the isomorphism between 2 and the corresponding space of Fourier series. Let’s
quickly survey that isomorphism and its effect on Laurent operators [1 ].

Let S denote the unit circle and S the Cartesian product of n replicates of S.
L2(Sn) is as usual the Hilbert space of (equivalence classes of) real or complex, square
integrable functionsf on S with the norm

ttflt- (2 )n olf(’ )l 0,,)

On the other hand, 2 denotes the complexification of 12r [11, p. 137]. Thus, 12r is a
subset of 12. Let denote the transformation that assigns to each x= {Xp :pN} l2

the function

E Xpei(p’)
pEN

where (p,o)=po + +p,%. A standard result of Fourier series theory is that -Ais
a topological linear isomorphism from 2 onto L2(Sn) such that Ilx II--II: II.
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Let z [12r ;12r] and let its natural extension onto 2 also be denoted by z [11, p.
138]. Also, let 2 be the mapping of L2(Sn) into L2(Sn) induced by @; that is, @z-3-l.
Then, Ilzll-IIll. It is a fact that z is a Laurent operator (that is, z[12r;lzr and
satisfies (4.1)) if and only if is a multiplication. More specifically,

(7.1)
where

(7.2) .(o) 2 Zo,qe-i(q’’).
qiN

Here, the subscript 0 denotes the origin in N and Zo, q is the 0,q entry of the matrix
representation [Zp,q] of z.

The mapping z 2 of [1:; l_] into [L:(S"); Lz(Sn)] is linear, continuous and norm
preserving; that is, z II. Also,
(7.3) z II- ess supl(o)1.
Moreover, if z is positive and invertible, then () is real-valued, essinf(o)>0, and
z- corresponds to multiplication by [(0)]-; also, the numerical range of 2 is the
closed interval between the essential supremum and the essential infimum of ().

These results imply that z, which exists as a Laurent operator according to
Theorem 5.1, corresponds to multiplication by the function

(7.4) ()-gl() + b + g3(o) + b4 +...’

where for k odd k(o). is the multiplication corresponding to g and for k even bg. is
the multiplication corresponding to r,-b,l. By virtue of Rule II, each (0) is a finite
Fourier series and hence a continuous function. Also, the range of ,(o) is contained in
a,/3 where a> 0.

The function in L2(S") corresponding to v-zh for a given h- (he :pEN"} lzr
is

(7.5)
where

(7.6) /(0)
pU.N

Thus, the node voltages (Vl)p for the nodes on the first box of Fig. 2 are

)------ fs 6,( o )e -i(p’) dw.(7.7) (Vl)p-
(2,/r

The next step is the computation of the functions/k() for k odd by means of the
following analogue to (6.4)"

(7.8)
Here, ?+,(0)-b+,, and

(7.9) )7y+ l, o / b,+,t,
+ k+2() + bk+3 + k+4( 03 ) .qt.....

The analogue to (6.6) then yields

(7.10) "k( OJ ) k_2(O)k_4( O. )
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Finally, the node voltages in the k th box of Fig. 2 are given by

fs(V.11) (v,)p--
(2rr), ,,(oa) e d0.

In practical computations we must either determine the continued fraction (7.4) in
closed form, usually an unlikely prospect, or truncate it by an open-circuit or short-cir-
cuit operator admittance and estimate the resulting error, or, in the case where the grid
approaches a uniform grid as k+ m, perhaps truncate it with the characteristic opera-
tor adttance of the uniform grid [17].

Let’s consider how that truncation error ght be estimated when the grid is
ternated by an open-circuit or short-circuit operator after the n th section. In fact, let
us approximate (w) by

(7.12) g,(w) +b2 +"" +
where fn()-b for n even and f,()-g,() for n odd. Now, a property of convergent
infinite continued fractions with positive terms is that its limit lies between any two
consecutive truncations. Thus, () lies between-() and(). Hence,

Also, by virtue of Rule II, every gk() and therefore every () is a continuous
function.

This allows us to bound the error generated by truncating (7.4) as follows. Let
V{ 12r be the approximation of v 12r resulting from the replacement of 2(w) by
(). Then, letting (x)p denote the pth component of the vector x12r and using
(7.12), we may write

I(v),-(v{),l-(2) J()-()l I()1d

(7.14)

suple - ( ) )1 lhpl

Here, lhpl denotes the sum over all the nonzero Ihpl, these usually being finite in
number in practical cases. Because of (7.3) and the fact that (5.7) converges in the
uniform operator topology, given the he with lhpl convergent, we can make the
right-hand side of (7.14) as small as we wish by choosing n large enough. That is, (7.14)
can be used to control the error generated by truncating (7.4). However, this is a
conservative approach; the bound (7.14) will be in general much larger than the actual
error.

Bounds on the error generated in the computation of the (v)p by the continued-
fraction expressions for the yff+ () can be estimated in exactly the samE way, but now
an error appears for each factor k(w) as well as for (w)-l(w)h() in (7.10).
Finally, when our nonuniform grid approaches a uniform one as k, we will
generate less error by terminating in the characteristic operator immittance of the
uniform grid [17], and so our aforementioned bounds on the error will still be valid. Of
course, other errors are generated by the numerical integrations of (7.7) and (7.11);
these can be estimated by standard methods.
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8. An example. We illustrate our computational procedure with an example. We
assign values to the parameters in the grid of Fig. as follows:

forj-0,
hi- 0 forj4=0,

am1,
C2m+ + e for m-0, 1,2,...

Consequently, the various functions of 0 generated by the isomorphism are

2m(0)- for m- 1,2,3,. -,

2m+(0)--3+e-m--2COS0 form--0,1,2,.-..

To compute approximately the driving-point impedance (0), we use the fact that our

grid approaches a uniform grid as m- c. So, we may replace the ladder network
beyond node 2M/ 1, where M is chosen sufficiently large, by its characteristic imped-
ance 0(0). The latter can be determined by the method given in [17]; it is

)2 1/2)0(0)-1/2-3+2cos0+[(3 2cos0 +4(3-2cos0)]
Then, for sufficiently large M, we have, to a high order of accuracy,

gl(0) / + ,3((,.0) / +’." + g:m_l(0) + +o(O)
Similarly, for k odd and k <<2M+ 1,

Y+1’/ k+2(0)) /T/ k+4(09) /’’" / g2M_l(0)) / +0(a)
We now use (7.8), (7.10) and (7.11) to compute the node voltages for the nonuniform
grid in the vicinity of the single current source h 0 1.

For the sake of illustration, we have chosen M-- 12 and have computed the node
voltages for the first five rows of nodes (that is, for the first five boxes) and for the first
eight columns of nodes on either side of the 0th column where h0= appears. The
results are displayed in Table 1. Since the node values have even symmetry around the
0th column, we have indicated their values only to the right of the 0th column.
Computer execution time for these results was 38.5 seconds on the UNIVAC 1100
computer.

2
Row 3

4
5

TABLE
Column

0 2 3 4 5 6 7 8

.28076 .07717 .02217 .00661 .00203 .00064 .00020 .00007 .00002

.07199 .03413 .01308 .00465 .00161 .00055 .00019 .00006 .00002

.02069 .01303 .00621 .00261 .00102 .00038 .00014 .00005 .00002

.00643 .00474 .00265 .00127 .00056 .00023 .00009 .00004 .00001

.00211 .00170 .00107 .00057 .00028 .00012 .00005 .00002 .00001

9. Nonuniform grids of positive-real impedances. We now turn from purely resis-
tive networks to ones that may contain inductors, capacitors, transformers and so on.
By using the results of [13], we can extend our analysis to grids of the form of Fig. 2
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where now each branch is a positive-real driving-point impedance with no coupling
between branches. We shall in fact examine the transient behavior of such networks by
using the standard result that once the behavior of the network in the complex-frequency
domain is determined its time-domain behavior can be examined through the inverse
Laplace transform. The arguments needed to do this are quite similar to those given in
[17, {}8]. Therefore, we shall at this point merely define the needed concepts and then
indicate how the arguments in [17, 8] have to be modified for our present considera-
tions.

Here are some concepts from [13]. C+ denotes the open right half of the complex
plane C

C+- (sC" Res>O}.

For s C+,f is the closed cone- {zC" ]argzl largsl},

where it is understood that the origin is a member of 2s. As before, 12 denotes the
complexification of l:zr. By an "operator", we henceforth mean a continuous linear
mapping of 12 into 12.

P is the set of all analytic operator-valued functions F on C+ such that, for every
sC+, the numerical range W[F(s)] of F(s) is contained in fs. Thus, if FP, F(o) is
a positive operator for each o>0. Pi is the set of all FP such that, for every fixed
s C+, W[F(s)] is bounded away from the origin, that is, there exists a >0 depend-
ing in general on s such that Re(F(s)x,x)>_llxll 2 for all xl. Thus, for each sC+
and FPi, F(s) is an invertible operator. It was shown in [13] that if FP and GP,
then F+GP; also, if FP and if F- denotes the function s[F(s)]-, then
F- P.

Next, let F, F2, F3,... Pi and let Z,(s) be the operator-valued finite continued
fraction

(9.1) Z,,(s)-F,(s) + Fz(s ) +"" + Fn(s )

Then, by what has just been stated, Z P. The following theorem is a somewhat
simplified version of 13, Thm. and Corollary a].

THEOREM 9.1. Assume the following three conditions"
(i) Fk Pi for every i-- 1,2, 3,....

(ii) Given any compact set E C C+ there exists a constant i > O, depending upon -"
such that inf Re W[ F,(s)] > i for k 1,2 and s E.

(iii) For each o>0 and all k-1,2, 3,..-, the operators Fk(o) commute with each
other and W[Fk(o)]>ik(o), where the ik(o) are positive numbers satisfying Yk=l (o)

Then, for every s C+, the sequence {Zn(s)}= converges in the uniform operator
topology, and the convergence is uniform with respect to s in any compact subset of C+.
Moreover, the limit function Z-limn_, Z is a member of Pi.

Next, we turn to the time domain and define the space L(R,12r). Consider the
mappings of the real line R into 12r which are square integrable on R under the
lr-norm, and let two such functions be in the same equivalence class if they differ on
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no more than a set of Lebesgue measure zero. L2(R, 12r ) is the real Hilbert space of all
such equivalence classes supplied with the inner product

(a,b)=f E a (t)b (t)dt, t R,- pEN

(See [11, Appendix G].)
In 17], we proved:
LEMMA 9.1. Assume that the vector h is a member of L2(R,12r ) and that the support

of h is bounded on the left. Let H be the Laplace transform of h, that is, the vector of
Laplace transforms He of the components hp,pNn. Then, for each s C+, H(s) exists
and is a member of l. Also, for each o>0, H(o) is a member of l2r.

These are all the results we need to generalize our discussion to grids of imped-
ances. To proceed, replace Rules I through IV with the following, where s C+.

Rule I’. Same as Rule I except that the conductances ck are replaced by scalar
positive-real admittances Ck(S).

Rule II’. Same as Rule II except that the conductance aklt (k odd) for every branch
class Fklt is replaced by a scalar positive-real admittance Akit(S).

Rule III’. Same as Rule III except that every resistance bk (k even) connecting box
k- to box k+ is replaced by a scalar positive-real impedance Bk(s ).

Rule IV’. (i) In the time-domain, the vector h-(hp’pN} of current sources at
the input of Fig. 2 is a member of L2(R,12r), and the support of h is bounded on the
left.

(ii) There exist two continuous functions a(o) and 3’(o) on the half line R+ (o
R" o>0} with 0< o(o)< 3’(o) for every o R+ such that, for k- 1, 3, 5,. ., we have
a(O ) <-- Ck(O ) <-- 3’( O ) and

J

and, for every k- 2, 4, 6,-- -, we have a(o)-<Bk(a)_< 3’(o).
We now decompose the grid of Fig. 2 into o-ports as before to get the ladder

network of Fig. 4. In the frequency domain, the gk for k odd and the rk for k even are
replaced by [12; 12]-valued functions Yk(s) and Zk(S)--Bk(S)I respectively, where s
C/. Upon modifying the arguments that established (4.3) with manipulations suitable
for a complex Hilbert space, we obtain for x- (Xp’pN") l2

J,

(9.2) (Yk(s)x,x)--Ck(s)E IXpl2+ E Akit(s) E IXp-xql.
Using this equation and Rules I’ and IV’, we can argue in virtually the same way

as in [17, 8] and thus establish that every Y and Zk is a member of P, that Yk() and
Zk(O ) are Laurent operators for each o R+, that the hypothesis of Theorem 9.1 is
satisfied when Fk(s) Yg(s) for k even and F(s) Zk(s) for k odd, and that the
driving-point impedance Z -lim_. Z[’ is also a member of P.

Proceeding still further as in [17, 8], we conclude that the Yk, Zk, Z and 0 k,
where

z (s)Ok(s) Yk+,(s) k+,

Ok(s) 1-Zk+,(s)Y +I(S ),
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are all Laplace transforms of [/2r;/2r]"valued right-sided distributions whose supports
are bounded on the left at the origin. Next, we generalize Ohm’s law by means of
distributional convohtion [11, 5.2]:

v-r,i, i-g,v.

Finally, we conclude with"
THEOREM 9.2. For the network of Fig. 2, assume that Rules I’ through IV’ hold.

Then, there exists one and only one set of right-sided Laplace-transformable distributions

for the branch voltages vm in the network of Fig. 2 such that Kirchhoff’s node and loop
laws and (the generalized) Ohm’s law are satisfied in the time domain and such that, for
at least one o>0 andfor V denoting the Laplace transform of vm, we have

(9.3)
m

In this case, (9.3) holds for all o >0.
The branch voltages and branch currents for Fig. 2 can be determined from the

components of the/2-valued distributions i, and , which are given in turn by (6.5)
and (6.6) appropriately rewritten as distributional convolutions. Alternatively, we can
work in the frequency domain, in which case (6.5) and (6.6) should be rewritten as
multiplications of Laplace transforms.

10. The computation of transient responses. By using the method described in 7,
we can compute the voltage V(o) at any node and the current I(o) in any branch at a
finite set of points o-o, o2,- .,oq on the real axis in C+. Then using these values of
V(o) or I(o), we can apply Papoulis’ method [7], [8] to compute the corresponding
transient response v(t) or i(t). This requires however that V(s) and I(s) tend to zero
fast enough as s oo in C+ to ensure that v(t) or i(t) be a sufficiently smooth function
to allow the convergence of Papoulis’ method.

For example, assume that as s oo in C+ every Cg(s) acts capacitively, that is, it is
asymptotic to a constant times s, and every A(s) and B(s) acts resistively, that is, it
is asymptotic to a constant. Assume in addition that the Laplace transform He(s ) of
every current generator is of order O(Isl-J), wherej is an integer greater than one. Also,
assume that only a finite number of the Hp(s) are not identically equal to zero. Then, it
can be shown that every current flowing between box k- and box k has continuous
derivatives up to the (j+-2)th derivative and that every node voltage in box k has
continuous derivatives up to the (j+-)th derivative [19, X]. Thus, these transients
are quite smooth, and we may apply Papoulis’ method.
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COMPACT PERTURBATIONS OF m-ACCRETIVE OPERATORS
IN GENERAL BANACH SPACES*

S. GUTMAN

au A u(t) Bu(t), u(0) x, where A is a nonlinear m-accretive opera-Abstract. The evolution problem +
tor and B is a nonlinear completely continuous operator B: C([0, T]; X)- LP(0, T; X), is studied and various
results on a local and global existence of solutions are established. A generalization of the Weyl-Riesz
criterion for compactness of sets in the spaces LP(g,dt, X), <_p< o, X is a Banach space is proved.

1. Introduction. In this paper we study the initial value problem

() u+Auu, u(0) :x,
where A is a given m-accretive (possibly multivalued) operator in a real Banach space X
with norm []o and B is a continuous operator from C([O,T];X) into LP(O,T;X),
l_<p_<, 0<T_<. The case in which B has some Lipschitz-like properties was
studied by Crandall and Nohel [4]. The case in which the operator A generates a
compact semigroup was treated by Pazy [10] in the linear case and more recently by
Vrabie [13] in the nonlinear case. For a t-dependent continuous m-accretive operator
A =A(t) and a completely continuous operator B(t,u):[O, T]XX, the existence of
a solution of (1) was proved in [11] and [12]. We are interested in the situation where A
is a general m-accretive operator and B is a completely continuous operator (i.e., B is
continuous and compact).

To formulate our main results, we recall some basic definitions and refer the
reader to [1] for the relevant background.

DEFINITION. A strong solution of (1) on [0, T] is a function u which is continuous
on [0, T], absolutely continuous on ]0, T[, differentiable almost everywhere on [0, T]
and satisfies u(0)-x and u’(t)+Au(t) Bu(t) almost everywhere on [0, T].

Note that in general Banach space absolute continuity does not imply differentia-
bility almost everywhere. Nevertheless, if X is reflexive or, more generally, if X satisfies
the Radon-Nykodm property, absolute continuity implies differentiability almost
everywhere. Also absolute continuity of u and differentiability almost everywhere are
equivalent to u W’(0, T; X)A C([0, T]; X), see [6].

Let F:X- 2x* be the duality map, that is,

F(x)- {x* X*’(x,x*)-[[x[[ 2- [[x*[[ 2}.
For (x,y)XX define

(y,x)s= sup{ (y,x*): x* F(x) }

and consider the initial value problem

(2) u’+AuDf u(O)-x,

where A is an m-accretive operator, A "X-, 2x, fELl(0, T; X) and xD(A).
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DEFINITION. The function u(t):[O,T]-D(A) is called an integral solution of the
intitial value problem (2) if u(t) is continuous on [0, T], u(0)-x and the inequalities

<1 fst(f(,r" ) x)sdr2 [[u(t)-x[[2 (s)-xl[ 2-- llu + )+y

hold for each [x,y A and 0_<s_< < T.
It is known [2] that the initial value problem (2) has a unique integral solution for

every x D(A) and fELl(0, T; X) and that this integral solution depends continuously
on the data x and f. One can thus define the operator H that maps (f,x) into the
integral solution u of (2), H: L(0, T; X) D(A) - C([0, T]; D(A)), and by the previous
remarks H is continuous. For B C([0, T]: X)- L(0, T; X), one also defines the opera-
tor G-- H. B, G: C([0, T]; X) C([0, T]; X), and G is obviously continuous.

For every a[0, T] the operator ia: C([0, a]; X)--, C([0, T]; X) is defined by

ia(U)(t) {U(t), O<_t<_a,
u(a), a<_t<_T

and the operatorL: C([0, T]; X)- C([0,a]; X) byL(v)(t)=v(t ) for O<_t<_a. Thus, the
operator G,, defined by Ga--jaHBia satisfies Ga: C([O,a];X)-C([O,a];D(A)) and is
continuous.

DEFINITION. The function u(t)" [0, a] D(A), 0_< a_< T is called an integral solution
of the initial value problem (1) on [0, a] if u(t) is continuous on [0, a], u(0)--x and u is
a fixed point of the operator Ga.

The function u( ): [O, b[-+ D(A ) is called an integral solution of (1) on [0,b[,
0 < b _< , if u(t) is an integral solution of (1) on every closed interval [0, a], 0 -< a< b.

Remark. The fact that the function u(t) is an integral solution of the initial value
problem (1).on the interval [0,hi does not imply, in general, that u(t) is an integral
solution of (1) on any smaller interval [0, a], 0_<a< b. To avoid this difficulty we
introduce the following class of operators (see Proposition 2.4 in this connection).

DEFINITION. We say that the operator B: C([0, T]; X)LP(O, T; X) is causal if for
each a[0, T] and I,VzC([O,T];X) such that v=v2 on [0,a] we have (Biv)(t)=
(Bial)2)(t) almost everywhere for [0, a ].

We can now state our main results.
THEOREM 1.1. (Local existence). Let 0<T< o, <_p<_ o and let B: C([0, T]; X)

LP(O, T; X) be completely continuous. If x D(A), then there exists an a ]0, T[ and an
integral solution u of (1) on [0, a ].

THEOREM 1.2. (Global existence). Let 0< T<, <_p<_ o and let B C([0, T]; X)
-,LP(O,T;X) be completely continuous and causal. If xD(A), then there exists an
integral solution u of (1) defined on a maximal interval of existence [0, T] or [0, Tmx[,
Tma <_ T. In the second case, the solution u is unbounded on [0, Tmax [.

The proofs of Theorems 1.1 and 1.2 will be given in {}{}3 and 4, where we also
discuss further global existence results and regularity properties of the integal solutions.
The next section, {}2, is devoted to some preliminaries related to the properties of
integral solutions u of (2). In {}5 we deal with the continuous dependence of the
solutions upon data. Finally, in the Appendix we give a generalization to vector valued
functions of the Weyl-Riesz criterion of compactness of sets in the spaces LP(R). The
results of the Appendix are independent of the other results of this paper.

2. Preliminaries. The notion of integral solution was introduced by P. Benilan [2]
who also studied their main properties, (see also [1], [5], [8]). We start by recalling some
of the properties of integral solutions that will be needed below.
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Let A be an m-accretive operator A"X2x. We define for each X>0 Jx
(I+ XA)-, Ax (I-Jx) and lax[- limx 0 Ax for x X. Set/}(A)- {x X: IAxI <
m }./(A) is called the generalized domain of A. Identify X with its natural embedding
in X** and define operator A by

Ax-(zX** "V[6,n]A,wF(6-x), (n-z,w)_>0}.
The following proposition is a standard result for accretive operators (see, e.g., [2,

pp. 0.7-0.8]):
PROPOSITION 2.1. Let A be m-accretive. Then
1) D(A)C6(A)CD(A).
2) IlAxxll <_lAxl forxXand?>O.
3) IAxl-inf( yll "y2x} for x(A).
4) Ifx xo as n , then IAxol <- lim inf[Axn[ if [AxI is bounded, then xo :(A).
Our next results state the existence of integral solutions of (2) and give some of

their properties. They are proved in P. Benilan [2]; see also . Barbu [1, Chap. 3].
PROPOSITION 2.2. Let A be m-accretive, x D(A ) andf, g L(0, T; X). Then
1) The initial value problem (2) has a unique integral solution u(t) on [0, T]. Hence

the operator H given by. Hf u is well defined and single-valued.
2) Let x,y D(A). Then

Hf(t)-Hg(t)ll <--II Hf(s)-Hg(s)[[ + fstl] f--$1l d’r

forO<_s<_t<_T.
3)

u(t + h) u(t)[[ _< u(s+ h) u(s)[[ + ft[[ f( "+ h ) -f( )[[ d"

forO<_s<_t<_T.
4) Let z :(A). Then (see [2, Remark 1.3])

u( h ) z -< z x + foh f(s )ll ds + IAz]. h.

5) If, moreover, f is of bounded variation on [0, T], then

Ilu(t-t-h) u(t)ll<-llu(h) XllAl"ftt+h vat fd.[0,1

Note that part 5) follows from the fact that the function t- [[u(t+h)-u(t)[I-
ftt+hvarlo,lfdr is nonincreasing (see [2, Prop 1.6]).

PROPOSITION 2.3. Let x)(A) and let fL(O,T;X) be of bounded variation on
[0, T]. Then

1) I[u(t+h)-u(t)ll <llu(h)-xll + ftt+hvar[o,lfd’r;
2) u( t) is Lipschitz on [0, T] and

g I] Lip V(0 + ) AX] "at- var f
[0,T]

(11 ull Lip--sup{ (ll u( + h )--u( t)ll)/h h =/=O,t,t + h [0, T]});

3) var[o,/l u_< (If(0 +)-Ax + varto, tlf ) t;
4) if X is reflexive, or, more generally, X satisfies the Radon-Nikodfm property and

the set A CXX is closed, then the integral solution u is also a strong solution of the
initial value problem (2).
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The following proposition is a statement about "heredity" properties of the in-
tegral solutions of (1).

PROPOSITION 2.4. Let B be a causal continuous operator, B:C([O,T];X)-
LP(O, T; X), <_p<_ ..

1) If u is an integral solution of (1) on the interval [0, b ], 0< b <_ T, then the function u
is an integral solution of (1) on every smaller interval [0, a ], where 0<a< b.

2) If u is an integral solution of (1) on every interval [0, a], where 0< b <- T and
0< a<b and the limit lim u(t), , b exists, then the function u is an integral solution of (1)
on the interval [0, b].

Proof. The results follow immediately from the definitions and the causality of the
operator H (statement 2) of Proposition 2.2).

Since the main purpose of this paper is the study of compact perturbations of a
given accretive operator, it seems natural to say also some words about compact sets in
the space LP(O,T;X). The complete answer to this problem will be given in the
Appendix. Here we give only a few simple sufficient conditions for such compactness.
Denote by p the norm of the functionfLP(O, T; X).

PROPOSITION 2.5. Letp [1, o[. Let FCLP(O, T; X) be such that
1) sup([lqp:fF)-M< o;
2) limh_o for II f(t + h)-f(t)ll p dt-.O uniformly forfF;
3) there exists a compact set Q cXsuch thatf(t) Q almost everywhere on [0, T].
Then F is relatively compact in LP(O, T; X).
The assertion of Proposition 2.5 is a special case of Theorem AI 1.

3. Local existence.
Proof of Theorem 1.1. Since the Lebesgue measure of the interval [0, T] is finite, we

have the inclusion Ls(O, T; X) CLr(O, T; X) for r<s (r,s>_ 1) and the strong topology in
L is weaker than the strong topology in L (see, e.g., [3, Part IV, 6.5]). Hence we can
consider the given completely continuous operator B: C([0, T]; X)- LP(0, T; X) as a
completely continuous operator into LI(O,T;X). Let zD(A) and take R=
4 max(llz-xll, lazl}. Denote MR--(vC([O,T];X): IIv(t)-xll<_R Vt[O,T],v(O)-
x}. MR is a bounded, closed subset in the space C([0, T]; X), and therefore the set
B(MR)CLI(O, T; X) is relatively compact. By Lemma A.2 there exists b>0, b<_T such
that f0bll f(t)lldt<--- for allfB(MR). Consider the operator

Gb --jbHBib, Gb: C([0, b]; X) - C([0, b]; X).

(See the Introduction for the definitions.) Let MbR=jbMR C C([0, b]; X). By the inequal-
ity 4) of Proposition 2.2 we find that

ii( GbV )( ) z < x_ z+_fobll( BibV )( s )ll ds + blhzl <_ 3R4
for every t[0,b] and vMbn. Hence II(GbV)(t)-xll<_R, O<_t<_b and GbMbRCM.
Since the operator Gb is completely continuous and MRb is convex, bounded and closed,
we can apply the Schauder fixed point theorem. Let u* be a fixed point of Gb in MRb. By
definition this is an integral solution of the initial value problem (1) on the interval
[0, b] and the proof is complete.

Here and in the sequel we will assume that f is defined as 0 outside [0, T].



m-ACCRETIVE OPERATORS 793

COROLLARY 3.1. Let 0< T< o and let B be a completely continuous operator

B: C([0, 1; X) -, C([0, ]; X).
Then there exist b>0 and an integral solution of (1) on the interval [0, b ].

Proof. Since C([0, T]; X)CL(0, T; X), this corollary is a consequence of Theorem
1.1.

In the previous theorem, if x /(A) and B satisfies some further conditions, one
gets integral solutions which are Lipschitz continuous. Let f be a function f: [0, T]--, X,
A C[0, T] and var(f,A) be a variation of the funcfionf on the set A, i.e.,

suP(k_l f(tk+’)--f(tg)ll "t’ <--t2<--" <--tn+l’ tl" tn+l CA}.
Define ess-vart0,rlf inf(var(f,A): A is measurable, A C [0, T],/([0, T]xA)- 0}. If f is a
measurable function and ess-sup([] f(t)[[, d[0, T])< o denote by [f] an equivalence
class of this function in L(0, T; X). Define an essential variation of [f] by ess-

varlo,rl[f]=ess-varlo,rl(g: g[f]). This is a correct definition. Note also that in the
case of continuous functionf ess-vari0,rl[ f] varto,rlf.

Denote by V(0, T; X) CL(0, T; X) the set of all classes of measurable functions of
essentially bounded variation with the norm f v-o/ ess-var[0,rlf. Recall also that
by a bounded operator we mean an operator that maps bounded sets into bounded
sets.

THEOREM 3.2. Let x :(A) and let B be a completely continuous operator from
C([0, T]; X) into LP(O, T; X). Moreover, if B is a bounded operator from V(O, T; X) into

itself, then there exist b ]0, T] and a Lipschitz continuous integral solution v( ) of (1) on
[0,b].

Proof. As noted in the proof of Theorem 1.1, the operator B is a completely
continuous operator into LI(0, T; X). Since B is bounded in V(0,T; X), there exists a
nondecreasing function p: [0, o[ [0, o[ such that IIBull v-<cp(ll ull v) for all functions
uV(O,T;X)f3C([O,T];X). Note that ]Bu]o<_(llullv) and ess-var[o,Tl(Bu)<-
P(llUllv), and in particular B(ibu ) is of bounded variation. Choose R>llxll and set

 -IAxl / 1,b=min(R/3a, T). Consider the set

M-- (u V(O,T;X)f3C([O,T];X)" U[[Lip, U(0)--X}.
For all uM we have varlo,blU<--R/3, u--x o _<R/3 and ullo <_2R/3.

By inequality 2) of Proposition 2.3 (see also [2, pp. 0.13, 1.12]), we find that

IIGbUllLip<--lAxl + IIBibu(O+ )ll / var (BibU)<_]Ax +q(R) +(R) <a.
[0,T]

Hence GbMCM. The set M is a convex closed and bounded subset of the space
C([O, T]; X). Since the operator B is completely continuous from C([O,T];X) into
LP(0, T; X), by. Schauder’s fixed point theorem the operator Gb has a fixed point in M
and this is Lipschitz integral solution of (1) on [0, b ].

Remark 3.1. Note that from the fact that u is Lipschitz and B is a bounded
operator into V(0, T; X) it follows that B(u) is of bounded variation. Therefore, if X is
reflexive, the conditions of Theorem 3.1 are satisfied and then the problem (1) has a
strong solution by 4) of Proposition 2.3.

Remark 3.2. It follows from the proof of Theorem 3.1 that it is sufficient to check
the boundedness of the operator B only on the set of all X-valued Lipschitz continuous
functions in the space V(O, T; X)fq C([O, T]; X).
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COROLLARY 3.3. Let B be a completely continuous operator from C([0, T]; X) into
C([0, T]; X). Under the conditions of Theorem 3.1, the initial alue problem (1) has a local
Lipschitz integral solution.

4. Global existence.

Proof of Theorem 1.2. As in the proof of Theorem 1.1, we restrict ourselves to the
case p-1. Let a ]0, T[ be such that there exists an integral solution u of (1) on the
closed interval [0, a]. (This is guaranteed by Theorem 1.1.) We will extend this solution
as an integral solution of (1) to a closed interval [0, b ], where b> a.

Let R>0 be such that Ilu-xll<_R/2. Define l----iaU and let
C([O,T];X):v(t)=(t) for t[0,a] and IIv(t)-u(a)ll<_R for a<_t<_T). Since MR is
bounded, the set B(MR) is relatively compact. By (iii) of Theorem A.1, there exists
0<6<a such that f0rll f(z+h)-f(r)lldr<_R/2 for every h[0,3] andfB(MR). Let
b-- a + _< T and consider the operator Gb and the set M--jb(MR ). Let v MRb and
0<h_<8, and from inequality (3) of Proposition 2.2, we find that

II(GbV)(a+ h )-(GbV)(a)ll

<--II(Gbv)(h)--(Gbv)(O)ll+ II(BibV)(z+h)--(BibV)(Z)lldz.

Since h_< a and the operators B and H are causal, we have (Gbv)(t) U(t) for a.
Hence (Gbv)(O)--u(O)--x and (GbV)(a)--u(a). Therefore II(GbV)(a+h)-u(a)ll <-
Ilu(h)-u(O)ll +R/2<_R and GbMbR CM.

By Schauder’s fixed point theorem, Gb has a fixed point u* CMRb C C([0, b]; X), i.e.,
an integral solution of (1) on [0, b] and obviously, u*(t) u(t) for t_< a. Thus every
integral solution of (1) can be defined on a maximal interval of existence [0, Tmax[ or on
the whole interval [0, T]. (We have used here Proposition 2.4.) Suppose now that an
integral solution u is defined on [0, Tmax[ and is bounded, Ilull _<R. By definition u is
an integral solution on every interval [0,a] for 0<a< Tmax. Since the set M--(iaJaU’a
< Tmax} is bounded in C([0, T]; X), the set B(M) is relatively compact in L(0, T; X),
and by (3) of the Theorem A. for each e>0 there exists 8>0 such that, for 0<h_<3,
f0rll f(z+h)-f(r)lldr<e, for all fM. Let (t,) be a sequence tn Tmax, tn<Tmax.
Suppose that for n>Nltn-Tmaxl<-. If Ilu(h)-u(O)ll<_e for 0_<h_<6 and tn, tm<--a<
Tmax n, m >_N, then

U( tn) --U( tm)[I II(aaJaU)(tn) (aaJaU)( tm)l[
< u(ltm--tI) --U(0)II /f0ll (niaJaU)( "r at- It tml)--(BiaJaU)( "r)ll d’r

_<2e.

Therefore the sequence {u(tn)} is a Cauchy sequence and the limit of u(t) when
t--, Tmax exists, contrary to the maximality of the interval [0, Tmax[ (using Proposition
2.4).

THEOREM 4.1. If B is a causal operator and the conditions of Theorem 3.2 are
satisfied, then every Lipschitz continuous integral solution of (1) on [0, a ], a [0, T[ can be
extended to a larger interval [0, b ], b [0, T as a Lipschitz continuous integral solution.

Proof. The process of the extension of solutions that was described in the proof of
Theorem 1.2 can be applied to Lipschitz continuous integral solutions as it was done in
the proof of Theorem 3.2.
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THEOREM 4.2. Let B be a causal completely continuous operator B: C([0, T]; X)
LP(O,T;X), l<_p<_, xD(A). Suppose there exist two locally bounded functions
q0,+" [0, )[0, ), lims_.0q0(s)< 1, such that 2 Ix([t,t+h]).Bulp<--qg(h)ll([O,t])’ull
+p(h) for every uC([O, T]; X) and O<_t<_t+h<_ T.

Then every integral solution v is defined on the whole interval [0, T].
Proof. Let v be an integral solution of (1) that is defined on the maximal interval

of existence [0, Tmax[ (see Theorem 1.2 in this connection).
Let z /(A). By inequality 4) of Proposition 2.2

II v (t) z Z. Iaz + Ltll(BiaV)(’r) d-+ x z

for t_< a< Tmax. Let and 0<h _< such that tp(s) _< c< for each s, 0 _< s_< h.
Then

IIv(t)llc14- z’lazl4- fot-hll(BiaJaV)()lldz4- ft t-nII(BiaJaV)(z)ld
<__cl + frmax-hll(BiaJaV)()lld+hl/qlx([t-h,t]).(BiaJaV)lp

.’o

__<c2 + q0(h). Jr-bY / q(h) _<c2 +cll Jrmax--hl)II o / q(h),

where c< 1. Hence II Jma--V _<const.

Since k(h) is a locally bounded function, we find that v II o const. Therefore by
Theorem 1.2 the maximal interval of existence cannot be [0, Tmax[, and thus v is defined
on the whole [0, T].

COROLLARY 4.3. Let B be a causal completely continuous operatorfrom C([ 0, ); X)
into LI’(O, T; X), <_p<_ and let the conditions of Theorem 4.2 be satisfied for every
T>0. Then the initial value problem (1) has an integral solution v( t) that is defined on

5. Dependence on data. We consider a family of initial value problems

u’+Au S.u, u(O)=Xn,

where A is a given m-accretive operator and B is a completely continuous operator

.Bn: C([O,T];X)---)LP(O,T’X), <_p<--,

for T< and xn D(A).
THEOREM 5.1. Suppose that IBnV-Bvle O, n uniformly on every bounded set in

C([0, T]; X), xx, and all the initial value problems (In) have integral solutions u on
the same interval [0, T] such that u -< C.

Then (1) has an integral solution u on [0, T], and there exists a subsequence of
that converges to u uniformly on [0, T].

Proof. Since Bn B, the operator B is completely continuous. Hence, if M-(u
C([0, T];x): Ilull <C), then B(M) is a relatively compact set. As in the proof of
Theorem 1.1, the theorem is reduced to the casep 1.

Without loss of generality we can suppose that Bun--*f in L1(0, T; X) for some
function f. Since B, B uniformly on M, we find that Bnuf in L(0, T; X). Let Hng

X (I) is a characteristic function of the set I.
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be a unique integral solution of the initial value problem u’ +Au g, u(0)-xn, g
L(0, T; X). By Proposition 2.1,

Hng-gf II -< Hn g(O) Hf(O)II / g-f d’r,

where Hf is an integral solution of u’ +Auf, u(O)-x. Let u-Hf; then

Un U Un Of HnBnUn-- Of
<--[[un(O)--Hf(O)l[ + )--f(

Hence unu in C([O,T]; X). To complete the proof we have to prove that u is an
integral solution of (1). Indeed, un--, u; therefore Bun--, Bu in L(0, T; X) and HBun--,
HB, in C([0, T]; X). Since Bn--, B and 11HBun- HnBu --< x- xn[I, we find that
HnBnun--, HBu, or Un HBu. But Un U and, therefore HBu---u; i.e., u is an integral
solution of (1) in [0, T].

6. An example. In this section we give a simple example to which the preceding
theory applies. Let HCRN be a bounded domain with smooth boundary. Let X-L()
with norm I1" ]1, and let A be m-accretive in X. An interesting example of an m-accretive
operator in this space is the operator A defined as follows:

Z(A)- (u /’(a) ,(u) Wo,’(a), x,(u)/(a)),
Au--Aq(u) (in the sense of distributions), where 99 is a real function on R, p(0)-0,
q) C(Nt) A C(Nt\{0)) and p’(t)_>0 for =/= 0. (see, e.g., [9]).

THEOREM 6.1. Let A be an m-accretive operator in L(f). Let T>0, t[0, T] and
g(x,y, ’, s)" f f [0, T N Nt be continuous of all its variables satisfying

[g(x,y, r,s )1-< M(1 + Isle ), s N

for some M>0 and fl [0, 1[. Then the initial value problem-- +Au g(x,y,’r,u(x,’r))dxd’r, u(x,O)-uo(x)D(A )

has an integral solution defined on a maximal interval of existence [0, T] or [0, Tmax[,
Tmax <__ T. In the second case the solution is unbounded as - Tmax.

For the proof of Theorem 6.1 we will need some preliminaries. Define

gn(x,y,’r,s)--{ g(x’y’’r’s)g(x,y, ,n’s/lsl) for Isl > n,

n-- 1,2,3-.., and

gn(x,y,’r,u(x,’r))dxd’r

for u C([0, T] L(a)).
LEMMA 6.1. The operator B, is a completely continuous operator from C([0, T],L(2))

into itself.
Proof. Since gn is bounded and uniformly continuous in2 [0, T] N, the opera-

tor B is a bounded operator in C([0, T]; L(2)). Moreover, B can be considered as a
bounded operator from C([0, T]; El(f])) into C([0, T] 2). The image of every bound-
ed set of C([0, T]; Ll(2)) is a bounded set of equicontinuous functions in C([0, T] 2).
By Ascoli’s theorem we get that B is a compact operator into C([0, T] 2). Since
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C([0, T]) is isometric to C([0, T]; C()) and C([0, T]; C())CC([O,T];L(2)), we

have that B is a compact operator from C([0, T]; Ll()) into itself.
To show that Bn is a continuous operator note that every function u G

C([0, T]; L(2)) can be considered as a function in the space L([0, T] 2). For fixed n

and y, g(x,y, , u(x, -))" [0, T f Nt is a bounded measurable function. Let qk q,
k--, oe, in C([O,T];L()); then pkq in L([0, T]Xf), and therefore, there exists a

subsequence {pi}] of {p}] that converges to p almost everywhere in [0, T]2.
Therefore, g(x,y,,%(x,)) g,( x,y, , q(x, $ )) as i almost everywhere in [0, T]
2. By Lebesgue dominated convergence theorem, B,%](y, t) - Bnq](y, t) as for
every (y,t)[O, Tlf. Since {[B,%]}=l is an equicontinuous family of functions, it
follows that B,%] --, B,p], , uniformly in [0, T] f and, therefore, B,% Bnp,

m, in C([0, T]; L(2)). But this is sufficient for the continuity of B,.
Proof of Theorem 6.1. It is enough to prove (see Theorem 1.2) that the operator

g(x,y,r,u(x,r))dxdr

is a causal and completely continuous from C([0, T]; L(a)) into C([0, T]; Ll(f)). From
the estimate [g(x,y,t,s)l<_M(l+ls[ ), we get that B is a bounded operator in this
space. The causality of B is obvious. To show that B is a completely continuous
operator, we prove that the operators Bn converge to B uniformly on bounded subsets
of C([O, T]; LI(f)). Suppose that q) C([O, T]; LI(2)) and suPtllq)(x,t)ll <- C< . (t (E

[0, T], xa.) Let e>0, [0, TI, e<_C. If N>--(C/e)1/(1-fl) and
w(x,)l>N}, then m(a(N,))<_e. Therefore, for eachy 2, t[0, T], n>_N, we have

[[Bq](Y,t)-[Bq](Y,t)] <- Ig-g.ldxd

\(N,T) N,’r)

<_M
(N,’)

<_2MT.e+ 2Mfotfa(N,r
<_2MTe+2Mn-. LII qo(x,w)ll dw

<_2MTe+2Mn-I T.C<_2MT(e+N-.C)<_4MTe.

Thus B is a completely continuous operator, and the proof is complete.
Remark. To obtain local existence of solutions, we do not need the causality of the

operator B (see Theorem 1.1). Therefore, we can guarantee the local existence of
solutions for more general operators than those treated in Theorem 6.1.

For example, we can consider initial value problems of the type

Ou
-Au g(t x,y,’,u(x "r))dxd’r, u(x,O)-uo(x)D(A).

The operator in the right-hand side of the equation is completely continuous under
assumptions on g, which are similar to those considered in Theorem 6.1.
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Remark. The previous arguments can be extended to the more general evolution
problem

du u(O)-uo,

where A(t)is an m-accretive operator for almost all t[0, T], D(A(t))=D is constant
almost everywhere and B is a completely continuous operator. (We suppose that A(t)
has a standard dependence upon (see [8].)) An example of such extension can be
found in [4, pp. 323-324].

Appendix. A criterion for compactness of subset of L P(R,dt, X). The follow-
ing theorem is the generalization of the criterion of Weyl-Riesz for the compactness of
sets in the spaces LP(T,I). (see, e.g., [7, Part 4, 20.1]). We treat only the simplest case,
where T is the group of reals, --dt is the Lebesgue measure and X is a Banach space.
Modifications for the more general case, where T is a group and / is the Haar’s
measure are straightforward.

Let p be the norm in the space LP(g, dt, X), let II-II be the norm in the space X,
and let x(A) be the characteristic function of the set A C.

THEOREM A. 1. Let <_p < o and FCLP(g, dt, X). The set F is relatively compact
in LP(, dt, X) if and only if:

(i) sup([/]p :fF}--M<.
(ii) limN- fll tll-->N f(t)ll p dt 0 uniformly forfF.
(iii) limh_0f f(t+h)--f(t)Pdt--O uniformlyforfF.
(iv) For every e>0 there exists a compact set QcX such that for every fGF there

exists a set Af, with I(Af,) <_ e and f(t) Q for every xAf,.
The proof of the theorem will be given after some technical preliminaries.
DEFINITION. Let r(t) C(R) with support in [-1, 1] and 0_<r_< 1, fardt= 1. For

7r() and forfLP(g,dt; X) let the e-convolution offbee>0setr(t)-

Set alsofh(t)=f(t+h) and +- 1.
Remark. It follows from the definitions, HOlder’s inequality and Fubini’s theorem

that
1) f(t)l[ o <[rlq. ..
2) [f--jp<_lrlq.(2e)/P.sup( -)p’h [-e,e]}_<2suP(Lfh--jqp h [-e,e]);
3) L(t)-g(t)ll<-[r]q’-g]p for f, gLP(n,dt, X).
LEPTA A. 1. Let either one of the following two conditions hold:
1) A set FCLP(,dt, X) is relatively compact.
2) A set FCLP(,dt, X) satisfies the conditions (i)-(iii)of Theorem A.1.
Then
1) fll<-C(e)for allfF.
2) [f -jp 0 uniformly in F as e O.
3) f(t)-g(t)ll<f(O’[f-g[pfor allf, gF.
Proof. Condition 2) is a consequence of condition 1). Indeed, (i)-(iii) are satisfied

for a single function fC(]-o, o[; X) with compact support. Therefore, the same
holds for any finite set of such functions and, hence, for the precompact set F (since
every function in Lp can be approximated by continuous functions with compact
support). Let F satisfy (i)-(iii), then the results of the lemma follow easily from the
previous remark with C( e) M. [relq.
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LEMMA A.2. Let the conditions of Lemma A. be satisfied. Then, for every e> 0 there
exists a 8>0 such that for every A CR with I(A)<_i we have Lf.x(A)lp<_e for allfF.

Proof. Let e>0. By statement 2) of Lemma A.1, we can choose o>0 such that
[fo-jqp <_ for all fF. By assertion (1) of Lemma A.1, there exists a 8>0 such that
fo" X (A)lp -< , where/z(A)_< iS. Therefore If. X (A)lp -< e for all f F and the lemma is
proved.

LEMMA A.3. Let FCLP(N, dt, X) satisfy the conditions (i)-(iv) of Theorem A. 1.
Then for every N and e> O, the set B(t) { f(t) f F} is relatively compact in X.

Proof. Given a>0 we can choose by Lemmas A.1 and A.2 a 8>0 such that
[f’x(N \ A)-jqp<_a/c(e) for every measurable set A with/z(A)_<8 and all fF (here
c(e)- Irlq. M). B.y (iv) we can find a compact set Q and a corresponding set A/, with

iz(Af,)<_8. Let f=f.x(N\Af,) and Q-conv(QU{0}). The set Q is convex and

compact and jr(t) Q for all Nt and f F. Since(t) conv{ f()" z N } C Q, the set

{f(t)}fe. is relatively compact for every tEN. By (3) of Lemma A.1 f(t)-f(t)ll <-
c(e).lf-j]p <_a. Therefore, there exists a finite set KC X, K= {k} such that for every
f(t) there exists k with IIf(t)-kill<-2a. Thus, the set B(t)-(f(t)} is relatively
compact.

Proof of Theorem A.1. We first prove the necessity of the conditions. Assume that
FCLP(N, dt, X) is relatively compact. Note that the properties (i)-(iii) hold for a single
function in Lp (since e.g. each such function can be approximated by a continuous
function with compact support). Therefore, (i)-(iii) hold for every finite subset of Lp

and, hence, for every relatively compact subset of LP. To prove (iv) we recall that a set
E(e) is said to be e-dense in F if for every fF there is an eE(e) such that
e-f <e, Let 0<e< and let E(e) be a finite e-dense set in F consisting of continu-

ous functions with compact support.
Set En-E(en+l/p/2n/P). For everyfF there is a sequence (gn}=lgnE, such

that Ign-jqp<en+ l/p/2n/p. IfA7- (tR gn(t)-f(t)ll >e"}, then I(A7 e)<--e/2n. Let
Af,e-- I,.J n=lAf,e. Then I(Af,)<_e, and for every \ Af,,, we have gn()-f(t)ll <-en.
Set

Bf,- (xX’x=f(t) for tN\Af,}
and B- k.J feFBf,. We next prove that B is totally bounded. Let 8>0 be given and fix
a natural m>0 such that era< (this can be done since e< 1). Since the members of E
are continuous with compact support, the set

Em(l ) {xX’x-h(t), hEm, tl )
is compact in X. Let KCEm([) be a 8/2-dense finite subset of Em(R), then K is a
&dense finite subset of B. Indeed, if xB there is fF and a tNt\ etf, such that
x =f(t). Since gm(t) -f(t)ll < i/2, we have a k K such that

IIx-k II < f(t)-kll-II f(t)-gm(t)ll/llgm(t)-kll<-- + - -.Finally, choosing Q-B we have property (iv).
We turn now to the proof of the sufficiency of the conditions. Suppose (i)-(iv) are

satisfied. Let e>0, e< be given. By (ii) there exists T>0 such that [f-x(N \[-T, T])[p
<e for allfF. Definef*(t)=f(t).X(I), where I=[-T, T] then [f-f*lp<e and the set

F*-(f* "f*=f.x(I),fF}
also satisfies the properties (i)-(iv). Consider the set F*-(f*’fF} (the set of e-con-
volutions of the functionsf F).
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It follows from Lemmas A.1 and A.2 that it is an equicontinuous uniformly
bounded family of functions (with suppf* C[-T-1; T+ 1]). By Lemma A.3 the set
(f*(t)) is relatively compact in C([-T- 1, T+ 1]; X).

It follows from (iii) and the statement 2) of Lemma A.1 that f*-f*lp0 when
e--, 0 uniformly for fF. Hence, F* is relatively compact and so is F.

Acknowledgments. I am indebted to Professor A. Pazy for numerous suggestions
and permanent attention to this work and to the referee for several comments that
improved the presentation of the paper.

REFERENCES

[1] V. BARBU, Nonlinear semigroups and differential equations in Banach spaces, Editure Academiei, Noord-

hoff Groningen, 1976.
[2] P. BENILAN, Equations d’evolution dans un espace de Banach quelconque et applications, Thesis, Univ.

Paris XI, Orsay, 1972.
[3] N. BOURBAKL Integration, Chap. 1-4, Hermann, Paris, 1952.

[4] M. G. CRANDALL AND J. NOHEL, An abstract functional differential equation and a related Volterra

equation, Israel J. Math., 29 (1978), pp. 313-328.
[5] M. CRANDALL AND A. PAZV, Nonlinear evolution equations in Banach spaces, Israel J. Math., 11 (1972),

pp. 57-93.
[6] J. DIESTEL AND J. J. UHL, Vector measures, Mathematics Surveys 15, American Mathematical Society,

Providence, RI, 1977.
[7] R. E. EDWARDS, Functional Analysis, Holt, Rinehart, Winston, New York, 1965.

[8] L. EVANS, Nonlinear evolution equations in an arbitrary Banach space, Israel J. Math., 26 (1977), pp.
1-42.

[9] Application of nonlinear semigroup theory to certain partial differential equations, Proc. Syrup.
Nonlinear Evolution Equations, M. G. Crandall, ed., Academic Press, New York, 1978, pp. 163-188.

[10] A. PAZY, A class of semilinear equations of evolutions, Israel J. Math., 20 (1975), pp. 23-26.
11 E. SCHECHTER, Evolution generated by continuous dissipative plus compact operators, Bull. London Math.

Soc., 13 (1981), pp. 303-308.
[12] D. VOLKMANN, Ein Existenzsatz fftr gewfhnliche Differentialgleichungen in Banachrfiumen., Proc. Amer.

Math. Soc., 80 (1980), pp. 297-300.
[13] J. VRABIE, The nonlinear version of Pazy’s local existence theorem, Israel J. Math., 32 (1979), pp.

221-235.



SIAM J. MATH. ANAL.
Vol. 13, No. 5, September 1982

(C) 1982 Society for Industrial and Applied Mathematics

0036-1410/82/1305-0008 $01.00/0

A VERSION OF THE CHAIN RULE AND INTEGRODIFFERENTIAL
EQUATIONS IN HILBERT SPACES*

HANS ENGLER"
Abstract. For Hilbert-space valued functions u, subdifferentials Oq0 and certain scalar kernels a, an

estimate on f){ , d/ds a 09(u)) is derived and then applied to certain integrodifferential equations.

O. Introduction. Consider the integrodifferential equation

fota )Bu(s)dsf(t), O<_t<_T(I) ft( ) /Au( ) / t- s

in a Hilbert space H with the scalar product (-,.), A and B being maximal monotone
operators. To show the existence of functions u:[0, T]H that satisfy (I) and an initial
condition u(0)---u0, a crucial step usually consists in suitable estimates for certain
approximating solutions u,. A way to do this has been used in [1], [5]. It consists in
multiplying (I) (or its approximating analogue) with Bu and integrating. If B is a
subdifferential and the form uBu,Au) is bounded from below, frequency conditions
on the kernel a lead to the desired estimates.

In this note we want to propose a different approach: Differentiate (I) once (in
fact, take difference quotients), multiply with and integrate from 0 to t. After utilizing
the monotonicity of A, one is left with the term

cf. [7], where the author handles it by assuming that Bu is dominated in a certain way
by Au (either linearly in the norm sense or by a sign condition on {Bu,Au)).

In 1 of this note, we show that the above term can be estimated directly for
positive nonincreasing convex kernels a and subdifferentials B. In {}2 we use this
estimate to establish the existence of solutions of (I). In {}3 some examples are given, A
being a differential operator (of order 1,2,2m) and B a polynomial function.

1. An estimate related to the chain rule. Let :H]-, ] be convex, lower
semicontinuous (lsc) and nontrivial and 09 be its subdifferential. Let u W’2([0, T],H)
and v L2(0, T;H) such that v(t)Og(u(t)) a.e.. Then the chain rule holds:

(1) q)(u(t)) q0(u(O))fot(f(s)v(s))ds for( d
(s), s(1 v)(s) ds

for all O<_t<_T ([3]). Here, a, v(s):fda(s-)v()d, of course, if aL(O,T;R).
More generally, we have:

LEMMA 1. Let q),u,v be as above, aC2([O, T], ), a<i). (-1)i_>0 on [0, T] (i-- 0, 1,2).
Then

(2) ft(s), -s (a , v)(s) ds>_a(t)q(u(t))-a(O)q(u(O))- d(s)q(u(s))ds.
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Proof. [O,T]3sa v(s) is in W’([O,T],H) and (cf. [3])

So/ ) So’ So’(), T(, )() d= (),(o)()) d+ (),, ()) d

() (0)((())-( (0)))

)+ )()d,() d

Choose h> 0 so small that + h. (0) O. Then

>-. ((,))- ()---h

since ,() (u()) a.e.. Now for a.e. [0, T],

and since + h. (0) O, d(. ) 0 (.), and

+h.a(O)-ha(t-,)+h. a(s-,)ds-1,

we can use the convexity of to deduce that

(
_

,(())-(l+(o)) (())-. (t-)((t))

Inserting this in () finally iplics (2).
Remark. If Vo 8(u(O)), then one deduces from (2)

(sl, (a, l(sl esa(l.((.(ll-(.(0ll)
(4

+ ’{ (s), (a(s)--a(t))%) ds

for 0N T by taking (u) (u) {%, u u(0)) (u(0)) in (2). If L (0, T; H),
the right-hand side in (4) makes sense even if aL(O, T; N) is only positive and
nondecreasing.. Esteee fr tefferethl eafis. Let A,B:H 2 be maximal mono-
tone operators, B= be the subdifferential of a convex lsc nontrivial functional
:H ]-m, m]. We shall use the following hypotheses wNch relate A and B:

(H0) For all positive C,

{uH (u) + lwl + lulC,wAu}
is precompact in H.
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(H1) There exists some continuous function K*: Nl + -o Nt + such that for all u D(A)
Bu =/= and for w Bu,

Iwl-<g*(IAul + lul),
Au denoting the element with minimal norm in Au.

(H2) There exists some continuous function K*: R + -o R + such that for all u D(A)
and w Bu,

Iwl<-g*(lul/(u)).(l /lAul).
A preliminary result on local strong solutions of

ft(t)+v(t)+a, w(t)f(t) a.e. on [0, To],
(Io)

ft,v,wL’(O, To;n ), vAu, wBu a.e.,u(0)=u0

is contained in"
LEMMA 2. Let (H0) and (HI) hold for A and B. Let aBV([O,T],), f

BV([0, T ], H), uo D(A). Then there exists some TO>0 and a solution u W1,o([0, TO ], H)
of (Io); v and w are essentially bounded on [0, To].

Proof. For )t>0 let Bx :-- (1/))(Id-(Id +)tB)-) be the Yosida approximation of
B. Bx is Lipschitz continuous with Lipschitz constant 1/ [3]. Then the approximating
equations

(5)
fx(t)+vx(t)+a. Bxux(t)f(t), O<_t<_T,

vx(t ) Aux(t ) a.e., ux(0)=uo

have unique strong solutions ux Wt’([0, T],H); vx L(0, T; H) (cf. [4], [5])..We
want to estimate Ivx(-)l + lux( ")1 independently of , on some small interval [0, To]. Put
gx :-- f-a Bxux. Since gx BV([0, T],H),

lax(t) I-<1( gx(0 + 0) -Auo)l +Var( gx; 0, t),
Ivx(t)l-< I( gx(0 + 0)-auo)l + Var(gx; 0,t) + gx Loo<o,t

for a.e. t[0, T] ([3]). Now

Var(gx; 0, t) _< Var( f; 0, t) + (la(0)I +Var(a; 0, t)).fo IBxux(s)] ds

_< c, + c_./’*K* (I u,( )1 + lu,( )1) ds
"0

and

l( gx(0 + 0) Auo) -I( f(0 + 0) Auo) C

Thus, Ivx(-)1 + lux(" )l satisfies an integral inequality

(6) Ivx(t)l+lux(t)l<_Ca+C5.fo’g*(Ivx(s)l+lux(s)l)ds,
Ca, C only depending on u0 and f. There exists a maximal solution of (6) which is
bounded by some constant C6 on some small interval [0, To]. Hence, vx(- ), Bxux(- ),
q0(ux(-)) and ix(. ) are also bounded on [0, To]. Thus (ux[;k>0) is relatively compact in
C([O, To],H ) by Arzela’s theorem, and {vxlX>0}, {Bxuxl)>0} are relatively weak*
compact in L(0, To; H). Taking strongly resp. weak* convergent subsequences as ;k $ 0
(ux--, u, vx--, v, Bxux--, w) and using the maximal monotonicity of A and B to see that
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vAu and wBu a.e. on [0, To], we conclude that there exists a local strong soluton of
(Io).

If a BV([O,T],R) and f BV([O,T],H), then u(To) D(A) and t-

ffoa(t-s)w(s)ds is in BV([To, T],H). Thus, we can repeat this existence argument on
some interval [To, T1], etc., and find (by Zorn’s lemma) that there exists a maximal

W’r0 T*[,H) on some maximal interval [0, T*[. We also note that asolution u loc ,t

bound on u and on vAu on some interval [0, t-[ implies bounds for wBu (by (HI))
and fi (from the equation) on the same interval.Then limt,;u(t)D(A) exist, and the
solution u can be continued on some larger interval, unless t-= T.

How to find such uniform bounds (by Lemma 1) is the object of
THEOREM 3. Let (H0), (HI), (H2) hoMfor A and B. Let aC2([O,T],[), (-1)i.a (i)

>_0 for 0_<i_<2, fBV([O,T],H) and uoD(A). Then there exists a strong solution
u W’([0, T],H) of (I0), and v (Au) and w (Bu) both are in L(O, T; H).

Proof. Without loss of generality, let a(T)>0 (else we solve (Io) step by step, or
a =0).

Let u be a maximal solution on some interval [0, T*[ (which exists by Lemma 2 and
the following remarks). We show that limt, T* U(t)D(A) exists (and thus T*- T). For
any measurable function g: [0, T*[ H, 0<h < T*, 0_< < T* h, let

dhg(t). g(t+h)-g(t)
h

denote the forward difference quotient. We apply dh to all the terms in (I0), multiply
by dhu(t ) and use the monotonicity of A to get

(7) d idu(t)122 dt + (dhU(t),dh(a, w)(t)) <--(dhU(t),dhf(t)).

Integrating between 0 and and estimating the right-hand side gives

ldhU(t)12 f0
2

.Var(f; 0, T).+ (dhU(S),dh(a.w)(s))ds<---ld, u(O)l +ldhUlLO,,;m

As h $ 0 we use Lebesgue’s theorem and find that

(8)
-la(t)l + a(s), -s (a , w)(s) ds

+ lalL=(0,,; H) War( f; 0, T)

for almost all [0, T*[. Using the remark after Lemma above, we estimate further

(9) - [fi(t)+a(t)q(u(t))

012<a(tlcp(uol+-l( f(O+Ol-Auo) +lftlL(o,t;m.Var( f;O,T;H)

+ (s), (a(t)--a(s))Buo) ds

Cl(a,f, uo ) + lal(0,t; m. C2(a,f, uo )
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with suitable constants C1, C2. Hence la(.)l +q(u(.)) is essentially bounded on [0, T*[
by some constant C3(a,f, Uo). (H2) now implies that v (Au a.e.) satisfies the integral
inequality

Iv(t)l<-a *

<_a ( g*( u(. )) / lu( )l) (1
<-C4"a* lv(’)l(t)/C

with suitable constants C4, C5. Gronwall’s lemma then shows that v(.) is essentially
bounded on [0, T*[. Hence, limtrr, u(t)D(A) exists, and since [0, T*[ was assumed to
be maximal, T*- T follows.

Remarks.
(i) The proof generalizes directly to equations of the form

(I1) ft(t)+Au(t)+ a Biu(t)E3f(t),
i--1

each a C-([0, T], R) and B- Pi fulfilling the assumptions of Theorem 3.
(ii) No additional difficulty arises if A is replaced by A +,.Id, ,R some

constant" One observes that this gives rise to an additional term ,.[dhU(t)l- on the
left-hand side in (7). This in turn causes an additional term I[.fdlft(s)lds on the
right-hand side of (9), and the essential boundedness of Ifi(.)[ +p(u(.)) still follows
from Gronwall’s lemma.

(iii) In the proof above we only used the remark after Lemma 1, which neither
contains fi nor a(0). Then an approximation argument generalizes Theorem 3 to kernels
a satisfying

(10) a Ll(0, T; n), a positive, nonincreasing, convex.

If (10) holds only on some small interval [0, To] (and aBV([To, T], )), one shows the
existence of a solution on the interval [0, To] and proceeds by translation and induction.
This is possible since even then

)v( )

is in BV([[, T],H) if vL(O,[;H) and 0< t-< T.
(iv) If p has bad growth properties, (H2) is rather weak. It can be compensated by

a coercivity condition for A, namely:
(H3) There exists a lsc seminorm I1" II1 on H and a continuous function K*’R + --,

g + such that for all v Au (i- 1,2),

and for all w Bu,

Iwlg*(llu, ll, + ]u,I). (1 + [Aul).
If (H3) is satisfied instead of (H2), we get an additional term Ildhu(t)ll on the
left-hand side of (7) in the proof of Theorem 3. This in turn gives an extra term

f a(s)ll 2 as on the left-hand side of (9). Since u0 I1 < o, u(.)ll is a priori bounded
on [0, T*[; using (H3) instead of (H2) to estimate v (Au) in the sequel, we complete
the proof as above.



806 HANS ENGLER

(v) It should finally be noted that the technique of the proof of Theorem 3 can also
be used to give a priori estimates for solutions of equations of the type (cf. [2], [8], [9])

(12) ft(t)+a. Bu(t)f(t),
(13) eu(t)+SAu(t)+a. Bu(t)f(t), e,8>_O.

3. Examples. Throughout this section aU. C2([O,T],I) fulfils a<i).(-1)i>_O (0 <_

i_<2).
Example 1. Let H:= L2(O, 1;R),Au=u for all uD(A):: (uH,2([0,1],R)I

u(0) 0}. Then A is maximal monotone in H.
Let p_> and Bu(x):= lu(x)lP.signu(x), if uD(B)=L2P(O, 1;). Then B:Op

is the subdifferential of the convex, lsc, nontrivial functional p,

p(u)-1 op+---S" lu(x)lP+’dx"
For all uD(A)

IBul --tl u(x )12P dx lul IAul
and {uGH[ p(u)+ laul,,+ lul <-c) is relatively compact in H for all C>0 by suitable
imbedding theorems. Finally, by some well-known Sobolev inequality (cf. [6]), there
exists C0> 0 such that

inul:llul2p Co" (11u,12). (1]ulp+ )(2p-2)/(p+ 1)

for all uD(A). Thus A and B satisfy (H0)-(H2). It follows from Theorem 3 that for
all u0 H’2([0, 1],R) such that u0(0)=0, for all fBV([O, T],H) and for all a as above
a solution u WI’([0, T],L(0, 1; ))L(0, T; Hi’2([0, 1], R)) exists of

Otu( x, t) + OxU(X t) +ta(t-- s )lu(x,s)lp sign u(x,s) ds=f(x, t)

a.e. in [0,1] X [0, T],
u(., 0) u0 a.e. in [0, 1],
u(0,.) 0 a.e. in [0, T].

Example 2. Let f CR be open, bounded, f C2-smooth. Let G: Rn --, g be convex
and continuously differentiable, G(0)--0, and put g :-- VxG. Suppose there exist c0>0,
q_> 2, such that for all/j R"

(11) a()Co’]lq.
Let H-L2(,) and define for u, v H,

vAu: c,uWd"(fl;l), g(Vxu)L’(f,g), v=-divg(Vxu) in@’(f,g).

Then A: H 2n is maximal monotone (since it is a subdifferential, cf. 10]).
For v Au we want to estimate [v[n from below by some norm of u in the special

case n>2q. To this end we employ a technique by L. Veron ([10]): For vAu and
p>_2,

fv.u. [ulp-> II u(p+q-2)/q u pq--21" WI’q2" Lp

(12) n(p+q--2)p-
n--q
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with positive constants CI, C2, if additionally u, v LP(,i). Forp- 2 (12) implies

f]l)’u u vI,q> [UlH u q--1C wl,q

hence

(13) Ivl>-c3 ull q--I
W ,qo

Forp- +n(q- 1)/(n-2q), hencefi-2. (p- 1), (12) implies

c9. Ilull p-a:q-2- --1

hence,

(14) Ivl,>- ca" II u II q, p 2n(q- 1)
n--2q

if still u,vLP(f,l). An approximation argument then implies (14) for all u,vH,
since A restricted to LP(2, R) is m-accretive for all p_>2 ([10]).

Next let h: R --, be continuous and nondecreasing, h(0)-0, h(r) f)h(s)ds be
its primitive. Define Bu(x)"- h(u(x)) for all u such that Bu_H. Then Bu-Op(u),
(u)-fh-(u(x))dx for all uD(p)--{uHlh-(u)Ll(f,l)} ([3]), and 9 is convex,
lsc and nontrivial.

We now assume that there exist constants c*, e,p,r>O, such that

Ih(t)l<-c*.(Itl/l),
h (t)>_eltl-c* for allt.

Concerning p and r, we assume further that

(16a, b,c) 2.p<_p q <o<q + r’q, r>_2,
n

fi as in (14). Then there exist constants and c4 such that q(u)_>8. Ilullr--C4 for all
u D(q), and

{un lul+(u)+lvl<_C, vAu}
is relatively compact in H for all C_>0 by (13) and the compactness of the imbedding
W’q(f,) H. Thus, (H0) holds. (16a) further implies that

Inul.<_c,(llull+ 1)<C6"([l)lnH/(n--2q)-+ 1), vAu;

hence (H 1) holds. Finally the interpolation inequality

u =,-< c6" u -a" u ,
a-(q- 1)/p, p satisfying (16b) (cf. [6]) implies that

InulH <-- c7 (11 u II ,/ 1)
__<c8.(llulltr+ 1)P+’-q.(l[ull-+ 1)
<K*(luln+qg(u)).(l +lvln) ifvAu;

hence (H2) holds. (In the "limit case", r-p+ 1, (16b) holds if and only if o-<q- +
q2/(n-q); cf. [5] for q-2.)
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It follows that for all such g and h and for all a as above, for all uo D(A) and for
all fBV([O, T],L2(f,R)) some u WI’([O, T],L2(f,R)) and vL(O, T; L2(f,))
exist such that

O,u(x,t)+v(x,t)+a h(u(x, .))(t)=f(x,t),
v(x,t)=-divxg(Vxu(x,t)) a.e. in f[0, T],
u(’,0)=u0,
u(’,t)Wo’(,) for a.e. t [0, T].

All these considerations hold if n>2q. If n<_2q, (14) will hold with any p<
(p- o, if n < q), which will give the condition t9 <q- + in (16b).

Example 3. Let fC be open and bounded, m N, be cm-smooth. Let

Au X )"(a"(’)Ou(’))
O-<lal,ll-<m

if uD(A)"-(H2m’2f-)Hn’2)(,N) be a strongly elliptic operator with Cm-coeffi
cients a (cf. [6]). We shall assume that Ghrding’s inequality holds in the version

(17) (Au u) =>cllull 2
Hm,2 C>0,

which is certainly true if a is big enough. This is no loss of generality by remark (iii)
after Theorem 3. The well-known solution theory for linear elliptic equations in
L-(f, R) H then implies that A is maximal monotone in H and that

(18) IAulnellull n2m,2 for all uD(A)

with some positive e.
As in Example 2, let h’ --, be continuous and nondecreasing, h(0)-0, h be its

primitive and define

for all u such that h(u)H resp. h-(u)L(,R). Then is convex, lsc, nontrivial, and
B-. Hence (18) together with well-known imbedding theorems imply that (H0)
holds in this situation.

(H 1) means here that

IB(u)[2--fJh(u)12g*(lAul+lul)g**(llull n2m. )

should hold for some function K**; this is certainly true if

(19a)
or

(19b)
or

n<m

n-m,, Ih(r)l<_C.([rlY+l) for allr, C,fi>0,

(19c) n>m 1, Ih(r)l<_C.(Irl+ 1) for all r, C>0, fi-- 1--n--m
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m-4.m [6]. We sharpen these conditions by assuming that (19) holds with m-2-m
(thus-(n+2m)/(n-2m) in (19c)). Then for all uD(A),

IBul<--K*(llull i-), if n<2m,

IBul<Co.(falul=/l)<c.(llull=m,= "llul, =-=Hm,2 +1)

--<c9_’(1 /llull --2nm,= )(1+ IAul), if n_>2m,

p as in (19), c0, c 1, c2 suitable constants, by some Sobolev inequality ([6]). These
estimates together with (17) imply that condition (H3) (Remark (iv) after Theorem 3)
holds, the seminorm I1" I1 being the Hm’2-norm in this case. Remark (iv) then implies
that for all such h,a and A and for all fBV([O,T],L(f,)) and uoH2m’2f")

H"(f,) some u wl’([0, T],L(f,))fqL(O, T; H2m’2(, )) exists such that

OtU(X,t)+ X O(a(x)Ou(x,t))
0_<1,1" I/l_<m

+ a(t-s)h(u(x,s))ds=f(x,t) a.e. in a[o, rl,

u(.,t) H,(a,N) for a.e. t,

u(.,O)--uo a.e. in a.

In this case more regularity of the solution can be shown (depending on the data) by
employing the theory of analytic semigroups in LP-spaces [6] (resp. of C-semigroups
[111).

4. Concluding remarks. The main features in the above considerations are the use
of Lemma together with suitable interpolation inequalities in order to utilize the
information that is given in the estimate (2). Since the class of kernels (positive,
nonincreasing, convex) used there is rather small (compared to other techniques), one
could look for some generalization of Lemma by discarding some of the assumptions
for a. That no version of Lemma will hold if a is just a positive C2-function is
indicated by the following simple

Counterexample. Take as the Hilbert space H, a(t)--e t, q(u)=e (thus q(u)
.e u) and u(t) (t _> 0). Then

(20) fotft ( s ) -sd ( a , O ( u ) ( s ) ) ds sinh

On the other hand, let b(s)-c-e be a linear combination of a, d,//. Then

fo’b(s (u(s))ds-c t,a(0) (u(0)) +

p(u(t))-ep(u(O))+fotb(s)ep(u(s))ds-e-t- +c’t,

and both terms cannot be lower bounds for the expression in (20) for all positive t. By
rescaling the equation, one also gets counterexamples for any finite t-interval.

Acknowledgment. Many thanks are due to Professor John A. Nohel for stimulat-
ing discussions on this note.
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PERIODIC KOLMOGOROV SYSTEMS*

J. M. CUSHING

Abstract. The existence of nontrivial periodic solutions of periodic Kolmogorov systems of ordinary
differential equations is considered. Under very general conditions, a global continuum of solutions is shown
to bifurcate from a noncritical periodic solution of a reduced system using the average inherent per unit
growth rate of one component of the system as a bifurcation parameter. The positivity and stability of the
bifurcating branch solutions are studied. The stability is shown to depend on the stability of the solution of
the reduced system as well as the direction of bifurcation. These results extend and generalize earlier work on
periodic Volterra-Lotka systems. Applications to mathematical ecology are given.

Key words. Kolmogorov systems, periodic solutions, bifurcation, stability

1. Introduction. Differential equations of the form

xi’-xih (X 1’
,=dl<_i<_n,

dt

are sometimes referred to as Kolmogorov equations. They arise in applications in which
the per unit of change x/x of dependent variables xi--xi(t ) are prescribed functions
hi(Xl,’",Xn) of these variables at any given time. Many models in population dy-
namics and mathematical ecology are of this form, of which the well-known logistic,
Volterra predator-prey and Volterra-Lotka competition equations serve as perhaps the
simplest and most famous examples. In such applications one is usually interested only
in nonnegative solutions x;_>0 and in positive solutions xi>0, if they exist. As indi-
cated above the equations are autonomous and the algebraic zeros of the h play of
course an important role as equilibria. Our concern in this paper is with Kolmogorov
equations of the above type under the assumption that the h are no longer independent
of time t, but explicitly dependent periodically on t. We will be interested in the
existence of nonnegative and positive periodic solutions and in their stability or in-
stability.

Several specific periodic Kolmogorov systems have been studied with regard to
certain applications in mathematical ecology. Volterra predator-prey equations with
periodic coefficients were studied by the author [2], and more general periodic
predator-prey equations have recently been studied by Bardi [1]. Periodic Volterra-
Lotka competition equations have been studied by de Mottoni and Schiaffino [7] and
the author [3]. Volterra systems of arbitrary order with periodic coefficients were also
considered by the author [4]. These papers were all motivated by the obvious fact that
cyclic fluctuations in biological and environmental parameters can play an important
role in the dynamics of population growth and that such periodic fluctuations might
well be modelled by placing periodic coefficients in the classical equations of mathe-
matical ecology.

The mathematical approach taken in this paper to the question of the existence of
periodic solutions of periodic Kolmogorov systems is a generalization of that taken in
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based upon work supported by the National Science Foundation under grant MCS-7901307-01.

Department of Mathematics and Program on Applied Mathematics, University of Arizona, Tucson,
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previous papers by the author [2], [3], [4] and is based upon very general, abstract
bifurcation theorems of Rabinowitz [8]. It will be shown (Theorem 1) for systems of
size n >- 2 that under rather general conditions there exists a critical value of the average
inherent growth rate of one species, say x, at which there bifurcates a "global" branch
of solutions which are positive solutions at least locally near the bifurcation point. This
branch of solutions (to which, incidentally, there corresponds a branch of locally
nonpositive solutions) bifurcates from a positive periodic solution of the "reduced
system" of size n- obtained by eliminating x from the system (i.e., by setting x ----0
in the system). Simple examples are given to show that this branch may not stay in the
positive cone globally, however. Nonetheless, positive periodic solutions of periodic
Kolmogorov systems of size n >--2 can be built up by repeated bifurcations of this type
by applying this result repeatedly, starting from positive periodic solutions of scalar
(n---1) periodic equations. Scalar equations are dealt with in Theorems 2 through 6.
The stability of both the positive branch solutions and the periodic solutions of the
reduced system are studied in 3, at least locally near the bifurcation point. As is
typically the case in such bifurcation phenomena, it is found that the stability of the
positive branch solutions depends on the stability properties of the solution of the
reduced system and on the direction of bifurcation. In 4 the special case of planar
(n--2) periodic Kolmogorov systems is discussed and examples of general periodic
predator-prey and two-species competition models are given.

2. Periodic solutions.
(a). We begin by setting up some notation. If v=col(vi), w-col(wi) are n-vectors,

then define v.w := Eviw and v^w := col(viwi)=w^v. For any nn matrix M=(mij),
define the nn matrix v M:= (vimij). Note that v^(Mw)=(v M)w.

Denote the Banach space of real valued, continuous p-periodic functions of a real
variable under the supremum norm [0 by Be and denote the k-fold cross product of
Bp with itself by Bp. Let av(x)"- p-lfx(t)dt denote the average of xBp. Euclidean
k-space will be denoted by R’. A continuum (in a Banach space) is a closed connected
set. The boundary of a set fl will be denoted by .

Consider the following general periodic system of n equations

(1) (a)
(b)

x’--x[a(t)+f(t,x,y)],
y’-y^[b(t)+g(t,x,y)],

where x--x(t) is a scalar valued function of and y =y(t) is an (n- 1)-vector valued
function of t. For n_>2 let n denote an open set in R R which contains the origin
(x,y)--(0, 0). The functions f and g are assumed to satisfy the following hypotheses:

H1. b B;-1, n>_2, and f: R fl - R, g" R f" R are continuous functions
which are p-periodic in and continuously differentiable in x and y with
f(t,O,O)=--g(t,O,O)--O. Also, aBp.

The system

(2) y’--y^[b(t)+g(t,O,y)]

of n- equations will be referred to as the reduced system. By a solution of (1) or (2)
we always mean continuously differentiable functions. A positive solution (x( ),y( ))
of (1) [or y(t) of (2)] is a solution for which x(t)>0, y(t)>0 for all and [or yi(t)>0
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for all and i]. Two assumptions concerning the reduced system will be made:

H2. The reduced system (2) of n-1 equations, n_>2, has a positive p-periodic
solution O<y=yo(t)B- such that (0,y0(t))f for all t.

H3. The solution y=yo(t) of (2) in H2 is noncritical, i.e., all Floquet exponents of
the linearization of (2) at yo(t) have nonzero real parts.

More will be said about H2 and H3 below. Note that H2 implies the existence of a
nontrivial p-periodic solution of (1) on the boundary of the positive cone in Bp B-1,
namely (x,y)-(O,yo). We are interested, however, in solutions lying in the interior of
this cone.

It is easy to show that if O<_(x,y)BpB-1 is a solution of (1) (O<_(x,y) means
that x _> 0 and Yi -> 0 for all i) then

(3)
av(a(t)+f(t,x(t),y(t)))-O if x>0,

av(bi(t)+gi(t,x(t),y(t)))--O ifyi>0.

To see this, given x>0, divide (la) by x and integrate over one period. A similar
procedure is applied to (1b) given yi> 0.

Note that (1) has the positivity property: if a solution of (1) satisfies x(t0)>0
y(t0)>0 for some finite 0, then x(t)>0, y(t)>0 for all t(-, +). Also, if
x(to) 0 or yi(to) 0 for some _< i_< n and finite to, then x(t) 0 or yi(t) 0 for all
(-, + ). These facts follow from

Yi(t)=Yi(t)exp ft(bi(s)+gi(Sto x(s),y(s)))ds]
for _< i_< n and all t.

Define f(Yo)"- ((x,y)BpB;-’:(x(t),y(t)+yo(t))" for all t) for n_>2.

This set is an open set in Bp B;- which contains (0,y0). The following is our main
theorem concerning the existence of p-periodic solutions of (1).

THEOREM 1. Assume H1, H2 and H3 hold. Let ao(t)Bp be a given function with
av(ao) O. There exists a continuum C C(yo) R with the following properties:

(i) ( x,y, ) C implies that ( x,y ) Bp B;- solves system (1) with a( ) ! +
ao(t);

(ii) (O,yo, #o) C, where

(4) /0"- -av( f(t, 0,yo(t)))

(iii) either C is unbounded or ((Yo ) R) t C =/=

(iv) in a suitably small open neighborhood of (0,y0,/o), C=K+ tO K-, where K+ and
K- are continua for which K+ CK- ((0,y0,/0)). The solutions from K+ ((0,Y0,/0))
are positive while those from K--((0,Yo,/0)) satisfy x(t)<0, O<y(t)<yo(t ) for all t.

In the case when "=R" (i.e., when f and g are globally defined) and hence
(yo)-Bp B-1, the second alternative in (iii) is to be ruled out with the result that
(iii) states simply that C is unbounded. This is the case for Volterra type systems in
which the functions f and g are linear in x,y (see [2], [3], [4]). This theorem generalizes
[3, Thm. l(a)].



814 J.M. CUSHING

Proof. Define z=y-yo and let a(t)=l+ao(t) in (1). This results in the system

(a)
(b)

x’-- [l+ ao(t ) +f(t, O,Yo(t))]x + r,(x,z),
z’-- Yo( )^gx( t, O,Yo( ))] x + b( ) + g( t, O,yo( ))]^z

+Yo(t)^[gy(t,O,Yo)Z] +r2(x,z),

where

rl(x,z ) x[f(t,x,z+yo)--f(t,O,Yo)],
rz(X,Z ) z^[gx(t,O,Yo)X+gy(t,O,Yo)Z+r3(t,x,z)] +Yo(t)^r3(t,x,z),
r3(t,x,z) g(t,x,z+yo)--g(t,O,Yo)--gx(t,O,Yo)X--gy(t,O,Yo)Z.

The operators r "f(yo)Bp and rz’f7,(yo)B- are continuous and higher order
than linear near (0, 0) Bp B;-l, i.e., [rl(x, Z)]o and Ir2(x, z)]0,,_ O([x] + ]z[,,_ l),
where Izl0,,_ l-- X--llz,]0.

We wish to formulate (5) as an operator equation to which certain global bifurca-
tion theorems apply. To do this we first choose a real constant c such that

c@av( f(t,O,Yo(t)))
and rewrite (Sa) as

(5a’) x’- [-c+ ao(t ) +f(t, 0,Y0(t))] x + [c + #Ix + rl(x,z).
We are now interested in solving (5a’)-(5b) for positive solutions in Be X B-1.

Let G l(t,s) and G2(t,s) be the Green’s functions for the linear equations

x’- [-c+ ao(t ) +f(t, 0,y0(t)) x,

z’- b( ) + g( t, O,Yo( ))] .z +Yo( ). gy( t, O,Yo( ))z

respectively. G ,(t,s) exists by the choice of c which makes the p-periodic coefficient of
the first (scalar) equation have nonzero average. G2(t,s) exists by H3 since the second
equation is the linearization of (2) at Y=Yo. These Green’s functions define compact
linear operators L "Bp--> Bp and L2 B-l-oB-" by means of the integrals

L,’- foPG,(t,s)(s)ds, lijBp,

L n’- nB2-1.

The system (5a’)-(5b) is equivalent to the pair of operator equations

for (x,z)Bp B-’, where X-c+/ and H, L,r’a,(yo)Bp and

H2 Lr’(yo)B- are completely continuous operators of higher order than
linear near (x,) (0, 0). Equations (6) are in turn equivalent to the equations

(7) x-- hL,x + H,(x,z ), z XL2[ Yo^g/( t, 0,y0 )] LlX+ H3(x,z ),

where H3(x,z ) := L2[Yo^gx(t,O,yo)]Hl(X,z)+H2(x,z) is higher order than linear near
(x, z)- (0, 0). Finally, (7) can be written in the concise form

(8) w=XLw+I (w),
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where w (x, z ) Be B-’, L" Bp B-I Be B-’ is defined by

Lw "--(Llx,L[yo^g(t,O,Yo)]LlZ )
and H’"p(yo)-BpXB- is defined by H(x,z)"- (Hl(X,z),H3(x,z)). The operator
L is linear and compact and H is completely continuous and of order higher than linear
near w 0.

Of course, w 0 is a trivial solution of (8) (which corresponds to the solution x 0,
Y=Yo of (1)). To find nonzero solution we0 of (8), we can use directly the global
bifurcation theorems of Rabinowitz [8], using X (or what amounts to the same tNng )
as a bifurcation parameter (c being held fixed). Specifically, we will use [8, Thm. 1.25,
Cot. 1.12]. To do this it remains to be shown that L has a characteristic value 0 of
odd multiplicity. We will in fact show that L has one and only one characteristic value
and it is real and simple.

The linear equation w=XLw is equivalent to the lineafized, homogeneous p-peri-
odic system obtained by setting r 0, r20 and X-c in (5), namely

(a) x’--[+ao(t)+f(t,O,Yo(tl)]x,
(9) (b) z’-[Yo(t)gx(t,O,Yo(t))]x+[b(t)+g(t,O,Yo(t))]z

This system can be solved for (x,z)Bp Bfl- by first solving the simpler scalar
equation (9a) for p-periodic xBp and then solving (9b) by means of the formula
z=L[%.g(t,O,%)]x. Clearly, x0 implies z0, so (9) has a nontrivial solution if
and only if x 0, which occurs if and only if 0 as defined by (4). Ts shows that L
has a unique characteristic value 0 c+0 wch by definition of c is nonzero.

Finally we argue that -o is simple. Let O@wo-(Xo,Zo)BpBf1-1 be a char-
acteristic solution: Wo-XoLwo. Suppose wBeXBfl- satisfies (1-oL)w-O. We
wish to show that w is a multiple of wo. Let w* := (I-XoL)w. Then (I-XoL)w*=O,
wch implies that w*=mwo for some real mR. Thus w*=moLwo and, hence
W-oL(w+mwo), which implies that w-(x,z)BpBfl- solves the nonhomoge-
neous linear system

x’- [0+ ao( ) +f( t, O,yo)] x + XomXo

z’- ) + t, O,yo + O,yo )z] + Xomzo.

The Fredholm alternative implies that omXo must be orthogonal to the adjoint solu-
tion 1/xo. This means, because )0v0, that m=0. Hence, w*--0 or, in other words,
w--2toLw, which implies the desired result that w is a multiple of wo.

The results (i)-(iii) of Theorem now follow from [8, Cor. 1.12] applied to the
operator equation (8) on the bounded set f(Y0)N S(O), where S(O) is the open sphere
of arbitrary radius #>0, center (0,0) in BpB’,-l. Part (iv) follows from [8, Thm. 1.25]
(also see {}3 below).

While Theorem guarantees the existence of a global branch of p-periodic solu-
tions of (1) in the sense that the branch is either unbounded or reaches the boundary of
the domain of f and g, it asserts the positivity of solutions only on a subcontinuum K+

of the branch lying in a neighborhood of the "bifurcation point" (0,y0,/0). While it is
shown in [8] that C=C+ UC-, C+ f3 C- ((0,yo,/0)}, where C are continua which
are extensions of K+ and K- and that C+ and C- satisfy (iii), it does not follow that
C+ necessarily stays in the positive cone. The question which naturally arises then
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concerns the nature of this maximal subcontinuum C+ containing K+: does C+ lie in
the positive cone or does it "leave" this cone and hence contain nonpositive solutions
of (1)? By "leave" the cone we mean here that the intersection of C+ with the boundary
of the positive cone contains a point other than the bifurcation point. In the latter case
we can, by the positivity property of solutions of (1), distinguish three possibilities: if
C+ leaves the positive cone then there exists a (x,y) C+ for which either

(a) x=0, y=0, or
(10) (b) x=0, O<_ysyo and 0 or

(c) x>0, yi=O for some <_i<_n.

If we define Km+ to be the maximal subcontinuum of C which consists of nonnegative
solutions of (1) and contains K+ then the following is immediate: under the hypotheses
of Theorem 1, either K+ satisfies (iii) or it leaves the positive cone in the sense that K+
contains a solution of (1) of one of the three types in (10).

That Km+ can in fact leave the positive cone is easily established by examples. The
classical Volterra predator-prey equations and Volterra-Lotka competition equations
with constant coefficients and n=2 demonstrate this possibility as do the periodic
coefficient versions of these equations studied in [2], [3]. In these examples, case (10c)
always occurs, i.e., Km+ leaves the positive cone through a solution (x, 0,/*) Bp Bp R,
x >0. We will give below a simple autonomous example to illustrate not only that Km+
leaves the positive cone, but that any of the three possibilities irr (10) can, in fact, occur.
Furthermore, this example will show that the stability of the positive solutions on Km+
can be lost before it leaves the cone. The stability of the positive periodic solutions on

Km+ will be studied in 3 below.
Consider the following autonomous system of two (n--2) equations with constant

coefficients:

(11) x’--x(-/+y), y’--y[(y--fl)(a--y)--x],
>0, fl>0, <B.

This system serves as a model for predator-prey interaction in which the per capita
growth rate of the predator x is an increasing, linear function of prey population size y
and that of the prey is such that the prey zero isocline has a "hump" (see Rosenzweig
[9]). The "hump" lies in the positive quadrant if and only if (a+fl)/2>0. Equations
(1 l) have the form (1) with n 2 and

a(t)=---V, f=--y, b(t)=---afl, g=--(a+fl)y-y2-x.
In Theorem 1, a0(t) --= 0 and -, with

yo(t)=--fl and /0=-fl.
The continuum C of periodic solutions (equilibria in this autonomous example) is
explicitly given by

(12) x(t)=(,-fl)(a-[), y(t)=,, /=-.

Thus, there are three cases.
1) When a-0, the subcontinuum K+ of C given by (12) for 0<,<fl connects the

bifurcation point (x,y,)=(O, fl,-fl) with (x,y,/)=(0,0,0) and hence case (10a) oc-
curs.

2) When a>0, K+ is given by (12) with a<,<fl; it leaves the positive quadrant at
(x,y,) (0, a, -a) and (10b) occurs.
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3) When a<0, K+m is given by (12) with 0<,<fl. In this case, however, it leaves
the positive quadrant at (x,y,/)= (-aft, 0, 0) so that the case (10c) is seen to occur.

One can also show by standard linearization and eigenvalue techniques that when
(ct+ fl)/2>0 the stability of the positive equilibrium (12) is lost as , decreases through
(t + fl)/2 (i.e.,/ increases through -(a + fl)/2) and that a classical Hopf bifurcation
occurs.

It is possible, of course, to set down simple conditions which rule out one or more
of the possibilities in (10). For example, if av(b)v0, then (10a) cannot occur. This is
because if (x,y,,l)K+m are such that (x,,y,/)--, (0, 0,/*),/* R, then by (3)

0- av(b(t) + g(t,x,( t),y,( t))),
which in the limit as n + implies the contradiction that av(b)=0. Also, if the
reduced system (2) has a unique positive, p-periodic solution, then (10b) cannot occur. This
is because (x,,y,,l,)K+ such that (x,,y,,l,)--,(O,y,l*), Y=/=Yo, I* R, implies that
y Bp solves the reduced system, a contradiction.

A simple example of the case when the subcontinuum K+ of positive solutions
does not leave the positive cone is given by

x’=x(-y), eR, y’=y(l+x--y)
for which Y0( ) 1,/0 and Km+ {(/ 1,/, )" > o }.

Not only can C+ leave the positive cone, but it can "leave and re-enter" the
positive cone and it can even do this infinitely often. An example (again autonomous)
is given by the system

x’=x(-y), R, y’=y(x+siny)

for which yo(t)=--r, lo-r and C+- {(-sin/,/,/)’/>r} which yields positive solu-
tions for/((2n-1)r,2nr) for n-1,2,3,.... In this example K+,,- ((-sin/,/,/)
r</<2r } leaves the cone at a solution of the form (10b), namely (0, 2 r, 2 r). Note
that in this case C--{(-sin/,/,/)’/<r} contains no positive solutions. If, on the
other hand, we take y0(t)=2r, /0-2r, then C+- {(-sin/,#,/)’/<2r} and K+=
((-sin/,/t,/)’rr</<2r}. Now C--{(-sin/,/,)’/z>2r) contains positive solu-
tions for/ ((2n- 1)r, 2nr), n-2,3, .

(b) Hypothesis H2 assumes that the reduced system (2) associated with (1) has a
positive p-periodic solution. This hypothesis itself can be fulfilled by use of Theorem
with n replaced by n-1 provided n>_3 and a reduced system of this reduced system
has a positive p-periodic solution satisfying H3, etc. In this way positive p-periodic
solutions of a general p-periodic Kolmogorov system

(13) x;-xihi( t,Xl ,. ,Xn_ ,Xn)
can be built up from a positive p-periodic solution of a single scalar, (n-1)-fold
reduced equation associated with one of the equations, say

(14) x’,-x,h,(t,O,. ,O,x,),
by repeated bifurcations as given by Theorem 1. For this reason it is important to
consider the scalar case n-1, as we do below, in order to start this algorithmic
procedure. The main difficulty in carrying out this procedure is with the assumption H3
that at each step the periodic solution obtained is noncritical. While one can at least say
that this hypothesis is "generic", no simple general criteria exist for testing this hy-
pothesis when n _> 3. In the case of linear functions f and g this requirement can be met
by an assumption of strong diagonal dominance [4]. In {}3 a criterion valid at least
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locally near the point of bifurcation will be obtained (/ 4:0). For n-2 the reduced
equation is a scalar equation and H3 reduces to the nonvanishing of the average of the
coefficient. This case will be considered in 4. We now turn to the scalar case n-- 1.

Consider the scalar periodic equation

(15) y’--y(b(t) + g( t,y ))
under the assumption

H4. g:R(a,fl)-R,-<_a<O<fl<_ +, is continuous in (t,y)R(a, fl), is
continuously differentiable in y (a,/3), is p-periodic in and satisfies
g(t, 0) =--0.

Define fp := (y Bp :y(t) (a, fl) for all t), an open set in Bp which contains
y(t)=--O.

THEOREM 2. Let bo( ) Bp, av(b0) 0, be given and assume that H4 holds. Then
there exists a continuum CCpXR with the following properties:

(i) y, I ) C implies y solves (15) with b( ) bo( ) + l;

(ii) (y,) (0, 0) C;
(iii) either C is unbounded or C f) O(R p) va

(iv) in a suitable small open neighborhood of(0, 0), C K+ tO K-, K+ f)K- ((0, 0)),
where K +- are continua. The solutions from K+- ((0, 0)) are positive while those from
K- ((0, 0) ) are negative.

Proof. This theorem is proved in virtually the same way as Theorem (but with
n-- 1, of course) except that y0(t), the p-periodic solution of the reduced system (2), is
replaced by the identically zero solution of (15) and fl(Yo) is replaced by fp. Other-
wise, the details are the same. V]

If g is globally defined (i.e., (a, fl)= R so that flp=Bp), then the second alternative
in (iii) is to be eliminated with the result that C is unbounded.

As in the case n _> 2, C-- C+ tO C-, C+ fq C- ((0, 0)), where the continua C+ and
C- contain K+ and K- respectively and we again ask whether C+ can leave the
positive cone. By the positivity property of solutions of (15), C+ can leave the positive
cone only if (0,/) C+ for some R,/ 4: 0. But this is impossible, because (0,/) C+

implies that (0,/) is a bifurcation point and, hence, --0 (since w--ALw in the proof of
Theorem and hence of Theorem 2 has only one characteristic value ,0--c, hence
/x 0---0). Thus, under the hypotheses of Theorem 2, C- C+ to C-, C+ C- {(0, 0)),
where C +-- are continua for which C+ ((0, 0)) and C- ((0, 0)} contain positive and
negative solutions of (15), respectively. Both C +- satisfy the alternative (iii) of Theorem 2.
Thus, if + o, then C+ is unbounded. (See [8, Thm. 1.27].)

Define the spectrum Y+ cR associated with C+ to be the range of the projection
mapping C+ R defined, by (y,/)--,/. Thus, for /

+ there exists at least one
positivep-periodic solution of (15) with a(t)-ao(t)+ t. Define S+ CBe to be the range
of the projection C/ - Bp defined by (y,l)--,y. Both + and S/ are continua which
contain/ 0 and y 0 respectively. + is of course an interval which is possibly open,
closed or half openor closed and is possibly infinite. Let R+ denote the positive reals.

Theorems 3-6 give results concerning S+ and the spectrum + of (15).
THEOREM 3. Assume that the hypotheses of Theorem 2 hoM. Suppose that C+ is

unbounded (which happens if fl- + o). Then either S+ is unbounded (which happens if
fl-- + ) or else S+ is bounded in which case the spectrum Y+ is unbounded, fl< + o
and there exist sequences (Yj,t.l,j) C+ and tj [0,p] such that tj-- o [0,p], [Yj[o-- fl and
It.[ / [g(t, ly[0)l--’ / o.
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Let F be the set of all convergent sequences (t.,.) [O,p] (0, fl), 0 < fl_< + de, for
which j--, fl and limg(t.,) exists (but is not necessarily finite). Define ginf, gsup
[-de, + de] by

ginf’--infr(limg(t’,’)}-<SUPr(limg(t’,6j)} gsup.

THEOREM 4. Assume the hypotheses of Theorem 2. Then Y+ is an interval whose
closure contains (-ginf-minbo(t),O] if ginf>_-minbo(t)>_O or [O,-gsup-maxbo(t)) if
gsup -< -max bo(t) _< 0.

Proofs. In everything to follow, if (yj.,/xj.) C+, then t denotes a real number
which satisfies tj.[0,p], yj(tj)=O, y (t )-Iy lo. Since y]/y=bo(t)+l+g(t,yj.(t)) for
all t, it follows that

(16) IXj -bo( tj ) g( tj, ly .l0 ).
Without loss of generality, it is assumed that t.-, t0[0,p]. Suppose that C+ is un-
bounded, which of course implies that either S+ or + is unbounded.

Proof of Theorem 3. If S+ is bounded, then Y,+ is unbounded which means that
there exists a sequence (y.,/.) C+ for which the are unbounded. Choosing a
subsequence if necessary, assume that / Since ly .10 is a bounded sequence, we
can assume (by choosing another subsequence if necessary) that [Y10 o, where o_>0 is
finite and o<_fl. The conclusions of Theorem 3 follow by taking limits in (16) and
noting that if o=/= fl (which happens if fl= 4-do), then a contradiction results because
the limit on the right-hand side would be finite by the continuity of g while I/x.l 4- m.
If fl< + m the only way out of the contradiction is the conclusion that S+ is un-
bounded or that S+ is bounded, but o fl< + m.

Proof of Theorem 4. Using Theorem 2(iii) (for C+) and Theorem 3, choose a
sequence (y,/.)C+ for which "-lY10-* fl-< 4- m- Extracting a subsequence if
necessary assume/--,/* [-m, + do]. From (16)

t* -bo( to ) limg( tj, j ),
and hence Y,+ is an interval whose closure contains both 0 (by Theorem 2(ii)) and/*.
Since

-max b0(t) gsup -</* -< mix bo(t ) ginf,

the result follows.
Example (A generalized logistic equation). Consider (15) when g satisfies H4

with fl= +o. Suppose that g(t,y)<_O for all (t,y)[O,p][O, +) and that
limg(t,j)-- for any convergent sequence (t,.)[0,p][0, + o) for which .-+. Then from the above results we conclude that (15) has at least one positive
p-periodic solution whenever -av(b(t))>0 (see Theorem 4 with gsup--c) which is
unbounded in norm as av(b(t))- + c (Theorem 3). The periodic logistic, in which
g(t,y)---c(t)y, cBp, c(t)>0, is a simple example.

THEOREM 5. Assume the hypotheses of Theorem 2 hoM. If g(t,y) is bounded for
(t,y)[O,p][O, o), then Y+ is bounded.

Proof. (y,l) C+ and (16) imply that ]ttl <_lbolo + maxlg(t,y)].
EXAMPLE 2. Let g(t,y)----c(t)y/(1 +y), CBp, c(t)>0. Then gif -maxc(t),

gsup mix c(t) and (15) has by Theorem 4 at least one positive p-period solution for
b( ) bo( ) + l, av(b0)=0, I [O, min c( ) max bo( )] provided min c( ) >max bo( ).
By Theorem 5 the spectrum Y, + is bounded.
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THEOREM 6. Assume the hypotheses of Theorem 2 hold. Suppose that fl < + and
that the sequence g( tj,) is unboundedfor all convergent sequences (t,) [0,p (0, fl )
for which ft. Then the spectrum E + is unbounded and S+ is bounded.

Proof. Since yS+ implies [y[0<fl, S+ is bounded. Suppose that E + is bound-
ed. Then C+ is bounded, and by Theorem 2(iii) applied to C+, it follows that C+

O(fp R) v . Thus, there exists a sequence (yj., j) C+ for which j. -[Y10 /3. From
(16) and the stated hypothesis on g, it follows that is unbounded, a contradiction to
the boundedness of E +.

Example 3. Let g(t,y)=-c(t)tany, O<c(t)Bp. Then a=-r, fl=r and Theorem
6 implies that E + is unbounded and S+ is bounded. Since gsup-- Theorem 4
implies that there exists at least one positive p-periodic solution of (15) when
av(b(t))> 0. Theorem 6 shows that for a sequence - av(b(t)) + there are solu-
tions y; Bp, yj.(t) > 0, of (15) for which [Yg[0 r.

3. Local analysis and stability. In this section the (local asymptotic) stability of the
p-periodic solutions of (1) lying in a neighborhood of the bifurcation point (x,y,)=
(0,y0,0) will be studied as it depends on the bifurcation parameter/= av(a). Both the
solutions (0,y0,/), /z R, and those lying on C in a neighborhood of the bifurcation
point (0,y0,/0) will be considered.

THEOREM 7. Assume HI, H2, H3 hold and that n>_2, but with the added assumption
that f and g are twice continuously differentiable in x andy.

(i) If one of the Floquet exponents of the linearization of the reduced system (2) at
yo( ) has positive real part, then ( x,y) (O,yo ) Bp B- is an unstable solution of (1)
( for any a Bp).

(ii) If all Floquet exponents of the linearization of (2) have negative real parts, then
( x,y ) (O,yo) Bp B- is (locally uniformly asymptotically) stable as a solution of (1)
when/-- av(a) </0 and is unstable when >/x0 (where o is given by (4)).

Proof. The linearization of (1) at (x,y)=(O,yo) yields the linear system (9), a block
triangular system whose Floquet exponents are those of the reduced system (2) plus

avs(/+ ao(t ) +f(t, 0,y0(t)) ) =/-/x0

The theorem follows from standard linearization theorems for periodic systems of
ordinary differential equations. U]

In order to study the stability of the solutions of (1) lying on the bifurcating
branch C near the point of bifurcation, Lyapunov-Schmidt small parameter expan-
sions of the solutions and their Floquet exponents will be made. Thus,

(17)
+ +

y( ) --Y0(t) +y,( )e +yz( )e2 +Y3(t, e)e2,

where Ix3(t, e)]0-- o(lel), ly3(t, )lo,,-1-- O([EI) and I/,a(e)l o(1 1). To rigorously estab-
lish that the solutions_ on C near the bifurcation point (0,y0,/,0) corresponding to e=0
have the form (17) is a routine application of classical Lyapunov-Schmidt techniques
and will hence not be given here. To do this requires two continuous derivative for f
and g. (See [5], [6] for abstract theorems particularly suited to the operator formulation
of (1) given in the proof of Theorem which establish the validity of (17).) The plan
here, of course, is to determine the lower order coefficients Xl, Yl and /*1 in the
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expansions (17) and then in an expansion for the Floquet exponents of the solution
(17). This is done by substituting (17) into (1) and equating coefficients of like powers
ore.

The lowest order terms in e in (1) yield the reduced equation (2) which is satisfied
by yo(t) by definition. The first order terms in e yield the linear system (1) with IX--Ix0:

(18) (a)
(b)

x’- Xl[ix 0 + ao(t)+f(t, 0,yo(t))],
y-[yo(t)^gx(t,O,yo(t))]x +yo(t)^gy(t,O,yo(t))Y

+[b(t) -t- g( t, 0,y0(t))]^y

for (x,y)BpB-. Thus

x,(t)-exp(fot[Izo+ao(s)+f(s,O,Yo(S))]ds)>O,
(19)

yl(t) fPGz(t,s)[yo(s)^gx(s, 0,yo(s))] x,(s) ds.
o

Finally, the second order terms in e from (1 a) only yield the scalar equation

x’2--x2[IX o + ao(t) +f(t, O,Yo(t))]
+x(t)[ix +f(t,O,Yo(t))x(t)+fy(t,O,Yo(t)).Yl(t)]

for x2 Bp. This equation is a nonhomogeneous version of (18a) and consequently the
nonhomogeneous term must be orthogonal to the adjoint solution 1/x(t). This ortho-
gonality condition yields a formula for IX:

(20) IX,- -av[ fx( t, O,Yo( ))Xl( ) +fy( t, O,Yo(t)).Yl(t)].
The sign of Ixl determines the local "direction" of bifurcation of the branches K+ and
K- (given by e>0 and e<0, respectively) in Theorem 1. This is provided IX 4:0, of
course.

Let N(0) denote the open ball in B B2-1 R of radius O > 0 and center (0,Yo, Ixo ).
TUEOREN 8. In addition to the hypotheses of Theorem 7, assume IX 4=0. There exists

a O >0 such that the following statements hold:
(i) (x,y, ix) C +/- f3N(o) implies sign(ix-ixo)= +-signix.

(ii) If at least one Floquet exponent of the linearization of the reduced system (2) at

yo(t) has a positive real part (hence, yo(t) is an unstable solution of (2)), then for
(x,y, ix)C+/-N(o)-{(O,yo,ixo)} the solution (x,y)BB-1 of (1) with a(t)-
ao(t) + IX is unstable.

(iii) On the other hand, if all Floquet exponents of the linearization of (2) at Yo(t)
have negative real parts (hence, Yo(t) is a stable solution of (2)), then for (x,y, ix)C+

N N( 19 ) { (0,Yo, IX o ) the positive solution (x,y ) Bp XB- of ) with a( ) ao( + Ix
is:

(locally uniformly asymptotically) stable if IX > O,
unstable if IX < O.

For the nonpositive solutions from (x,y, IX) C- A N(O) ((O,yo, IX o) }, the inequalities
are reversed.)

Proof.
(i) This follows immediately from (17) and x l(t) > 0.
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(ii) The linearization of (1) at the branch solution (17) yields

z t+ ao( ) +f( t, x,y ) + Xfx( t, x,y )] z + [Xfy(t, x,y )]
(21) z- y^gx( t,x,y)] z, + [b(t) + g( t,x,y )] ^z2 +y^ gy( t,x,y)z]
where Zl(t ) is a scalar valued function and z2(t ) is an (n-1)-vector valued function.
The stability properties of the branch solutions (17) are determined by the Floquet
exponents of (21) which, because the coefficients of (21) depend on e through (17), are
functions of e. For e=0, (21) reduces to (9), which has by assumption a Floquet
multiplier with positive real part. Thus, (21) has such a Floquet exponent for suffi-
ciently small e.

(iii) In this case (9) has n-1 Floquet exponents with negative real parts. The
remaining exponent is av(to+ao(t)+f(t,O,yo(t)))=O. Our problem is to determine
where in the complex plane this latter Floquet exponent is located for small le >0.

Now e is a Floquet exponent of (21) if and only if the linear homogeneous system
for (z,w)U_BpXB-l,

(a) z’-[l+ao(t)+f(t,x,y)+xfx(t,x,y)-e]z+[xfy(t,x,y)]w
(22)

(b) w’-[y^gx(t,x,y)]z+[(b(t)+g(t,x,y)) o I+yo gy(t,x,y)-eI]w,
has a nontrivial p-periodic solution. Here I is the (n 1) (n 1) identity matrix. (See
the Appendix.)

The coefficients of (21) are at least twice continuously differentiable in e and
consequently so is e e(e). We write

(23) e=e(e)=ee+e2(e)e, ]e2(e)]-- O(le )
for that exponent which vanishes at e =0 and look for a nontrivial p-periodic solution
of (22) of the form

Z--Zl(t)+z2(t)e+z3(t,e)eG--Bp, I10-- O(11),
(24)

w-w,(t)+w2(t)e+w3(t,e)eB,-’, IW3lo,n-,-O(lel).

It is a straightforward application of Lyapunov-Schmidt methods to show that (22) has
a nontrivial solution of the form (24) for e given by (23) and, hence, these details will
not be given. Instead, only enough coefficients in these expansions will be calculated in
order to find a formula for the crucial coefficient e l-

Substitute (23) and (24) into (22). The lowest order terms yield a linear system
identical to (18) and hence z =xl and w =y as given by (19). The coefficients of the
first order e terms in only equation (22a) yield the scalar, linear nonhomogeneous
equation

z-- [/o+ ao(t) +f(t, O,Yo(t)) z2 + [x,(t)fy(t, O,Yo(t)) "Yl

+ [I, +x(t)fx(t,O,Yo(t))+Yl(t)’fy(t,O,Yo(t))+Xl(t)fx(t,O,Yo(t))--e]xl(t)
for z. Bp whose nonhomogeneous term must be orthogonal to the adjoint solution

1/x(t). Making use of the definition (20) of /, one finds that this orthogonality
condition reduces to

av[ y,( ) fy( t, O,yo( )) + Xl( )fx( t, O,Yo( )) eli --0



PERIODIC KOLMOGOROV SYSTEMS 82:3

or e--IX1. Thus for small [e we have from (i) that

sign e (e) sign e sign IX sign( IX IX 0 ).
Since the branch solution is stable for e(e)<0 and unstable for e(e)>0, the result
follows.

Note that when IXl 4:0 and the Floquet exponents of the linearization of the
reduced system (2) have negative real parts, then Theorems 7(ii) and 8(iii) show that a
typical "exchange of stability" from the "trivial" solution (0,y0) Bp B;- to the
branch solutions as the bifurcation parameter IX increases through the critical value

It also follows from Theorem 8 and its proof that the solutions on the bifurcating
branch C are noncritical, at least in a neighborhood of the bifurcation point (0,y0,ix0),
provided IX 4:0. As discussed in the previous section, this fact allows the repeated
application of Theorem in order to build up periodic solutions of general periodic
Kolmogorov systems (13).

The scalar case (15) is easier to consider. The Lyapunov-Schmidt expansions

(25)
Y( ) =yl( )e+Y2( t’ e)e’

substituted into (15) with b(t) bo( ) + IX, bo Bp and av(b0 ) 0, yield

(26) yl(t)-exp fotbo(s)ds] aV gy( O)Y ( )

A linearization of (15) at (25) yields

z’- [b(t)+g(t,y)+ygy(t,y)] z,

whose Floquet exponent is

av[b(t) + g(t,y) +ygy(t,y)] -ixe + O([e[2).
Let N(O) denote the open ball in Bp of radius 0 centered at 0.

THEOREM 9. Assume that H4 holds and that av[ gy( t, 0) exp( fd bo(s ) ds )] 0.
(i) The trivial solution y =--0 of the scalar equation (15) is (locally uniformly asymp-

totically) stable if tx- av(b ) < 0 and unstable if IX av( b) > 0.
(ii) There is a p>0 such that if ( y, IX) C+ fq N(p) { (0, O)} the positive solution

yBp of(15) with b(t)-bo(t)+ix is:

(locallyuniformlyasymptotically) stable ifav[gy(t,O)exp(fotbo(s)ds)]<O,
unstableifav gy(t,O)exp(fotbo(s)ds)]>O.

(For the negative solutions from ( y, ix ) C-N(p)-((0,0)}, the inequalities are re-

versed.)
The hypotheses of Theorems 8 and 9 require that IX v0. If IX should equal zero,

then coefficients of higher order terms in the e series expansions of the solution, the
bifurcation parameter IX and the Floquet exponent e would have to be computed in
order to determine the direction of bifurcation and the stability of the bifurcating
solution branch. While this is in principle a straightforward repeated application of the
Fredholm alternative, it quickly becomes tedious in a general setting. Although for
special cases (such as the case when the lowest order terms in f and g are of order _> 2)
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one can without too much difficulty write formulas for these coefficients, we will
refrain from doing so here.

4. Systems in the plane and applications to theoretical ecology. In the subject of
theoretical ecology, systems in the plane are of fundamental importance. It is, thus, of
interest to consider the results of the previous sections for the special case n 2 and to
apply them in particular to the basic types of systems which model the ecologically
fundamental predator-prey and two species competition interactions.

(a) Planar systems. Consider the pair of scalar equations

(27) x’-x[a(t)+f(t,x,y)], y’:y[b(t)+g(t,x,y)]
and the related reduced equation

(28) y’--y[ b( + g( t, O,y )]
Assume that Y--y0(t)Bp is a positive nontrivial solution of (28). Theorems 2-6 and 9
apply to the question of the existence of y0(t)- In order to apply Theorems 1, 7 and 8
with n-2 to (27), the hypothesis H3 of noncriticality must be met by y0(t). Since the
reduced equation (28) is scalar, y0(t) is noncritical if and only if

(29) av[yo(t)gy(t,O,yo(t)) 4:0.

The following theorem summarizes the application of Theorems 1, 7 and 8 to the
planar system (27).

THEOREM 10. Assume that H1 holds with n--2. Assume further that the scalar
equation (28) has a positive solution 0 <y0(t) Bp for which (29) holds.

(i) Then the conclusions of Theorem hold (with n 1) for (27).
(ii) Assume that f and g are twice continuously differentiable in x andy. If

(30) av[Yo(t)gy(t,O,Yo(t)) >0,

then (0,y0)Bp Bp is an unstable solution of (27). On the other hand, if
(31) av[yo(t)gy(t,O,yo(t)) <0,

then (O,Yo) CBp Bp.is an unstable solution of (27)for /z-av(a)>/0 "=

-av(f(t,O,yo(t))) and is a (locally uniformly asymptotically) stable solution for/z</ 0.

(iii) Suppose that l 4:0 (where l is given by (20)). Then there exists a p>0 such
that (x,y,l)C +- AN2(o ) implies sign(/--/z0)-- +signp; (30) implies that solutions

(x,y)CBpBp of (27) corresponding to (x,y, lz)C +- ANz(p)-((O,yo,lZo) ) are unsta-
ble; and (31) implies that positive solutions (x,y)BpBp of (27) corresponding to

(x,y, lz)CC+ Nz(p)-((O,Yo,lo) ) are unstable for /z<0 and (locally uniformly
asymptotically) stable for lz > O. (For nonpositive solutions from C- N2( O ) ((O,yo, o))
the inequalities are reversed.)

(b) Applications. We consider (27) to be a model of the growth of two interacting
species whose population densities are given in some units as functions of time x-x(t),
y -y(t). The p-periodic coefficients a(t) and b(t) represent the inherent growth rates of
each species x and y respectively in the absence of the other and in the absence of any
self-inhibitory effects on its own per unit growth rate. The functions f and g, which are
assumed globally defined and twice continuously differentiable in x and y, describe
what effects that interspecies and intraspecies interactions have on per unit growth
rates.

Assume that at least one of the species, say y, has a positive average inherent
growth rate: av(b(t))>0, so that it will, in the absence of inter- and intraspecies effects
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on growth rates (g0), exhibit unlimited growth. Furthermore, assume that at all
density levels an increase in population density y never results in an increase in per unit
growth rate of y (in the absence of x):

(32) gy(t,O,y)<_O (-0).
Finally, assume that the reduced equation (28) has a positive p-periodic solution

Yo(t)Bp (see Theorems 2-6 and 9). It follows that (31) holds and, hence, yo(t) is
stable, that is species y has a stable periodic "carrying capacity" in the absence of
species x.

An example is the periodic version of the famous logistic equation in which
g( t, O,y -y/K( ), 0 <K( ) Bp, which because it is integrable in closed form is easily
seen to have a unique, positive globally stable p-periodic solution. Another example is
the generalized periodic logistic considered in Example of 2.

Of interest are the questions of the existence and stability of positive solutions of
the system (27). From Theorem 10 we find that a global branch C+ of solutions

(x,y)BpXBp for which a(t)=ao(t)+l, aoBp and av(a0)=0 bifurcates from the
solution (O,Yo)BpBp at/=/0 := -av(f(t,O,Yo(t))) and that (0,y0) suffers a loss of
stability as/= av(a) increases through/0. The branch consists, at least locally near the
bifurcation point, of positive solutions which are stable if/l >0 (see (20)), in which
case the bifurcation is "to the right" (i.e., #>/0 on the branch) and unstable if/z <0,
in which case the bifurcation is "to the left". From the discussion in 2, we conclude
that the global branch C+ can leave the positive cone but only at solutions of the form
(x,y,l)=(O,y,l), 0<yvy0, or (x,0,), x>0, and that not all positive solutions from
the branch C+ need be stable. (Note: all of the above holds if (32) is replaced by the
weaker assumption (31).)

Predator-prey systems. Let x denote a predator species which preys on species y.
The restrictions

fx(t,x,y)<--O, fy(t,x,y)>O (-0), gx(t,x,y)<--O (0)
(33)

forx>0, y>0 and allt[0,p]

reflect the situation that an increase in predator density decreases the per unit growth
rate of both the predator itself and the prey while an increase in prey density increases
the predator’s per unit growth rate at each instant of time.

Since the inequality (31) implies that the Green’s function G2(t,s ) is strictly
positive (see the proof of Theorem in 2), it follows from (19) and (33) that y(t)<0
for all t. Since x(t)>0 (see (19)) the formula (20) shows, together with (33), that/ >0.
(Note that (33) is sufficient, but not necessary for/z >0.)

Thus for such predator-prey systems there is an exchange of stability from (0,y0(t))
(whose stability implies predator extinction) to the positive, p-periodic branch solutions
(whose stability imply the stable coexistence of the prey and predator) as /-av(a)
increases through io.

If we also assume that

av[ f(t,O,Yo(t))] >O,
then /0<0. Thus, near bifurcation, that is, for /<0 close to 0, it follows that
/--av(a)<0 or, in other words, that the predator has a negative average inherent
growth rate and would go to extinction in the absence of the prey.

Note that since y(t)<0 the prey density satisfies y(t)<yo(t for all (see (17)).
Thus, near the bifurcation point the prey and the predator coexist, but do so in such a
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way that the prey’s density is at all times less than what it would be in the absence of
the predator.

A classical example would be the periodic version of the famous Volterra-Lotka
system in which

f(t,x,y)---cl(t)X+CE(t)y, g(t,x,y)---c3(t)x-c4(t)y,
c (t) O

to which all of the above applies. For a more detailed analysis of this specific example
see [2]. Also see Bardi [1].

Two-species competition. Assume av(b)> 0. The restrictions

fx(t,x,y)<_O, fy(t,x,y)<_O (0), gx(t,x,y)<--O (0),
(34) gy(t,x,y)<_O for allx>0,y>0 and t[0,p]

describe a case in which increases in either species density results in a decrease in both
species’ per unit growth rates at all times. If

av[ f(t,O,yo(t))] <O,
then/0>0, which implies that near bifurcation =av(a)>0 and species x (and hence
both species) have unlimited growth in the absence of both inter- and intraspecific
competition.

The direction of bifurcation is in this case indeterminate since the sign of/l can be
either + or under assumptions (34). Note that again y(t)<0. In fact, the quantity
/ is precisely that which distinguishes between the case of stable coexistence and of
competitive exclusion. It is the natural generalization to the periodic case of the
determinant of the community matrix which accomplishes this same task in the autono-
mous case of the famous Volterra-Lotka competition model (in which f and g are
linear in x and y) upon which the idea of the principle of competitive exclusion is
theoretically based. This determinant, in fact, identically equals /l when the above
analysis and formulas are applied to this special autonomous case. For a more complete
discussion of the periodic Volterra-Lotka competition equations see [3]. Also see [7].

Thus under the general assumptions (34) two competing species can coexist if the

bifurcation in Theorem 10 is to the "right" but do not coexist and suffer competitive
exclusion if the bifurcation is to the "left ".

Appendix. Let A(t) be a continuous, p-periodic n n matrix valued function and
consider the two systems

x’(t):A(t)x(t),
y’(t): [A(t)-,I] y(t),

where I is the n n identity matrix.
PROPOSITION. X is a Floquet exponent of (,) if and only if (**) has a nontrivial

p-periodic solution.

Proof. Let X(t), Y(t) be fundamental matrices of (,) and (**), respectively, which
satisfy X(0)-- Y(0) I. Define Z(t) X(t) exp(-t). A straightforward calculation
shows that Z(t) satisfies (**) and Z(0)= 1. Thus,

Y(t)--X(t)exp(-,t).

First suppose that 2 is a Floquet exponent of (,); that is, exp(p) is an eigenvalue
of X(p). Let vv0 be a vector such that X(p)v=exp(p)v and define y(t) := Y(t)v.
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By definition, y(t) is a nontrivial soluton of (**). Moreover, it is p-periodic because

y(p)-- Y(p)v=exp(-?p)X(p)v=exp(-?p)exp(,p)v=v=y(O)
by (f).

Conversely, suppose that (**) has a nontrivial p-periodic solution y(t). Then
y(t) Y(t)v for some v :/: 0. From (f)

X( p)= exp(,p ) Y( p )v= exp( Xp )y( p )--exp( ?p )y(0)= exp(p)v,
so that X is a Floquet exponent.
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ASYMPTOTIC STABILITY
AND THE METHOD OF ITERATED AVERAGES

FOR ALMOST PERIODIC SYSTEMS*

STEPHEN C. PERSEK"
Abstract. New stability methods are developed for a class of nonperiodic systems that include a large

general class of almost periodic systems. Estimates of global domains of stability and rates of decay on these
domains are obtained. Examples of chaotic motion and strange attractors are treated.

1. Introduction. On the interval O_<t< oo consider ’he initial value problem

dw
eE( w, x,z, t, e), w],=o wo + ewe(e),(la, 2a) dt

(1 a, 2b)
dx

eF( w, x, z, t, e), xlt:0 xo + ex( e),
dt

(lc, 2c)
dz
--.=Az+eH(w,x,z,t,e), zlt=o-Zo+ezl(e),

where e>0 is a small scalar and A in Rnn is a constant matrix and where w in Rk x in
R and z in R are column vectors. We assume that each eigenvalue of the matrix A has
a negative real part and that the vector functions E and F enjoy some degree of
periodicity in to be stipulated later.

Now assume that the averages of E and F with respect to exist for z-0 and e-0,
and denote these averages by E(w,x) and F(w,x), respectively. By replacing eE, eF
and Az +eH in (la, b, c) with eE(w,x), eF(w,x) and Az, respectively, Bogoliubov and
Mitropolskii [1] obtain an approximating system and show that if the appproximating
system has an asymptotically stable rest point, then system (la, b, c) is asymptotically
stable in the vicinity of the rest point. And for periodic systems, W. Loud and P.
Sethna [14] extend this to a global result. Also in this regard, see A. Lazer [13] on the
computation of periodic solutions. Finally, for almost periodic systems, J. Hale [3, pp.
113-169] treats local asymptotic stability of integral manifolds, and D. Gilsinn [2] then
obtains the corresponding global result.

However, these averaging methods fail to provide significant results when E(w,x)
-----0. For E(w,x)--O, we single out three cases of interest. The first case involves
(la, b, c) as a periodic system with a periodic solution. The stability of such a periodic
solution can then be explored by the stability methods of S. Persek [7], [8]-although in
some situations, it may be enough to apply Lyapunov’s direct method (see T. Yoshizawa
[11]) or Hopf bifurcation theory (see J. Marsden and M. McCracken [4]). The second
case involves (la, b, c) as a periodic system with chaotic nonperiodic solutions. The
stability of such nonperiodic solutions can be treated by the approach given in S.
Persek [9]-although Lyapunov’s methods may be sufficient in special cases. We note
that chaotic nonperiodic solutions that are stable are called strange attractors (see C.
Marzec and E. Spiegel [5], F. Moon [6] and Y. Ueda [12]).

The final case we mention (to be the subject of this paper) involves (la, b, c) as a
system with only limited periodicity; i.e., E and F are nonperiodic finite sums of

Received by the editors March 10, 1981 and in revised form September 29, 1981.
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periodic vector functions. To treat the stability of solutions to such systems, we develop
iterative methods that apply when E(w, x)--0. And examples will be provided illustrat-
ing chaotic stable nonperiodic solutions to such systems--solutions similar in behavior
to the strange attractors mentioned earlier.

2. Preliminaries. Let Dw, Dx, D be convex bounded open sets in Rk, Rt, Rn,
respectively; let Sw, Sa, Szobe open sets having their closures contained in Dw, Dx, Dz,

respectively; and let Sw, Sx, z (with z-0 in z) be respective subsets of Sw, Sx, Sz.
Choosing eD>0, define the set D consisting of points of the form (w,x,z,t,e) by"

D-DwDxDz [0, z) [0,eD].
In this paper the pointwise norm of any vector (t) with components .(t) will be given
by I(t)l- Z[(t)[, and the pointwise norm of any matrix A(t) with scalar entries

Aij.(t) will be given by ]1A(t)]]-maxyYi[Aiy(t)]. We now require:
Hypothesis H1. (Quasi-periodicity). The vectors E and F in (la), (b) can be repre-

sented as a finite sum of vector functions

i--1

F(w,x,z,t,e)- Fi)(w,x,z,t,e),
i--1

where for z-0 and e-0, each vector function pair (Ei),Fi)) is periodic in with a
period Pi independent of w and x. The periods Pi may be rationally independent of one
another.

Hypothesis H2. (Smoothness, boundedness). H and each E/) and Fi) are assumed
bounded on the set D, with smooth and bounded derivatives on D up to at least third
order. Furthermore, the real part of each eigenvalue of the matrix A is assumed to be
negative. And finally, the norm of (Wl(e),x(e),Zl(e)) in (2a, b,c) is uniformly bounded
by a fixed constant for O--eeD.

Now if we let V(t,s)-e n(t-s), then by Hypothesis H2, constants Kn and >0
exist such that

V( t,s )ll <--Ke -t-s)

for O<__s<_t< . Moreover, with y_>0 any number, we define the vector averages E and
Fby

E(w,x) lim fvtF(w,x,z,s,) o,__ods
t--,o t-’

F(w,x)- lim (w,x,z,s,e =o,=ods.

And_since the point (w,x,z,t,e)lz=O,= o will be abbreviated from now on as (w,x,t), E
and F can be written in the form

fEE (w,x)- lim (w,x,s)ds

P(w,x)-_lim t-’l fF(w,x,s)ds.
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Hypothesis H3. (The iterated or nonlinear average E*). Assume that E(w,x)--0.
With E/(w,x) and E/z Jacobian matrices, we further assume that the limit

t-+ m )’ -i-i-x-j dr
F( w, x, s )

+lim fv’(OE) {fv’ ds

+lim f,(OE
exists independent of 7_>0, as a bounded C2(W,X) function with bounded derivatives
on D Dx. We also assume that each separate term used to evaluate E* approaches its
particular limit uniformly in ( w, x, 3’) at the rate O( 1/(t 3’)).

We now introduce the iterated-average system corresponding to (1, a, b, c), (2a, b, c):

(3a, 4a) do=e2ff,*(O,q,), iOlt=0-- W0dt

(3b, 4b) d/=eff(p,/), lt=0--X0,dt

(3c, 4c) a___ Af, ’l/=o- Zo,dt

and will require that (3a, b, c) has a stable rest point.
Hypothesis H4. (Existence of a stable rest point). We assume that (3a, b, c) has a

rest point (p(0), +(0), 0) that is an interior point of the set wox z- We further assume
that for 0<e_<eo and for all initial values in S S z, each solution
(0(t, e), q(t, e), ’(t, e)) of (3a, b, c), (4a, b, c) remains in S S S for 0 _< < and
approaches (0(), q(), 0) as m.

We now consider the variational system

dt
e e ---x-

O

with Ult=,--Ik+ (the identity matrix in R(k+l)(k+t)), and write its solution U(t,s) in
the block matrix form

U(t,s)- (Ull(t’s)g21(t,s)
gl2(t,s)

Hypothesis H5. (Regularity of OE*/O(w,x)). We assume that the limit taken in
Hypothesis H3 and the use of the operator 3/3(_w,x) are interchangeable operations,
and that each separate term used to evaluate 3E*/3(w,x) as a limit, approaches its
particular value at the rate O( 1/(t 7)), uniformly for ( w, x, 3’) in D D O, oo).

Hypothesis H6. (Exponential asymptotic stability). Positive constants K
and r are assumed to exist, independent of s and e and independent of all O(t, e) and
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+(t,e) described in Hypothesis H4, such that for O<_s<_t< , 0<e_<eo.
11U (t,s)ll / Ul2(t,s)ll / 11U21(t,s)ll <--KEe-=u-s),

U22(t,s )11 <--eKee -2x:(t-’) + KFe-eAF(t-s)

It should be noted that the validity of the last hypothesis can be checked easily in
many cases--for example, if either

OE* O/V
ax =0 or -w-O.

In fact, Hypothesis H6 usually holds in the vicinity of stable rest points of (3a, b, c).

3. Previous and new results. The following theorem has been proved in S. Persek
and F. Hoppensteadt [10] and will be needed in the proof of our stability result:

THEOREM 1. Let Hypotheses H1-H4 and H6 hoM for the initial value problem
(la, b,c), (2a, b,c) with (w(t,e),x(t,e),z(t,e)) a solution for 0<e_<eo, and let
(p(t,e),(t,e),(t,e)) be a solution to the initial value problem (3a, b,c), (4a, b,c) for
0<eo__<eo; Then constants K*,e* >0 exist (with values depending on the sets D, SwSx
Sz, Sw Sx z and on the bounds in H1-H4, H6) such that for 0<e_<e*, the solutions
(w(t,e),x(t,e),z(t,e)) and (p(t,e),p(t,e),(t,e)) exist on 0t< o, and

sup (Iw(t,e)-O(t,e)l+lx(t,e)-q(t,e)l+lz(t,e)-(t,e)l } <-K*e
0_<t<o

independent of the initial values (Wo,Xo,Zo) in wLz chosen.
We will follow with the main result of this paper, which basically states that all

solutions to system (la, b,c) are exponentially asymptotically stable if their initial
values lie in the region of attraction of an exponentially asymptotically stable rest point
of the corresponding iterated-average system.

THEOREM 2. Let Hypotheses H1-H6 hold for the initial value problem (la, b,c),
(2a, b, c), with (w*(t, e), x*(t, e), z*(t, e)) a solution on 0 <_ < o, 0< e <_ e*, where

(w*, *, z*) I,_o- (Wo + w,(),o+,(),Zo+ z,()).
Let (w#(t,e),x#(t,e),z#(t,e)) satisfy (la, b,c) on 0_<t< o, 0<e_<e* with

(w,,z)l,_o-(Wg +w,(), +(),Z*o +,()),
where (w*,x,zg), as well as (Wo,Xo,Zo), lie in wx;z For fixed N2>0, assume
that I(w(e),x(e),z(e))l<_N2 and I(w(e),x(e),z*(e))[<_N2 on 0<e_<e*. Then con-

stants /,>0 exist depending on ,’wXxX,’z and N2 but not on the choice of
(w*,x*,z*)lt=o or (w#,x#,z#)l,_o such that for all 0_<t< o, 0<e_<-

Iw( t, ) w*( t, )1 + Ix=( t, ) x*( t, )1 + Iz#( t, ) z*( t, )1-<&-’::’/.

4. Applications. We now consider illustrations.
Example 1. With a,b, a and fl constants and with w, w2 and w scalars, consider

the almost periodic system

dw

dw
dt

ew32(2- w2 w22 ) sin t,

=ew(w2 -w)sinrt,

cos + 2eflw,w2 cos rt + caw cos fit + ebw(4w, w ) sin ft,
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where f is constant and =/=0, or r. With (01,02,P3) corresponding to (wl, w2, %), we
obtain the iterated-average system

dt r

2 82dP3-ezp
dt

Provided a>0,/3>0 and ab/f>O, the (Pl,P2, P3) system has stable rest points located
at (1, 1,2) and (1,-1,2) and (-1, 1,-2) and (-1,-1,-2). With Re the real part of a
number, set

O<he<min 4b, 2a + 4fl,
n.

Re/4ae 48aB t- 16B,,2
2

and consider a bounded domain of stability for each of the rest points. Then by
Theorem 2, constants / and >0 exist such that if w#(t,e) and w*(t,e) are any
solutions of the (Wl, w2, w3) system starting in the same domain of stability at t-0, then

for 0_<t< oe and
We also consider the (101,02,03) system rest points located at (v-,0,

2/[1-f/(rab)]) and at (-v,O,-2/[1-fl2/(rab)]) which are stable provided
that a(1 flf/(rab))> 0, aft< 0 and ab/2> 0. Choosing a value for E by setting

O<Xe<8 1----ab min 2 ab )
we consider a bounded domain of stability for each of the two rest points. Then by
Theorem 2, constants/ and g>0 exist such that, for any solutions w*(t,e) and w*(t,e)
of the (w, we, w3) system both starting in the same domain of stability at t-0, it
follows that

for 0_<t< oe and 0<e_<g.

Example 2. With w, w2, x and z as scalars, consider the system

dw
dt e(3Wl nt- we cos rt+ ezw cos t,

dw2 e(w we ) sin rt- ezwe sindt
dx e( WlW2 X2 ) COS2dt
dz=-z sin .
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With (Ol, 02, +, ’) corresponding to w w_, x, z), we have the iterated average system:

132 132dl01--_ (iDl- tO2)--- iD, ( iD21 -+" iD
2 )dt 2 r 2

dP2_ 132 132
a--7-2-; + +

d 13 d’ _..
dt - ( p102 / 2 )

Then the (0, 02,,’) system has two stable rest points located at (2/(5rr), 18/(5rr),
6/(5rr),0) and at (-2/(5r),-18/(5r), 6/(5rr),0). Moreover, a bounded do-
main of stability exists for each of these rest points such that Hypothesis H6 is valid for
all (01,02, , f) solutions starting in that domain. Hence, by Theorem 2 constants/ and
>0 exist such that any two solutions (w*,w*,x#,z#) and (w,w,x*,z*) to the
(w, w2, x, z) system, which start in the same domain of stability at 0, satisfy

IwT( t, ,,
_qt_ IX#( t, 13) X*( t, 13)1 At- IZ#( t, 13) Z*( t, 13)1 -e22tEt/2

for 0_< < m and 0 < 13_< , where )t u is from Hypothesis H6.
Example 3. Consider nonautonomous systems of the form

aw
=13 X f( WI’ W2 sin aat +e 2 ga( WI’ W2 ) COS

dt
=13 hl( Wl W2 ) sin at +13 r( wl w2 cs falt’

where the sums consist of finitely many terms and where the constants ft can be
rationally independent from one another. Replacing the arguments (wl, w2) in f/, g/, h/
and r with (01,02), we obtain the iterated-average system

dPl_e2 { O Og# O_h# 0g}d, -2 g gB--+rB 0O 0O

As an illustration consider

dWl
dt ew2 sin at + ew2 cos at + e(w 2WlW2) sin + e(aw + w2) cos t,

dw2 e(Wl + 2w) sin at + e(4Wl + 2w) coset

+e(w- 2WlW2 sin + e(w + 2w2) cos t,

where a is irrational. The corresponding iterated-average system is given by

dPl 32 do2- 3E2 (2pl- P2d 20,(1-a01), -2
For a>0, the (01,02) system has a stable rest point at (,). Consider a bounded
domain of stability for the rest point and choose a positive constant Xu<3/(2a). Then
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by Theorem 2, constants/ and >0 exist such that if w#(t,e) and w*(t,e) are any
solutions of the (w, w2) system starting in the domain of stability at t-0, then

Iw( t, ) w*(t, )1-<

for 0_<t< and 0<e_<L Note that the constants ,e, / and may depend on the
particular (irrational) value of f that has been chosen.

5. Proof of Theorem 2. With (O(), q(0), 0) the rest point of Hypothesis H4, we will
first show that any two solutions to system (la, b, c) that approach the vicinity of the
rest point thereafter exponentially decay into one-another. Theorem will then be
applied to show that any two solutions of system (la, b, c) starting in the region of
stability of the iterated-average system (3a, b, c) approach the vicinity of the rest point,
and while doing so, their difference is majorized by an exponentially decaying function.

Because Theorem will be used here, we note that it was proved in [10] under a
less restrictive version of our present Hypothesis H3, and therefore only for the initial
value problem on the interval 0_<t< c. Using the present version of Hypothesis H3,
Theorem and its proof are easily generalized to apply to the initial value problem but
now on an arbitrary interval t(e)<_t<, where t(e)>_O. The constants K*, e*>O
derived in Theorem are possibly altered in the process but to values independent of
the choice of t(e) (as well as the choice of initial values (w,x,z)lt=t,))..We will employ
this generalization.

Now let (w*,x*,z*) and (w* + W,x* +X,z* +Z) be solutions to system (la, b,c)
on tl(e)<_t< for tl(e)>_0 arbitrary, i.e., suppose

w* 0 E(w*,x*,z*,t,e)
d

x* 0 +e F(w*,x*,z*,t,e)() 2;
* z* /-/(w*,*,*, , )

w*+W

x*+X
z*+Z

0

0

A(z*+Z)

E(w*+ W,x*+X,z*+Z,t,e)
+e F(w*+ W,x*+X,z*+Z,t,e)

H(w* + W,x* + X,z* + Z,t,)

and for arbitrary constant KI>0 assume the initial values at t-t(e) satisfy the
restrictions

(8)
Iw*(t,(), ) ) + Ix*( t,(), ) -q() + Iz*( t,(), )1 K,,

W(t,(), )1 / IX( t,(), )1 / IZ( t,(), )1 <-

Then by our earlier discussion on the generalization of Theorem 1, constants K* and
e*>0 exist (depending on K but not on the choice of t(e) or (w*,x*,z*)lt=t,,) or

(W,X,Z)It=t,)) such that on 0<e_<e*"

sup
tl(e)<t<

( [w,( t, e) d)l+ lx,( t, e) -q,)l+ [z,( t, e)l )

sup
tl(e)<--t<

(Iw*( t, ) + w( t, ,) ,, + Ix*(t, ) + x( t, ) q,,,
/ lz*( t, e) -+- Z( t, e)] )
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Expansion of equation (6). From (5) and (6), we obtain

(9)

-di x- +
Z

E(w* + W,x* + X,z* + Z,t,e)
F(w* + W,x* + X,z* + Z,t,e)
H(w* + W,x* + X,z* +

E(w*,x*,z*, t, e‘)
F( w*,x*,z*, t, e‘ )
I-I( w*, x*, z*, t, )

and by Taylor’s theorem, with Jacobian matrix notation,

(10) X-L(w*,x*,z*,t,e‘) X
Z Z

CE(W,X,Z,t,e‘)
q-e, C1F(W,X,Z,t,e)

CH(W,X,Z,t,e‘)

where a constant N exists depending on K1, K* and e‘* (but not on e‘, t(e‘) or

(w*,x*,z*)lt=t,)) such that for

C1 e(W, X, Z, t, e)I+ C1F(W, X, Z, t,

and where the linear matrix operator L(w,x, z, t, e‘) is given by:

0 0 O) 3
L(w,x,z,t,e‘)- 0 0 0 +e‘

0 0 A O(w,x,z)

F(w,,z,t,)
F(w,x,z,t,e)
I4(w,x,,t,)

with /(w,x,z) the Jacobian operator.
Local asymptotic stability. Let (t,s) be the fundamental matrix solution to the

linear system

with Ik+z+ the identity matrix on R(k+l+n)(k+l+n). As shown in 6, constants No and
%>0 exist (%_<e‘*) independent of tl(e‘) and any (w*,x*,z*)lt=t,o satisfying (7) such
that for 0<e‘_<%.

(t, s)II Noe-3e2’(t-s)/4

Using the fact that d(t,t(e‘))d)-(s,t(e‘))--(t,s), (10) becomes

(11)
w(t,)
x(t,)
z(t,)

+ (t,)
,()

w(t.().)
x(t,(),)

C1E ( W( s. e‘). X( s. e‘). Z( s. e‘).s, e‘)
c,(W(s, ), x( s, ), Z(s, ),s, )
c..(w(.).X(s.). Z(s,),,)

Now for some/3>0, suppose that

IW(t(e‘)’e‘)l+ lX(t(e‘)’e‘)l+ lZ(tt(e‘)’e‘)[<e‘min( 1’’ o )’
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and that IW(s,)l+lX(s,)l+lZ(s,)l< on tl(e)<_s<--t, O<e_<eo. Then from (11) we
have

w(, )1+ Ix( , )1+ Iz(t,

<_ Noe-3e2xe(t- t’(e))/4 { W ( e), e) l+ [X( e), e)}+ Z(tl(

t+e Noe-3x(’-)/4eflN,{[W(s,e)l+lX(s,e)l+lZ(s,e)[} ds

and consequently

(12) e3::x*/4{Iw(t,e)l+lg(t,e)l+lz(t,e)l }

Noe3exet(e)/4{ W( /l( e), e)l+ ]g(tl(e), e)l+ ]Z(tl(

+e2NoN, * e3::x/4{lw(s,e)[+lg(s,e)l+lZ(s,e)l } ds.

By a Gronwall inequality applied to (12), we then have for 0<ee0:
w(t, )1+ Ix(t, )1+ Iz(t, )1

No{IW(tl(e), e)l+ IS(/l(e), e)l+ IZ(tl(e), e)l } e -e2(3x’/4-BNN’)(t-t’(e))

< ee-e(3X+/4-flNoN)(t-t(e)).
Choosing B-e/(4NoN), we have for 0<ee0"

w(t, )[+ Ix(t, )1+ Iz(t, )1<:e-<’-’’<>/ .
So for B-Xe/(4NoN) and 0<ee0, the largest interval on which
+ IZ(s,e)l <e is not t(e)s<t but rather tl(e)s< . We have also shown that for

W( tl( e)’ e)+ lX( t’( e)’ e)l+ lZ( t’( e)’e)l<emin( l’ B’

and t(e)t<, O<eeo, B-Xe/(4NoN), we have

w(t, )1+ Ix(t, )1+ Iz(, )1<e-’-’/-

In summary, for arbitrary K and tl(e)O let (w*,x*,z*) be any solution of
system (1 a, b, c) with

( w*,*,z*- (o,o, 0)I,=,, <
Then constants a(K), B(K) and e(K)>O exist independent of the choice of t(e) and

(w*,x*,z*)lt=t() such that if (w+,x+,z+) is any solution of (la, b, c) satisfying

[( w+ ,+ ,z+ ) ( w*, *, z*),=,,<(,)
then

(13) w+ (t, ) w*( t, )1+ x+ (t, ) x*(t, )1

+ Iz + (t, e) z*( t, e) l< eft( K, )e

for t(e)<_t< oe, O<e<_e(K).
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Global asymptotic stability. Let N.>0 be fixed. Let (w*(ot, e),ox*( t,o e),z*( t, e)) be a
solution of system (la, b,c), (2a, b,c), for any (Wo,Xo,Zo) in SwSxSz and for
+lx,(e)l+lZl(e)l<_N2 on 0<e_<eD. Let (w#(t,e),x#(t,e),z#(t,e)) be another solution
of (la, b, c) but satisfying

w# ,x#,z# )I=0-(w: ,x ,z ) + e(w(e),x(),z())
for any (Wo,X?,Z)in wXxXz and on
Let (p*+*,’*) and (p#,p#,’#) be the iterated-average solutions corresponding to
(w*,x*,z*) and (w#,x#,z#), respectively. Then by Theorem l, constants K2 and
depending on w x z and N (but not on the specific choices of (w*,x*,z*)l,=o or

(w#,x#,z#)l,=o) such that for 0<e_<e:

(14) sup
0.<_t< oo

(15) sup
0<:t< oo

( Iw#( t, e) p#( t, e)l+ lx#( t, e) -+#( t, e)l+ lz#( t, e) -*( t, e)l } <_K_e.

Now by Hypotheses H4 and H6, a constant N exists independent of the choices of
(Wo,Xo,Zo) and (Wo,X,Z)in w5xz such that for 0_<t< oo, O<e<_eD"

(16)

(17) [p#(t,e)--p()l+[#(t,e)--()l+[#(t,e)[<--N3e-xt/.
Now by (14), (w*,x*,z*) stays close to (p*, q*, ’*)on 0_<t< o, and by (16), (p*, p*, ’*)
decays exponentially to (p(),+(),0) on 0_<t< o. So picking the largest interval 0_<t_<

t2(e on which K2e<_N3exp(-eXet/2), (14) and (16) show that I(w*,x*,z*)-
(p(),q(),0)[ is majorized by a decaying exponential on this interval. Similar results
hold for I(w#,x#,z#)-(p(),q(),O)[ from (15) and (17). In fact, choosing t2(e)-
(2/(e2E))log(eK2/N3), then from (14)-(17), we have for O<_t<_t(e),
min(e2, N3/K)

(18)

(19)

Iw*(t, e)- o(l+ Ix*(t, e)- 4,( + Iz*(t, e)l<-2N3e-x’/2,

Iw(t, e)- p(l-t-Ix(t, e)- q()I-+-Iz(t, e)l2Nae-x’/a,

and therefore also

(20)
+ Iz#(t,e)--z*(t,e)i<--4N3e

Employing inequalities (14)-(17) again and letting t2(e), we obtain

(21)
(22)
(23) [(w#,x#,z#)-(w*,x*,z*)it=t2() <_4Ke

for O<e<_min(e2,N3/K2). Now choosing K1--3K and t,(e)--t2(e) to be the values of

K and tz(e in inequality (13), we use (21) and (23) and employ our local stability



888 STEPHEN C. PERSEK

result (13) repeatedly (but not more times than +(4K2/a(Kl))). It follows then for all
t2(e)<_t< , O<e<_min(e2,N3/K2) that

Iw(t,)-w*t,)l+l’(t,)-x*(t,)l+lz’(,)-z,(t,

{ 4K2 } -exe(t-t2(e))/2(24) Ge(K1) l+a(Kl )
e

N(K) + e

where the constants K3K, (K), B(K) and min(ea,N/K) are independent of
the choices of (wo,xo,zo) and (w,xg,z)inXX. See the Appendix at the end
of 5 for complete details.

Finally, defining

--n e2,

and

4N3 N3(K ) -K-2 +

where K --= 3K2; then from inequalities (20) and (24), we obtain

Iw#( t, ) w*( t, e)14- Ix#( t, e) x*( t, e)l+ Iz#( t, e) z*( t, e)l< Ie-e2xEt/2

for all 0t<, 0<e, where the constants and depend on the set wX X z
and on the constant N2 but not on the particular choices of (Wo,Xo,Zo), (w,x,z),
(w(e),x(e),z(e)) and (w(e),x(e),z(e)). Consequently, the proof of Theorem 2 is
complete.

Appendix to 5. With m any integer andj any integer with 0j m, we define
the new initial values

( W(j) X (j) z(J))lt= t2(e

and let (w(J)(t, e), x(J)(t, e), z(J)(t, e)) be the solutions to (1 a, b, c) corresponding to these
initial values. Now by (21) and (22):

and using (23) we have:

I(w+ ’), x+ ’), z+ ’)) (w),), z))[,:,)4/m.
Let K 3K2 and t(e)t2(e in (13) and in the two inequalities immediately preceed-
ing (13), and with a(Kt)a(3K2), we now choose m sufficiently large that 4K2e/m<
a(K)e. Since the two inequalities preceeding (13) now hold where (w(j+ ),x(j+ l), z(J+ ))
and (w(J),x(J),z(j)) play the respective roles of (w+,x+,z+) and (w*,x*,z*), then (13)
itself holds in the form

lw,,+ ,,( ’, ) w,,,( ,, ) l+ lx,+ ,,( ’, ) x,,,( ’,

+ lz+ ,)( ,, ) z-( ,, )I(,)e-’’’-’))/
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for tz(e)<_t<, O<e<_e(K) and O<_j<_m-1, where fl(K1)=fl(3K2) and e(Kl)--
e(3K2). Hence on tz(e)<_t< "

+ Iz( t, )- z*( , e) [< em/( K, )e

since (w(m),xm),zm))--(W#,X#,Z#) and (w),x),z())--(w*,x*,z*). Inequality (24)
then follows since m can be chosen to satisfy

4K2 4K2<m_< --(K,) (K)

6. Stability of the linear system ’--L(w*,x*,z*,t,e)CP. With (WI, xI, 2 I) a vec-
tor, consider the general initial value problem

d
x* 0dt
z* Az*

E(w*, x* z* t, e)
F(w*, x* z* t, e)
H(w*,x*,z*,t,)

(25)

WI

X

Z I

--L(w*,x*,z*,t,)
WI

X I

21

(o)Az
"-[-E
(WXZ)

E(w,x,z,t,e)
F(w,x,z,t,e)
I4(w,x,z,t,)

X x I

2
I

(w,x,z)=(w*,x*,z*)

subject to the initial value restrictions

(26) Iw*(s(e), e) p(O)[+ Ix, (s(e), e) --()l+ Iz*(s(e), e)[_< K*e

and Iwdl + lx[l + lzDl < 2, where ( wl, xt, z" )lt=s) (w, x,z) and s( e) >_ O is arbitrary.
Then (5) and (25) are amenable to averaging, and employing Hypothesis H3 and
(3a, b, c), we have

d
(27) - eF(o*,q*)

A*

p*

t:s(e)

p(O)
qo
0
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d(28)
pl -w (o*,q,*)o’+ -x

57 (*’q’*)’+ -gTx

A-
pl

t--s(e)

wg

z0’
Since by Hypothesis H4, (p{),+{),0) is a rest point of (27), then on s(e)<_t<m,
(O*(t,e),+*(t,+),*(t,e))=--(p{),+{),O). And by Hypothesis H2 and the variational
equation following Hypothesis H4, the solution to (28) on s(e)_< < m is

and

’= v(,,,()) z0’.
Now by the generalization of Theorem found in the beginning of 5, constants

a and e3>0 exist independent of the choice of s(e) such that

(29)

sup
s(e)<t<

{Iw*(t, e)- p*(t, e)l+ lx*(t, e) --+*(t, e)l

+ [z*(t, ) *(t, )1+ [w’( t, ) 0’( t,

+ lx’( t, e) -f ’( t, e)l+ [z’( t, e) ’( t, e)l } <--a3e

for 0<e<e independent of the initial value (w*,x*,z*, wl, xI, zl)it=s(e) provided that
(26) holds and Iwo’l / Ixl / Izl < 2.

Next, referring again to the beginning of 5, for arbitrary tl(e)_>0 and the constant
K >0 with

Iw*( t,(e), e) o, + Ix*( ,,(), ) -w’ + Iz*( ,,(), ) /,,
there exist constants K*, e* >0 depending on K but not on the choice of tl(e) such that

{ Iw*(t,)-1+ Ix*(t, )-q<)l+ Iz*(t,e)l) K*e

for 0 < e_< e*. And for s(e) _> (e), choosing s(e) in this result shows that (26) holds,
thereby implying (29). So let (t,s(e)) and f(t,s(e)) be the fundamental matrix solu-
tions to (25) and (28) respectively, on tl(e)<_s(e)<_t<. Then by Hypothesis H6, a
constant N2 exists such that
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for t(e)<__s(e)<_t<z, O<e<_min(eD,6/F,r/E). Letting M--(4/E)log2N2 and
eo--min(e*,eD,/hv, hr/h., 1/(16a3N32),e3), then by (29):

dp s( e) +- -- ,s( e) + a3e

<_Nl2e-FM+ a3e<_e-3XLM/4
for all s(e)_> l(e) and 0< e_< eo. Hence, with No-N2+ 1/2"

II (t, )ll-<Noe-3e2A:(t-r)/4
for tl(e)<_’<_t< , 0<e_<eo, where NO depends on K but not on t(e) or the choice of

(w*,x*,z*)lt_,) satisfying (7).
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MULTIPARAMETER VARIATIONAL PRINCIPLES*

PAUL BINDING"
Abstract. Let T and V be self-adjoint operators on a separable Hilbert space H, where V is bounded and

T has compact resolvent. Then a spectral theory, including eigenvector completeness, may be given varia-
tionally for the eigenvalue problem

Tx Vx O =/= x H
provided either T>>0 (i.e., (x, Tx)>_-allxll for some a>0) or V>>0. These conditions are known as left and
right definiteness (LD and RD) respectively.

Generalisations of LD and RD appropriate for the multiparameter problem
k

TmXm: E knVmnxm’ O=fi:xmnm, m=l,...,k,
n:l

have already been established in the literature. New variational principles are given here in terms of
R k-valued functions on ’ H,,, and (R)m= Hm. In particular, when LD is assumed, a variational spectral
theory is given, including eigenvector completeness. Such a theory is shown to be impossible under RD,
although a finite dimensional version is established for a condition including both LD and RD.

1. The problem. Throughout, we shall consider the abstract multiparameter eigen-
value problem

Wm(X)Xm--O=/=Xmnm,
k(|.1)

Wm(’)--Zrn-- E knVmn, m-1,...,k,
n--I

where T and V,, are self-adjoint operators on separable Hilbert spaces Hm. We shall
also assume that the Vm, are bounded and that the T are bounded below with compact
resolvents. Thus, for some real a, Tm- al has a positive compact inverse, I being the
identity on Hm.

The above assumptions have been used frequently in discussions of (1.1)mmany
ordinary differential and difference equation problems are covered. Applications occur
in separation of variables for partial differential equations (p.d.e.) giving rise to systems
of ordinary differential equations (o.d.e.) defining various "special functions" [1], [18],
multipoint conditions for o.d.e. [2], [15], and quadratic eigenvalue problems [20], [21].
Difference equation approximations are treated by Atkinson in [3] and more general
matrix problems in [4].

Two elementary examples where separation of variables leads to problems involv-
ing the definiteness conditions used here are given by vibrating annular and elliptic
membranes. For the former, polar coordinates lead to a system of o.d.e, satisfying LD
and RD, while for the latter, elliptic coordinates lead to a system satisfying LD but not
RD. The variational principles of 6 and 7 apply respectively, Bessel and Mathieu
functions being the relevant special functions.

Consider the one-parameter right definite (RD) case where k and VI>> 0, i.e.,

(1.2) (x, Vx)>_,llxll for allxH

*Received by the editors February 4, 1981, and in revised form June 4, 1981. This research was
supported by the Natural Sciences and Engineering Research Council of Canada.

Department of Mathematics and Statistics, University of Calgary, Calgary, Alberta, Canada T2N IN4.
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for some ,> O. Then we may define a new inner product by

(1.3) [x,y]o-(X, VllY )
and write Ho for the linear space H with the [.,. ]o inner product. It is easily shown
that Ho is homeomorphic to H and that

(1.4) F1 V,’T
is self-adjoint on H0 with compact resolvent. Thus the eigentuples for F and hence for
(1.1) may be generated variationally from the Rayleigh quotient

(1.:5) ),,(x) [x’F’x]

Since this coincides with the "generalised Rayleigh quotient" for (1.1), i.e.,

(X’TlX)
0=/=X @(TI )(1.6) Yl(Xl- (x, V,,x)

we see that the eigentuples of (1.1) may be determined by constrained extrema of a
simple real-valued functional on H, viz. y, defined in terms of the original operators
T and V. Moreover, a complete orthonormal basis of eigenvectors for H0 is char-
acterized directly.

Turning to the one-parameter left definite (LD) case, we assume a >0 so T >>0
and we define the (incomplete) inner product

(1.7) [x,y],=(x,r,y)
on @(T)2. Let @ denote the completion of @(T) with respect to [-,. ]lexcept in the
finite dimensional case, we no longer have a homeomorph of H. The analogue of (1.4)
is

(1.8) BI TI-IVI
which is now compact and self-adjoint on (R) . Again we can generate eigentuples from
constrained extrema of the Rayleigh quotient

(1.9) fl,(x) [x’Blx]’

and a complete orthonormal basis of eigenvectors for (1.1) is constructed, in this case
for the orthocomplement of Ker V in @. Again fl has a simple representation in
terms of the original operators, viz.,

(1.10) ill(X)-- (x-, l)-’ 0vx@(Tl)"

The aim of this article is to establish mulfiparameter analogues of the above
procedures for various definiteness conditions, in terms of constrained extrema of
funcfionals of Rayleigh quotient type defined on k

m= Hm and (R)k= Hm. Very briefly,
our main conclusions are that both approaches have analogues if both LD and RD
hold, that the second has an analogue if LD holds, that there is no analogue for RD in
the infinite dimensional case and that both approaches have finite dimensional ana-
logues under a condition weaker than LD and RD. For a more detailed discussion we
require some notation and definitions.
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2. Basic notation. A typical element of H- k,__H is denoted byx (x, .,xk)
with x Hm. We write

Um- (um6(rm)CHm’[[Um[[ 1),
and we reserve the notation Um for a general element of Urn. Then U-- m--1 Wm
consists of all u-(Ul,.- -,u) for which Um is a unit element of @(Tm).

The operators Tm, Vm and Wm(,) induce quadratic forms on U as follows"

(2.1) tm(U)--(Um, TmUm) t(u)--(tl(U)," ,tk(u))
(throughout, the use of boldface denotes a vector, considered as a column if matrix
notation is also employed);

(2.2) l)mn(U)--(Um, VmnUm) V(u)--[l)mn(U)]
(thus V(u) is a k k matrix);

(2.3)
We then construct certain determinants as follows, via a fixed vector o / and a

real o:o. Let

O)0 00
T

(2.4) 8(u)--t(u)V(u)’
and let 8,(u) be the cofactor of % in this (k + 1) (k + 1) determinant, for n- 0,-.. ,k.
We also set

(2.5) 8(u)-(8,( u),-.., 8( u )).
We note that

(2.6) 80(u) det V(u),
and we write 80m(U) for the (m, n) cofactor in this k k determinant. Observe that

k

(2.7) n(U) E tm(U)tOmn(U), rl--1,. .,k.
m--1

Finally, we construct a "comparison" cone C as follows. Let R+ denote the
positive orthant, with the origin, i.e.,

(2.8) R+- (,R’,m>0 for m- 1,...,k) tO (0),
and let R be the nonnegative orthant. Let U be the closure of Um, i.e., the unit sphere
of Hm, and let - km=l /m" It is obvious that 80 may be defined on by (2.6) and
similarly for the cofactors 60m," We define

(2.9) C-(," V(u)X+ for someu ).
3. DeHniteness conditions. We start with three conditions associated with left

definiteness:
Condition LD+. For some e> 0, 60mn(U)>_e for _< m, n _< k and for all u U.
Condition LDs. For some e>0 and (o R k, En= n6Omn(U)--> e for rn 1, k and

for all u U.
Condition LDt. For some a >0, tin(u)>--a for rn- 1,... ,k and for all u U.
We shall define LD as the combination of LD+ with LDt. This is formally

stronger than the conditions in the literature, which in particular assume LD rather
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than LD+--see [17] for example. Nevertheless we lose no real generality since our
conditions can still be arranged via a nonsingular affine eigenvalue transformation [8,
Cor. 2.8]. Note that if LD holds then (2.7) gives

6n(u)>_kae forn-1,..-,kanduU,

so we may construct the ratios

(31) u),.., u))

by analogy with (1.10).
We turn now to right definiteness (RD), which we shall define as the combination

of LD with the following:
Condition RD. For some ’>0, [6o(U)l > " for all u U.
The right definiteness conditions in the literature do not explicitly assume LDt, but

the latter may be arranged via an eigenvalue translation, assuming RD [8, Lemma 2.1 ].
Under RD, one can define the function "1’ on U by

(3.2) ,(u)-- V(u)-t(u), u U

(see (2.1), (2.2)). Two identities follow directly. First,

(3.3) o(( u), u) -O
comes from (2.3), while (2.5), (2.6) and an easy calculation yield

(3.4) (u)-o(U)
We shall use two further definiteness conditions. One, implied by either LD or

RD, is used by Atkinson [4, Chapt. 6] for the finite dimensional case:
Condition A. For some />0, 16(u)]_>,/for all u U.
This will be discussed in 9. The other condition is "properness", viz.
Condition P. LD and RD both hold.
This was introduced in [12] as the combination of LD and RD, but as we have

noted above, LD+ and LDt are automatic modulo an affine transformation. According
to [12] a cone is proper if it is closed, convex and contains no line. The connection
between this and Condition P is as follows.

THEOREM 3.1. (i) If C is proper, then LD and RD both hold.
(ii) If P holds, then C is proper and is contained in g + (see (2.8)).
Proof. All the contentions except the last follow from [12, Thm. 6.1]. For the last

we assume P and consider k C, so from (2.7) there is/ + such that

hm-- E t0(u)
m--1,.--,k.

n--1

It follows that m>-0, so +. Moreover, if ?m--0, then/--0 so --0 and so we
have +. Q.E.D.

4. Discussion. We shall now summarise our work and compare it with the relevant
literature. Variational principles are standard for k= but comparatively underdevel-
oped for k> 1--in fact, there seems to be no such treatment giving eigenvector com-
pleteness in infinite dimensions. We distinguish here between multiparameter varia-
tional principles, which characterize the eigentuples of (1.1) directly, and the use of
one-parameter variational arguments as stepping stones to the analysis of (1.1) by other
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techniques. There are several instances of the latter, e.g., in [10], [17], [20], [21] and [22],
but the only article specifically dealing with the former seems to be [9], which treats

RD in finite dimensions.
We observe that /, defined in (3.2), satisfies

(4.1) Wl(V(u),u ) =0
(see (2.3), (3.3)). When k= 1, /(u) is simply the generalised Rayleigh quotient ap-
propriate for RD (see (1.6)). Equations of the same type as (4.1) have been used for
variational principles in several contexts. For example, Duffin [14] has analysed a
quadratic matrix eigenvalue problem via an analogue of (4.1). We remark that this can
be recast as a right definite two-parameter problem [20] and that there are many
extensions of [14] to more general nonlinear eigenvalue problems. Hadeler [16], ap-
parently motivated by such ideas, defined a "generalised range" for one linear
equation in several parameters. In fact, turns out to be the set of all ,(u) satisfying
(4.1) as u--u ranges over Ul. Hadeler gave some variational connections between
and a "spectrum" for his equation but did not pursue this topic. Binding [6] has
generalised such definitions to nonlinear equations in several parameters and has given
minimax-like relations for the eigentuples in terms of ,(U). In the linear case, RD is
assumed and it is shown, for example, that there exists -o satisfying (1.1) and such
that

(4.2) y(U) C_A+ C

(here C comes from (2.9)). Two disadvantages of this analysis are (i) there is no way to
prove eigenvector completeness and (ii) C generates a partial order on R if and only if
C is convex, which is true (assuming RD,) if and only if LD, holds, by Theorem 3.1. In
particular, if LD, fails, then it is impossible to describe the minimax-like relations of [6]
by collections of linear functionals on y(U).

Another approach to the right definite problem has been via the tensor product
H- (R)m--trim. The definition of the requisite linear operators A on H(R) is given in
5, but for the present discussion it is enough to note that

(4.3) (u*,A,,u*)--8,,(u), u U, n-O,...,k.

Here u =u (R)... (R)u, is a "decomposable" element of He. In finite dimensions,
Binding and Browne [9] have shown that the eigentuples of (1.1) may be characterized
by successive minimaximisations of k linear functionals over the set

(4.4) (((h,Ah),-- .,(h,Akh))/(h,Aoh)’O#hH}.
It turns out that the corresponding constrained maximisers may be taken decomposa-
ble, and thus (4.3) shows that (4.4) is simply the set

which, by virtue of (3.4), is just y(U) again. Although this approach gives a direct
construction of a complete orthonormal basis of eigenvectors for H(R) --with a new
inner product involving A0--there are still drawbacks. In particular, (iii) the k linear
functionals may vary with the eigentuple being characterized, and (iv) the analysis of [9]
is finite dimensional in nature. We note that Binding and Browne [10, {}5] have
generalised some of Hadeler’s inclusions [16] by giving infinite dimensional descriptions
of various images of y, but there is no eigentuple characterization, and (i)-(iii) are not

tackled.
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In 6 we shall give an infinite dimensional version of the tensor product approach
under Condition P. In fact, the k linear functionals may be taken as the k coordinates
and are thus eigentuple independent. Further, Theorem 3.1 shows that (4.2) implies

"n(U)<__3, u U, n- 1,. .,k.

Similarly, the other minimax-like relations of [6] can all be generated by the k coordi-
nates, and we have overcome all the difficulties (i)-(iv). In {}7 we extend the analysis to
cover LD, using (3.1). In this case new inner products are used involving the A, and
completion is involved. Also, the eigenvectors are complete not in H(R) but in the
orthocomplement of Ker A0--cf. the approach via (1.8) in 1.

In {}8 we show that our analysis cannot be extended to RD as well in the infinite
dimensional case. We give an explanation for this in terms of the geometry of C.
Roughly, if C is convex, then a nonsingular eigenvalue transformation exists under
which C C_R+ (Theorem 3.1), hence ensuring that the operators A, have enough
compactness properties for a variational characterization. Lack of convexity of C,
already pinpointed in (ii) as one source of difficulty, is then seen in a different light.
Indeed, we include an example satisfying RD but not LDn (so C is not convex) and for
which the relevant operators on H(R) have spectra which cannot be characterized by
minimax principles. In the final section, we discuss Condition A. In view of the results
of {}8 and the fact that RD implies A, we restrict ourselves to finite dimensions.
Atkinson has given a spectral theory for this case in [4, Chapt. 6], and we show that
such a theory may be given variationally in at least two ways. In particular, we extend
the results of [9] directly.

5. Operators in the tensor product. In order to make our discussion self-contained,
we include in this section the basic construction of the determinantal operators we
need. Fuller details may be found, for example, in [23, Chapt. 2]. We shall start with the
set D of decomposable tensors of the form U(R)--U(R)’’’(R)Um In particular, the
notation requires um Um, so uu(R) provides a 1-1 correspondence between U and D.
H(R) is then defined as the completion of the linear span S of D under the inner product
defined on D by

k

(U(R),)(R)) H (Um’l)m)
m--l

and extended bilinearly to S2.
Next, for any u (R) D, we define

Tu*--u(R) (Um_l@TmUm@Um+l@ Uk,

and we extend T to a self-adjoint operator on H Vmn is defined similarly on D by
t - (R)...(R)u (R)V,,,,,u,,(R)u,,, (R)...(R)uVmnu Ul m- +1 k

and then extended to a bounded self-adjoint operator on He. Then

(5.1)

00 01 dk

-r?
A-det

-T] V;,
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is (uniquely) defined on
k

(5.2) @- (R)(Tin*),
m=l

which can be shown to be dense in H(R)

The construction of zX, parallels that of 8. Explicitly, A, is the closure of the
cofactor (operator) of % in the expansion of for n=0,...,k, and ZX0m is the (re,n)
cofactor in the expansion of zX o det[V2]. Note that A o and ZX0m are bounded and

(5.3) 6(u)--(u(R),Au(R)), Omn(U)--(u(R),AomnU(R)), l<_m,n<_k,

hold in addition to (4.3). Also, the following will enable us to carry our definiteness
assumptions over to H(R) Recall the notation >>0 of, say, (1.2).

THEOREM 5.1. If LD holds, then Tim, A0,,n and A are all self-adjoint and >>0 on H(R)

<_m,n<_k. Ao is always self-adjoint, and ifRD holds, then A0>>0, on H(R)

Proof. The positivity statements for AOm and A0 follow from [5]. By [7, Thm. 3.1],
An>>0 on (R) (5.2) and so Anls has a self-adjoint extension/n >>0 (i.e., >>0 on @(zn)). By
[7, Remark after Theorem 3.1], z coincides with A as defined here. Q.E.D

6. The proper case. Throughout this section, we shall assume Condition P.
According to Theorem 5.1, we may define an inner product [., "]o on 3C (R) by

(6.1) [x,y]o=(x, Aoy).
The linear space H(R) with this inner product will be denoted by H0. Obviously, H0 is
homeomorphic to H(R) since A is bounded by Theorem 5.1. Moreover, we may define
operators

(6.2) Fn A;An, (R)(Fn) =(R)(An), n= 1,--.,k,

on Ho. We also denote the unit sphere of Ho by Uo--explicitly

(6.3) Uo (xHo [x,x]o 1}.
THEOREM 6.1. The F are commuting and self-adjoint on Ho. Further, F

is compact.
Proof. By Theorem 5.1, F-= As,A o is bounded on H(R) and hence on Ho.
Further,

x, F2Y] o X, A o A-n’A oy ) ( A-)A oX A oy ) [F2’x,Y]0
proves self-adjointness of F-. Commutativity of F- follows from [7, Thm. 4.2]. The
corresponding results for F are then formalities.

Next,

(6.4) [x,Fnxlo=(X,knx) for

and An>>0 on H(R) show that Fn>>0 on H0. Finally, compactness of F21 in H(R) (and
hence in H0 by homeomorphism) comes from [7, Cor. 3.4]. Q.E.D.

It follows that, in the notation (6.1)-(6.3),

X min [x,Fx]o>0
x Uo

exists as the minimal eigenvalue of F with finite dimensional eigenspace E, say. By
commutativity of the Fn,

F2E c_E
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SO

h2-min{[x, F2xlo"x UoEl } >0
exists as an eigenvalue of F2. The set of minimisers generates a joint eigenspace E2 for

F and F2. Repeating this procedure for each F in turn, we obtain

X,-min{[x,FX]o’xUoE,_,} >0, n-3,...,k

with corresponding eigenspace E.
In particular, we have ,oR+ (2.8), and the set of minimisers for h spans a joint

eigenspace E for F,...,F. By [7, Thm. 6.1], (1.1) is equivalent to a simultaneous
eigenvalue problem for the F- (and hence for the F) in the sense that if

(6.5) F,h-X,h, n-1,--. ,k,

for some nonzero hHo then one may choose h--x xk with
, and x satisfying

o(1.1). By suitable scaling then, we may find UmU such that , and u form an
eigentuple for (1.1) and such that (6.5) is satisfied with h-u(R) -u (R) (R)u. Also, it
is evident that

(6.6) ko
u(R)’ _Feu(R)j o ,(u)- ,/,(uo).[uO ,uO(R)]o - o(Uo)-

Having extracted 0 and u, we now repeat the process on the orthocomplement of
u(R) in H0. This leads to the recursive construction of an eigenpair 7tl, u l, and so on.
Alternatively, we may use a maximin construction, finding Xl(x) and ul(x) by minimis-
ing over the orthocomplement of nonzero x H0, and then maximising hll(X) over such
x. Either way we construct a complete orthonormal basis of H0 of eigenvectors u (R),
ul(R), for F (cf. 1) and we have arrived at the following:

THEOREM 6.2. A countable set of eigemalues o, 711, with corresponding eigemec-
tors u, u l, exists for (1.1) and may be determined by successive coordinatewise
recursive minimisation (or maximin) operations on y(U). The corresponding tensors u(R),
ul(R), form a complete orthonormal basis ofHo.

Note that (6.6) permits the use of ,(U) even though the proof involves the more
complicated construction

{(Ix, v0).
We should point out that even when all the eigenvalues are simple, the order of their
extraction via Theorem 6.2 in general depends on the ordering of the coordinates. In
8, we shall connect this order with a frequently-used method of indexing the eigenvec-
tors (by oscillation count in the o.d.e, case). At present, we merely remark that the first
eigenpair extracted is somewhat special.

COROLLARY 6.3. The eigenvalue 7t satisfies Wm(t)>0, m- 1,... ,k, and coincides
with t of (4.2). The ordering of the coordinate minimisations over y(U) used to generate
7t is immaterial.

Proof. For the existence of ,* satisfying Wm(t*)>O, m-1,...,k, see, e.g., [10,
Thm. 2]. Thus, for any u U, using the coordinatewise partial order on R k, we have

w((x*), u) >_ 0-w(v(u), u),
so

V(u)(X*-v(u))>-o,
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whence

by virtue of Theorem 3.1. The first inclusion gives (4.2), and the second shows that ,*
is a simultaneous minimum (over u U) of the k coordinates ,,(u), n- 1,.-.,k. Thus,
the construction of )k yields ,*, regardless of the ordering of the minimisations.
Q.E.D.

COROLLAR 6.4 [12, Cor. 7.4]. --min{(x,A,,x)’x Uo(R)}.
Here @ is the algebraic tensor product corresponding to (R) (5.2), i.e., the linear

space @(7*)(R) (R)(R)(T*).
7. The left definite case. For this section we assume LD. From Theorem 5.1 we

have A,0 for n-1,...,k. Although A
0 is bounded, it may not be invertible, so

instead of F, we shall use A,IA 0. Also, it will be necessary to replace Ho, and we start
by defining @-(R)(A/:) with inner product

x,y ( A1./:x A’/Y ) n 1,... k.

It is easily verified that @, is a Hilbert space and is in fact the completion of @ (5.2)
with respect to an inner product of the form (x,A,y). We note that (R)C_H (R) and

H*A-IA o 0(A,)C_ o,, SO (R), is invariant under AIA0. Accordingly, we define

Bn a-JA ol%
TtnOREM 7.1. (i) The A-bo commute on H
(ii) B, is compact and self-adjoint on for n- 1,... ,k.
Proof. (i) follows from [7, Thm. 4.2].
(ii) Suppose xj.0 in @, asj m, and let y H(R). Then

-[( y, xj ) A-nly’ xj
since Ay @,. Thus xj---0 in He, so

n,,xj %-II A/=AoXj n0
since A/- is compact on H(R) by [7, Cor. 3.4]. Thus B,,x;--,O in (R),, and B, is therefore
compact. Finally,

[x,BnY] (x, Aoy)- (Aox,Y) Bnx,Y]n
proves self-adjointness of B,. Q.E.D.

Our replacement for Ho is the orthocomplement of Ker Ao in one of the (R),. Taking
n- for simplicity, let us then define @o as a subspace of @ by

o--{x [x,y]--OVy KerAo}.
LEMMA 7.2. Ifx is an eigenvector of (1.1), then x AqAoH C_@o.
Proof. If and x satisfy (1.1), then

k

(7.1) Timx(R)- E )tnVmnX m-1,...,k.
n=l

Multiplying the ruth equation by A0,,t and summing, we obtain

(7.2) AI x(R) --)kl A0x(R)

Thus

x* XA-itAox* A-iAoH*
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Now let h=A-Aoz andy@ NKerA0, so

(7.3) [h,y ]1 (Aoh,Y) ( h, A0y) =0,
whence h @o. Q.E.D.

To avoid trivialities we shall assume henceforth that (1.1) has solutions so (R)o
contains nonzero elements. Let Uf be the set of elements of unit norm in @n for
n=0,-..,k. Note that B :@o-@o follows from Lemma 7.2, so we can start our
variational construction of the eigentuples for (1.1) by finding

/o_ max I[,,x],l>O.
xU

Let F be the corresponding eigenspace, and let ,o(_ _+/) be the corresponding
eigenvalue, for B. Note that F C@o by Lemma 7.2.

LEMMA 7.3. F (R)2 contains nonzero elements.
Proof. Let 0:fF. Sincef@o, Aof is nonzero so

On the other hand, Theorem 7.1(i) gives A)A0fF. Q.E.D.
We continue the construction by finding

-max(l[x,B=x]2l "XFl U }0
with F2 and ,2 (4:+/-/) as the corresponding eigenspace and eigenvalue for B2. We
now repeat the process for each Bn in turn, with

max ( x, Bx l x F_ C U },
F and ,0 being the corresponding eigenspace and eigenvalue. The existence of nonzero
elements in F_ N U is proved essentially as for Lemma 7.3.

We thus reach F, a joint eigenspace for all the B,. As in the previous section, we
choose a decomposable element u* of F,. With X 1/u, n= 1,--.,k, we then see
that o and u form an eigentuple for (1.1). We now repeat the construction on the
orthocomplement of u in (R)0 to yield 1 and u, and so on. As in 6, we are led to the
following:

THEOREM 7.4. A countable set of eigentuples J, uj of (1.1) may be obtained by
successive recursive or minimax operations on the components of [3(Uo). The correspond-
ing u form a complete orthonormal basis of @0-

The only point here that needs further comment is the use of/](Uo). The result is
clear if we use fl*(U ) instead, where

fl(x)-- [x.,B,,x],,
n- k.

[,z],

Now .(uO(R))_ o(
u_____2) .( uo ),

a.(u)

so/3 (R) (D) -/](U). In particular,

uU
o,-,(uO)

and similarly for the other (constrained) maximisations in the construction.
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8. Comparison of the definiteness conditions. In this section we shall relate the
spectra of the operators AIAn (considered on various domains) to the eigenvalues of
(1.1). This will clarify the order of extraction of eigenvalues in 6, and will also explain
why variational arguments are possible when LD is assumed, but not under RD alone.

It is straightforward to deduce the analogue of (7.2) for A/, regardless of definite-
ness conditions. Specifically, if (1.1) is satisfied then (7.1) holds, and if we multiply by
A0m and sum on m then we reach

(8.1) Ax (R) -A0x* l= 1,... ,k.

In particular, X is an eigenvalue of AlA under RD, and X is an eigenvalue of AlA0
under LD for l- k.

Condition P. In this case A3A may be considered as a self-adjoint operator F on
H0, as in 6. Thus the spectrum of F includes the/th coordinate projections of the
eigenvalues NJ of (1.1), repeated according to multiplicity. In particular,

Jo+ cc_o++
where 0_2o (4.2) and + comes from (2.8). If we accept that the spectrum of F
consists entirely of the k, then it follows from simple geometry and the finite multiplic-
ity of eigenvalues of (1.1) that F>>0 and has compact inverse.

A simple example may be of use at this point.
Example 8.1. Let k-2, H-H2-12 with orthonormal basis el, e2,- and let I

be the identity on H. Let

Teg=jeg, j- 1,2,...

and suppose
(8.2) TI- Tz- T and Vmn--mnI1, <_m,n<_2.

Then V(u)-[], so 0(u)- and RD holds. Indeed, H(R) is the 2 space of double
index sequences and A0 is the corresponding identity I. On the other hand, LD+ fails
since 602 021-0. The cone C (2.9) in this case is the nonnegative quadrant +.

If we transform the eigenvalues so that X and 2 are replaced by 2 -X: and
-X + 27: respectively, then of course RD still holds and further V(u)-[_-]. Thus

LD+ (and hence P) also holds and

C-- ((1, k2)" 2k k2-->0, -k -+- 2X2->0 )
The eigenvalues X-X of (1.1) now occur at the intersections of the lines ?-272=Jl
and -X -k-2kz--j2 where jm and J2 are nonnegative integers. This (multi)indexing can
always be carried out under RD (see [10, Thm. 2]). It corresponds to oscillation count
of the x (1.1) in the o.d.e, case.

It is easily verified that

3Fl 2T? + T2*,
and the eigenvalues are extracted by Theorem 6.3 as follows:

o_)., ,(o,),

_
,(,o),

_
,(o,2), ....

If the order of the maximisations is reversed, then we obtain

o_ ,,, 1 (o,),

_
(o,),

_
,(,o), ....

According to Theorem 3.1, the existence of such an eigenvalue transformation char-
acterizes P. In general, the eigenvalues are extracted by Theorem 6.3 in lexicographic
order of coordinates.
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Condition LD. As noted in 7, B "@0--’(R)0 is self-adjoint. Similarly, A,A 0 is a
self-adjoint operator on the orthocomplement of KerA 0 in (R)n- Let Fn denote the
inverse of this operator. Since F AlAn, we have almost recovered the situation under
P, at least if we accept that the spectrum of F, consists entirely of the ,J. The difference
is that we can no longer use the cone C--we shall show elsewhere that C may be
replaced by two cones contained in + and -R+ respectively. For the present, how-
ever, we merely note that the LD case essentially behaves as two cases of condition P,
one where A0>0 and the other where A0<0. Specifically, @0 is the orthogonal direct
sum of subspaces invariant under A 0 and such that A 0 takes opposite signs on each.

Condition RD. Let us first return to Example 8.1. With no eigenvalue transforma-
tion, we obtain F- T, F2- T2, and these operators possess eigenvalues of infinite
multiplicity. This is to be expected from the projection process applied to the eigenval-
ues of (1.1)mthey form the positive integer lattice in R 2 for this example.

Theorem 3.1 implies that if LD fails then it is no longer possible to place C in ’+
by a nonsingular eigenvalue transformation. This suggests that the F, (defined as the
closures of the A)An in H0) may no longer have compact resolvents. We conclude with
an example illustrating thismin fact any linear functional of the eigenvalues for (1.1)
will have a finite accumulation point. Thus the F, will have eigenvalues with finite
accumulation regardless of whatever linear transformation we apply. This precludes a
variational characterization, at least, along the lines here.

Example 8.2. Let k-3 and Hm- 12, m-1,2, 3, with I and T as in Example 8.1.
Let Vmm-I1, T T, m- 1,2, 3 and

where

V12- V23-- g31--0,

Ae! -el, Aej-O, j-2,3,....

It is easily seen that RD holds. Also

Wl(,)el--(,3-+-Xl)e,, W2(,)el- ()kl-t- )k2)el,
Wm(,)ej--(Xm+j)ej, m-- 1,2,3, j-2,3,...

W3(,)- ()k2 +X3)e

Thus all integer triples of the form

-(i,j,l), (i,-j,-i), (-i,i,-j), (-j,-i,i)

are eigenvalues of (1.1) provided i,j, l> 1. We now claim that any fixed linear combina-
tion Z3rn=l 0mkm of the eigenvalues of (1.1) possesses a finite accumulation point.

Suppose two of 0, 02 and 03 take opposite signs, say O <0<02. Then let qj.10 -9 be
thejth decimal approximation to -0/02, q9 being a positive integer. It is clear that

10,10J+ azqy+ 2a31_< + 21a[,

so Z3m= OmX(m is bounded asj--, m if we choose 24J)- (-10J, -q,-2).
Now suppose that all the Om have the same sign, say positive. If 01 < 02, then we

approximate (02-0)/03 by q10-, and we obtain a bounded sequence Y3m=OmX(m)
provided we choose x(j) (_ 10J, 10J, -q). The case 02< 03 and 03 < 01 are handled
similarly.

The case where one variable is zero and the other two have the same sign is
handled as follows. If, say, 0 0< 02 -< 03, then we use x(9) (_ 10j, 10j, -qj.), where
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qjlO -j approximates P2/P3" If two variables are equal, say PI-P2, then X(J)-(-j,j,-2)
will do. Modulo cyclic permutations, these cover all possibilities, and our claim is met.

9. Atkinson’s condition. Condition A was used by Atkinson [4, Chapt. 6] for a
nonvariational analysis of (1.1) in finite dimensions. This is one of the most general
situations which admits a spectral theory including a complete orthonormal basis of
eigenvectors. Although limited extensions have been made to infinite dimensions, it is
not clear yet what is the most natural analogue of Condition A.

The purpose of this section is to describe briefly two possible variational ap-
proaches to Atkinson’s (finite dimensional) theory. We note [4, Thm. 7.8.2] that Condi-
tion A implies the formally stronger statement A>>0 (5.1). Thus one may define HA as
the vector space H under the inner product [., ]A given by

[x,YlA=Cx, Ay).

Atkinson [4, Thm. 6.7.2] has shown that the operators

A,= A-A,, n=l,--.,k

commute. This allows us to extend the approach of [9] directly, with A 0 there repiaced
by A here. We then obtain a complete orthonormal basis of eigenvectors for the
orthocomplement of Ker A0 in HA, characterized in terms of constrained maxima of
functionals of the form

(9.1) Pn
[x,Anxla

.=1 [X,X]A

Moreover, we again find that the eigenvectors may be chosen decomposable, so the
functional in (9.2) can be given the simpler form

Thus the eigentuples may be characterized by constrained maxima of linear functionals
over the set a(U), where

8(u)
n-1,...,k.

The principal disadvantage of the above approach is that the vectors p generating
the linear functionals are eigentuple-dependent--cf, difficulty (iii) of 4. This difficulty
may be eliminated by a preliminary eigenvalue transformation. Specifically, under
Condition A a nonsingular affine transformation may be found after which An>>0 for
n-- 1,-..,k [8, Cor. 2.9]. This allows us to repeat the analysis of 7, even though LD is
not assumed, since the compactness properties used for existence of the minimaxima
are automatic in finite dimensions. We thus obtain the following from Theorem 7.4,
where (R) is the vector space H(R) under the inner product [., ].

THEOREM 9.1. Assuming Condition A in finite dimensions, the eigentuples J, uj of
(1.1) may be obtained by successive recursive or minimax operations on the components of
[(Uo), after an initial affine eigenvalue transformation. The corresponding uj* form a
complete orthonormal basis of the orthocomplement of Ker A 0 in @ .
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CONSTRUCTING SOLUTIONS TO
ff(j)A(j,x)/f(x)dj= folf(x)A(x,j)/f(j)dj*

G. EDGAR PARKER" AND TERRY J. WALTERS

Abstract. Given a continuous function A from [0, [0, into (0, oe), a functionf so that if x [0, ],

fo’/( ./ A : /:( : :f:()A(:, /:( d

is constructed. Approximations to f are made by forming the nn matrix aa,=A((i-l)/n,(k-l)/n) and
constructing the n-vector d, a solution to the nonlinear system E",= diaikd[,-E]__ d,a,id. . For x[0, 1],
n large enough and (k- 1)/n close to x, d, approximates f(x). The construction is adaptable for use on the
computer and provides solutions in a situation where previously only a fixed-point proof was known.

1. Introduction. Given an irreducible nn matrix A, Hartfiel [1] showed that
there is a diagonal matrix D with positive diagonal entries so that corresponding, row
and column sums of DAD-1 are equal. This result was extended in [5] by the authors to
show that if A is a continuous, positive-valued function on [0, 1] [0, 1] then there is a
continuous positive-valued functionf on [0, 1] so that if x [0, 1] then

fo’f(j)A(j,x)/f(x) dj--folf(x)A(x,j)/f(j) dj.

Hartfiel’s result from [1] was obtained by contradiction from a minimal value argument
and the solution by the authors in [5] to the integral equation was obtained via
Schauder’s fixed point theorem; thus both were nonconstructive. Hartfiel’s results are
applicable when diagonal scalings of irreducible matrices are applicable. In addition,
the integral equation proved to be a member of a class of equations including classical
linear problems as well as other nonlinear problems some of which (see, for instance,
[3]) arose from specific physical problems. Hence, constructive solutions to Hartfiel’s
problem are of practical value whenever diagonal scaling is, and constructive solutions
to the integral equation would not only replace a fixed point argument but might well
indicate a direction for computing solutions to a much wider class of problems.

That continuous solutions to the integral equation in the title might exist was
originally conjectured by Hartfiel based on the form the sums from his diagonal
matrices took. In this paper the integral equation is solved for f by showing that by
solving the matrix problem for a matrix (built from A by letting the i,k entry be
A((i-1)/n,(k-1)/n)) on a sufficiently fine grid; then the entries of the resulting
diagonal matrix form a discrete approximation to f. Although the authors were not able
to establish a priori error estimates, the proximity of any iterate to a solution of its
matrix probem can be checked, and the iteration is suitable for use on a computer.

The following notation will be observed. The i, k entry of a matrix will be denoted
by ai, k. An nn diagonal matrix D will be represented by an n-vector d whose
th-coordinate is the i, entry of D. ek will denote the vector in R" whose only nonzero
coordinate is the k th coordinate which is 1. j will denote the identity function on the
numbers. If MC R, Rt will denote the subset of R" whose elements’ coordinates are
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Department of Mathematics, Pan American University, Edinburg, Texas 78539.
Mathematics Department, University of Alabama, University, Alabama 35486.
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numbers in M. C will denote the complex numbers. If G isa function with a maximum
or minimum value, then G*(G.) denotes the maximum (minimum) value of G. If f is a
function, then Rf denotes the range of f.

2. Theorems. Theorem describes an iteration which approximates solutions to
the matrix problem. The problem is reformulated as a variational problem, and a
descent method is employed to build the iteration.

THEOREM 1. Suppose that n is a natural number and A is an nn matrix with
positive entries. If ( 1, 2,...,n) define fi" R(no,)[ O, ) by ifxR(o,], then

k-=

Define T: R(n0,l 0, ) by ifxR(no,]. Then

i--1

/f x R(0, and rn { 1,2,..-,n}, define tx,m: (-min{x,x).,’’’,x,}, z)R by if 6 R,
tx,m(6)= T(X +6era) and define Px,m: C -C by

)2 (X +Z E amkX + 2 Xkakm( m+Z E E
k#m k#m km

2 xa--(x+z ax:’+(x+z)2 (xax--xax:
im km

lfm (1,2,..-,n) define rm’R(o,1]-[ O, ) by ifxR(o,]

rm(X)_ 0 if t’,,(O)>_O or tx,m(O)--O
rain ( (]a[ + Ibl)" Px,m( a / hi) O) t,m(O) < O-

For rn ( 1,...,n} define Sm" R(0, R(0, by ifx R(0,1

am(X )
X-[- rm( X )em )

max((x-q-rm(X).em) i" i {1,.--,n}}

and S: R an-1(o,lR(o,] by S-S, S. Then the iteration x-(1 1), xk+
S(xk converges to a vector d so that if { 1,. ., n },

diaikd: - dlalid-.
k=l k--1

Theorem 2 describes the embedding through which the conr,truction from Theorem
is used to approximate solutions to the integral equations from the title.

THF,ORF,M 2. Suppose that A is a continuous, positive-valued function on [0, 1] [0, 1]
and that f is the continuous positive-valued function on [0, 1] so that f(O)-= and if
x [0, 1], then

f01f(j)A(j, x)//f(x) dj--folf(x)A(x,j)z/f(j) dj.
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If nN define (ATk) to be the nn matrix whose (i,k) entry is A((i-1)/n,(k-1)/n)
and define d to be the n-vector so that d- and if ( 1,..., n ), then

X dinAin( dkn )-, dkAnki(n din)-,
k--I k=-I

Suppose also that x[0, 1] and that k, k2, is a sequence of natural numbers so that
limn_k,/2"-x.

Then lim,_, od --f(x).

3. Proofs of the theorems. The hypothesis of Theorem is the definition of several
functions whose properties guarantee both the result and the utility of the iteration. The
proof will primarily consist of establishing the special properties of these functions.

Proof of Theorem 1.
Property tl. Suppose that xR(o,o) and there isp (1,2,...,n} so that f(x):/=0.

Then there are i, k in ( 1,.- -, n ) so that f/(x) :/:f(x).
Suppose that if and k are in (1,...,n), then f(x)=f(x). Then since if i

( 1,... ,n), f/(x) =f(x), then

n "fe(x ) n Xpap,X[,- x,a,pXp
k---1 k=l

’ x,a,,x,’- x,aix:,
i-1 k-I k=l

a contradiction since fp(x ) 4: 0.
Property t2. Suppose that x R(no,1]. Either if ( 1,-- -,n) then tx,i(O)--O or there

exists m { 1,.-., n) so that tx,m(O) < O.
Suppose that there is (1,2,-- -,n} so that tx,i(O)vO. For p {1,.- -,n} and

8 (-min{x,x2,-..,x,}, ),
n

tx,p(6)-- T(x+6ep)-- fi(x+6ep))2

i--1

--( ] ((Xp+6)ap,X,’--Xpa,p(Xp+8)-’)
kp

-k- (xiaikxl--xkaixi )+xiaip(xp+)-l--(xp-k-)apix;
=/=p kvp

Thus,

t,p(a)--2 ((xp+8)apkx, --x,a,p(xp+8)-’)
k =/=p

" (ax’+xa(x+)-2)

-2 , Y (xaxl--xax2l)/xa(x/,)---(x/,)%x21

"[xiaip(Xp-[-8)-2-[-apiX[l],
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and

kvp kp

k

Since and k index the same set, this can be rewritten as

Let m be so that fm(x)-min(fi(x)’i ( 1,2,-- .,n} ). If i (1,...,n), fm(X)--fi(x)
--<0 and, from tl, for at least one index is strictly negative. Since a,,,ix[ +xiamxT,,2>O,
tc,m(0) < 0.

Property t3. Suppose that x R(0,o) and p { 1,.- -,n}. Then there is A>0 so that
if 8_>A, t,p($)>0.

Rearranging the terms of t,, so the positive and negative terms are grouped,

k =/=p k 4=p

+2 2 2.xaix[’ +(Xl+d)al,iXi (x,+8)-2

vp

-2( 2 xkakp(X,-f-t3)-1

k vSp

--2 ( (xiaix,’+xiail(Xp+3)-’)).(xiail(X,+)--+apix[’).
ivp kp

Note that no term of the negative part contains a positive power of xp +8; hence for
i>_0 the negative part is bounded. The positive part, however, contains terms with

xp + and hence is unbounded for {8: 8>_0}. Property t3 follows.
Property P describes the nature of the roots of the polynomial P.
Property P. Suppose that xR(o,o) and that t’x,p(O)<O. Then there is a positive

real number r so that Px,p(r)- O.
From the definition of P, if 8 is a real number in (-min{xl,x2,--.,xn}, ),

t’,p()-2(xp + )-3Px,p( ). t’,p is continuous on [0, ), negative at 0 by assumption
and eventually positive. But (xp + )-3 4: 0, so there must exist ,/> 0 so that Px,p(T) O.

Of interest here is the fact that, in addition, Px,p is a fourth degree polynomial
whose coefficieltS are real and computable from the coordinates of x and the values
from A. Thus, the zeroes of P can be computed algebraically.

S is a search algorithm in the iteration; Property S concerns its continuity.
Property S. S is continuous.
Consider a sequence (Xi)7-- in R(0,l converging to x in R(0,l The coefficients of

Px,,p converge to those of Px,p, and Px,p has a positive lead coefficient; hence, the zeroes
of Px,,p converge to those of Px,p (see [2, p. 136]). It follows that r must be continuous
which implies that S is continuous which implies that S is continuous.

Properties T-l, T-2 and T-3 are properties of T used in establishing the conver-
gence of the iteration. Both T-1 and T-2 follow directly from the definition of T.
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Property T-1. T(x)-O if and only if i(1,2,.-.,n} implies YkXiaikX1--

2xaix. .
Property T-2. If >0, then T(6x)- T(x).
Property T-3. Suppose that xR(o,ll and T(x)4=O. Then T(Sx)<T(x). By Prop-

erty t2, T(x) v 0 implies that there is m ( 1,2,.- -, n } such that tx,m(O) < O. Since rm(x)
is positive but no greater than the least positive zero of t’x,m, tx, is decreasing on

[O, rm(X)) and T(x+rm(X)em)<T(x ). Also Sm(X)-T((max((x+rm(x)’em)i" i
(1,-",n}}’(X+jm(x)’em))) so that, by T-Z, T(Sm(X))<T(x ). Thus, S-S S
and T(x)>_ T(SI(x))>_ T(Sz(SI(X)))>_... >_ T(S(x)). Let n be the least index such that
Sn(x) 4 x. (Unless T(x)- 0, Property t2 guarantees the existence of such an index.)
T(S Sl(X))< T(x) and it follows that T(S(x))< T(x).

The argument for the iteration is a special case of the global convergence theorem
in [4] (see [4, p. 125]). Note initially that if xR(o,l, max{(S(x))i:i (1,.--,n})-1.
Suppose that some subsequence of Xl,...,x,,... converged to a vector at least one
coordinate of which was zero. Then for e>0, there would exist mN and q
(1,2,..-,n) so that if m>_m then (Xm)q<e. By T-3, T(xm)<T(1,... 1). Let p be so
that (x )p 1. Then

apkXk Xkakp
k--1 k--1

n.min(ai] }
_

xkakp <- akp<--n’max{aij },
k:l k:l

-l>_ae >_min{ai.} eapkX apqXq q e
k-l

But this implies that T(xm) can be made arbitrarily large, a contradiction. Therefore,
there is e>0 so that (x x2-.. x, ...) is a subset of R" Lety Y2 be a[e,1]" 1,

convergent subsequence of x,...,xn,-., and d be its sequential limit point. As
previously noted, S is continuous, so S(yl) S(y2),. converges to S(d). From T-3,
T(yl)>_ T(S(y))>_ T(y:)>_ T(S(y))>_... >_ T(d)>_ T(S(d)). But T is continuous by
construction, so T(d)- T(S(d)) and, therefore, again from T-3, T(d) 0. Since the
whole of x,...,xi,.., is ordered by T, each convergent subsequence is forced by
y,...,y,.., to d. Therefore, x,-..,x,,.., converges to d and T(d)-0 as was to be
proven.

Proof of Theorem 2. Suppose that n N and note that d" has been chosen so that
d’- 1. Thus, Y, .A(O,(k- 1)/n)(d;)-1 -Z,d;A((k- 1)/n,O)-1,

EkA O,
n /d

and it follows that

A, Y,d A*
A* E, 1/d A,"
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For i (1,2,. -,n),

A* ]kd A*
2

(d/n)2__ n n < <

kA(i--’ k-l) ,-,
Using a similar argument for the opposite inequality,

(i) {d," n N, <_k<_n} C
A, A*
A* A,

Let W denote an ordering of the dyadic rationals in 0, 1), that is {(r- 1)/2s: S is an
integer, _<r_<2s}, by the natural numbers. If x[0, 1], denote by M(n,x) the greatest
integer in {k:(k-1)/m<_x}. Consider W(1). There is a subsequence of d(,w(1)),

d2M(Z,W(1)), dt(2.,w(1)), which converges. Define N to be the set of indices for
this subsequence. Then converges. Given NkC f-)k-1{dM(i,W(1))}iN, p=lNp and that
{d(n,W(k))}nNk converges, define Nk+ to be a subset of Nk so that {dt(,,W{k+ ))},,eUk+,
converges.

Define g by if x- W(k), g(x)--limeukd,,x). The inequalities that follow dem-
onstrate the uniform behavior of the approximations to g.

Suppose that x and y are elements of [0, ],

(n )2dM(n,x)
d(n,y)

Ykd;A( k- M(n,.x)-

EkA( M(n,x)- k-1 )(dkn)-1

k-1

k-1

Define

e"-max{IA(k-ln ’M(n:x)-ln }-A( k-ln ,M(n’y)-ln

8"-max{]A( M(n’x)- k-1)An M(n,y)-ln k-1)n
and

",/,-max{e,,,8,}.
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Adding, in the numerator of each factor, the denominator plus its inverse,

2 ,,d,A( k-1 M(n,y)-l)+enE,d,dM(n,x) n n

dt(n,y ,kdA
k- M(n,y)-

,,A ( M( n X ) n)-1(d)-+n,(d

YkA( M(n’x)- k-1)n

and

d("’x)
_< -{

d AM(n,y)

Therefore dt(,,x dM(n,y
(v./A,)A*/A,. So

(ii)

<__(ln/A,)d(n,y), which by (i) is no greater than

d(n,x)- dn,y)< "rnA*
--A,A,

The following argument demonstrates that f is uniformly continuous on R w. Let
e >0. Since A is uniformly continuous, there is >0 so that if u- v <i, then
IA(u)-A(v)I<A,/A*.e/2. Pick p and q so that p-W(i) and q-W(m). Then for
n NiN,,, [g(p)-g(q)[<-[g(p)-dt(n,p)] +[d(n,p)-dt(n,q)[ +[d(n,q)-g(q)[. For
each n, sincep and q are dyadics, p 34(n,p )/n and q 34( n, q)/n. Therefore, whenever

,p_q,_ M(n,P)n -M(n’q) M(n,p)- k-1)n M(n,q)- k-1)n
n n n n

Ig( P ) g( q )[< [g( P ) dM(n,p)J’qt" "+ ]dM(n,q) g( q )["

But ]M(n,p)/n-M(n,q)/n is independent of the choice of n, so the other two terms
can be made arbitrarily small. Hence g is uniformly continuous on Rw and thus has a
unique continuous extension to Rw- [0, ].

Now consider the convergence of (d(n,x))x=W(k) nUk to g. Suppose that there is
e>0 so that if n is a natural number then there is a natural number kn_<2 so that

2[d,,,-g((kn- 1)/2n)[>-e. ((kn- 1)/2 )n-- has a convergent subsequence since each
term is a number in [0, 1]. Let (Yn)= be such a subsequence and y its sequential limit

2 2 2" 2point. Let xRw. ]drn(2,,,y,, )-g(yn)j<-jdm(2,,,y,,)-dm(2,,,x)[+ [dm(2,,,x)-g(x)[+[g(x)-
g(Yn)l" Through the uniform continuity of A and g, there is m N, and i>O so that if
i>m and x[O, 1] so that Ix-(ki 1)/i1< then ’ ’Id.,(,,y,) d.(2’,x)l+lg(x)-g(Yi)l <

2e/2. So pick x(y-/2,y+6/2), lim.Nw_ld(2.,x)--g(x); therefore, there is i>m
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so that 2’Idm(z,x)- g(x)l < el2. But this contradicts the original assumption. Therefore,

if e> 0, there is a natural number m so that
(iii) 1/m<e and if <k<2m, then Id2m-g((k 1)/2m)l<ek

Let e>0 and consider, for x [0, 1],

folg A ( j x )/g(x ) dJ-folg( x )A ( x ,j )/g( j ) dJ

folg(j)A(j xl/g(x)dj folg(jlA(j,yl/g(y)dy
lg(j)A(j’Y)/g(y)dy-- g

n n

n
g

n n

,Y)/g(Y)

(k-1n d,A

,y /g(y)--- d,A n ,Y)/g(Y)]

d,A(k-1
y /g( y ) -- d, A n

n d,A

Pick y in R w so that

,Y)/d(n,y) (k-1--}n d,A
n

M(n,y)-1 )n /d(n,y)

M(n,y)-
/dnm(n’Y)-fog(x)A(x’j)/g(j)dj["

g(x) g(y) lOA* fo g(j)dj
Find L so that if n _>L

and

’g(j)A(j,y)/g(y)dj-- g k-1)A n
’y /g(Y)

kA(k-1n n ,y)/g(y)/folA(j,y)/g(y)dj[< +e,

n 10A,2

From (ii) there is n >L so that n is a power of 2, and if _< k_< n, then

and

d,-g
2’ <lO fdA(j,y)/g(y)dj

eA,
lOA, folA(j,y)/g(y)djg

n
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Hence

folg(j)A(J’ x )/g( x ) dj-lg(x )A ( x,j )/g( j ) dj

lg j ) dj +-f-d -t-- g(y) d(.,y) n ’y

,Y)/g(Y)

m(n,y)-1 )n /d(,y)_1 (k-1).,y/.4 dA(k-1+ dA /’m(n,y) n n

+-- dk A
k-1

which by the choice of n and the fact that d<A*/A, from (i) guarantees that the sum
is less than

n /d(,,,y)- (x)A(x,j)/g(j)dj,

e__+ ?dkA (k-1 m(n,y)-l) fo2 - n n /dh(,,,y)- g(x)A(x,j)/g(j)dj.

But

In Ed;An k-n m(n,Y)--n /d4(,,,y)__ln Ed4(n’y)Ak n n

so mimicking the telescoping from the above argument allows a choice for y, L and n so
that

e,(x)a(x,y)/e,(y)dy

can be made arbitrarily small. Therefore, if x [0, 1],

and since if n is a natural number, d’- l, g(0)- 1.
By [5, Thm. 3], there is exactly one functionf so that f(0) and if x[0, 1], then

Since any other choice of convergent subsequences in the construction would produce a
2limit function satisfying the equation above, it follows that lim

_
dM(a,,)- g(x).

Suppose x[0, 1] and k, k)., are natural numbers so that limoc(k,,/2")=x.
2"Ida2 g(x)l <- Id2 du(2,,y)l + d(2",y)- g(Y)l + Ig(Y) g(x)l" Pick y close to x and the

third term is small by the continuity of g. For large n I(k,,- 1)/2"-y is small, and (i)
forces the first term to be small. Picking yR forces, for large n, the middle term to
be small. Hence, lim_ d2-g(x), as was to be proved.

4. Some remarks and questions. In considering the use of Theorem 2 it should be
noted that the iteration from Theorem depends only on the solution of a fourth
degree polynomial and therefore can be programmed, and the function T from the
hypothesis can be used to compute the proximity of any iterate to an answer. On the
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other hand, Theorem 2 offers no estimate relating the dimension of the matrix ap-
proximating A to the proximity of dt(n,x) to f(x), and there is no a priori guarantee of
accuracy. The authors programmed the algorithm exactly as stated in Theorem on a
16 16 grid and obtained 8 digits of accuracy in 16 digit arithmetic on examples where
a solution function was known in advance.

A theorem guaranteeing error estimates dependent on the properties of A would
greatly increase the utility of the construction.

As was mentioned in the introduction, the fixed point solution in [5] generalized to
include other integral equations. Of interest here would be the identification of related
integral equations whose solutions can also be approximated through matrix embed-
dings.
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THE RATE OF MONOTONE SPLINE APPROXIMATION
IN THE L-NORM*

D. LEVIATAN aND H. N. MHASKAR

Abstract. We obtain Jackson type estimates for the approximation of monotone nondecreasing functions

f by monotonically nondecreasing splines with equally spaced knots in the Lp[0, 1]-norm _<p_<-o. The
estimates involve high order moduli of smoothness of some derivatives of f and are obtained for functions f
with a continuous derivative in case p o and for functions f that are the second primitive off" Lp[0, 1] if
l_<p<o.

1. Introduction. In a recent paper [1] Chui, Smith and Ward have extended to

Lp[0, 1] some of the important results of De Vore [3] concerning Jackson type estimates
for approximating in the C[0, 1]-norm, monotonically nondecreasing functions by
monotonically nondecreasing splines. While De Vore’s construction and proofs [3] are
ingenious as well as complicated, they seem to work only in the C[0, 1] case. On the
other hand, Chui, Smith and Ward’s construction and proofs [1] are simpler and apply
to all Lp, <_p<_ . However, they are unable to obtain estimates that involve higher
order moduli of smoothness. Following some of their ideas, we are able to obtain
Jackson type estimates involving higher order moduli of smoothness. De Vore [3, p.
904] remarks that if f has a continuous nonnegative derivative f’, then his method
would yield an estimate of the order n-tOr_l(f’,n-). We will prove that, using the
simpler method of [1]. Also we will provide Lp-estimates for a function f which is the
second primitive of f" Lp[O, 1]. These estimates will involve the (r-2) modulus of
smoothness of f". In this paper r_> 2 will denote the order of the splines.

Throughout this paper C, C1, etc., will denote constants which may depend on p
and r but are independent of f, g and n.

2. The main results. For _<p_< let Lp[0, 1] denote the space of functions whose
p-th power is integrable if _<p< and the space of continuous functions if p-.
GivenfLp[0, 1], define its r-th Le-modulus of smoothness by

rp(f,h)- sup [[Art(f,x)llp(I(rt)),
O<_t<_h

where the pth norm is taken over the interval I(rt)- [0, 1- rt] and N is the r th forward
difference. We will write

Or(f,h)--6Or(f,h ).
Let (r,n) (r>_ 1) denote the space of all splines of order r on the n + equally

spaced knots {n}’=0, i.e., s(r,n), if s is a polynomial of degree _<r-1 in each
interval [-, ___z and s(r-2) is continuous in [0, 1] (if r- 1 s is a piecewise constant with
no continuity at the knots).

IffL[0, 1] is monotonically nondecreasing, denote

En*p(f,r)-inf{ll f-Slip "s$(r,n),st}.
If p we write En*( f, r) E,o( f, r).
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First we have the casep- o.
THEOREM 2.1. Let r>_2. Iffpossesses a continuous nonnegative derivative f’ on [0, ],

then

(2.1) E* ( f,r) <_ Cn-loor l(f’,n-’)"
Forp< we show
THEOREM 2.2. Let <_p< o and r>_3. Iff is the secondprimitive off" Lp[O, 1] and

iff is nondecreasing, then

(2.2) E,*p( f, r) <_ Cn-26Or_2,p( f", n-’).
Remark. A more desirable estimate would be

E*np( f r ) <- C6orp( f n-l ).
For this would yield inverse theorem characterizing smoothness properties of f by its
rate of approximation by monotone splines. However, since Chui, Smith and Ward’s
technique (and ours here) involves approximating f by splines that interpolate it at
some of the knots and, in particular, at x-1, it is hopeless to expect that the method
will yield that for _<p< o, as is explained below.

By the same reasoning we give below, it is not possible to find for _<p< c an
interpolating spline that yields [1, Thm. 1.1] for the casej-0.

Suppose that for eachfL[0, 1] monotonically nondecreasing there is a monoton-
ically nondecreasing spline s $(r, n) such that s(1) -f(1) and

Then from the inequality

we immediately get

f-sllpC%p( f,n-l).

OOrp( f,*3)2rll f llp

lip C f lip.
Now the space (r,n) is finite-dimensional, and so all norms on it are equivalent.
Hence,

(2.3) [f(1)l-ls(1)l-Ilsllo <-c211 fll ,
If p< o, then it is possible to find a sequence of increasing functions f such that
f,(1) k and fk lip --< eventually contradicting (2.3).

Our strategy is to use estimates on the rate of approximation of f by polynomials
of degree r in order to obtain good approximation to f by monotone piecewise poly-
nomials; once we have achieved that, we replace the piecewise polynomials by suitable
splines following the technique of Chui, Smith and Ward [1].

3. Monotone approximation by piecewise polynomials. In this section it is conveni-
ent to have the functions, their norms and their moduli of smoothness defined in

Lp[-1, 1] rather than L[0, 1] (the modifications are obvious).
THEOREM 3.1. (i) Let f be continuously differentiable on [-1, 1] and nondecreasing

there. For r>_ there exists a nondecreasing continuous function g on [-1, 1] such that g
interpolates f at 0 and +-- and has the following properties:

(3.1) The restrictions of g to [-1,0] and to [0, 1] are polynomials of degree <_r,

(3.2) II f- g II o -< Cr( f’, 1)
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and

(3.3) [g(k)(OW)--g(k)(o--)[<--Cr(f’, 1).
k--1

(ii) Let <_p< and let f be the second primitive off" Lp[-1, 1] and such that

f’ >_0. Then there exists a nondecreasing continuous g on [-1, 1] interpolating f at 0 and
-+- and satisfying (3.1) such that

(3.4)
and

<--COr_l(f" 1)f-gllp

(3.5) Ig(k)(o+)--g(k)(o--)lCOr_,(f’’, 1).
k=l

If f possesses a continuous derivative, then by [2, Thm. 3.1] there is a polynomial q
of degree _<r- such that

(3.6) f’- q -< Co( f’, 1).
Since f’0 it follows immediately that

(3.7) i--2min( min q(x),0} <-Cwr(f’, 1).
-l_<x_<l

If f is the second primitive of f" Lp[-1, 1], then again by [2, Thm. 3.1], there is a
polynomial q of degree _< r-2 such that

Co) p( f" 1).f" qllp l,

Let q(x)=f’(O)+ q(t)dt. Then

Co ,p(f" 1).(3.6’) IIf’ qll p
Now min_l<x< q(x)-q(a) for some -1 _<a_< and sincef’_>0,

i--2min( min q(x),0}
-l<x_<l

(3.7’) <-2f(a)-q(a)

--2[f[ f"(t)-q,(t)] dtl<__2Cor_,,p( f" 1).

For either case let Q(x) fq(t ) dt. Then we prove:
LEMMA 3.1. Either Q(1) 0 and 0 or i + Q(1)> O, and we have

<2(3.8) 8+ Q(1)-

IO(1)l <(3.9) +Q(1)-

Proof. If Q(1)-0 and >0, then + Q(1)>0 and (3.8) and (3.9) are evident. Thus,
we have to deal only with the case where Q(1)v 0.

Now for all x[0,1] q(x)>_min_l<_t<_lq(t)>_-. Hence Q(1)-fq(x)dx>_-;
that is,

(3.10) i + Q(1)_>-.
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Thus if 8=0 then Q(1)_>0, and since Q(1)#0, 8+Q(1)=Q(1)>0. If 6>0, then
evidently +Q(1)>0. So now we can divide by 6+Q(1) so that (3.8) follows im-
mediately by (3.10). Also, (3.9) is obvious if Q(1)_>0 so that the only remaining case is
8>0, Q(1)<0. Now by (3.10), Q(1)_>--; thus,

<8IQ(I)I--Q(1)_-_<I + Q(1),

and (3.9) follows.
LEMMA 3.2. Let f be as in Theorem 3.1. Then there is a nondecreasing polynomial P

on [- 1, of degree <_ r which interpolates f at 0 and and such that ifp ,
(3.11) f-Pll Cr(f’, 1),
and if <_p < c,

(3.12)

and

<_Co) ,p( f" 1)f--P[lp
Proof. If Q(1)--0 and =0, then Q(x)=q(x)=-O and by virtue of (3.6) and (3.6’)

f’[[ -< Co)r(f’, 1) ifp o,

< Co) p( f 1) if l_<p<o.f’ll p 1,

Then (x)-f(0)[ satisfies the same estimates and the linear function that interpolates f
at 0 and satisfies (3.11) or (3.12).

Otherwise, by Lemma 3.1 6 + Q(1)>0. Now without loss of generality, we may
assume that f(0) 0 and then let

f(1) [Q(x)+Sx]P(x)-8+Q(1)
We will prove the case _<p < c. The proof for p c is even simpler. It is clear that P
interpolatesf at 0 and and that P is a nondecreasing polynomial of degree _< r. Also,

(313) P(x)-f(x)-Q(x)-f(x)+ f(1)-6-Q(1) 6f(1)
i + O(1) O(x)+

i +Q(lX.
By virtue of (3.6’), for all x [-1, ],

<Co) p(f" 1).(314) [Q(x)-f(x)[<_ q(t)-f’(t)[dtl<-II f’ qllp l,

Now for all x [-1, ],

8f(1)
6+Q(1)

8f(1) i 81Q(1)I
x----<t3+ Q(1) -<+ Q(1) If(l)- Q(1)[ + t+ Q(1)

<2Co)r_l,p( f" 1) + Co)r_l,p( f" 1)
by (3.8) and (3.14) and by (3.7’) and (3.9). Thus, we proved

f(1)
f"(3.15) + Q(1)

X Clo)r_l,p( 1).

As for the third term in (3.13) notice that in view of (3.7’) and (3.14),

(316) f(1)-8-Q(1) (f" 1)IlQllp
i+O(1) O <-2co)r-l,p 6+O(1)’p
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so that by virtue of (3.13) through (3.16) the proof of (3.12) is complete once we show
that

(3.17) IIQIIC(+ Q(1)).
To this end we proceed as in [1, Lemma 3.2]. Note that since Q belongs to the r+

dimensional space of polynomials of degree _<r it suffices to prove (3.17) with the
sup-norm on [0, 1] replacing the p-norm on [-1, 1]. So let 0_<x0_<l be such that
IQ(x0)l-ItQ II ct0,l. Then if Q(xo)-IlO cto,l, then for some a(xo, 1) we have

Q(1)-O(xo)- Q’(a)(1-Xo)-q(a)(1-Xo)>_--

Hence

Q ct0,- O(xo) < O(1) +.
If on the other hand O(x0)--IIQ II ct0,11, then for some b(O, xo)

Hence

Q(x0) Q(x0) Q(0)- Q’(b)x0- q(b)x0>__-2"<Q ct0,11- -Q(x0 ) ---< Q(1) +

by (3.8). This completes the proof of (3.17).
Proof of Theorem 3.1. Again, since the proofs of part (i) and part (ii) are similar, we

will prove just part (i). Applying Lemma 3.2 once to f(x) and then to -f(-x), we see
that there exist two polynomials P1 and P2 of degree _<r which are monotonically
nondecreasing on [-1, 1]. P(x) interpolates f at 0 and and P2(x) interpolates f at -1
and 0; and

(3.18)

Thus, we let

f Pj. II <- Cor( f’, ), j- 1,2.

Pl(X), O_<x_<l,
g(x)-

e2(x), -1 _<x_<0

and g satisfies (3.1) and (3.2). In order to prove (3.3) observe that for all polynomials of
degree _<r on [-1, 1], the norm IIl,=0agxk Ill- r_ok!lakl is equivalent to the sup-norm.
Hence, by (3.18),

k=l k!
x

k=O

C P-Pz Cl60r(/’, 1).

The proof of Theorem 3.1 is complete.
The following result enables us to patch together piecewise polynomials on differ-

ent intervals.
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THEOREM 3.2. (i) Let f be continuously differentiable on [-2,2] and nondecreasing
there, and let g and g2 be the piecewise polynomials guaranteed by Theorem 3.1(i)for the
intervals [-2, 0] and [0, 2], respectively. Then

(3.19) Ig2)(O+)-g)(O-)l<Cor(f’, 1; [-2,2]).
k---I

(ii) Letfbe the secondprimitive off" Lp[-2, 2], _<p< o, and satisfyingf’>_O and
let g and g2 as above. Then

(3.20) [gk)(O+)--gg)(O--)lCwr_,p(f", 1).
k--I

Proof. Again we will prove part (i) only. By Theorem 3.1(i) there exists a function g
on [-1, l] the restrictions of which to [-1,0] and to [0, 1] are polynomials of degree _< r
and such that

(3.21)
and

(3.22)

f-gll o[-1,1] Cwr(f’, 1; [-1,1])

Igk)(O+)--g’’)(O--)] <_ Cwr(f’, 1; [-1,11).
k=l

Also by Theorem 3.1(i), g and g2 are polynomials of degree _<r on [-1,0] and [0, 1],
respectively, and

f- gl [-2, 0]_< C(f’, 1; [-2, 0]),(3.23)
(3.24)
By (3.21) and (3.23),

f-g211o[O,2]fw(f’, 1; [0,2]).

g- gl o [- 1,0] _< Cldr(f’, 1, [-2, 2]).
Similarly by (3.21) and (3.24),

g-g2 lion[0, 1]-< ClWr(f’, 1; [-2,2]).
Applying Markov’s inequality (e.g., see [4, p. 40]) r- times in each of the intervals, we
get

[gk(o--)--g}g(O--)l<_Co(f’, 1; [-2,2])
k=l

and

Ig’k)(o+)--gt2k)(O+)l<_Qw(f’, 1; [-2,2]),
k=l

which together with (3.22) imply (3.19).

4. Monotone approximation by splines. Let 0 x0<x <" <XN-- be a division
of [0,1] and denote Ii=[xi_,xi] and Bi=xi-xi_l, i=1,...,N. For a function f
Lp[O, 1], we let Wrp(f, ; Ii) be the modulus of smoothness of f restricted to Ii. If no
interval is specified, then the norms and moduli of smoothness are on [0, 1].

LEMMA 4.1. LetfLp[O, 1], l_<p<o and 0=x0<x<..-<XN= be given. Then
for O<li<i--Xi--Xi_l i= 1,...,N and S:max<_i<_NSi,

N

(4.1) X [Orp(f, Tli,Ii)] pc[Orp(f,*; [0, ll)] p.
i--1
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Proof. Let PWrp[0, 1], i.e., p is the rth interated primitive of fD(r)Lp[O, 1], be
arbitrary. Then it is readily seen (see [2, p. 122]) that

A%(f,x)[I p( Ii( rt )) --< A(f-p,x)llp(Ii(rt)) + A(p,x)ll p(Ii(rt))

-<2"[11
Hence

so that

Orp( f li Ii ) <- 2r[ f qg p( Ii ) +r qg(r) p( Ii )]

[O)rp( f,li,Ii)] p 2(r+ l>P[]]
Therefore

N

[O)rp(f,i,Ii)]P2(r+l>P[ll
i--I

2(r+l)P[I f-qgll p-k-rllqg(r) p] P.
Since p Wrp[0, 1] is arbitrary, the last inequality also holds for the K-functional,

Krp(f,h)- inf [11 f-qgllp-k-hllqg(r) llp];
Wrp[0,]

namely we have
N

E [)rp(f,i,li)]P2(r+l>p[grp(f,r)] p"
i--1

By virtue of [2, Thm. 2.1 ], this K-functional is equivalent to 0rp( f, 8). In other words we
have proved (4.1).

The last lemma we will need is an important result of Chui, Smith and Ward [1,
Lemma 4.3].

LEMMA CSW. Let r>_ 2 and d-4r2 and let g be a nondecreasing continuous function
on [-3d, 3d], the restrictions of which to [-3d, 0] and to [0, 3d] are polynomials of degree
<_r-1. Then there is a nondecreasing spline s of order r and knots at the integers such
that s-g outside of [-d, d] and

r--I

(4.2) IIs-gllp[-d,d]<-C Ig(>(0/)-g()(0-)l
k--I

We are now ready to prove Theorem 2.1. The proof of Theorem 2.2 is similar. The
proof runs along the lines of that of [1, Thm. 1.1]. We bring it here for the sake of
completeness and also in order to correct some typographical error in the definition of
the spline in the above mentioned proof.

Proof of Theorem 2.1. It suffices to prove (2.1) for n>6d, where d=4r. Let
F(t)=f(-), O<_t<_n, and let m be the greatest even integer not exceeding n/3d. Denote
I-[0,3d], I2-[3d,6d],...,I,_-[3(m-2)d,3(m-1)d] and Im-[3(m-1)d,n]. By
Theorem 3.1(i) for each pair of intervals I2_UI2, j-1,2,...,m/2, there exists a
monotonically nondecreasing continuous function G interpolating F at 6(j-1)d,
(6j-3)d and 6jd, such that G is a polynomial of degree _<r-1 on I2._ and on I2j..
Also,

IIF-Ojll(I2j_l UI2j)<-C%_,(F’, I2j- UI2j)
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r--1, IG).’)((6j-3)d+)-Gj(.’)((6j-3)d-)I<-Cor_I(F’, I2j_ 1U12j).
k--I

Note that since the length of I is _> 1, C is independent of the intervals. Now by
Theorem 3.2(i), we may define a continuous nondecreasing function G-Gj on I2j_ u
I2j,j- 1,. .,m/2 such that

(4.3) IIF-all[O,n]<-C6Or_l(F’, 1)

and for i- 1,2,..-, m-

r--I

(4.4) E IG(’)(3id+)-G(’)(3id-)l<-Cr-l( F’, 1).
k--I

On each pair It U Ii+ , G satisfies the conditions of Chui, Smith and Ward’s lemma
whence there is a spline S on I U I;+l such that St-G outside [(3i- 1)d, (3i + 1)d] and
by (4.2) and (4.4).

(4.5) Ilsi-allo[(3i- 1)d,(3i+ 1)d] <-Cor_l(F’ 1), i- 1,-" ,m- 1.

So we define the spline S-S on [3(i-1/2)d, 3(i+1/2)d] i-1,...,m-2 S-So on [0,d]
and S-S,,,_ on [3(m--)d,n]. Now we let s(x)-S(nx), 0_<x_<l. Then s6(r,n),
s is monotonically nondecreasing and by virtue of (4.3) and (4.5)

IIs-f IIo-IlS-Fllo[O,n]<-IIS-GIIo[O,n] / IIa-FIIo[O,n]
(4.6) supllSt-all[(3i- 1)d, (3i+ 1)d] +Cor_I(F’, 1)

<--2Cwr-l(F’, 1)- Cln-lr 1( f’, n-I )"

This completes the proof of Theorem 2.1.
Proof of Theorem 2.2. The only difference between this proof and the previous one

is in the proof of (4.6). Here we have

IIS-FIIpP[O n][Is-f IlpP-

2 p

n [IIS-GII[O,n]+IIG-FII[O,n]]
(similar to (4.3))

2p m 2p
IlSi-Gll[(3i-1)d (3i+ 1)d] + --C[wr_2,p(F" 1)] pn A n

i--1

(similar to (4.5) )

--C E [dr-2,p(F", 1;Ii-, UliUIi/, UIi+2)] p

i--I

2 p+--C[or-2, p(F",l)] p.
n
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Applying Lemma 4.1, we have
4.2/" 2/’--C[or_2,p(F", 1)] p-I- --C[or_2,p(F" 1)] p

C
tl

[r-2’p(F’t’ I)]P--c[ tl-260 ( f" H-l)] p
r--2, p

and the proof is complete.

REFERENCES

[1] C. K. CHUI, P. W. SMITH AND J. D. WARD, Degree of Lp approximation by monotone splines, this Journal,
(1980), pp. 436-447.

[2] R. A. DE VORE, Degree of approximation, Approx. Theory II, G. G. Lorentz, C. K. Chui and L. L.
Schumaker, eds., Academic Press, New York, 1976, pp. 117-162.

[3] Monotone approximation by splines, this Journal, 8 (1977), pp. 891-905.
[4] G. G. LORENTZ, Approximation of Functions, Holt, Rinehart and Winston, New York, 1966.



SIAM J. MATH. ANAL.
Vol. 13, No. 5, September 1982

(C) 1982 Society for Industrial and Applied Mathematics
0036-1410/82/1305-0014 $01.00/0

THE ZEROS OF CERTAIN JACOBI POLYNOMIALS*

ANDREW YOUNG" AND HASSAN HAMIDEH

Abstract. Two theorems are proved about the zeros of certain Jacobi polynomials that are important in
the theory of interpolation and approximation.

THEOREM 1. Let Sk and Sk be the sums of the kth powers of the zeros of PnW’-W)(x) and PW’-W)(-x)
respectively (w real, 0<w< 1). Then for k- 1,2,...,2n, S-S=-2w (k odd) or -0 (k even).

THEOREM 2. Let S, and Sk be the sums of the kth powers of o(.... w,l
+ )( x and P(n w)( x respectively w

real, 0<w< 1). Then for k l, 2,..., 2 n + l, Sk Sk 2w- (k odd) or (k even).

1. Young and Kiountouzis (1979) have shown that if a polynomial of degree

m--l

F(x)- E aiXi,
i=0

is the best approximation to a function f(x) in the weighted L-measure over the range
-1 _<x_< 1, i.e.,

f’w(x)lf(x)- f(x)l dx
-1

is a minimum where

w whenf>F,w(x)- 1-w whenf<F,

and 0<w< 1, then under certain conditions on f(x), f(x) F(x) at rn points
52<"" <m< 1, independent off(x), satisfying the relations

(1) l--’+j3 (-1)’-lgm+W,-0 k-1 2," ,m2

with

2w, rn even, k odd,(2) w- 0, rn even, k even,
and

1-2w, rn odd, k odd,(3) w,- 1, m odd, k even.

They identify, without proof, the set (i) as being the zeros of polynomials pro(X) as
follows"

(4) m even (- 2n ), Pro- PnW’-W)(x )PnW’-W)(-x),
--P(-W’w-l)P(nW,l-w)(x )(5) rn odd ( 2n+ 1) Pm n+l

where p,t)(x) is a Jacobi polynomial of degree n.
The purpose of this note is to provide proofs for these identifications.
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2. The following properties of Jacobi polynomials are needed. (See, e.g., Szegi5
(1978, Chapt. IV).)

Jacobi polynomials P,’t)(x), n-0,1,2,.-.,a>-l, fl>-I are orthogonal with
respect to the weight function w(x) (1 x)(1 + x)8 on [- 1, ]. Their zeros are all real
and distinct and have modulus less than 1.

P’(x) is a solution of the differential equation

(6) (1-x-)y1 ( A + Bx)yl + Cy-O,

(7) A-a-fl, B-a+fl+2, C--n(n+a++l),
(8) ( )

d p,,t p,+,t+(9) xx ( )(x))--- (n +a +fl+ ’)(x)] n--1

The coefficient of x" in p,t)(x) is

(10) 2-"(2n+a+fl)"n
3. Any polynomial of degree n can be written as the product of factors

y-const. (X--Xi).
i--I

Differentiating this gives
n

(11) yl_y E (x--xi)-l

i--I

and

(12) yll __yl (X__Xi)-1
y (x_xi

i=1 i=1

When y satisfies (6), substituting (11) and (12) into (6) yields

(13)

-7 (A+Bx)+(1-x-2) 1---x --Cqt-(1--x-2)i 1-xx -2.
Let the roots be ordered -l<x<x2<’’’ <Xn<l. Then for x.<x<l each of the
terms can be expanded in power series of x/x. If we denote

(14) S-
i=l

then (12) gives
o o o (r+l)S(15) . S B+Ax_l+(l_x_2) . S _C+(l_x_2)]
r=0 Xr r=0r=0 xr xr

This is true for all x in the range x,<x< so that it is legitimate to equate coefficients
of x -k to obtain a set of relationships for the sums Sr. This gives

o, So( + So ) C+ So
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which is readily confirmed since SO n, B ct +/3 + 2 and C- n(n + a + fl + 1),

(16) k- 1, Ql +ASo+(B-2)SI-O,
(17) k> 1, Ok-Ok_2+ASk_l +(B-k- 1)S+ (k-1)Sk_2,
where

k

(18) Qk-- - SrSk-r with Q0-So2.
r--0

4. The first result to be proved (equations (1) and (2)) can be formulated as:
THEOREM 1. Let S and S be the sums of the kth powers of the zeros of P(W’-W)(x)

and P(W’-W)(-x) respectively (real w, 0<w< 1). Then for k- 1,2,..-,2n

( -2w, k odd,Sk- Sg- 0, k even.

Proof. Provided w is real and -1 <w< 1, P(W’-W)(x) is a Jacobi polynomial with the
properties given in 2, so the results of 3 apply with c-w>-1 and/3--w>-1. If the
zeros of P(W’-W)(x), in ascending order, are taken as l, 3,’" ",2n-, those of P(W’-W)(-x)
are 2, 4,’" ",2n withi--2,+ -;, i-1,2,...,2n. Thus_S- (- 1)S.

For k even, Sk-S-0 as required. For k odd, Sk-S-2Sk so it has to be proved
that

Sg--w fork-l,3,...,2n-1.

In (6) to (18) put ct -fl w, A 2w, B 2, C- n(n + 1). Equation (16) gives S
With k-3, (17) then gives S --w.

Now assume SI-S3- ...-Sg_2--w (k odd). In this case Q,-Qg_2 in (17)
reduces to 2So(S-S_2)-2wS_ so (17) becomes 2n(Sk-Sk_2)-2wSk_ + 2wS_
+(1-k)Sg+(k- 1)Sg_2-0 or (2n+ 1-k)(Sg-Sg_)-O. Hence for k<2n+ 1Sg=
Sk_2--w. Since Sl--S3---w, S--w for k<2n+ 1, k odd, by induction. This proves
the theorem. Note that when k-2n + the induction process breaks down.

5. The other result to be proved is (equations (1) and (3))"
p(_w,w_)(x)THEOREM 2. Let S, and S, be the sums of the kth powers of the zeros of n+

and P(W’l-W)(x) respectively (real w, 0<w< 1). Then for k- 1,2,...,2n+ 1,

Sk- S--g- ( 2w- 1, k odd,
1, k even.

Proof. Provided w is real and 0<w<l, Pn(W’l-w)(x) and "n+lr’(-w’w-)(x) are both
Jacobi polynomials so the results of {}2 and 3 apply with ct-w>-I and/3- 1-w>-I
in the first case and a--w>-I and fl-w-1 >-1 in the second. From (8) and (9)

p(-w,w- 1)(x)}. Moreover thepw,l--W)(x) (-- 1)nen(l-w’w)(-x) and Pn-w’w)(x) t .+1

zeros of both polynomials are all real and inside the range (-1, 1). Thus the zeros of
PW’l-W)(x) interlace those of -w,w-P+l l)(x) so if in ascending order the zeros of the
latter are 1, 3,’’’,2n+ those of the former are 2, 4,’",n with 2i_1<2,
i--1,...,n.

Zr=0 S,.S,_r and -g- Zg SrS,_r For Sg the substitutions required in (6)Let Qk g
r--0

to (18) are a -w, fl w 1, A 2w, B 1, C- (n + 1)2, So n + while for Sk they
area-w, fl-l-w,A-2w-l,B-3, C-n(n+2),So-n.

With k- 1, (16) gives Ql--l+(1-Zw)S0-(Zw- 1)-SI-S-0, which re-
duces to

(2n+l)(S,-l+l-2w)-O,
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giving S1-_SI-2W-1. With k-2, (17) gives QE-Q2-Qo+Qo+(1-2w)(SI +s)-
2s2 + s0- so- 0, which reduces to

2n($2-)+(S + g,)(S, g, + --2w)-- 2n--0,
so using the result for k-1, S2- $2-1 unless 2n-0. If 2n is zero, the theorem states
only S-S-2w- 1. So the theorem is proved in the case 2n-0.

For 2n >0 the theorem can now be proved by induction. Assume S,.-Sr- -w,. for
r-1,2,..-,k-1 with w-%--.. --1-2w and Wz-W4-... 1. Then, for general
k, (17) gives

(19) (Qk--k)--(Qk_2--Q--k_2)+w,(Sk_,
--k(Sk--k)--2ffk+(k--1)(Sk_2-- S-_2) 0.

Now Q,- Q---- zkr_0 S,.Sk- r-- S,.Sk_ and, by assumption, Sr / wr. So Q,- Q--- re-
duces to

k-I

2(n+ 1)&,-ZnS2+
r=l

Similarly
k-3

Ok-2-- a’--k-2-- 2(n + 1)Sk_ 2 2nffk_ 2 + . (WrWk_r_ 2 WrS2_r_ 2 Wk_r_2g).
r=l

Substituting into (19) gives

(2n+2--k)(Sk--ffk)+W,(Sk_ + gk__,)-- (2n + 1--k)(Sk_2--S-k_2)
(20)

2Sk_2 W WlWk_ / w2wk_2-- 2WlSk_ 2w2Sk_2--O.
When k is odd (20) gives (wk_ =w2, Wk_2 --Wl)

(2n+ 2--k)(Sk-gk)+ Wl(2n + 2-- k)- 0.

So provided k<2n+2, Sk--Sk---w (k odd). On the other hand when k is even
(wk_ =w, wk_2 =w2) and (20) becomes

(2n+ 2-k)(Sk--gk)+ wz(Zn + 2-k)-0
and provided k<2n + 2, Sk--Sk---w2 (k even). Since the result is true for k- 1,2 it is
true for all k<2n / 2 thus proving the theorem. Again the induction process breaks
down at k 2n / 2.
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COMBINATORIAL APPLICATIONS OF HERMITE POLYNOMIALS*

RUTH AZOR, . GILLIS AND . D. VICTORS

Abstract. Let C, C2,’", Ck be k finite sets of elements, where n is the number of elements in C
(i= l, 2,-..,k) and /k=l n is even, 2S (say). In any arrangement of the elements into S disjoint pairs, we
count the number of homogeneous pairs, i.e., those in which both numbers are from the same subset, Ci. We
define such a pairing as even, odd or pure according as the number of homogeneous pairs is even, odd or zero

respectively. The numbers of possible pairings of the different types are expressed as integrals involving
Hermite polynomials, and these expressions are used both to derive new combinatorial results and also to

provide combinatorial proofs of analytical formulae.

1. Introduction. Consider an even set of distinguishable elements divided into k
subsets, with n in the ith subset (i- 1,2,..-,k), where

_
ni-2S.

We define a match on the 2S elements as an arrangement of them into S pairs, i.e.,
a graph of degree 1, taking these elements as nodes. The edges of such a graph are
classed as homogeneous or heterogeneous, according as the two nodes which they join
belong to the same or different subsets.

Denote by E,..., (fl,...,) the number of matches which contain an even
(odd) number of homogeneous edges, and by P,..., the number of pure matches, i.e.,
which contain no homogeneous edges at all. These last, are in fact, the k-partite graphs
of degree which can be formed on the k subsets.

We shall derive explicit formulae for these numbers in terms of Hermite polynomi-
als, and shall show how they can be used to obtain combinatorial proofs of some
analytic formulae and also analytic proofs of some new combinatorial results.

2. Properties of Hermite polynomials. The Hermite polynomials are defined, as
usual, by

d
(1) H,(xl-(-1)"ex: dx---(e-X:)-n!
and it is well known that

E (-1)m(2x)n-Zm
m!(n-2m)!

(2) f II(x)H,(x)e-x= dx- f. 2. r’

Let
k

(3) I/,/l,t12, .,tlk
e 1-[ {Hn,(x))dx,

-m i=1

if r:s,
if r=s.

where the subscripts n l, n 2," ", n are any natural numbers.
We assemble here, for convenience, some basic properties of the Hermite poly-

nomials which will be needed"

d (x)x [H,,(x)]-2nH,_,(4)

Received by the editors September 8, 1980.
Weizmann Institute of Science, Rehovot, Israel.
Rockefeller University, New York, New York 10021.

879



880 RUTH AZOR, J. GILLIS AND J. D. VICTOR

o zn.E=o(H,,(x) exp{2zx z},

(6) Hn(x+y)- ()H,(x)(2y) n-’,
ot O

(7) Hn(XX) -xn’ E {fl’(n-2fl)’}-H,-2a(x)
n/2

Of these (4) and (5) are well known, while (6) is an immediate consequence of (5)
(cf. [5, p. 385]). Equation (7) can be deduced from a corresponding result for Laguerre
polynomials. However, since it does not appear to have been stated explicitly in the
literature, we note here that

2 H(Xx)--exp(2xzx-z2} by (5)
n=0

(8) =exp{Zx’Xz-Xaza} exp(X- 1)z

B=0

Comparison of coefficients of z in (8) yields (7). We shall be particularly interested in
the special case ?- 2-l/2, giving

X (-1)t
#<_n/2 fl!(n-2fl)! Hn-zt(x)"

3. Combinatorial interpretation.
THEOREM 1. For any set of nonnegatie integers ( n 1, n 2,

(10)

where Pn ,n is defined as in and In ,n in (3).
Proof. We begin by defining

(11) Po,...,o--
for any k, so that (10) holds for the special case n -n 2-- ,..-,--nk-0. The general
result will follow if we can show that Pn,,..-,n and the right-hand side of (10) obey
identical recurrence relations.

To simplify the notation we shall, where there is no risk of ambiguity, denote any
array, An,,n2,...,n (say), by A,, where n stands for the index set (n,n2,...,nk). If m is
the set (ml,m2,...,ml) then An,m represents An,,n2,...,n, m,’",,l’ Similarly, if b is a
simple index An, b is Anl,n2,...,n,b, etc. We shall use A(,i) to represent
A i.e., the term of the array An, obtained if one subtracts

I,n2, ,ni-l,nil,ni+l,’" .,nk
from the th subscript, leaving the others unchanged. Similarly, A’J) is the term arrived
at if we subtract from each of the ith and jth subscripts, etc. It will also be
convenient, for any index set n-(n ,.--,nk) to write o(n)-=1 ni.

Consider now the Pn possible pure matches on our total set of o(n) objects. Select
some particular member of the first subset. The number of pure matches in which it is
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matched with an element of the ith subset is clearly niP’i), and hence
k

(12) P,,- 2 niP’’i).
i--2

Moreover,
k

(13) In- e- Hnl(Y )" H [Hni(Y)] dx
-o i:2

_(_l).,f d",

dx
(e-X) II [H(x)]dx by(l)- i=2

x-;- (e-X)’-x II H(x dx integrating by parts
i=2

e-Xl-l,_(xl Y ;(xl. II I(x ex
-m i=2 j=2

=2 e H,_(x) niH,_,(x) lI H(x),dx by (4)- i=2 j=2

k

=2 niI(l’il.
i=2

Hence, if Xn denotes the right-hand side of (10),
k

(14) X- {.2"(}-’/I {-2"(-}-/ 2 nI’-2nXl’.
i=2

Since Po,...,o-Xo,...,o-1, the identity between relations (12) and (14) establishes (10).

4. Leafiafi t prets t HermRe lyais. Let n-(n, n ,...,n). The
product )=H(x) is a polynoal of degree o(n) and therefore expressible in the
form

2C,(x,
where the coefficients C, are to be deterned. We have otted limits of summation
here, since it is in any case clear that C,-0 unless 0o(). We shall adopt a
similar practice throughout the rest of the paper. Wherever summations or products are
given without specification of their range, tNs may be taken as (-, ). In all such
cases, the actual ranges are finite with natural cut-offs, as here.

It follows from (2) that
k

N.,c.= e- (x. (x(Xl) ex
-m i=1

--In,-- ( 2(n)+’’r)’/2Pn,, by (10),

(15) Cn ,--
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Equation (15) can be used to prove some combinatorial relations for the P,. We give
one example. Let n=(n,n2,...,rig), m=(m,m2,...,ml). Then

o(m)+o(n) k

E Cm,.,,xHa(x)- II Hn,(x)" II Hm,(X)-X Cn,BHB(x) X Cm,vHv(x)
a=O i=1 j=l fl

(16) 2 Cn,oCm,vHB(x)Hv(x)

2 Cn,flCm,vCfl,v,aHa(x ),

and so

(17)

Hence, by (15),

2(o(m)+o(n)_a)/2P. m,n,a

2(o(n)_/)/

i.e.,

2Pn,,a}{ 2((m)-v)/2Pmv}{ 1 2(o+v-a)/2 PB,v,a

(18)

Now it is clear that Pt,v,o =’/!Say and hence, putting a 0 in (18), we get

(19) Pm,n-- 2 -.Pn,Pm,B
We leave to the reader the combinatorial interpretation of (19).

Some applications. We give here some examples of applications of the above ideas
to the evaluation of integrals. Consider first P,,. This is clearly zero for odd a+ b+ c
and also if any one of the three indices is greater than the sum of the other two. In any
other case we can write a+b+ c= 2S, where S is an integer, S>_max(a,b,c). Moreover,
it is an elementary exercise in combinatorics to show that

a!b!c!(20) Pa,b,c-- (S-a)!(S-b)!(S-c)!
It follows by (10) that

(21) Ha(X)Hb(X)Hc(x)e a!b!c!

(S-a)!(S-b)!(S-c)!
Again, by (19),

(22)

,Pc,ea,b,c,d--" E Pa,b d,fl

a !b !c !d !fl
b+fl-a a+b-fl a+fl-b c+d-B c-d+fl d+fl-c

2 2 2 2 2 2
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where the summation is over these values of/3, if any, for which the arguments of all
the factorials are nonnegative integers.

In the special case b-a, d--c (22) becomes

Pa,a,c,c--2 (a!c!)2fl! =(a!c!)2 (27)!
3, (Y !)4(a-Y) !(c--Y)

(23) =a!c! (-4)v(-’/2)()()

It follows by (10) that

=a!c! 3F2 -a, -c, 1/2.4]"
1,!

(24) foo_oo [Ha(X)]2[Hc(x)] e -x= dx- 2a+c--a!c.l.3F2 -a’ -c’ 1/2 "4]"1,1
5. Further combinatorial functions and their integral representation. As before,

we start with k subclasses of elements, with n in the th class (i= 1,2,--.,k). Now
suppose that we wish to form pairs of these objects, not necessarily using all of them
and with no restriction on the number of pairs to be made, but still such that no pair
shall consist of two objects from the same subclass. Let Rn denote the number of ways
in which this can be done. Here o(n) need not be even.

THEOREM 2.

R.-{2(%re}-’/zf 1-[ H,,,(x) exp(-xZ+vrx)dx.
-oo i--1

Proof. Consider those matches which use, for each i, exactly m elements out of the
ith subclass (i-1,2,--.,k, O<_mi<_ni), and let m-(ml,m2,...,m). The number of
such matches will clearly be

i=1 mi

Hence, by (10),

(25)

k

r ml,m2," ,ink i--
mi

2-(m)/2 H {Hmi(X)}e dx"
-o0i--

f= 2_mi/2
n- - i=1 m,=O mi nm,(X ) e dx

(’n’-2(n) } f /-/. x+- i=1 -- .e-X2dx by (6)

:{2("re}-’/=f I’[ tt,,,(x) exp(-x=+vx)dx.
-oo i=1
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For our next example we return to the case where o(n) is even, and consider unre-
stricted matches on the entire set of elements. Any such match may include some
homogeneous as well as heterogeneous pairs. We now prove Theorem 3.

THEOREM 3. In the notation defined in 1,

En-an- e-X H (Hni(X) } dx.

COROLLARY. If k is even, and n n 2 n k, then E >..
Proof. Suppose that for each there are a pairs whose members are both from the

ith subset (O<_a,<_1/2ni), and let a-(al,a2,...,ak). For a given a, let T be the number
of ways in which this can be done. Then, clearly,

(26)
i=1 i=1 (n, 2,)! a,!) 2<. Pn-2.

Hence,

E.- f.- D. (say)

102- 0

(27)
by (10)

n --2a !(0i!)2 Hni-

by (7)

In the special case n l-n 2--- ---n-r, we denote n by k r. Then,

(28) Dk,r-- E (- 1)(a>Tff. e-2X2[Hr(x)] kdx,
1," ,Otk

and hence the corollary. It follows that, for an even number of equal subsets, there are
necessarily more matches using an even number of homogeneous pairs then using an
odd number. We have not been able to find a purely combinatorial proof of this result.
When k is odd but r even, the situation is not clear. We shall derive below ((60)) an
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asymptotic estimate of Dk, for large k with r fixed (and even) from which it will follow
that

Dk,r>O,

for all sufficiently large k. However, if we take k-1, r-2, it is clear that E 2--0,
’l 2 and hence D 2 1.

6. Asymptotic estimates. We shall limit the discussion of asymptotic estimates to
the special case n k r, and shall consider

(i) P,r as k , r fixed;
(ii) P as r , k- 2, 3 or 4;
(iii) D, as k , r fixed.

(i) Asymptotic estimate ofP as k- , kfixed. By (10),

ek, r-- (2kr,rl" )-l/2 s,
where

(29)
oo

x= e dx.

If r, k are both odd, then clearly x-0. In case at least one of them is even, X can
be estimated, for large k, by the Laplace method (cf. [1, p. 41]). We begin by examining
the stationary values of the integrand. These are found among the roots of the equation

k[Hr(x)] k-,H(x)__Zx[Hr(x) k.
The factor [Hr(x)]-1 gives us, of course, zeros of the integrand. The remaining
equation is

(30) 2xHr(X)-kH;(x ).
Consider first the case of odd r (-2m + 1, say). Equation (30) is of degree 2m + 2, and
both sides are even polynomials. For large k, there will be 2m roots near those of
H(x), and they will tend to those of H as k turns to infinity. If we denote them by
-+-i (1 <_i<_m), then

(31) Iflil<M (i- 1,2,- .,m),
where M is independent of k. Suppose that the remaining two roots of (30) are --+ a. The
coefficient of x2m+2 in (30) comes from the left-hand side and is independent of k. On
the other hand, the absolute term is on the right-hand side and is proportional to k. It
follows by Vieta’s formula that a2fl21fl: f12 is proportional to k and hence, by (31),
that a is of order k 1/2. If r is even, both sides of (30) are odd polynomials, but after
dividing by x the resulting equation can be handled similarly and the same result
follows.

To estimate a more precisely, consider the differential equation

(32) H;’(x ) 2xH;(x ) + 2rHr(x ) -0.
If we divide through by Hr(x ) and write y-H(x)/Hr(x), this becomes

(33) y’+y2-2xy+2r-O.
Now Hr(x) is a polynomial of degree r and hence, for large x,

r A
y-7+ g --.

n--2 Xn
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Substituting in (33), we can determine the coefficients A recursively and get

H(x) r r(r- l) +r(r-1)(2r-3) _O(x_7)"(34) Y Hr(x) x 2x 4x

It follows from (30) that a is a root of the equation

(35) 2x r r(r-1)
k x 2x

We know that a is of order k1/2. Solving (35) by successive approximation we obtain

( kr+r-1) 1/2
(36) a-

2 +0(k-3/2)"

Our next step is to estimate the integrand in (29) at the point x- a. Now, by (1),

(37) Hr(x)_(2x){l_r(r--1) r(r--1)(r-2)(r-3)
!(2x)

+
2!(2x

Substituting from (36), we get after some trivial manipulation,

(38) e_2[Hr(ot)]k..(2kr)kr/2exp(_ kr+r-2 ) {1+O()}.1
On the other hand, by (31),

(39) e-O[Hr(fli)]k-O(Lk) (i-1 2"’"r-l])’2

for some fixed L. It follows that the maxima of the integrand at --+a will be the
dominant ones, and only they need be taken into account in the application of the
Laplace method.

Moreover, we see that, for large k, a is bigger than the largest zero of Hr(X ), so
that Hr(x)>O in the vicinity of a. In our application of the Laplace method we may
therefore write

X- ef(X) dx,

wheref(x) k loglHr(X)l x2. We have, as before,

f’(x)-ky-2x wherey--()(40)
-0 at x-a,

(41) f’(x)-ky’-2--k[y-2xy+2r]-2 by (33)

and so

(42)

2y2 2f"(a)-- (k -2kxky+2rk )-2 by (40)--- (4ot2-4kot2 + 2rk2} -2

2 (2k-r+ l)+O( )-S by (36).
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(43)

The contribution to the integral (29) from the vicinity of x-a therefore becomes

f [/,()] %xp( 2g+r-1 )_ k (x-a) dx

2+-1 [)]-

by (38) and (42).

(44)

V2 (2kr)kr/2exp( kr+

=U (say)

The contribution from x--a is clearly (-1)kru. Hence we see that

Pk.
+ (--1)kr (kr+r-1)V

(kr)kr/Zexp
2

exp
e 2

(ii) Asymptotic estimate of Pk, as r , k-2,3 or 4. The cases r-2,3 are
immediate, since Prr--r! while

(2n)!
P2n,2n,2n n

by (20). Consider therefore, r-4.
By (19),

Pr,r,r,r-- E --. { Pr,r,fl ) k2

(45)

2--E (2) (Pr,r,2a) since Pr,,.,-O for odd fl

=(r!)4 (2a)!
(a!)4[(r--a)!]2

by (20)

(r’)2 ] ( 2aa ) ar )2 --(r,)2 ] (-4) (-la//2)(ar) 2.

It follows that

(r!)-2prrrr
is equal to the absolute term in the Laurent expansion of

(46) (1--4z)-’/2 (r) 2

O
Z r.

a-O

But the sum in (46) is equal (cf. [4, p. 91 ]) to

z P z-1
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where Pr(t) is the r th Legendre polynomial. Hence

(47) Prrrr=(r!)2flz2qri1=0<1/4(1 4Z)-1/2(-- z--1)rz-r-lPr("’z1)dz.Z/l_
Now it is easily seen that for large r, the greatest term in the sum in (46) is at,ar and
by a straightforward application of Stirling’s formula, that this term is of order 32rx
r -3/2, while the number of terms in this sum is r/ 1. Hence, if we define

(48) Sr-- ( r !)-23-ZrPrrrr
and

(49) S( w ) Srw2r,
r=O

the radius of convergence of this power series will be 1. Moreover, for Iwl < 1,

z- W2 Z / 1, dz(1-4z)-1/2 2 Pr z--1 z
S(w)-

r-O

4r--- I--0 -z [(3-w z-w2][(3+w z-w2] dZ.z
Following the method of Darboux [2], we shall derive the asymptotic properties of
St(r--, oe) from the behavior of S(w) at its singularities on the circle Iw[ 1. Begin by
substituting

(51) .__ 3-w
W 2

Then (50) becomes

(5) S(w)- -/(3- w)-3/2(1 +w)-l/2fr((1-)(,-))-l/:Zd.
where X--(1-w)/(1 +w)((3+w)/(3-w)) and F is the transform of the circle Izl-o.
It is easily verified that, if Iwl < and 0<1/4, F is a circle containing 1, 2 as interior
points but excluding the point z 0. We may therefore deform it to F, as in the figure.
If the small circles in F are of radius t, their contributions to the integral in (52) will be
O(t/). On the other hand the integrand clearly changes sign on going round either of
them. Letting, therefore, 0, we get

S(w)-
3V/
(3_w)-3/2(l+w)-’/2fx((l_)(X_)}-l/2d"
ri 1

Now write " (1 X) sin20, yielding

(53) S(w)= 6V(3 w)-3/(l+w)-’/-fo’/2{1 (1 X)sinO}-’/2dO.
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Z=t Z--
FIG.

Thus the only possible singularities of S(w) are at w--- 1, 3 and also when -0, i.e., at
w- 1,-3. Since we are interested in the singularities closest to the origin, while, by (49),
S(w) is an even function, it will suffice to double the contribution from w- 1. Now as
w--, 1, 70. If we write )k=l-k2, then the integral in (53) is simply K(k), the
complete elliptic integral. As k 1, it is known ([3, p. 905]) that

(54) K(k) + k’2+ log -7,

where

(55) l+w 3--w

Writing q- -w and substituting in (53) and (54) we get, after some rearranging,

1+ + 2S(w)--
r q -q --logq--logZ+O(q)

r --(1-w)+-(1-w)2 --log(1-w)-log2+O(1-w)
leading to

(56) Sr- 1--r + +O(r )
16r

_
and hence

(57) p 32r+3/2(r!)2

{1_ 3 -3}rrrr"" 4err
/

i6r 2 ’+O(r )

It follows by (10) that

(58) -[Hr(x)]4e-Xdx"-r (r,i. 1--r + 16r
+O(r ).

The estimate (58) has been checked numerically, and the relative error turns out to be
less than 1% already for r_> 4.
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(iii) Dk, for fixed even r, k-o o. The argument is very similar to that used to
derive (44) and we omit the details. We see from (28) that

(59) D,-
2 exp(klogH(x)_2x)dx"

If we write

f(x)-klogHr(x)-2x2

we find now that the significant maximum is again at a value of x of order k/2.
Following through the rest of the argument, we find that

(60) Dk "2-1/2[1 +(-1)kr] kr) kr/2- e-(r- 1).

It follows that D,. r_>O for sufficiently large k and zero if and only if r,k are both odd.
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THE LOCAL GEOMETRIC ASYMPTOTICS OF
CONTINUUM EIGENFUNCTION EXPANSIONS I. OVERVIEW*

S. A. FULLING"
Abstract. The well-known connection between (a) the asymptotic density of eigenvalues of a differential

operator H, and (b) the geometry of the region or manifold where H acts, has a local generalization: There is
a connection between (a’) the spectral measures or projection kernel describing the proper normalization,
relative to a point x0, of the expansion of an arbitrary function in eigenfunctions of an operator H (possibly
with continuous spectrum), and (b’) the values of the coefficients (symbol) of H and their derivatives at x0.

Potential applications (especially in general-relativistic quantum field theory) increasingly call for a detailed
development of this theory (including calculation of numerical coefficients), which is begun here. The
small-time expansion of the Green function of the heat operator, +H, is used to define the "mean" or
"effective" expansion of the spectral measures. For the case of one independent and one dependent variable,
the spectral and heat expansions are worked out in detail to a rather high order. They are shown to be related
to (and obtainable from) existing phase-integral expansions with local amplitude functions (WKB-FrSman
expansions) of the eigenfunctions.

1. Introduction. "Spectral asymptotics" is a name which may well be applied to
the study of the relationships among the following: (1) the asymptotic density of the
eigenvalues , of a differential operator H,

as with appropriate generalizations to the case of continuous spectrum; (2) the
coefficient functions in H, the geometry of the region or manifold which serves as
domain for the functions on which H acts, and the boundary conditions, if any; (3) the
behavior, in various limits, of the integral kernels (Green functions) of operator func-
tions of H, such as the kernels of the heat operator, e -tH, and the resolvent operator,
(H-z)-1, and various kernels associated with the wave equation,

( 1.2)
2u -Hu O.
t 2

To these one can add another topic which has developed rather separately, (4) the
approximate form of the eigenfunctions q, in the limit of large I,1 (i.e., the phase-in-
tegral, Liouville-Green or WKB approximation).

Spectral asymptotics has found applications (not counting those of (4)!) in many
areas of physics, "including resonator acoustics, perfect gases, nuclei, black-body radia-
tion, correlation functions, and quantum statistics and the theory of condensed
matter" [12]. (See also [4]-[9].) More recently it has become crucial to the theory of
renormalization for quantum fields under spatially inhomogeneous conditions (e.g.,
[21], [58], [59], [28]), and to the study of the effects of boundaries on quantum fields
[10], [11], [13], [23], [42], [18].

Around 1967 (date of the useful review by Clark [22]), the flavor of rigorous work
in this field changed. The torch passed from analysts to geometers and topologists as
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the heat-kernel expansion was applied in connection with the index theorem for elliptic
operators on compact manifolds [2], [45], [30]. Moreover, great emphasis has been
placed on the "inverse" problem, as in the title of the widely read article of Kac [39].
That is, in the notation of our opening paragraph, the problem is seen as one of
deducing (2) from (1), which in practice becomes deduction of (2) from (3). These
trends, along with some technical barriers, have meant that during this period of rapid
progress, the subject has not developed in certain directions as much as might have
been expected.

In order to explain this remark, let us now make the discussion more specific. Let
H be a second-order linear differential operator on scalar functions q,(x)-
q,(xl, ",xm), defined on an m-dimensional region or manifold, M, and let be a
positive real variable. Assume H to be elliptic and selfadjoint with spectrum bounded
below. The heat kernel of H is the integral kernel, K(t,x,y), of the operator e -trz. That
is, the solution of

(1 3)
)u

u(O.x)-+(x).

is

u(t,x)-fK(t,x,y)q(y) dy,

or K is the solution of

(1 5) )K+Hx)K=O K(t x,y)t(x,y) as $0

(If M is a Riemannian manifold, dy is to be interpreted as the covariant volume
element, gl/2dmy, and 3(x,y) as the corresponding covariant Dirac distribution.) It has
long been known that

(1.6) K(t,x x) (4"rrt)-m/2 as $0,

and that (1.6) implies, if M is compact and the coefficient functions of H are smooth
and bounded, that the number of eigenvalues of H less than ? obeys

(1.7) N(X)’(471")-m/2 -+ VR"/2 as ,,
where V----fdy is the volume of M [22], [12]. Furthermore, (1.6) is the first term in an
asymptotic expansion,

(1.8) K(t,x,x)(4"a’t)-m/2 an(X)t n,
nzO

where each an(x ) is a geometrically invariant polynomial in the coefficient functions of
H and their derivatives, evaluated at x alone. This remains true when the scalar
functions q, are replaced by multicomponent functions (sections of a vector bundle over
M), in which case K and the a are matrix valued. The a have been calculated through
n--3, and various general properties of them have been established (e.g., [52], [51], [56],
[31], [32]). If M has a boundary, (1.8) is not uniformly valid as x approaches the
boundary, but there is another expansion, in terms of invariants defined on the
boundary, for the contribution of the region near the boundary to the integral of
K(t,x,x) over M (e.g., [39], [34], [41]). Observe now two ways in which this picture is
incomplete.
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(1) The assumption that M was compact ensured both that the spectrum of H was
discrete and that the integrals of K and a over M converged. But the expansion (1.8) is
a purely local statement and remains valid in the noncompact case [59]. On the other
hand, "the number of eigenvalues less than ?" is meaningless whenever H possesses a
continuous spectrum, and N(,) may not grow as m/2 even when the spectrum is
discrete, if M is noncompact [54]. However, it is possible to formulate a "local" spectral
asymptotics of which the eigenvalue law (1.7) for compact domains is an integrated
form. This local spectral information is of interest even when the spectrum is discrete.
Consider, for example, the problem of calculating the value of the integral kernel of the
operator H when both of its arguments are equal to x0. (This is typical of the
problems which arise in the field-theoretic applications previously mentioned.) If the
spectrum of H has a positive lower bound and s is sufficiently large, this will be a finite
number given by

if the ?, and +, are all the eigenvalues and normalized (11 1) eigenvectors of H in
L(M). To estimate the contribution from large eigenvalues we need not only an
asymptotic formula for the density of eigenvalues along the axis, but also an asymp-
totic approximation for [+,(x0)]2. Alternatively, we could use eigenfunctions f(x)
normalized so that I  0(x0)l-1 (assuming, for simplicity, that none of the eigenfunc-
tions vanishes at x0); then the quantity to be calculated becomes

and we need an asymptotic formula for the density of eigenvalues, "weighted" by the
factor II-2. This latter formulation is the one which generalizes to continuous spec-
trum, at least in one dimension, where the weighted summation above is replaced by
integrations with respect to the x0-based Titchmarsh-Kodaira spectral measures for H
(see 2). We shall show that these measures do have "averaged" (see below) asymptotic
expansions, wch, like (1.8), depend on H locally (i.e., are determined by the coeffi-
cients in H and their derivatives at x0). In view of its obvious practical importance, the
calculational aspect of ts subject is surisingly underdeveloped, although the key
abstract facts have been established by HOrmander [37], [38]. (See also [24, 2] and

[46].)
(2) One might expect the asymptotic approximation (1.7) to be the first term of a

series in - (times /), with coefficients related to the integrals of the a, over M and
similar integrals over the boundary. Similarly, there should be local series for the
spectral measures (or, in higher dimensions, the spectral projections [37], [38]). Such
series can indeed be determined formally by the requirement of consistency with (1.8)
(see 3), but the "Tauberian" methods used to establish (1.7) [22] break down when
applied to the higher-order terms. Indeed, the series which extends (1.7) is not literally
asymptotic to the true eigenvalue distribution [3], [35], [4], [8]; it is valid only in some
"averaged" sense [47], [48], [15], [16], [4], [6], [37], [38], [24]. The implications of this
situation have not yet been adequately explored. The eigenvalue density (more gener-
ally, the spectral measures or projection) is ordinarily sought as a means to some end,
such as to calculate (at least approximately) some operator function of H. In certain
circumstances the "mean" or "effective" density may provide all the needed informa-
tion. For example, the mean measures obviously suffice for computing the heat kernel
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at small t, since by construction they yield the expansion (1.8), which is known
independently to be genuinely asymptotic. A less circular example is provided by the
divergent terms in the short-distance expansion of the two-point function of linear
quantum field theory (a certain distributional solution of (1.2)), which are locally
determined by H [28]. If there exists an operator H’ "locally equivalent" [28] to H and
such that the mean spectral measures for H’ are genuinely asymptotic to the exact
spectral measures for H’, then it follows that the mean measures correctly reproduce
the divergent terms. The hypothesis here will be discharged in 4 for one-dimensional
M, and no great difficulty is expected in establishing it in general, at least for smooth
coefficients. The point is not that the form of the divergent terms should be determined
from an eigenfunction expansion, since the divergences are already known indepen-
dently (e.g., [21], [28]). Rather, the goal is to implement a covariant renormalization
procedure (cf. [21 ], [58], [59]) at the level of the integrand of an eigenfunction expansion
(" mode sum" in the physics literature) in concrete calculations.

This paper is planned as the first in a series exploring these two areas. By
emphasizing the central role of the spectral decomposition (or continuum eigenfunction
expansion) instead of any particular Green function, the subject will be returned to its
analytical foundations and conceptually unified. Another unification consists in point-
ing out a relationship between the mean spectral measures and the amplitude of the
phase-integral approximation of the individual eigenfunctions, the fourth element of
spectral asymptotics. A preliminary account was presented in [26].

The first two papers are devoted to the local spectral asymptotics, away from
boundaries, of ordinary differential equations (i.e., m-- 1). This first paper treats in full
the scalar case (i.e., (1.1) is a single differential equation), but also contains preliminary
material needed for the treatment of the vector case (i.e., (1.1) is a system of equations)
in the second paper, and remarks relevant to the problem of larger m.

Section 2 establishes a normal form for the operators considered and reviews the
Titchmarsh-Kodaira theory of eigenfunction expansions for ordinary differential oper-
ators with possibly continuous spectrum.

Section 3 is concerned with the relation between the mean asymptotic expansions
of the spectral measures and the local asymptotic expansions of the heat kernel and its
derivatives.

The operators act on functions q defined on an arbitrary manifold M (here
one-dimensional) and taking values in the fibers of an arbitrary vector bundle over M;
also, no special asymptotic behavior is required of the coefficients (except what is
needed to bound the spectrum below). But the local nature of the expansions allows the
operator, manifold and vector bundle to be replaced for calculational purposes by an
operator on functions from R into C (r being the fiber dimension of the bundle), with
coefficients which trivialize at infinity, which coincides with (a local representation of)
the original operator in some neighborhood of the point in question. For such an
operator (with C coefficients) the eigenfunctions can be approximated to arbitrary
order in - by a phase-integral expansion of the [Liouville-Green-Jeffreys-...-]
WKB type. In the scalar case the most convenient form of the WKB expansion for our
purposes is that of FrOman [25], which has been carried to very high order by Campbell
[17]. The relevant feature of this expansion is that it displays the amplitude of the
solution, for a definite normalization at infinity, as a local functional of the coefficients
of H. The formulas of [17] allow us in 4 to calculate easily the coefficients in the mean
spectral and heat expansions up to n--6, one or two orders beyond previously pub-
lished results [29], [32] and near the limit of editorial feasibility. (The provision of
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computer subroutines, in place of published tabulations, is clearly more appropriate at
high orders and will be discussed in Paper II.)

The main task in extending this treatment to the vector case is to construct the
analogue of the WKB-FrOman expansion. This is new, and should be of independent
interest. It, and its application to the spectral problem, make up Paper II.

Paper III will discuss the relation between the phase-integral expansion and the
spectral measures near a boundary, or near certain types of coefficient singularity. It is
hoped that later papers wil deal with manifolds of higher dimension (partial differential
operators). The application to quantum field theory will be developed elsewhere.

2. Operators and spectral measures. Let M be a one-dimensional (Hausdorff,
paracompact, connected, C) manifold--compact or noncompact, with or without
boundary. There are but four essentially distinct possibilities: the real line, the half-line,
the interval, and the circle.

We consider an operator of the form

d 2

(2.1) H- E(x)
dx 2

acting on functions from M into c r; x is a coordinate on M, and E is an rr
matrix-valued C function. This form is adequate in one dimension to cover all the C
elliptic second-order differential operators considered by Gilkey [31], [32]: Such an
operator consists of the Laplacian of some connection with respect to some Rieman-
nian metric, plus a zeroth-order term, -E(x). (Operators with more general second-order
terms present deeper problems, which will not be addressed here.) On one-dimensional
manifolds all metrics and connections are locally flat, so it is possible to introduce, at
least locally, coordinates for the independent and dependent variables which cast the
operator into the form (2.1) (see Remark 2.1). In fact, these coordinates will do
globally, provided that the circle is treated as an interval with endpoints identified (see
Remarks 2.2 and 2.4).

E will be called the "potential", by analogy with the Schri3dinger equation. It is
the negative of the conventional potential,

(2.2) V---- -E.

This sign convention is chosen to facilitate comparison with [32] and [17], and because
it happens to make all coefficients in the expansions positive. The successive derivatives
of E with respect to x will be denoted by E’, E", E(3), E(4), similarly for deriva-
tives of other quantities.

Remark 2.1. With respect to arbitrary local coordinates, the equation
takes the form

(2.3) d,/,-a( z ) dZck iB( z ) --z + C( z )dp Xk
dz

_
where, for each z, (z)C comprises the coordinates of the abstract function (section)
q with respect to an arbitrary basis at z; a(z) is a positive number; B(z) and C(z) are
r r matrices. It is of interest to write down the transformation which converts (2.3) to
the form

(2.4)
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One has the freedom to make an arbitrary C redefinition of the independent variable
("coordinate transformation") and an arbitrary linear redefinition of the r dependent
variables ("gauge transformation"):

(2.5) x- x( z ), /( x ) U( z )-’( z ).
The transformation which simultaneously eliminates first-order terms and sets the
coefficient of the second-order term to -1 is unique up to a z-independent gauge
transformation and a constant of integration in the coordinate:

dx
(2.6) -z=a-1/2,

dW
BWo(2.7) U--al/4w, where

dz 2a

The resulting potential is

3 (d)2

(2.8) E(x)-W-’ -ii 16 a
idB+l B2 ]fz c w,

where the dot indicates differentiation with respect to z and all functions on the right
are evaluated at z=z(x). To apply the results of this paper, which are expressed
invariantly in terms of E, to an operator presented in the form (2.3), it is not necessary
to work out the transformation (2.5) explicitly. It suffices to know E and all its
derivatives with respect to x as functions of z, and these are calculable, up to the overall
similarity transformation by W, by means of formulas (2.6)-(2.8). The equation for W
may not be explicitly solvable, but the value of W at the initial point is arbitrary, and
the full solution will not appear in a local expansion.

If E(x) is a selfadjoint matrix, then H is a formally selfadjoint operator with
respect to the obvious inner product defined by the standard inner product in 12 and
Lebesgue measure, dx, on M. This will henceforth be assumed, though the formulas for
an(x ) are valid more generally [32]. H defines an Hermitian (symmetric) operator on
the domain C(M; G) in the Hilbert space LZ(M; G r). Questions about spectrum
must refer to a particular selfadjoint extension of H, whose definition may require
boundary conditions in addition to the expression (2.1); we assume these to be given,
and H henceforth denotes this selfadjoint operator. To ensure existence of the heat
kernel, it is also assumed that the spectrum of H is bounded below. (Since E is assumed
smooth, this is automatic for the circle and can be violated in the other cases only if
-E(x) goes sufficiently fast to - at an endpoint of M.)

Remark 2.2. If r-1 and M is a finite or infinite interval of R, then the possible
selfadjoint extensions are given by the limit-point/circle theory of Weyl [55], [36], [1],
[57] with regular Sturm-Liouville theory as a special case. For a finite interval (a,b)
with two regular endpoints, the most general set of boundary conditions mixes the two
endpoints:

(2.9) a,(a)+fl,+’(a)=Yi+(b)+6i+’(b ), i= 1,2,

where the two strings of coefficients must be linearly independent and satisfy

(2.10) -Im(ifli ) Im(i3i ),

’12 fila2 "112 1/2"
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When M is the circle and one identifies it with [0, 2r), the vector-bundle connection
implicit in H determines a " C such that

(2.11) +(2r) ’+(0), +’(2r) ’+’(0)
for all q C(M). (By the gauge transformation in (2.5) one has adopted a basis for
the fiber at each point x, which is parallel-transported around the circle by the
connection; describes how the terminal basis (here a single vector) matches up with
the initial basis. By construction, the inner product in the fibers is invariant under this
parallel transport.) Equations (2.11) are the boundary conditions (2.9) needed to realize
H as a selfadjoint operator in L2(0, 2 r). (Classical periodic boundary conditions corre-
spond to the trivial connection.) Then (2.10) indicates that I’1 is necessary and
sufficient for selfadjointness; this simply expresses the continuity of the fiber inner
product at the point where the circle was cut. Obviously, the generalization to r> is
that q(2r) and q/(2r) be related to q(0) and q/(0) by a unitary matrix.

Remark 2.3. Much of the literature on eigenfunction expansions (e.g., [43], [55],
[36]) deals with an operator

(2.12) H,-
k dz

p -z + q*

with k,p, and q real-valued, which is manifestly formally selfadjoint with respect to the
measure k(z)dz. (Here r= 1.) The connection with (2.3) and (2.6)-(2.8) is

(2 13) p-exp(i, fz b
dza a’ q c,

(2.15)

d2 (kp)+ [d ] 2E(x)--q
4 k 2 dz 2 1- k3--- -z (kp)

ll d
4 k dz(kP)"

The Titchmarsh-Kodaira eigenfunction expansion [57], [43], [55], [20], [36], [53],
[1], [49] provides a concrete realization of the spectral theorem for a selfadjoint opera-
tor of the type considered here. Since it is constructed relative to a distinguished point
x M, it is a very natural and useful tool in developing local expansions at x such as
(1.8).

For simplicity we consider first the scalar case, but write the formulas in a way
that permits an instant generalization. (That is, the position of the differential d/Jk(,)
in (2.18), etc., is required by the eventual matrix reinterpretation of the formula; it does
not mark the scope of the integration.) Let us denote the distinguished point by xo
("x" being needed as a variable). For each ,C there exist two linearly independent
C solutions of (2.4) as a classical differential equation (without regard to boundary
conditions or square integrability). Let +aj(x) (j= 0, 1) be the solutions with data

(2.16)
qa0(x0)- 1, @,0(x0) 0,

@x,(Xo)-O, @,,(Xo)- 1.

Forf C(M), define

(2.17) f( ’ ) ftak(x )f( x dx.
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Remark 2.4. The present discussion is much simplified by subsuming the circle
under the finite interval as described in Remark 2.2. In that context, "fC(M)"
means that the smooth function f vanishes in neighborhoods of 0 and 2r, and a
"classical solution" need not satisfy (2.11).

The principal result of the Titchmarsh-Kodaira theory is that

(2.18) f(x)=f ’ , +aa.(x)d/Jk(,)}(,)
-oo j=O k=0

for certain Stieltjes measures d/9k with supports contained in o(H) (the spectrum of
H); starting from (2.26) below, the d/Yk(h) can be calculated by Cauchy’s formula [49]
or the Stieltjes inversion formula [53, App. 1] from the integral kernel, G(x,y), of the
resolvent operator (H-z)- (zC); G can be constructed in turn out of the classical
solutions Hq z (this being where the boundary conditions of selfadjointness enter).
For the explicit formulas, see the references. The formulas (2.17) and (2.18) remain
valid for any fL(M), although then the integrals may converge only "in the mean",
as for Fourier transforms. Thus (2.18) is the decomposition of an arbitrary element of
the Hilbert space into eigenfunctions of H. (Of course, when , is in the continuous
spectrum, the eigenfunctions will not themselves be elements of L2(M).) Also, (2.17) is
the unitary mapping of L2(M) onto the Hilbert space of functions of , where H acts as
multiplication by k, and where the norm is (cf. (2.18) and (2.28))

(2.19) I1 12-
Prototypes, for operators with purely continuous and purely discrete spectrum,

respectively, are the Fourier transform and Fourier series, suitably rearranged.
Example 2.1. M [, E =-- O. Then one has

(2.20) +ao(X)-COS[CO(X-Xo)], +x,(x)-o- sin[co(X-Xo)], o=?1/2,
and

f fsin[oa(X-Xo)] f(x)dx.L(a)-

The conventional Fourier transform is

f( p)--(2r)-/2f e-ipxf(x) dx
0

(2,n.)-l/2 p2 2e ’PX[L( ) iPfl( p )],
with the inversion formula

f(x)-- (2r)- feipXf(p)dp

---’ f_o [po(X) + ippl(X)][ L( P2)--iPl( p2)] dp

--!9T f0
Thus one has

(2.21) d(X) r -1 dco,

and d/1 dl=0, for all choices of xo.

dl ( ) ,r/.-lo2 doo,
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(x ) rodeOS ( o)] ;( ) .,
The Fourier sine series is

Example 2.2. M-(0,r) with the boundary conditions (0)-0-(r); E--0.
Keeping the notation (2.20), we have (for all real ?)

sin[o(X-Xo) f(x)dx.,l(X)-

whence

(2.22)

f(x)- X b.sin(nx)
n--I

b,[sin(nxo),,2o(x)+ncos(nxo),,21(x)],
n--I

2
sin(nx)f(x)dxb,,-

r

_-2 [sin(nxo)fo(n) + n cos(nxo)f(n)],

The spectral measures are Stieltjes measures with respect to functions
which can be made unique by the convention (3.1). In (2.22) these are step functions; in
(2.21) they are increasing, differentiable functions. In general, [/Jk(X)] is a nondecreas-
ing, selfadjoint (in fact, real and symmetric) matrix-valued function (i.e.,/J(X +e)-
tzJ(X) is positive semidefinite), which jumps at point eigenvalues of H, increases
smoothly in intervals of absolutely continuous spectrum, and is constant on intervals
disjoint from o(H) (cf. [20]). From a calculational point of view, there is seldom a
reason to write down the functions /#k(X) themselves; the measures are better ex-
pressed in the differential form of a "spectral density" times dX or d0 (0=X/2). The
densities are generally distributions (as in (2.22)) because of the presence of point
spectrum.

The transform, via (2.17), of Hfis Xf(X). Thus by (2.18) one has

Hf(x) =fx 2 xj(x)dlJk(h)fMX,(Y)f(y)dy,
from which it follows that

(2.23) F(x,Y)=f E +oj(x)dlaJk(a)q"ok(Y)
-o j,k

is the distribution kernel of the projection operator Ex in the abstract spectral decom-
position of H,

(2.24) H- XdEx.
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More generally, functions of H are defined from functions of a real variable by

(2.25a) F(H) f F(? ) dEx

It follows that the distribution kernel of F(H) is

(2.25b) f r(a )
-o j,k

For some F’s this converges to a genuine integral kernel. For example, the previously
mentioned resolvent kernel is

(2.26) Gz(x,y) - X- z
j,k

and the heat kernel is

(2.27) K(t,x,y)=fme-at- j,k

Also, F yields a representation of the distribution kernel of the identity operator,
often called the "completeness relation":

(;.aal 2
-mj,k

The formN generNization of the eigenfunction expansion to the multicomponent
case is obvious: one introduces a basis of classical solutions defined by the data

*; 0(x0 0,

Xl(xo)-0, il(X0)- e,
where {e} is the natural basis of e :

Then in (2.17)-(2.18) and all the formulas following them, fis an element of La(M;
f is also er-valued, (X) is an rXr matrix for eachj, k, and X (selfadjoint but not
necessarily real), etc.; all Greek indices are suppressed. The literature does not seem to
hold a full, explicit treatment of this problem, parNlel to the work of Weyl, Titchmarsh,
and Kodaira in the scalar case. Kodaira [44, 7] treats the case of E(x) real; Naimark
[53, Chapt. 3] Nlows complex coefficients but treats only a finite interval with boundary
conditions of regular Sturm-Liouville type; Maurin [49, 2.7] outlines a general treat-
ment of complex coefficients which should be adaptable to the second-order vector
case. However, given that H is selfadjoint, validity of (2.18) for some measures d is
guaranteed by (a) the "rigged Hilbert space" version of the spectral theorem [14], [49],
(b) elliptic regularity, and (c) the elementary existence and uniqueness theorem for
second-order ordinary differential equations.

The situation becomes less clear (and more interesting) when m> that is, H is a
partial differential operator. If H is elliptic, (a) and (b) again ensure that any f in the
appropriate L space can be expanded as an integral over classical eigenfunctions of H.
Also, the spectral-projection kernel Ex(x,y ) exists [37] and can be related to the heat
kernel much as in the section which follows. However, the combination of these two
elements into an eigenfunction expansion theory specifically adapted to a point x0 has
been blocked by uncertainty as to the proper analogue of (c). Ideally, one would like a
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basis for the classical solutions consisting of functions with definite behaviors at x0. A
step toward a resolution of this problem has been taken in [27].

3. Spectral asymptotics and the heat kernel. Complete knowledge of the spectral
projection Ex(x,y ) in (2.23) (or of its differential with respect to ) would enable one to
calculate any function of the operator H by (2.25). A more modest goal is knowledge of
the spectral measures, or, equivalently, of the values of Ex(x,y ) and its derivatives at
coincident arguments:

(3.1)

Ex(xo Xo ) =/oo(X ),

ilEx (x x )- 10(X),)X O, 0

)Ex /oOy (x’x)- (X),

O:zE
axay (x’ x)-/*(X)

(Recall that these objects are r r matrices in general.) This information would allow
Ex(x,y itself to be constructed by (2.23), given complete knowledge of the classical
solutions. Moreover, knowledge of the measures suffices for study of the behavior, as x
and y approach x0, of the integral kernels of various functions of H.

The Titchmarsh-Kodaira formula for/jk(k) (based on (2.26)), although exact, is
difficult to evaluate in practice, because it requires precise global knowledge of the
classical solutions. (One must know how to express as linear combinations of +x0 and

+x those solutions of Hq=X+ which at an endpoint of M are square integrable
(limit-point case) or satisfy the self-adjointness boundary condition (limit-circle case).)
However, information about the behavior of the spectral measures at x0 as k +c can
be obtained purely from the local behavior of E(x) at x0. This asymptotic analysis is
related via (2.27) to the well known expansion (1.8) of the heat kernel, K. (Another
Green function, such as the resolvent kernel, could also be used (cf. [4], [15], [24], [29],
[38], [46], [56]), but K has simple properties which make it especially convenient [32].)
One clearly has

K(t,Xo,Xo)-

K fOy (t’ xo, xo) _e-atd/,O (X),
(3.2) OK

Ox (t,Xo,Xo)=f e-Xtdp,’(X),

2K
Oxay (t’x’x)= _me-htdlxll()k)"

Any singularity in the quantities on the left-hand sides of (3.2) as 0 must come from
the large-X parts of the dJk(X), since for finite A,

e d(X)

is an integral over a compact set. (Recall that o(H) is bounded below.)
We begin by establishing a formal relationship between series expansions of the

quantities in (3.2). Suppose that d/() for X>0 can be expressed in the form

E O(Xo)a-2"-t-’(3.3) d(X)-
r ,,=o
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where, as before, oa-X/2, and dependence of/00 and 00 on x0 is notationally sup-
pressed. It is not assumed that m(o)=O(o-2(m+l))uthat is false, in generalmbut
rather that the contribution of OmO to the integral

OmK f -XtXm(3.4) (-1) (t,Xo,Xo)-- e d(X)

is bounded as 0. This condition will uniquely determine the p0 in terms of the a in
(1.8). (Here m does not mean the dimension of M.)

Substituting (3.3) into (3.4), one obtains

omg__ g m

Otm =noOO2(m-n)e-- 2td+ bounded term.
n=0

The formula

(3.5) f0 ,e_,O2t r(p)
Oa2p- do -p

r 2r

is valid for all real p > 0. Thus one has

(_l)m’K__ F m-n+- ,Xo)Otm 2

+ bounded term,
and after repeated integration,

(1)tn_l/2pO0K(t,Xo,Xo)--- F -n (Xo)+O(t )+polynomialint,
n--O

where m is arbitrary. In fact, given (1.8), one knows that the polynomial vanishes:

(3.6) K(t,Xo,Xo)- r ---n Pn ,Xo),
n=O

(3.7) (1a,(xo)-r-’/2F --n O;, (Xo)

(-1)"2" ooo( x )(2n-l)!! o (p!!=p(p--2)...3.1).

This is the result one would have obtained by the formal procedure of substituting

(3.8) d/,(N)" E ooo;, ( Xo )O-: do
n--O

into the first equation (3.2) and integrating by means of the analytic continuation of
(3.5) to negative p, ignoring the divergences at 0 $0 and the contribution of negative X
(if any).

The point of this calculation is that, whatever the analytical status of the series
(3.8) may be, the coefficients in it can be uniquely defined by comparison with those of
odd powers of /2 in a series for K(t, Xo,Xo), and vice versa. The actual asymptotic
validity of (1.8) and the absence therefrom of positive integral igowers of played no
essential role. The introduction of t-derivatives of K is a calculational device, to avoid
insertion of a positive lower cutoff on the integration over 0 and thus to permit use of
(3.5). Calculations for the other three spectral measures are identical; however, it turns
out (cf. (2.21) and (3.10)) that the leading terms of d/x11 and )2K/)x)y are one order
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more singular than those of the series just considered. With allowance for that, the
result can be stated:

THEOREM 3.1. Let x--0 if either ofj and k is 0; x ifj k 1. Consistency between
the series

(3.9) d/J(X) =1 O,j(x0)w2_2. do
n=0

and

(3.10) -O--X-X

(j, k 0, 1) requires that

(3.11)

Xo)- X aJ(x )t"-’/2-

., (-1)"2" p/+an+x (-n---li!

aJk jk )1__ plp;, a - (n>0),

More precLely, (3.11) is the unique relationship such that the proposition

(/3x)(/3y)kK(t, Xo,Xo) equals I’)(t, Xo,Xo)+O(tm), at least modulo a

C function of t, where I)’) is defined by (3.2) with dlk() replaced by the first
m / x terms of (3.9) for all >A >0

is equivalent to the proposition

(3.10) is an asymptotic series, at least modulo a C function.
It is clear that this construction of a correspondence between expansions of

derivatives of K and expansions of derivatives of Ex (see (3.1)) can be carried out on a
manifold of any dimension m. (When m> 1, complete local information about the
spectral decomposition requires derivatives of Ex of order higher than 2, and these
derivatives are not all independent. This leads to the "local basis" problem [27]
mentioned at the end of 2.) When m is odd, the heat expansion contains only odd
powers of 1/2, so one knows that the undetermined C functions allowed by the
propositions in-Theorem 3.1 actually vanish to infinite order as $ 0. When m is even,
the expansion of K contains only integral powers of t. The positive powers are C
functions and hence are not determined by the expansion of Ex. Furthermore, by
considering t-derivatives of K as above, one sees that, for example, O--0 for n >_m/2
when m is even: A nonzero value of p00 would force a logarithmic term to be present in
the expansion of K. These phenomena have been noted by Duistermaat and Guillemin
[24, 2]. The boundary terms in the integrated heat kernel [4], [16], [22], [34], [39]
involve both integral and half-integral powers of t, so that the problem of positive
integral powers then arises even for odd m. The coefficients of such powers, although
they are important spectral invariants, are hard to relate directly to the asymptotic
behavior of the eigenfunctions of H. (They can be related to indefinite integrals, or
Riesz means, of Ex, which contain information about the spectral decomposition at
small , as well as large.) However, integral-order terms in the expansion of K (on the
manifold M) can be related to half-integral-order terms in the expansion of the heat
kernel of a related operator on the manifoldMN, where N is some manifold of odd
dimension ([32, Lemma 1.6]; cf. also [59, 5]). Consequently, once a generalization of
the construction of this paper to arbitrary dimension has been attained, it will be
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possible to relate the coefficients of integral order to the spectral asymptotics of a new
problem obtained by adding a trivial extra dimension to the old one.

In what senses are the series (3.9) and (3.10) actually valid? In-the latter case a very
strong result is known for arbitrary dimension m [52], [51], [56], [34], [2], [31 ], [32], [59].
For m-- and an operator in the normal form (2.1) (cf. [32]) it may be stated:

THEOREM 3.2. Let

d 2

n-
dx

be the local representation in normal form of a selfadjoint operator, with C coefficients,
on sections of a vector bundle with base dimension and fiber dimension r. Define the
"order" of a (formal, noncommutative) monomial in E and its derivatives to be twice its

degree, plus the total number of differentiation operations involved. Assume that the
spectrum o(H) is bounded below. Define K(t,x,y) as the integral kernel of the operator
e -tH (t>O). Then at any point xo interior to M, K and its derivatives with respect to x and
y possess asymptotic expansions as $0 of the form (3.10)forj, k=O, and of similarform
for higher derivatives. The t-derivatives of these quantities have the expansions obtained
by term-by-term differentiation of those expansions. Each matrix coefficient a(Xo) is a

oo andpolynomial in E(x0), E’(x0), E"(x0),. ., homogeneous in order: In particular, a,
11 10 01a, are of order 2n and a -(a, )* is of order 2n + 1. When M is compact and without

boundary (i.e., a circle), the expansion is uniform in xo.
To the proofs in the references we need to add justification of the claims about the

derivatives of K. There are basically two methods of deriving the expansion of K. In
one (see particularly [59]), one obtains, more or less explicitly, an asymptotic expansion
(as $0) of K(t,x,y), valid for x close to but not necessarily equal to y, of the form

(3.12) K(t,x,y) (4eft)-m/2e-d(x’y):/4t E A.(x )t,
nO

where d(x,y) is the distance from x to y in the metric defined by the principal symbol
(second-order derivative terms) of H, and all the covariant derivatives of A, at x-y are
calculable local polynomials in derivatives of the coefficient functions in H. Differenti-
ating (3.12) and setting x=y-xo, one obtains expansions of type (3.10); and it is clear
from the proofs ([59]; [28, App. A]) that each series is genuinely asymptotic to the
corresponding derivative of K at x0. The other method uses pseudodifferential opera-
tors [56], [30], [31]. (It is not absolutely clear from the references that the arguments
apply to noncompact M, hence our preference for the method of [59].) In that approach
it is awkward to calculate K(t,x,y) for xvay, but the values of derivatives of K on the
diagonal (x=y) are easy to obtain. It is obvious that

)i+j+k

ti3xJ3y

is the kernel ofthe operator

-x o (_H) "to

The symbol of this operator is easily obtained by the pseudodifferential symbol calcu-
lus, and the rest of the argument proceeds as for K itself, except that ifj+ k is odd, then
only odd orders, rather than only even ones, in the expansion of the symbol of
(H-?)-1 make nonvanishing contributions to the result.
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Consider now the series (3.9) (which is well defined by virtue of Theorem 3.2). The
leading term of its integrated form is a genuine asymptotic approximation to/J(?) as
? + ; this is a consequence of Karamata’s Tauberian theorem [40], [22] (applied, in
the vector case, to all diagonal matrix elements of the operators involved). But it is
already obvious from Example 2.2 that the series cannot be asymptotic beyond that
first term.

The analogous failure of the higher-order terms in a formal series for the asymp-
totic distribution of eigenvalues (N(?)----number of eigenvalues less than ?) of the
Laplacian on an m-dimensional domain is well known [3], [35], [4], [8]. Several authors
have reinterpreted that series as being valid in some "averaged" sense: Brownell [15],
[16] showed that the difference between the true N(X) and any of the first few
truncations of the series became small (to the appropriate order) after being subjected
to a certain "log-Gaussian" averaging. He also showed that if a genuinely asymptotic
approximation to N(X) by powers of /2 existed, then its coefficients would be
uniquely determined by the heat-kernel expansion (to the extent the latter was known
at that time). Balian and Bloch [4] defined an averaged eigenvalue density, f
?’)dN(?’) (0(?) being sharply peaked around ?--0), and chose p so that the procedure
was equivalent to studying G(x,y) with Imz>0 (cf. (2.26)) in a context where taking a
limit to the real axis would be necessary to obtain the true spectral decomposition. In
these papers the higher-order terms in question are those proportional to the surface
area of the boundary, etc., which are not directly related to our local expansions in the
interior with a nonvanishing potential; the issues raised are the same, however.

In [47], [48] Levitan investigated the asymptotic behavior of "Riesz means" of the
spectral function Ea(x,y). His results were greatly extended by H6rmander [37], [38].
More recently, Duistermaat and Guillemin [24] have proved the existence of an asymp-
totic series for a quantity defined from the spectral density distribution dl/dw by
smoothly annihilating all but its lowest-frequency Fourier components. This series
obviously must coincide with our (3.8) when m-- 1.

The attitude adopted here toward series of the type (3.9) is a pragmatic one: One is
interested in [approximately] evaluating integrals such as (2.25b), and one seeks to
prove, for as large a class of integrands as possible, that the contribution to the integral
from its infinite upper end can be calculated by replacing dJ(?) at large 3 by (a
truncation of) its series. It has been argued in 1 that the class is not devoid of
interesting functions. In general, the approximation is expected to be valid when the
integrand is slowly varying, so that the oscillations (see remark below) in the difference
between the true spectral density and the approximation will tend to make no net
contribution to the integral. In particular, the series is useful in obtaining the asymp-
totic behavior of integral kernels of functions of K when xy-xo.

The error committed in replacing a spectral density by a truncation of its averaged
asymptotic series is an oscillatory function or distribution. This is clear from (1) explicit
examples such as (2.22), (2) the contrapositive of Karamata’s Tauberian theorem, which
indicates that the distribution cannot be nonnegative (i.e., the error in J(?) cannot be
monotonic) or (3) the indications from the cited references that the error is wiped out
(to the appropriate order) by various kinds of averaging. Some progress has been made
in relating this remainder function (especially the periods of its oscillations) to the
global geometry of M [8], [24].

4. Potentials of compact support; calculation of the spectral measures in the scalar
case. The main point of Theorems 3.1 and 3.2 is that the coefficients a(x0), and
hence the 0(x0), are completely determined by the behavior of the potential E(x) at
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the point x0, independently of boundary conditions, manifold topology, and the values
of E(x) outside the neighborhood of .x0. To compute them, therefore, it suffices to
study any potential/, on a manifold M, which coincides with E in a neighborhood of
x0 where M and 3t can be locally identified. It is convenient to choose 3t-R and/ a
C function of compact support. We assume this has been done, and henceforth write
E instead of/, etc.

One is now confronted by the "scattering problem" of wave mechanics, with an
extremely well-behaved potential. The normalization of the eigenfunction expansion in
this case is well known" Every positive number , is in the continuous spectrum of H,
with multiplicity 2r. There may also be some eigenvalues ,_<0, with normalized
eigenvectors q,,. Let {u} (a- 1,...,r) be an orthonormal basis for C r, and let p-- +-0
stand for one of the square roots of . Then for each choice of a and the sign of p, there
exists a classical solution of Hq=p2q with the behavior

(4.1) uae ipx-k- Rp,e ipx as x -(sgnp)o,
p,(x). rp,eipx as x(sgnp)o

for some Rp, and Tp in C r. The spectral decomposition (2.24) in kernel form is then

(4.2)
),P E dp

By manipulating this expression into the form (2.25b), one can find the spectral
measures of H at x0 (see (4.6) ft.).

The normalization of eigenfunctions shown in (4.1)-(4.2) can be obtained from
that in the Fourier transform by studying the evolution of localized initial data under
the time-dependent Schr6dinger equation (or the wave equation) by the method of
stationary phase; see any reasonably sophisticated textbook of quantum mechanics,
such as [33, p. 102]. Alternatively, (4.2) can be derived by applying the Titchmarsh-
Kodaira theory with any point outside the support of E in the role of x0.

To obtain explicitly the spectral measures, one must express the q,p, in terms of the
+aj of (2.29); hence, one must calculate q,p(X0) and q(x0). For large X this can be
done to arbitrary order by the well known phase-integral or WKB method. In the rest
of this paper we restrict to the case r-- and employ the version of the WKB expansion
developed by Fr6man [25] and (computationally) by Campbell [17] (see also [19]):

THEOREM 4.1. There exist local functionals of E(x) and its derivatives, Y2n(X), such
that ifE C(R) and IP[ o is sufficiently large, then there exists a solution of

(4.3)

such that for any n o (and uniformly in x)

no -1/2 x

E p-2nY2n(X exp ip E P-2"Y2(x dx’
n--0 x0 n--0



ASYMPTOTICS OF CONTINUUM EIGENFUNCTION EXPANSIONS 907

(Term-by-term differentiation of (4.4) is valid.) Every solution can be approximated in the
same sense by a linear combination of these two expressions (p-+-o). The first few
coefficients are

(4.5)

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Y--E,

EY4--- (E" + ),

Y6-2 E(4)+6EE" + 5(E’)2 + 2E3],

Y8- -’ff[ E(6)+ lOEE(4)+28E’E(3)+ 19(E")2

+ 30E2E + 50E(E’)2 + 5E4],

Ylo--]- E(8) + 14EE(6) + 54E’E(s) + 110E"E(4) + 70EZE(4)

+ 69(E(3))2 + 392EE’E(3) + 266E(E")2 + 442(E’)2E"
+ 140E3E + 350Eg-(E’)2 + 14ES],

Yl.-- 2048 [E(l)+ 18EE(S)+88E’E(V)+238E"E(6)

+ 126E 2E (6) + 418E(3)E (5) + 972EE’E0) + 25 l(E(4))2

+ 1980EE"E(4) + 1630(E’)2E (4) + 420E3E(4)

+ 1242E(E(3))2 + 5564E’E"E (3) + 3528E-E’E(3)

+ 1262(E") + 2394E2(E")2 + 7956E(E’)2E + 630E4E
+ l105(E’)4+2100E3(E’)2+42E6].

Remark 4.1. Y14, Y16, Y18, Y20 can be obtained from formulas in [17] by the
notational identification es--E(S). The expression Y20 contains 137 terms, whose ra-
tional coefficients have numerators containing as many as 9 digits.

Remark 4.2: Theorem 4.1 is a special case of a theorem proved in a sequel to this
paper. To obtain it from [25], [17], note that those papers treat the equation

d2q +p:ZQ2(z)_ 0
dz 2

which is converted to (4.3), with E equal to the eo of [25], [17], by the transformation
dxq- Q’/-+ dz

Q"

(Also, we have rescaled the e and Y by powers of p.)
COROIIAR 4.1. For E C(R), the quantities Re and I 1-1 in (4.1) vanish to all

orders as IP[--’ .
Corollary 4.1 is just the observation that the eigenfunctions for X =p2 can be taken

to have globally the behavior indicated by (4.4), as opposed to that of a linear combina-
tion of e--i’". This is crucial to the calculation below. Both smoothness and the
absence of boundaries are essential for this result. Clearly, an operator on the half-line
with, say, Dirichlet boundary conditions will have eigenfunctions whose reflected waves
equal their incident waves in strength. An exactly solvable, discontinuous "square
barrier" potential [50, 3.7] yields Re and Tp satisfying

iRpl2 2 -4-1-11 -O(p ),
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the exponent being best possible. Such finite order mixing of positive-phase and
negative-phase waves is the origin of the oscillatory terms in the spectral measures.
Finally, note that because E(x) is bounded, for sufficiently large ) there are no
"turning points"; this also is essential for the corollary and, along with the compact
support of E, for the uniformity of (4.4) in x. In more general contexts, Theorem 4.1
weakens to a merely local statement, valid in finite neighborhoods where E is smooth.

From (4.2) (with r= 1) and the formalism of 2 one has

E q"xj(x)dlzJk();Xo)x(Y)
(4.6)

and thus

(4.7)

(4.8)

dlz( .)-dEx(xo,Xo) doo

and so on. We evaluate (4.7): Set the x0 in (4.4) equal to the x0 at which the spectral
measures are to be defined. Then

(4.9) [*___,o(x0)12 ] 0_2,yz,,(Xo)
n=0

where the right-hand side stands for a series obtainable from (4.5) by the geometric-series
expansion. In this way it is fairly easy to calculate by hand the first 7 coefficients in
(3.8):

(c)

(d) o-- [E4) + IOEE,,+5(E,)2+ i0E],

[E6)+ 14EE4) + 28E’EO) + 2I(E")2 + 70E2E
+70E(E’)2+35E4],

(4.10)
(f) po_ 512[E8)+ 18EE6)+54E,E5)+ l14E2)E4)

+ 126E2E4) + 69(E0))2 + 504EE’EO) + 462(E’)2E2)

+ 378E(E2))2 + 420EE2) + 630E 2(E’)2 + 126E5],
(g) po E)+ 22EE8+ 88E’E7) + 242E"E6)

2048
+ 198E2E6) + 418EO)E5) + 1188EE’E5) + 253(E4))2

+ 2508EE"E4) + 1650(E’)2E4) + 924EE4) + 1518E(EO))2

+ 5676E’E"EO) + 5544E2E’EO) + 1342(E") + 4158E2(E")2

+ lO164E(E’)2E + 2310E4E" + l155(E’)4+4620E(E’)2

+462E6].

(Of course, in such equations everything is evaluated at x0.) For higher orders, com-
puter assistance would be almost a necessity.
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From (3.6)-(3.7) and (4.10) one obtains the first 7 terms of the expansion of the
heat kernel. The result agrees with [32, Thm. 2.2] and goes two orders beyond it. Also,
(4.10f) can be shown to agree with the corresponding term in the expansion of the
resolvent kernel given by Gel’fand and Dikii [29]. Incidentally, the recursion relation
derived and used in [29] appears to be the most efficient systematic method of generat-
ing the coefficients 0 when m--r= 1; unfortunately, it does not seem to have a
generalization to higher base or fiber dimension.

The other measures are calculated similarly. With
t/0

(4.11) Y(x)
n--O

the derivative of (4.4) is

(4.12) /’- ( ip

Then (4.8) can be reduced to

y/2_ 2y,) ipfY- y-3/ e

d(4.13a) y-i

where the series to be differentiated is that already encountered in (4.9). It follows that

)’.(4.13b) O-O --(O
(In particular, O- 0.) From (3.1) we see that (4.13b) reflects the fact that

d
Ex(xo Xo) 0Ex Ex(4.13c) dxo --x (x’x +-y (x’x )"

The formula (4.12) also yields

Y +_p-2(4.14a) d/l’ (x)
r

Y- do,

so this expansion is easily obtainable from the other two:
n--I m--1

(4.14b) pI-Y2n +- E (p00),(p_100)’Yz(n-m- 1)
m=2 l=

The results to order 6 are

(a) pill y2, for n-- 0, 1,2 (see (4.5)),

(b) P _@2 E(4) + 6EE" + 7(E,)2
_
2E

(c) 0 128 [E(6) + 10EE(4) + 32E’E(3) + 19(E")2 q- 30E2E"

+ 70E( E’):Z + 5E4],

O --i- [E(8 + 14EE(6 + 58E’E(5 + 110E"E(4 + 70EZE(4

+ 71(E(3)) :z --t- 448EE’E3+ 266E(E") + 518(E’)2E
+ 140E3E + 490E;(E’) + 14E5],

(e) p- [E() + 18EE(8+92E’E(7)+238E"E(6
2048

+ 126E2E (61 + 422E(3)E (5) + 1044EE’E(5) + 25 l(E(41)2
+ 1980EE"E(4) + 1794(E’)E (4) + 420E3E(4) + 1278E(E(3))2

+ 5916E’E"E(3) + 4032EE’E(3) + 1262(E") + 2394E2(E")2

+9324E(E’)ZE + 630E4E + 1365(E’)4 + 2940E3(E’) + 42E6].

(4.15) (d)
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In summary:
THEOREM 4.2. Let

d: e(x)
dx 2

be a selfadjoint operator on M. The spectral measures ofH relative to a point xo interior to
M have the averaged asymptotic expansion (3.9), with the coefficients listed in (4.10),
(4.13b), and (4.15). If M=N and ECf(N), the expansion is a genuine asymptotic
series. In any case, the first term of the series is asymptotic.

Finally, observe that the same technique can be used to calculate dEx(x,y) for x
and y distinct. Substituting (4.4) into (4.6), one obtains

w_2nYzn(x) 2w_2yz(y )
(4.16)

This expression may be more useful for some practicM calculations than the tabulated
values of O(xo). It must agree with the reconstitution of dEx(x,y ) from the spectral
measures at x0 via (2.23); the two expressions presumably coincide when all functions
of x and y in each, outside the oscillatory factors, are expanded in power series in x-xo
and Y-Yo. In view of Theorem 4.1, (4.16) provides a rigorous asymptotic approximation
of arbitrary order for the large-X part of the eigenfunction expansion when E C(N).
In other cases, since the heat-kernel expansion (3.12) is purely local, an argument
parallel to Theorem 3.1 would establish that (4.16) is valid in a "mean" sense for x and
y sufficiently close. What this means in practice is that if some quantity or expansion
(such as the short-distance singularity of some Green function) can be proved to be
local in its dependence on E (cf. [28]), then (4.16) can be used to calculate it.

AeknoMeents. I thank F. J. Narcowich for his active interest in this project,
and P. Candelas, D. Deutsch, J. S. Dowker, G. Kennedy, T. A. Osborn, J. K. Shaw,
and M. E. Taylor for illunating discussions and bibliographical information.

Note added in proof. We call attention to recent related work: S. F. J. Wilk, Y.
Fujiwara and T. A. Osborn, N-body Green’s functions and their semiclassical expansion,
Phys. Rev. A, 24 (1981), pp. 2187-2202; Y. Fujiwara, T. A. Osborn and S. F. J. Wilk,
Wigner-Kirkwood expansions, Phys. Rev. A, 25 (1982), pp. 14-34.

For treatments, more rigorous than [33], of normalization of scattering eigenfunc-
tions, see M. Reed and B. Simon, Methods of Modern Mathematical Physics, Vol. 3,
Scattering Theory, Academic Press, New York, 1979, pp. 96-115 and 352-357.
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A NONLINEAR INTEGRAL OPERATOR ARISING FROM A MODEL IN
POPULATION GENETICS, I. MONOTONE INITIAL DATA*

ROGER LUI

Abstract. We study the asymptotic behavior of the solutions to the recursion un+ (x)= Q[ un](x) for
n0. Here Q[u](x)=(K, go u)(x) acts on functions bounded between 0 and 1, K(x) is a probability
density function with compact support, and g(u)C[O, 1] satisfies certain additional assumptions. It is
known that there exists a c_ such that for c>_c_, there are nonincreasing travelling waves %(x) facing right.
We prove here that if K(x) is the exponential of a concave function and u0(x) is monotone nonincreasing
and decays to zero rapidly enough, then u,(x) converges in a certain sense to w,.;(x) as n approaches infinity
uniformly in R.

1. Introduction. The history of this problem goes back to two papers by R. A.
Fisher [8] and by Kolmogorov, Petrowskii and Piscounoff [10], both written in 1937 on
a subject we nowadays call nonlinear diffusion. They considered the initial value
problem of a semilinear parabolic equation

(1.1) u,=Uxx+f(u ), u(x,O):uo(x ),
where fcl[0, 1], f(O):f(1)-O, f(u)>0 in (0, 1), f’(0)>0, f(u)<_f’(O)u in [0, 1] and
u0 [0, 1]. They were able to show that (1.1) admits a solution of the special form

w(x-ct) if and only if c>_c*:_2f’(O). A solution of the form w(x-ct)is called a
travelling wave of speed c.

Kolmogorov et al. went on to show a result which is more closely related to results
obtained in this paper. They assumed that u0(x)--H(-x), where H(x) is the Heaviside
function. It is simple under such conditions on f and u0 to show that a unique solution
u(x, t) of (1.1) exists for all > 0, 0_< u(x, t) _< and u(x, t) is decreasing in x for each
positive time t. Kolmogorov et al. proved that if the function rn(t) is defined by the
relation u( rn (t), ): V for each 0</< 1, then

lim u(x +m(t), t)- w(x) uniformly in
t---> o

where w(x) is the travelling wave of speed c* normalized so that w(0)- /.
In their papers of 1975 and 1976, Aronson and Weinberger [2], [3] studied (1.1) in

one and more spatial dimensions and allowed f to have an intermediate zero between 0
and 1. Their results among others imply that the c* found in [10] is actually the
asymptotic speed of propagation for any initial function u0(x) having compact support.
In 1978, Uchiyama [16] extended the results of [10] to include a wide class of initial
data.

Equation (1.1) when f(u):u(1-u) was actually used by Fisher [8] as a model for
the spatial spread of an advantageous gene in a population living in a homogeneous
one-dimensional habitat. As was already mentioned in [2], the Fisher model is based on
some assumptions of doubtful validity. In 1978, Weinberger [17] proposed a more
realistic model in which time occurs in discrete steps designed to simulate synchronous
generations. The model is described by a recursion formula,

(1.2) u,,+,:Q[u,,],
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School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455 and Department of
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which links the n th generation to the (n + 1)th generation. The actual expression of Q is
given by (1.3).

In [17], travelling wave solutions were found to exist for speed greater than or
equal to a positive number c*. c* was again shown to be the asymptotic speed of
propagation. The exact statement of these results will be stated later in this section.
More recently, Diekmann [6] and Thieme [15] have considered similar types of models
with continuous time and have obtained results similar to those obtained by Aronson
and Weinberger in [2] and Weinberger in [17]. Further references to the subject may be
found in 13].

The purpose of this paper is to prove the kind of results that Kolmogorov et al.
and Uchiyama obtained for equation (1.1) for Weinberger’s model under various
assumptions on Q and u0. According to [17, Thm. 3], if Uo(X ) is bounded away from
zero outside a bounded set, then u,,(x) defined recursively via (1.2) converges uniformly
to in R as n +. We shall therefore always assume that u0(+)=0. There are
then two cases to consider, namely when lim infx__o u0(x)>0 and when this is not
satisfied. We shall treat the first case in this paper and the second case in a later paper
[12]. However, some of the results obtained in this paper will be used in both cases. The
rest of this section contains slight generalizations of three major theorems obtained in
[17] as well as notations to be used for the rest of this paper. To obtain the main result
of this paper, we require the kernel K(x) in the definition of Q to be the exponential of
a concave function. Section 2 explains and proves the consequences of such an assump-
tion. Section 3 contains further properties of travelling waves. In 4, we study the
behavior of un(x) in a neighborhood of its largest zero. We will then be able to treat the
first case when Uo(X ) stays positive near -. This is done in 5.

We now introduce notations and make assumptions on our nonlinear integral
operator Q. The operator Q is defined on the set of functions-- ( u: 0 _< u _< 1, u piecewise continuous}

(1.3) Q[ ul(x) =fnK(x-y)g(u(y)) dy.

K(x) is assumed to satisfy the following conditions throughout the entire paper.

(i) suppK=[B,B2] K(x)>0 in (BI,B2)
(ii) K(x) is continuous in R except possibly at B, B2, where

lim K(x)=p, lim K(x)--p2, p,p2>_O,(1.4) x B, x B2
(iii) K(x) is of bounded variation and is differentiable in (B2 -e, B2)

for some e> 0,
(iv) fnK(x)dx= 1.

g(u) defined in [0, 1] is assumed to satisfy the following conditions throughout the
entire paper.

(v) g(u)C[O, 1],
(vi) g(O) O, g(1) 1,
(vii) g(u) > u in (0, 1),

(1.5) (viii) 0_< g’(u)_< g’(O) in [0, ],
(ix) g(u)=g’(O)u+ O(u+) as u $0 for some e>O,
(x) g’(u)>O in [0,o where o= sup{u: g(u)< },
(xi) g,(u)/u is nonincreasing in (0, 1).

by the relation
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Condition (xi) is used only in the last part of the proof of Theorem 4; it is not clear
if it is essential there. Note that (xi) implies that g’(u)<_g’(O) in [0, 1], which in turn
implies that g(u)<_g’(O)u in [0, ]. From this and (vii), we see that g’(0)> 1. By Q,., we
always mean the operator

(1.6) Q,.[ u](x) Q[ u](x + c).
The letter/3 will be used to denote g’(0) and hereafter, if the domain of integration is
unspecified, it is assumed to be the entire real line

In [17], the conditions on K(x) and g(u) are not identical to those stated in (1.4)
and (1.5). Most important of all, K(x) was assumed to be an even function in [17]. Also
(x), (xi) were not assumed, (viii) was replaced by the weaker condition g(u)<_Bu in
[0, 1], while condition (ix) was replaced by the stronger condition that there exists a
constant D>0 such that fl[u-Du2]<_g(u)<_flu in [0,1]. Condition (viii) may be
replaced by the condition g(u)_< flu in [0, 1] in order for Theorems 1,2, 3 of this paper
to be valid. This corresponds to the condition f(u)<_f’(O)u for (1.1); see [14] if such a
condition is absent in (1.1). Nevertheless, (viii) will be used in this paper.

We need to adjust [17, Thms. 1,2 and 5] so that they hold under our present
hypotheses of K(x) and g(u). For this purpose, we have to refer to a more recent paper
of Weinberger [18] which generalizes results in [17]. The function

(1.7) (/)-log fl K(x)e’Xdx

plays a crucial role in all our analysis. Note that (/) depends only on fl=g’(0) and
not on g(u) in general. We define

(1.S) ,I,( fxe"K(x ) dx

fe"XK(x dx

and note that

(1.9) ’(/) >0,

fe"XK(x)dx
(1.10) *’(.)--; [(.)-*(.)].

From (1.10), we see immediately that (2 (I) ’)’ xtt’, and hence 2(I)t() is increasing in
(0, + m) and decreasing in (-m, 0). Consequently, can have no local maximum in
(0, + m) and no local minimum in (-, 0). It has at most one local minimum/* in
(0, + m) and () decreases in (0,/*) and increases in (/z*, + m). Similarly (/) has at
most one local maximum , in (-m, 0) and (/) decreases in (/,, 0) and increases in
(-,,). Note that since flfK(x)dx> 1, (0+)= +m and (0-)=-m. For/>0,

(1.11) Be" ’flr(x)dx -, +;logfl.
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Also for/>0 and >0 sufficiently small,

()_log fl e’XK(x)dx
(1.12)

B2Choose >0 so small such that fB__K(x)dx-< 1/2/3. Then for/>0

{ 2 e,XK(x)dx+B[2e,XK(x)dx}(/)--;log fl, -
_<-log + e"B2(113) fle,(e2_)

B+ log Be-"+-
From (1.12) and (1.13), we see that lim_+ (/)-B.. Also from (1.13), if/>0 is
chosen so that Be-<1/2, then ()<B. Thus (t) attains a minimum value c*+ at
some unique point * >0. Note that c_ may be negative but

B, <B +51ogfl_< c_ <B2(1.14)

To continue,

(1.15) { Bfe-"XK(-x)dx ----(I)l(--I),

where

__1 {.fenXK(_x)dx}It (’17)log
The support of K(-x) is [-92,-B1], and our previous analysis shows that 1(’) has a
unique minimum c_*-l(/* at -/*>0, -B2<i(/*)<-B and limn_+oo l(r/)--
-B. From (1.15), we conclude that (/) attains a maximum value -c* at a unique
point/, -v/*, B <-c* (B2 and lim,__oo (/)-B1. Note that

We are now ready to state two slight generalizations of theorems in [17] which will
be used essentially later on. If u0

, we define recursively

(1.16) U,+l(X)=Q[u,](x ) for n_>O.

It is clear from our hypotheses (1.4) and (1.5) that u@ for n>_O.
THEOREM 1. Let u be a solution of the recursion (1.16). Let 0-< uo-< and suppose

Uo(X has bounded support. Then, for any c < -c* <c*+ <c2,

lim max un(x) =0.
n +oo x[ncl,nc2]

Proof. [18, Thm. 6.1]. Actually the proof in [17] also works without any modifica-
tion.
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THEOREM 2. Let u be a solution of the recursion (1.16). Let O<_uo<_ and suppose
that uo is not identically zero in the sense that its integral is positive. Then, for any

-* <C C2C*
lim max un(x) 1.
+oe x[nc,nc2]

Proof. [18, Thms. 6.1 and 6.5],
Remark 1. In Theorem 1, if Uo(X ) decays rapidly enough so that the function

u(x)e*x is integrable near +z, then the maximum of u(x) in the set
approaches zero for every c2 > c_.

Remark 2. If K(x)-K(-x), then c* -c* and xt,(0)-0. Since xt,(/) is increasing,+
c_ is positive in this case. In fact c_ > 0 as long as f xK(x)dx >_ O.

Remark 3. Theorems and 2 together say u(x) spreads out on th right like nc_
and on the left like-nc*_ and -c_* < c_.

Remark 4. Condition (ix) of (1.5) is irrelevant for the proofs of Theorems and 2.
We now come to the question of travelling waves. A function wc(x) is a

travelling wave of the operator Q with speed c if u(x)--w,.(x-nc) is a solution to the
recursion (1.2); i.e.,

(1.17) w,.(x)-fK(x+c-y)g(wc(Y)ldy.
We define/c for c>_c*+ as the unique positive value of in (0,/*) such that (/)-c.
We shall from now on write/c: instead of/* to be consistent with our notation.

THEOREM 3. For each c >-c_, there exists a travelling wave Wc(X) of speed c for the
operator Q such that Wc(X ) is nonincreasing. Any such solution has the further properties
that

(1.18) Wc(-C)-- 1, we(+ )--0

and

(1.19) Wc(X)>O in

For c> c*+
(1.20)

while for c- c]_

lim e",Xw,.(x) 1,

(1.21) lim -e,Xw(x)-l.
x +oo X

Proof. The existence of nonincreasing travelling waves for c>_c_ with property
(1.18) may be found in the proof of 18, Thm. 6.6]. (1.18), (1.19), (1.20) are contained in
Diekmann and Kaper [7]. We shall prove (1.21) in the first half of the proof of
Theorem 4 in {}3. Condition (ix) is essential in all of these proofs.

Remark 1. Uniqueness of travelling waves for c> c]_ was solved by Diekmann and
Kaper in [7]. Monotonicity of w,.(x) plays a role in proving the uniqueness and deriving
property (1.21) in Theorem 4. We shall discuss this problem further in {}3.

Remark 2. There are travelling waves (x) of speed c_<-c_* going in the opposite
direction, namely, c(X) is nondecreasing, ,(-m) 0, (+ m) and (x+ nc)
satisfies the recursion (1.2). Note that since K(x) is not symmetric, .(x) does not
equal w.(-x).
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2. PF2. Most of the results in this section are special cases of more general
theorems in Karlin’s book Total Positivity [9]. In order to keep this paper within
reasonable length, we are going to state some of the results in this section as lemmas
and refer the reader to [9] or [11] for their proofs. We start by defining the sign change
of a function.

Let x.-(xl,.- .,xn) be a vector of real numbers. We denote by S(x) the number of
sign changes in the sequence obtained from x l, x2,...,x by deleting all zero terms
with the convention that S(.0)--1, where .0 is the null vector.

DEFINIXXON 1. The number of sign changes S[ f] of f(t) is

sup S[ f(t 1),f(t21,’’’ ,f(tm)],
where the supremum is taken over all sets - <tl <t2< <t,< /. m is arbitrary
but finite.

DEFINITION 2. A function f(x) defined in is said to be PFr, r_> 2 if f(x) is PF
and if for all -<x < <Xr< + 00, --0 <y <" <yr< q- 0, we have

(2.1) detf(xg-y)>_O.

PF simply means a nonnegative function defined in R. PF, means P61ya frequency
function of order r.

Remark. Iff(x) is PFr, so is f(ax + b) for any Constants a and b.
A PF2 function has a particularly simple characterization.
LEMMA 1. A function f(x) - 0 is PF if and only if f(x) e(x, where k(x) is a

concave function in sot.e interval ( a, b) ( a c b + not excluded ), f(x ) 0 outside
[a,b].

Proof. See [9, p. 332] or [11].
Remark 1. It is well known that any concave function k(x) in (a, b) is continuous

and its left and right derivatives k’(x) and k’(x) exist everywhere in (a,b). Further-
more, k’(x)-k’(x) except for a countable number of points. If f(x) is PF, then,
according to Lemma I, f(x) is of bounded variation and is continuous in R except
possibly at the points a and b. That this is best possible is illustrated by the following
example. The function p(x)- if-1 <x< and 0 otherwise is PF (but not PF).
However limxf(x) and limf(x) both exist and are finite. In addition, f(x) is
absolutely continuous in every compact subset of (a,b). If f(x) is continuous at the
points a, b, then it is absolutely continuous in R.

Remark 2. Let K(x) in the definition of Q in (1.3) be PF. Then most of the
conditions in (1.4) are automatically satisfied. We denote by p and p the jumps of
K(x) at B and B2 respectively. We shall set K(B1) K(B2) 0 and decompose K(x)
in the following way: K(x)-K(x)+K(x) where

0 otherwise.

Note that Ka(x) has compact support and is absolutely continuous.
LEMMA 2. Let f(x) be a bounded piecewise continuous function in g such that, for

some point Xo,

X Xo,(2.21 f(x)
<--0, x>xo.
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Let K(x)-ek(x) be PF2 and define

(2.3) F(x)=fK(x-y)f(y)dy.
Then F(x ) 0 and F differentiable at x imply that F’(x ) <_ O. Furthermore, there cannot
exist x2<x such that F(x2)<0< F(x3).

Proof. This is a special case when r-2 of a general theorem in [9, p. 21 ]. The proof
is also given in [11 ].

Remark 1. The lemma says that if f(x) has one sign change and K(x) is PF2, then
the function K, f has no more than one sign change. This lemma is obviously valid if
we replace K(x) by any of its translates.

Remark 2. g(u) does not increase the number of sign changes of the difference of
two functions. By this we mean if u(x) and v(x) are such that u(x)-v(x) has a finite
number of sign changes, then the number of sign changes of g(u(x))-g(v(x)) cannot
exceed that of u(x)-v(x). The proof follows readily from the mean value theorem, the
fact that g’ >0 and Definition 1.

LEMMA 3. Let K(x) be PF2, uoand let there exist a point xo such that
(i) Uo(X)>_Uo(Xo)--8o>O for x<x0,
(ii) Uo(X) is nonincreasing for x>x0,

(iii) u0( / oe) 0.
Then there exists a sequence {xn, n >0} ofpoints such that un(x,)- where the 8n’S are

defined by the recursion +1-g(8). Also Un(X)>8 if x<xn and u,(x) is nonincreasing

ifx>xn.

Proof. The proof is by induction, and the assumptions on u0(x) say that the result
is true when n-0. Assume that the result is true for n. We set f(y)-g(u(y))-g().
Then f(x)>O if x<xo, f(x)<_O if x>xn. From Lemma 2, we find that U+l(X)-3+
changes sign no more than once. If we set X+l-sup{x" u+ >6n+}, then x+ is
finite since U,+l(+ oe)-0 and from our induction hypothesis, xn+>x+B. Also

u.+ (xn+ ) 6n+ . We then get u.+ l(x ) _> 6.+ if x<x+ and u.+ (x )<
It remains to prove that u,+l(x ) is nonincreasing in (x,+ 1, + oe). To this end, let
Y>x,+ and set =Un+l(:g). <i,+ by definition of Y and x,+ 1. Choose , such that
g(’{)-<.+ 1- g(i,). Then ./< and if we let 2-sup(x: u,(x)_>3,}, we have un(x)>_,
for x<2 and u,(x)<_7 for x>)?. The function f(x)-g(u,(x+))-g(V) has only one
sign change at x-2-Y, and Lemma 2 implies that F(x)-fK(x-y)f(y)dy-u,+(x
+Y)- has no more than one sign change. If F(x)>0 for some x>0, then since
F(0)- 0, F(_x,+ :g) >0 with x,+ -x<0, there exists by continuity a
such that F(x)-X has at least two sign changes. This is impossible because from
<,7+)t<6,+. and our induction hypothesis, we may choose Y, x,+<< such that
uo+()-+X. Repeating the argument before with :g replaced by :g, replace by
q+X, we conclude that u,+(x+Y)-’-X must change sign no more than once. But
(x)-X is only a translate of U,+l(X+C)--X. The only way out is to admit that
F(x)<_O whenever x>0 which is precisely the statement that un+ (x) is nonincreasing
for x >x,+ 1. Q.E.D.

We shall hereafter refer to conditions (i), (ii) and (iii) of Lemma 3 as the one-sided
condition.

Letf(x) be such that f(+ c)-0. We define for 0<,< the function f-l(,)
sup{x:f(x)>_,}. Ill(x) is everywhere less than "1’, thenf-l(’) --oe. The next lemma is
applicable to both the case u0(-m)>0 and u0(-oe)- 0.
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LEMMA 4. Let K(x be PF2 Let fo(x H(-x andf,(x be defined recursively by the
relation f,+l=Q[f,], n>_O. Let Uo be nontrivial, and u0(+)=0. Then for any
compact subset K of (0, 1), we have f/,(f-i(/))<_u’n(u(’f)) for all / when n is
sufficiently large.

Proof. It is easy to see that f(x) is nonincreasing in R, fn(-) 1, f(+ o)=0 for
all n. Also Theorem 2 implies that the maximum of u,(x) on R converges to and
hence ul(,)>0 on for s_ufficiently large n. For such large n, set b=f,-l(,)-uT,(7)
and consider the function f(y)=fo(y+b)-uo(y). From the definition of fo(Y), f(Y)
has only one sign change at y =-b. From Remark 2 after Lemma 2, the same is true of
the function g(fo(y+ b))-g(uo(y)). Hence Lemma 2 implies that the function

fK(x-y)[g(fo(y+ b))- g(u0(y)) dy=f,(y+ b)-Ul(X

has no more than one sign change and has nonpositive derivative at its zero. An
induction argument now shows that the same is true of the function f.(x / b)-Un(X)=
f.(x+f.-(y)--Ui(V))--U.(X). This function vanishes at x-ui(y) and hence
f( f,-l(y))U’n(ul(y)). Q.E.D.

3. Travelling waves. In this section we are going to study further properties of the
travelling waves we mentioned at the end of 1. The following assumption on g(u) is
used only twice in this paper, once in Lemma 6 and once at the end of Theorem 4.

Let o= sup(u: g(u)< 1}. We recall the condition

(3.1) g’(u)>0 in[0,o).
PROPOSITION 1. Let InLi(), qL(). Then the function In, q is uniformly

continuous and
Proof. Uniform continuity comes from the continuity of translation in L and the

inequality is a straightforward estimate. Q.E.D.
LEMMh 5. Let In(x) be absolutely continuous in g. Let f(x) be bounded. Then

F(s)-- (in f)(s) is in C(R), F’(s)-- (in’ f)(s) and F’(s) is uniformly continuous.

Proof. Since In’(s) exisls almost everywhere and is integrable, it suffices to prove
that F’(s)--(in’ f )(s). Recall that In(s) is absolutely continuous if and only if for all s
and a, In(s)- In(a)-- f In’(t)dt. Hence

In’( y t)f(t )dt dy + constant.

Since In’ is integrable and f is bounded, Proposition implies that the function f In’(y-
t)f(t)dt is bounded and uniformly continuous. Hence the iterated integral exists and
the interchange of order of integration is justified. Our assertion now follows from the
fundamental theorem of integral calculus. Q.E.D.

COROLLARY. Let K(x) be PF2 and f(x) be continuous and bounded. Then the
function F(x) (K f )(x) is in C() and

F’(x)-fK’(x--y)f(y) dy+p,f(x-B,)-p2f(x-B2).
Also, ifOf(x) l, then F’II <IIK’II /Pl

Proof. We decompose K(x) Kl(X) / Ka(x and apply Lemma 5 to K f.
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Remark. If K(x) is PF2, then un(x is differentiable for n_>2 since u(x) is
continuous from Proposition 1.

LEMMA 6. Let K(x) be PF2 and wc(x ) be a nonincreasing travelling wave for the
operator Q of speed c>c*+. Then w.(x)C2(N), w(x), w’(x) are uniformly continuous
and bounded. Also w(x)< 0 whenever G.(x) < 1.

Proof. The statements about the regularity of wc(x) follow immediately from the
corollary of Lemma 5. We actually get the bounds

)2IIwL.llo-<(llg’ll +p +P2), IIw+ Io-</3(llg’ll /p /P2
To see that w(x)<0 for G.(x) < 1, write

_f+’-, x+ c-y)g’(w,.(y))w(y)dy.W,(X)
"x-c--B2

K

Suppose that w(xo)-O and w(xo)(O, 1). Then K(x)>0 in (B,B2) and w(x)<_O
imply that g’(G.(y))w(y)-O in [Xo-+-c-B2,xo+c-B]. If c<B2, then since w is
nonincreasing, G.(y)< in [Xo,Xo+C--B] would imply from our assumption (3.1) on
g(u), that w(y)-O in [Xo,Xo+C-B]. Repeating the argument with x0 replaced by
xo + c-B and using the fact that c>_c_ >B, we arrive at the conclusion that w(x)-O
for x>xo. This is impossible since w(+ )-0 while we(x0)>0. If c>B, then w(y)-O
in [Xo+C-B2,xo+c-B]. The mapping y[y+c-B,y+c-B] is continuous and
maps connected sets to connected sets. Using this, we can prove by induction that
w(x)-O in a sequence of intervals [xo+n(c-B),Xo+n(c-B)], n>_O, which begin
to overlap each adjacent one when n is so large that c<n(B2-B)+B. Thus w(x)-O
in A, +) for some constant A, which is impossible since w,.(x)>0 in R and G.( + o)
=0. Q.E.D.

Remark. Define weTS(q,) as we have done right after Lemma 3 for a general
function in E vanishing at + o. Then w( -w (e))< 0 in (0, 1) and is continuous there. In
particular, 1/w.( -w (e)) is integrable over every compact subset of (0, 1) for all c_>c_.

We now discuss the question of uniqueness of travelling waves for the operator Q.
The case c>* was solved by Diekmann and Kaper [7]. They showed that any such+
solution w,. in E has the asymptotic behavior w(x)-const e -’x as x --, + z. Our proof
of the case c-c*+ uses some of the results in [7] and an extension of Ikehara’s theorem
by Delange [5]. We are then able to deduce that any nontrivial (0, 1) nonincreasing
solution of Qe.[u]-u has the asymptotic behavior u(x)-constxe-,
However we are unable to jump from this to a uniqueness result. We need the condition
that g(u)/u be nonincreasing in (0, 1). For this reason, our main theorem in 5 may be
weaker. In passing, we mention a paper by Barbour [4] which proves uniqueness of the
epidemic waves by stochastic methods. See also Aronson [1]. The following is a
modified version of Theorem in Delange’s paper.

PROPOSITION 2. Let a(t) be a real function defined for t>_O, nonincreasing, a(t)>_0.
We suppose that f(s) f- e-Slot(t) dt is convergent for Res> -a where a> O. Let fl(t)
be a real function defined for >_0, measurable and bounded on every finite interval,. We
suppose that the integral G(s)-f- e-tfl(t)dt is convergent for Res>0. Suppose in
addition that there exists a nonnegative integer p and a real function ),( u) continuous and
nondecreasing in an interval[O,l] and 3,(u)>0 in (0,1] such that the integral fdlog(1/y(u))
du is convergent and the product tP+fl(t)foe-tUy(u)du converges to as t- +o.
Suppose further that there exists a constant A >0 such that the function F(s)--f(s)-
AG(s + a has the following properties:. For every real yvaO, F(P)(s) tends to a finite limit as s tends to -a/iy in the
half-plane Res> -a.
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2. As s+a tends to 0 in the half-plane Res>-a, we have F(P)(s)-O[+(r)/’/(r)]
with r Is + a Here +(t)> 0 is nonincreasing, defined for sufficiently small >0 and the
integrals fo /( ) dt and fo +( ) log(1/’/(t)) dt are convergent. Then

a(t)Ae-atfl(t) as t +.
THEOREM 4. Nonincreasing traeelling waee solution of the operator Qc is unique up

to translation.

Proof. We first show that any nonincreasng solution u of Qc[U]-U has the
asymptotic behavior u(x)Axe-" as x + for some constant A >0. Let U(X)-
feXXu(x)dx, complex, then [7, Lemmas 4.4 and 4.5] imply that u(-)- 1, u(+ )-0
and the number A,-sup(ReX:lU(X)l<+m) is positive. U(X) is holomorphic in

S-(C’0<ReX<A,}. Let r(x)-(g(u)-flu)*K(x+c) and R()-feXr(x)&.
Then R(X)-U(X)(1-flfK(x+c)eadx) U(X)h(X). According to [7, Lemma 4.8],
R(X) is actually holomorphic in a strip to the right of S and hence h(A)-0 which
implies that A,-.. h() is an entire function and if X-X + iX, a simple integra-
tion by parts show that h() has no zero for Re bounded and ]Im sufficiently large.
Furthermore, since h() is entire, we can show that for sufficiently small e >0, h(X) has
only one zero at X . in the strip S- (X C" . e< ReX< c + e}. The function
U(X)-R(X)/h(X) is meromorpNc in S and has a pole of order two at X-t. The
order of the pole may be checked by looking at (1.10) and differentiating h(X)- 1-
e *(x)-’lx twice to get h"(ct)--"() <0. Since g(u(x))<flu(x) for x in a set
of positive measure, R(.X)<0. Let

(3 2) .R(X= a_2

)2
+ +h (X)

be the Laurent expansion at )t-/c where h(X) is holomorphic in S and a_2--
2R(l.)/(-rb"(l.)l ct) > O. Now

U( X ) fo_eXxu ( x ) dx + eXXu(x ) dx f ( X ) + -eXXu(x ) dx

f(X) is holomorphic in Re)t</c and f_o eXXu(x) dx is holomorphic in ReX> 0. Let

h(X)-h(X)-f_ eXXu(x)dx, we then have

(3.3)

Now let a(t)-u(t), f(s)=f(-s), a-I., fl(t)-t, p-O, ,(u)-u, l-1, A-a_2 and
q--I in Proposition 2. Then all the hypotheses are satisfied. In particular, G(s)-s -2

exists when s>0 and from (3.3),

F(s)=f(-s)- a-2 -a-1 +ff(-s) in-S.

According to Proposition 2,

u(x)a_zxe-", asx + m.

Finally, let ul,u2 be nonincreasing and Q,.[ui]-u for i-1,2. Then ui(x)
Axe-"" as x--, / m for i- 1,2. Without loss of generality, assume that A _>A

2. Set
c-inf ul(x)/uz(x ). Since ui(-m)- for i- 1,2, we have 0_<a_< and ul(x)>-aUz(X)
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in R. Note that if a< 1,a must be attained at some point xo. Since g(u)/u is nonin-
creasing, we have g(au2)_>ag(u2). We deduce therefore that

(3.4) lr(z+ */

Let x0 be such that Ul(Xo)’--OlU2(Xo). From (3.4) and (3.1), we have UI(X)---OtU2(X
in the interval [x0 + c_-B2,xo + c*+-B1] provided au2(x)<o. Repeating the argument
inductively, we conclude that Ul(X)=au(x ) in (x: au2(x)<o}. Hence {x: au(x)<o)
C {x: ul(x)<o}. But u(x)>_au(x) in R; hence the two sets are equal. Letting x--, +
and using the fact that A _>A_, we see that a 1.

Finally, we may assume that Ul(0)=u2(0). If a< 1, then Ul(Xo)--aUz(Xo) at some
point x0 but the above argument gives a contradiction. Hence a-- and we may take
xo =0. From above and the fact that

Ui(X) f{uio K(x+c]---Y)g(ui(Y))dY+f(u>o}K(x+c*+-y)dy’
we conclude that u(x)= U2(X in . Q.E.D.

We now return to the study of we(x). Since the function W(W-I(’)t)) will be used
often, we introduce the notation %(,)- w(w- l( -/ )), c>_c_ for it.

THEOREM 5. Let Uo,o satisfy the condition that for some constants A and b
positive, Uo(X)<_ffo(x)+Ae-bx in . Then,

Un(X + nc) <--5n(X + nc) +Ae-bx+nb(’(b)-c).

In particular, if uo is such that Uo(X)%(x ) as x + c for some c> c*+ then
lim, + un(X + nc) We(X ) uniformly in L, + o) for any constant L.

Proof. The proof of (3.5) is by induction, and our hypothesis says (3.5) is true
when n-0. Assume that it is true up to n; then

Un+l(X+(n+ 1)C)--n+l(X+(n+ 1)c)

=fK(x+ c-y)[g(Un(Y+ nc))- g(n(y+ nc))] dy

<_flfK(x + c--y)[Un(Y+ nc)--ffn(y+ nc)] + dy

<_Aflenb((b)-)fK(x + c--y)e -by dy

--Aenb(O(b)-c)eO(b)be b(x + c)
-Ae(n+ 1)b(O(b)--C)e-bx

which completes our induction.
For the second half of the theorem we let ( > O. From (1.20) and our hypothesis,

u(x) e-"<l and
u(x) -,e>l

as x + . Hence there exists L>0 such that We(X +) Uo(X) We(X-- 8) in
[L, + ). For any b >0, set

Ab--Sup{ebxuo(X) x<_L}, Bb- sup{ebxwe(x + )" x<_L}.
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We have

(3.6) %(X+)--Bbe-bx<_uo(X)<_wc(x--6)+Abe -bx in N.

Applying (3.5) to the left and right-hand inequality in (3.6), we get

(3.7) Wc(X-k-)--Bbe-bx+nb((6)-c)<--Un(X-+-nc)<--Wc(X--)--t-Abe -bx+nb(e(b)-c).
Choose b (IX c, IX,.) and let n + in (3.7). Since (b)< c and 8 is arbitrary, our
theorem is proved. Q.E.D.

The next lemma is valid as long as K’(x) has a finite number of sign changes. We
shall prove it under the assumption that K’(x) changes sign once, which is the case
when K(x) is PF2, although the proof of the lemma makes it clear what to do in
general. Hence let K(x)--K(x)+ Ka(x) and assume that

_>0 a.e. in(B,L),
(3.8) K’(x)

<_0 a.e. in (L,B2).

LEMMA 7. Let K(x) be PF2. If c> c*+ then w(x) ix ,.w(x) as x - + .
Proof. From the definition of %(x), we have

(3.9)
w(x-c)-(K , go w.)’(x-c)+fK’(x-y)[g(w(y))-Bw.(y)] dy

+fK’a(X-y)w(y)dy.
From the definition of Kl(X ) in Remark 2 after Lemma 1, we obtain

(K, , go w,,)’(x-c)=p,g(Wc(X-B,))-p2g(w(x-B2))
(3.10) ( P2-P fx-lg(w(y)) dy.+

B2_Bt -Set

_B2
Ka(x-y)wc(Y)dy.

From (1.20) and for any e>0, there exists L such that fory_>L,

(3.11) (1--e)e-"Y<--w,.(y)<--(1 +e)e -"‘y.

If x _>L+ B2, then from (3.11) and (3.8),

rx-L ,,
flfX-Blg,a(X__yE-- flJx-Ka(x-y)w"( y) dy +
x-

)w( y) dy

rx--L ," fx--B ,"<--fl(1-e)Jx_B2K,(x-y)e-*"’dY+ fl(1 +e)Jx_ Ka(X-y)e-*"YdY

Integrate by parts:

E<_2fleKa(L)e-t*,(x-)- fl(1-e)ix [X-lKa(x-y)e-t*,YdyC"xB

2fleKa( L )e -"’(x-I7) --(1 e)ixe -*,(x-c) fl(1 e) fK,(x -y )( e -*,v )’ dy.
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Using the definition of K,(x) and integrating the last term by parts, we obtain

E <_ 2eK,( L)e -’‘’’x-L) (1 e)lce-’‘’x-c) (1 e)p e-’,(x- 8,)

+ +

From (1.20), we get, from letting e $ 0,

(3.12)

E
lim SUPw,.(x c)-<-,.X-- --[- o

tip let,.(8,-) + flP2e,,.(S2-c)

_+_fl ( P2--Pl c) e,.(s2-,.)).

A similar analysis with e replaced by -e shows that the opposite inequality is also true,
so that E/w(x-c) is to the right-hand side of (3.12). From the fact that g(w)/w fl
as w $ 0, (1.20) and (3.10), we have

Wc(X_C) "Plflet(’-)--P2fletc(2-c)

(3.13)

We look at the middle term on the right side of (3.9). Since g(w)-flw=O(wl+) as
w 0, our analysis on the term E shows that this middle term when divided by We(X-c)
goes to 0 as x + oo. Hence we conclude from this, (3.9), (3.12), and (3.13) that

lim
w,.(x c)

Q.E.D.

COROLLARY. Let c> c*+ then Oc(y) -l ?/ as / $ O.
Proof. This follows from Lemma 7 and (1.20).
LEMMA 8. Let K(x) be PF2. Then o(),) is an increasing function in c>_c_ for every

0 < < 1. Also lim o.( w.() uniformly in compact subsets of (0, 1).
Proof. Let c >c2>c*+ and set

(1, x_<0, o(X)_ ( 1, x_<0,fr(x)- e-,,x, x>_O, e-’,2x, x>_O.

Note that/,.,</,. so that 0(x)_<ff0(x). Define recursively ff,+l(x)=Q[ff](x) and

v+l(x)-Q,.[,,](x ) for n_>0. First we show that (S(V))_<ff’,(ffl(V)) for suffi-
ciently large n. From the definitions of fro, 50 and Theorem 5, ffl(y) and 7S’(T) are
bounded in compact subsets of (0, 1). Clearly,

(3.14) Qc,[f]-Q[f](x+cl-c2) forf.
Consider the function

V-o(X+;l(’)-ff’(’)-(c,-c2)n)-o(X), 0<3,< I.

Since c,>c2, t---l(’y)+ffl([)+(Cl--C2)lq is positive for sufficiently large n. From
the definitions of fro, o, o(X-t)-ffo(x) has a sign change at xo =lz,.t/(iZc-Ic,)>O
if >0. Hence for sufficiently large n, the function g(o(X-t))-g(ffo(X)) has one sign



926 ROGER LUI

change. From Lemma 2 and (3.14),

,(x+’(l)-’(T)-(c,-c)(n--1)) ,(x)
has no more than one sign change and has nonpositive derivative at its zero. By an
induction argument, the same is true of the function gn(X+g2(,)--g;(,))--ffn(X).
Therefore at the zero x-ffT, l(,), v-(g2(,))_< ’n(;l(,)).

Next we show that --u,(u, ()) converges to w,(7) uniformly on compact subsets of
(0, 1). The proof for g(g21(7)) is the same and will be omitted. From the corollary of
Lemma 5 and Theorem 5, we see that ’,(x) converges to %(x) uniformly in compact
subsets of N. Let N be a compact subset in (0, 1) and let F be a compact set in N wNch
contains both (;(7):n20, 7N} and {Wc, ) VN} Write

(3.15)
+ Un’ r)) w’ ( w,.,Cl

The first two terms on the right of (3.15) go to zero as n--, + oo uniformly in K. From
-1(Theorem 5, we can show that ffl(,) and We, ’) are close for sufficiently large n

depending on K The finiteness of w"ll and the mean value theorem imply that the
!

difference of the last two terms in (3.15) also goes to zero as n--, + uniformly in K.
Therefore, lim,_ +o ff’,(ff(7))- e,()’) uniformly in compact subsets of (0, 1). A simi-
lar conclusion holds for ,(5(,)). These conclusions, together with the first part of
this proof, show that

(3.16) 0ae2(’)<0ae,(’ ) for cl>c2, 0<,<1.

Define .:(7) lime e: 0c(’) in (0, 1). e:(T) is bounded since w -< K’II +
P +P2. It remains to show that et(’t)=0.:(’t). To this end, we fix 0<< and
normalize w.(x) so that we(0)=,t. (3.16) implies that We(X ) is nondecreasing (nonin-
creasing) in c_> c_ for x<0 (x > 0) so that lim c_ Wc(X) ke:(x) exists, k:(- o)
and ke: + m) 0. The family of functions (we(x): c_> c_ } is uniformly bounded and
equicontinuous. Thus the Arzelh-Ascoli theorem implies that #e:(x) is continuous and
we(x ) actuallly converges to #e:(X) uniformly in R as c $ c*+. A passage to the limit
using the dominated convergence theorem shows that #e:(X) is a fixed point of the
operator Qe: and since k.:(x) is nonincreasing, ke:(x) must be the travelling wave of

We (n)) n and obtain theminimum speed c_. Differentiate #e(?(n))-rt and we( -1

relation,

v,.(x)

Rearrange this to get

fvw.(x)Co. ( )
d x

o,.( ----5 d,, c> c_.

dn

Fix x 4:0 and let c $ c_. The right side of (3.17) goes to 0 by what we have just proved.
Thus 0.(/) converges to &.:(B) a.e. in (0, 1) as c $ c and :(n) &:(n) a.e. in (0, 1).
To prove equality in all of (0, 1), it suffices to show that :(B) is continuous. Since w
are bounded in R independently of c, e(B) are uniformly bounded. From the proof of
Lemma 6, [[w’l[ fl(ilK’l[l+p+p2)2. Differentiating the definition of (n) with
respect to , we obtain

) w;,( ’( ))
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This implies that on each compact subset of (0, 1), the family of functions (t%: c*+ + _>

c>_c_ ) is equicontinuous. From the definition of (,) as the monotone limit of Oc(, )
and the Arzel/-Ascoli theorem, we conclude that .(,) is continuous in (0, 1). We
already know that (x) is our travelling wave of minimum speed, thus &(’t) is
continuous. We therefore have (,)=&(,)=%(,) in (0, 1). The lemma is then
proved by applying Dini’s theorem. Q.E.D.

4. Behavior of u,,(x) near the boundary of (u,>0}. Let uo. Then the assump-
tion u0(+ )=0 will be discussed in the following two cases.

Case I. u0(x)=0 for x>_A and Uo(X)>0, nonincreasing in [A-e,A) for some
e>0.

Case II. u0(x)>0 and nonincreasing near + oe, li.rnx_ +o u0(x)-0.
Note that no assumption is being made about the behavior of Uo(X ) near
In case I we say that A is the right support of Uo(X ), and because suppK=[Bi,B2],

the right support of u,(x) is A +nB2. We shall study the behavior of u,(x) as x
approaches A + nB2 in case I or as x approaches + oe in case II. K(x) is not required to
be PF2 until the last Lemma 11. We recall condition (viii) of (1.5), which is

(4.1) g’(u)<_fl:g’(O) in [0, 1].
We also need the linearized equation

(4.2) %(x ) BfK(x -y)%_ (y ) dy, n >_ 1,

where v0 =u0. %(x) also has right support A + nB2 but vn(x ) is no longer bounded
above by one. Hence we define

(4.3) g(v)--1 for v>l

only for the purpose of this section. From (4.1) it is obvious that

(4.4) g(x)-g(y)
<_fl for x>y>0.

x--y

LEMMA 9. Let uo- vo be given and let v be defined recursively through (4.2).
Then given e>0 and positive integer N, there exist positive constants M, M2, L, such
that:

In case I,

ne
19n(x)_M E m-lg*m*l(-m,A-l+(n-m)B2)(X)Un(X)l)n(X)"(4.5) 1--’ m=|

In case II,

(4.6) (1----ne) v,,(x)_M2 flm_lg, * I(_:,L)(X).<Un(X)<__,I)n(X
m--I

uniformly for all <_ n <_ N.
Proof. Set w, v,-u, for n_>0. Then w0 =0 and (4.1) implies that w,(x)>_O for all

n and x Nt. Also

v,+,(x)-u,+l(x)=fK(x--y)[g(v,(y))-g(u,(y))+ flv,(y)-g(v,(y))] dy.
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Hence (4.4) implies that

(4.7) O<_w,,+(x)<_fK(x-y)[flw,,(y)+ flv,,(y)-g(v,,(y))] dy.

In case I, limx_A +nB2 Un(x)--O while in case II a simple induction argument shows that
limx_,+ u,,(x)-O. Now let e>0, N_> be given. In case I there are/>0, M >0 such
that for all n <-N

(4.8) flv"(Y)--g(v"(Y))( <--ev"(,M yy>AA +nB2 l.

In case II there are L> 0, M2>0 such that for all n <-N

y>L,
(4.9) flVn(Y)--g(Vn(Y))

<--M2, y<_L.

Using (4.7), we get

fO<_w,+,(x)<_K, w,(x)+e K(x-y)v,,(y)dy+.M A+nB--K(x--y)dy
+nB2--1

(4"10t ev,,+,(x)
<_ilK, w,,(x)+ fl +M,K, I(_,A+,,B2_I)(X )

for case I and

(4.11)

O<--Wn+l(X)<--flK* w,(x)+efSK(x--y)v,(y)dy+M:f K(x--y)dy

<-flK, w,,(x)+ +M2K* I(_,t)(x)

for case II.
When n- 0, (4.10) and (4.11) reduce to (4.5), (4.6) for the case n-- 1. Assume that

(4.5) or (4.6) is true for n 1,... ,J, J<N. Then using (4.8) or (4.9) and (4.7) with n J
together with our induction hypothesis we get:

In case I,

O142j+ l(X)<-K * Wj(X)-J9" "+- M K I(_ ,A +JB l) ( X

Jevg J }<--ilK, 7-+-ml E flm-lK*m* I(-m,A-I+(J-m)B2) (X)
m=l

+MIK * I(_m,A+jB2-1)(x)

e(J+ l)Vj+l(X) J+l- MI E tim-1K, i(_.,a_l+(j+ --m)B2)(X),
m=l

which is exactly (4.5) when n-J+ 1.
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In case II,

which is (4.6) for n-J+ 1. Q.E.D.
LEMMA 10. Let uo and suppose there exist positive constants l,L such that

U’o( X ) <_ 0 holds when x>A [ in case I and when x> in case II. Then

U’n(X)V(X ) asx--,A+nB2andasx-, +oe

respectively in cases I and II.
Proof. We shall prove the two cases together. The corresponding conditions for

case II will be given in parentheses next to the statement. From (4.2) we have, for n >_ 1,

(4.12) Utn+l(X)__Vt fn+,(X) K(x--y)[g’(Un(Y))Un(Y)-flVn(Y)] dy.

The statement that

(4.13) v,(y)<--U’n(y)<--O fory>A +nB2-[ (y>+nB2)
is true when n--0 by our hypothesis on uo. Assume that it is true up to n, then (4.1)
and our induction hypothesis imply that

g’(u,,(y))U’n(y ) flVf,( y ) >--0

if y>A +nB2-[ (y>/+nB2). The induction step is completed by using this and
(4.12).

Write (4.12) as

u’,+,(x)--<+l(x)--fK(x--y)g’(u,(y))[u’(y)--<(y)] dy
(4.14)

+ fK(x-y)[g’(un(y))-B]<(y)dy.
Let e>0, N_> be given and choose 0</</, L>/such that

(4.15) -e<_g’(u,(y))-fl<_O fory>A +nB2-l (y>L) nN.

Set w,(x)-u,(x)-%(x), nO. From (4.14) and n-0 in (4.15), we get

w(x) f(x-y)[g’(u0(y))- fl] v;(y)dy

-V’l(X)
< ifx>A+B2-1(x>Ba+L)fl

Inductively, assume that

-Jv x )
wj(x)< if x>A +JB-I (y>JB+L).
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(4.13), (4.14), (4.15) and our induction hypothesis together imply whenever x>A + (J
+ 1)B2- (x>L+(j+ 1)B2), we have

wj+ (x)<_flfK(x-y)wj(y)dy+fK(x-y)[g’(u,(y))-,81 (y)dy

fi((x-y)( -Jev (y)
,8

dy-efK(x-y)v)(y)dy
-(J/ l)evf+(x)

From this inequality and (4.13), we get

e;,(x)<_u’(x)<_ 1---- e;,(x) if x>A +nB-l (x>nB+L), n<_N,

which obviously imply our lemma. Q.E.D.
LFMNA 11. (i)

(4.16) U(X)%(X) as xA +nBv.(x +)
uniformly for n N, N Z+

(ii) Let K(x)-e(xl be PF and let the hypotheses ofLemma 10 be satisfied. Then
Case I. Given m 2, 0< e< there exists o>0 such that 0 < o implies

if k’(x) 0 in a l@ neighborhood ofB and

(4.17b) u(ul())(1-e)k’(u()-A-(m 1)B)+P()
if k’(x) 0 in a left neighborhood ofB. Here

-(1-e p

fu()--A --(m-- l)B

Case II. Assume in addition that for some/>0, U’o(X)-- -iUo(X ) as x--, + c. Then
u’n(x ).- -Iu,(x) as x / for any n >_ O. In particular, for a fixed n,

(4.18) U;(UI())’--’ as’ $0.

Proof. (4.16) follows from (4.5) and (4.6) if we just observe that the terms inside
the summation sign vanish for x>A +nB-l in case I and x>nB+L in case II. We
turn to the proof of (4.17a) and (4.17b). will be a positive constant chosen along the
proof.

Given m_>2, it is clear that v,(x)<_O in Iz=[ A + mB_-l, A +mB) for sufficiently
small l. From Lemma 10, we have

u,(x)_<(1--e)v(x) in It.(4.19)
Now

x

A +(m- 1)B2ek(X-Y)k’( x--y )D 1(Y) dy-P2flVm- l( x B2 )

if I<(B2-B1). Because K(x)--e ’(x) is PF2, k’(x) is nonincreasing in x, and hence
whenever defined,

k’(x-y)<_k’(x-A-(m-1)B2) ify<A+(m- 1)B2.
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Since k(x) is differentiable in a left neighborhood of B2, we have from (4.19)

u,(x)_<(1-e)k’(x-A-(m- 1)B2)vm(x)-P2fl(1--e)Vm_l(X--B2) in It.

From (4.16), we have (1--e)Um(X)<--Vm(X)<--(I+e)Um(X) if XI and sufficiently
small. Thus

u,(x)_<(1-e)Zk’(x-A-(m 1)Bz)u,(x)-pzfl(1-e)Vm_l(X-B2) in I

if k’(x)-< 0 in a left neighborhood of B2,

u(x)_<(1-e)k’(x-A-(m 1)Bz)u,,(x)-pzfl(1-e)v,_(x-B) in I

if k’(x)>_O in a left neighborhood of B2,
By definition, we have

’ +(m- 1)B2K( X--y)v 1(Y) dy.Vm(X)--

Since v (y) is nonincreasing in a left neighborhood of A +(m- 1)B, we have for
sufficiently small, x It, the inequality

B2 K( y ) dy.

Hence

-P2Vm_l(X-B2) --P Vm( )
fxBAA-(m-1)B:K( y dy

Since u(3,) converges to A +mB as ,{ $0, (4.17a), (4.17b) are proved if we replace x by
u(3,) for 0<3’<3’0, ’0 sufficiently small. Finally to prove (4.18), observe that

v’ (x}-BIK{x-ylv’.,( y]dv andn+l VoUo’--"

Since v6(x),--, -iUo(X ) as x --, + , a simple induction gives

V,(X)--Vn(X asx +
Then

u;(x)
--P, Un(X V;(X) --P, Vn(X ) Un(X

,1 asxo +oe

by Lemma 10, (4.16) and what we have just said about vn(x). Q.E.D.
Remark. If p2>0, then P,(,) diverges to -oe as 3’ 0. Also since k’(x) is nonin-

creasing, k’(u;n(’l)-A-(m 1)B2) is bounded above as 3’ $0. Thus from (4.17a) or

(4.17b), U’m(UL(3’))/’{ diverges to -oe as ,{ $0. On the other hand if p2-0, then K(x) is
continuous at the point B2. In this case k’(x) is nonpositive to the left of B2 so that
only (4.17a) is relevant, Pm(7)=--O and k’(x) diverges to -m as xB2. Hence

-1Um(U (/))/ diverges to -oe as 3’ $0.

5. The case u0(-)>0. We are now ready to prove our main result (Theorem 6)
for the case when the initial datum Uo(X ) satisfies the condition liminf__ u0(x)>0.
Let u0E be nontrivial and let un be defined by the recursion (1.16). According to
Theorem 2, the maximum of Un(X will converge to 1. In particular, u,(7) will be
defined in any compact subset of (0, 1) for sufficiently large n. We introduce the
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notation ran(q,) ul(’y) for n_>0. Then the results in 1 imply the important fact that
for every 0< 3’ < 1,

(5.1) lim mn(Y----)=c*+.
n+o n

LEMMA 12. Let uoand U be such that

lim Un(X+mn(Y))--q(x ) uniformly in [nc--mn(Y) nt-ot3),
n-- nt- oO

where c (-c*+ c*+) and q(-oe) 1, q(+ ) O, q(x) is nonincreasing. Then for every

(5.2) lim mn+(y)-mn(/)=c*+
n--- q- o3

and

Q,.;[q](x)-q(x).

Proof. Consider first the boundedness of the sequence (mn+l(Y)-mn(Y) } for a
fixed 3,(0, 1). Suppose there exists a subsequence {nj} such that mn.+(,/)-mnj(/)
diverges to + oe. Then for y bounded, our assumption on c and (.1) imply that

y+mnj+(v)-mnj(y)>_njc-mn(y) for sufficiently largej. Lettingj go to + in the
equation

(5.3) Un+l(X + mn.+,(y))=fK(x--y)g(Un(y-J-mnj+l([)--mn(T ) nt-mnj()))dy,
we see that q(x)--O in R. This is impossible since q(0)- 3,. Similarly if mn.+ I(Y)-- mn(Y)
diverges to -oe as j--, + oe, the same argument will give us the contradiction that
q(x) 1. Therefore mn.+l(/)-mn.(7 ) is bounded. Next we show that any two subse-
quences (m +l(7)-mJn (7)}, (mnJ+,(Y)-mn.(V)} that converge to l,, l respectively
must convere to the sae limit. As before, (5.) gives, for the two subsequences,

q(x)=fK(x-y)g(q(l,+y))dy and q(x)-fK(x-y)g(q(12+y))dy.
Hence q(X+ll--12)--q(x ) in N. Since q(0)-7, an induction argument implies that
q(n(l- 12))- 7 (0, 1) for all n0. If l > 12, this will contradict the fact that q(+ m)-0
while if <1, it will contradict the fact that q(-)- 1. Hence 1- 1--l. We claim that
1-c. To see this, let e>0 and N be such that l-emn+1()-mn(T)l+ e for nN.
Summing from n-N to n-M- >N, we get (M-N)(l-e)Nm(y)-mNy)(M
-N)(l+e). Divide by M and let M + m. Using (5.1) and let e;0, we get 1-c.
Finally, we letj + m in (5.3) and get Q[q](x)-q(x). Q.E.D.

We now prove a special case of our main theorem. The notations follow that of
Lemma 4.

LEPTA 13. Let K(x) be PF, fo(x)-H(-x) and define recursively fn+-Q[fn] for
nO. Then,forO<y< 1,f,(x +f,-(7)) increases uniformly to w(x+ w[(y)) in O, + ),
and fn(X+fn-()) decreases uniformly to Wc(X+W,7(y)) in (-m,0]. Also

limn +f( fn-l(7)) %() uniformly in compact subsets of (0, 1).
Proof. We first show that for each 0<< 1, f2(fn-l(7)) is nondecreasing in n. Let

n- be fixed and set b=f(y)-f(7). Consider the function %(x)=(x)-f,+(x
+ b), n 0. We have v0(x) 0 for x< 0 and v0(x) 0 for x> 0. Since g(u) does not
increase the number of sign changes for the difference of two functions, the same
relation will be true for the function g(fo(x))-g(f(x+b)). From Lemma 3, the
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function v l(x will have no more than one sign change and the derivative at a point
where V l(X) vanishes is nonpositive. We repeat the argument inductively and when
j n sincef-’(y)) 0, we havef(f-’(y))_f+(f-+ll(y)).

To continue, since f’(f-(V))_<0, f,(f-(V)) must converge pointwise to a limit
function q0(y) and p(y)_<0. From the relation f,(f,-(e))-e in (0, 1), we obtain (see
Lemma 11)

(5.4) fyf.(x+f-’(y))-f( f,-’(e))de X---- ff"(x+f’l(y))dfn-l(8)

Consider a fixed x <0 (the case x>0 being similar). We have f,(x "qt-fn-l(’y))"Y for all n.
Also f’(f-(e)) 1’ q(e) as n --, + so that

]’- asn +.

The only way for the left-hand side of (5.4) to remain constant as we increase n is for
f(x +f-(y)) to decrease monotonically in n. Similarly, if x>0, f(x +f-(y)) will have
to increase monotonically in n. Denote by q(x) the limit of f,(x +f,-(y)) as n + oe.
q(x) is nonincreasing, q(0)= ,. We claim that q(-)-- and q( + oe)- 0. To see that,
recall from Lemma 4 with Uo(X)-W,x(x ) that f,(f,-(,))_<o,t(,) uniformly in each
compact subset of (0, 1) for sufficiently large n. Hence -1/q0(e)_<-l/0c(e), which is
integrable in compact subsets of (0, 1). The dominated convergence theorem may then
be used in (5.4) to give us fvq(x)(1/q)(e))de-x for each fixed x where q(x):/:O, 1.
Letting x go to -+ oe, we conclude that q(+ z)--0 and q(-oz) 1. Now the sequence of
functions (L(x+L-(v))} is uniformly bounded and equicontinuous. Thus q(x) is
continuous and Dini’s theorem implies that f,(x +f.-(’l’)) converges to q(x) uniformly
in compact subsets of Nt. The fact that q(+ oe)= 0, q(-oe)= is enough to allow us to
conclude that the convergence is actually uniform in R. The first half of the lemma
follows from Lemma 12.

Finally, we have

fyfn(X+f-I(y)) de fvw,.+(x+w-’ de

f( fn_l (e))
=X--

so that

f,(x+f#(v))(
By what we have proved, the right side now goes to zero as n- +oe. Thus
lim,_+f,(f-(V))-c%(V) a.e. in (0, 1). But f’(f-(,)) converges to q(,{) in (0, 1).
Thus tp(,{)-0.(,) a.e. in (0, 1). To prove equality everywhere, it suffices to show that
q(’t) is continuous in (0, 1). The proof is similar to showing that c() is continuous
near the end of the proof of Lemma 8. Here we should show that (f,(f,-l(y)). n_> 1) is
uniformly bounded and equicontinuous. By the Arzelb.-Ascoli theorem, f’(f,-l(,t))
converges uniformly in each compact subset of (0, 1) to q0(,) which then must be
continuous. Since f,,( f,- (y )) converges to q0(V) monotonically, Dini’s theorem says the
convergence is uniform in every compact subset of (0, 1). Lemma 13 is now proved.
Q.E.D.

COROLLARY. Let K(x ) be PF2, uo be such that Uo( + o O. Then

lim inf u’,(m,(/))_>o, (,)

uniformly in compact subsets of (0, 1).
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Proof. This is an immediate consequence of Lemmas 4 and 13.
THEOREM 6. Let K(x) be PF2. Let uo be such that liminfx__ u0(x)>0 and

either
Case I. Uo(X)-O for x>_A, u0(x)>0 and nonincreasing in A-e,A) for some e>0,

or

and

Case II. u0(x)>0 near + o, U’o(X) -lUo(X ) as x + for some
Then for each 0< 3’ < 1, we have

lim u,(x+m,(3’))--w,.(x+w(3,)) uniformly in R

lim m,+,(3’)--m,(3’)--c*+.

Proof. We first show that under our assumptions on u0(x), the function Um(X ) will
satisfy the one-sided condition for sufficiently large m. The condition liminfx__o u0(x)
>0 implies that there exists an L and a >0 such that infx<LUo(X)>8. From the fact
that supp K-- Bl, B2 and the definition of um(X), it follows that um(X) >0 for x<L+
mB2 and in fact

(5.5) inf Um(X)>--gm( ) for m_>0.
x<L+mB

On the other hand, u0(x)>0 in [A-e,A) implies Um(X)>O in [A +mBl-e,A +mB2)
in case I. In case II, suppose u0(x)>0 for x_> L, then the same will be true for Urn(X) in
(L+ mBl, +) for m_>0. Choose m so large that L+mB2>A +mB -e in case I or
L+ mB2>L+mB in case II. Then u,,(x) > 0 in the interval (-,A +mB2) in case I,
Um(X)>O in R in case II. From the hypothesis on Uo(X ) and an induction argument, we
see that Urn(X) is nonincreasing in a left neighborhood of A + mB2 in case I and for x
sufficiently large in case II. These two facts plus (5.5) imply that u,(x) satisfies the
one-sided condition of Lemma 3. In particular, there exists x0 such that Um(X)Um(XO)
80>0 for x<xo, Uo(X ) is nonincreasing for x>xo and Um(+ 0)--0.

The main goal of the rest of the proof is to show that

(5.6) lim U’n(mn(3,))--tOc (3’) uniformly in compact subsets of (0, 1).
rt -t- o

We actually show (5.6) by working with Wc(3’), c> c_ instead, and apply Lemma 8 at
the end. c> c* will therefore be temporary fixed. Let K-[3’,] be a compact subset of+
(0, 1) and choose m so large that gm’(tO)>. Let 19o(X)-Um+ml(x) be our initial
datum and set vn(x)- Q[%_l](X) for n_> 1. Choose 3’1 (,g"(80)) and define

c(X ) { Wc(x)’ x<_w;’(v,).

Set 0,c(X) (x) and ,,c(X) Qc[n- 1,c](X for n --> 1. By Theorem 5, ,,,,(x) con-
verges uniformly in every compact subset of R to Wc(X). Therefore .( ) is bounded
for 3,, n_>0. Let tn(3,)-nc-t)l(3,)+ --1w,(3,) and consider the function

t)o( X-- tn( 3, ) ) O,c(X )

Our immediate goal is to show that (5.7) has one sign change for all 3’ when n is
sufficiently large. We observe the following about Vo(X ). Since Um(X ) satisfies the
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one-sided condition, Lemma 3 may be applied. From the definition of Vo(X ), the
following is true:

(5.8) There exists Y such that Vo(X)>gm(O) for x_<Y, v0(Y)--g’(0) Vo(X ) is
nonincreasing for x> Y.

Also vl(7)_<vl(y) for all yK. From (5.1), vl(y)nc_ as no / . These plus our
earlier remark abot --1w,,e(y) being bounded and the- fact that c> c_ imply

(5.9) t,(y) + as n- + uniformly for

Our immediate goal is accomplished through showing that there exists Y2 < such that

(5.10)
and, for each n,

(5.11) as

Assuming (5.10) and (5.11), we see from our definition of o,(x) that w0,,(o( ))-
o,(y) for small enough y, let us say when 0<y_<y2 as well. (5.10) then says Vo(X-
t,(y))- o,,(x ) cannot have more than one sign change in the interval o(y2), / ).
From (5.9), t,(y)+Y>o for all ,K and sufficiently large n. Then if x_<o.
we have x- t,(y)<_y, and hence (5.8) implies that Vo(X- t(y))>--Vo()>--gm’(O)>y >--
0,.(X) by the definition of o (x). This fact and (5.1 l) then say there is at least one
sgn change in the interval Wo,c(y:), + 0). By our earlier remark, there is only one. We
now turn to the proofs of (5.10) and (5.1 l) but we have to discuss case I and case II
separately.

Case I. Our remark after Lemma 11 says that v)(v(y))/y diverges to -oc as y $0.
Hence there exists a )’3 > 0 such that

(5.12) V’o(V’(7))<--21c_7 for 0<T<73.
From the corollary after Lemma 7, given 0<e< 1, there exists Y4>0 such that

(5.13) -(1 /e)/z,.y_<o,.(T)_<-(1--e)lZcy for

Combining (5.12) and (5.13) and the fact that/Zc >/z c, we have

v)(v’(y))<%(3,) forO<y<y2,

where Y2-min(y3, it4). (5.11) is trivial in case I, since Vo(X ) vanishes for large x and
o,,,(x)-Wc(X)>O for x near + .

Case II. From our assumption that U’o(X),--tUo(X) as x + and case II of (ii)
in Lemma 11, we have u’,(m,(y))-t7 as y $0 for every fixed n. In particular
v)(v(7))-t7 as $0. Since>>,., we can find an e in (0, 1) such that

(5 14) />(l+e)1--e c"

For such an e, we have from above and the corollary of Lemma 7

-(1 /e)’g<_v)(v-O’(3f))<-(1-e)’g if 0<<5

and

(5.16) -(1
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From (5.14), (5.15) and (5.16), we conclude that v)(vl( 3’ )) < %.( 3’ ) for 0<3’<3’5. Let
0 < 3’6 < 3’5 and write for 37 (0, 3’6),

f’)’6t t
From (5.15) and (5.16),

c(n) v;(vl(n)) dn- (l+e)..n
+ (1-e)n dn

(5.17)

(1-e)--(1 +e)/x -d,/.
By (5.14), (5.17) diverges to -m as 37 $0. Hence for fixed n, 3’ and sufficiently small, tn(3’)+V()<.(). This simply means (5.11) is true because v(9) +m as

Now that we have finished proving (5.10), (5.11), we know that the function (5.7)
has one sign change for all 3’, n>_N where N depends only on . The rest is then
easy. Since g does not increase the number of sign changes for the difference of two
functions, g(vo(x ’-DtTl(3’) ---1w,,,c(3")-nc))-g(o,(x)) has one sign change. From
Lemma 2, we see that the function Vl(X+vT,l(3’)--,l(3’)--(n 1)c)--,c(X ) has no
more than one sign change and has a nonpositive derivative at its zero. By an induction
argument, we arrive at the same conclusion for the function v,,(x+vl(3’)-7,,,.( ))-
w,,,,.(x).- At the zero x- [.(3’), we have vj(vT, l(3"))<7,,c(--!_Wn,(3’)) for 3’N, n>_N. An
argument exactly like the one given in the middle of the proof of Lemma 8 implies that
w,,.(ff,c()) converges uniformly in N to c(3’). Hence lim sup_ / u’(m(3’)) .(3’)
uniformly in . From Lemma 8 and the corollary of Lemma 13, we conclude that (5.6)
is true. It also follows from (5.6) that u’,,(mn(3")).dm,,(3")/d3"-I is valid in each
compact subset of (0, 1) for sufficiently large n. In such a case, we obtain

(5.18) fvw’*+(x+w’:’’+(v)) ) fu,(x+m,(v)) de

Oc(e) u’,,(m,,(e))
de

aw,..+(x+w,(3,)) U’n(mn(e))
From (5.18), (5.6) and the fact that U’n -<IIK’II /p +P2, we see that u,,(x+m,,(’l))
converges to %:(x + w,7-(3’)) uniformly in compact subsets of R. Since %:(-m)
and w,.:(+ m)=0, the convergence is actually uniform in all of R. The first statement
of the theorem is now proved. The second statement follows from Lemma 12.
Q.E.D.
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A NONLINEAR INTEGRAL OPERATOR ARISING FROM
A MODEL IN POPULATION GENETICS, II. INITIAL

DATA WITH COMPACT SUPPORT*

ROGER LUI"
Abstract. We study the asymptotic behavior of the solutions to the recursion un+ l(X)"-Q[ un](x) for

n_>0. Here Q[u](x)=(K. go u)(x) acts on functions bounded between 0 and 1, K(x) is a probability
density function with compact support and g(u)EC[O, 1] satisfies certain additional assumptions. It is
known that there exist -c_* <c_ such that for c>_c, there are nonincreasing travelling waves Wc(X) facing
right, while for c_<-c_*, there are nondecreasing travelling waves c(x) facing left. We prove here that if K(x)
has certain variation diminishing property, g(u)/u is nonincreasing and Uo(X) has compact support, then
u,,(x) develops uniformly in x, as n approaches infinity, into a pair of diverging waves, Wc.+(x on the right
and ._(x) on the left. This paper is a sequel to [R. Lui, SIAM J. Math. Anal., 13 (1982), pp. 913-937], which
proved convergence to a single travelling wave when u0(-o) >0.

1. Introduction. In [3] (this issue, pp. 913-937) we studied the asymptotic behav-
ior as n +o, of the solution to the recursion u,,+(x)=Q[u,,](x) for a given Uo(X ). Q
is a nonlinear integral operator,

Q[ ul(x ) fn :(x-y )g( u( y )) ay

defined on the set of functions

= {u: 0_<u_< 1, u piecewise continuous).
The following assumptions were made about K(x) and g,(u) (see [3, 1]):

(i) suppK=[B1,B2], K(x)>0 in (B1,B),
(ii) K(x) is continuous in R except possibly at B, B where

lim K(x)=p, limK(x)=p2, Pl,P2 ->0,
x B xB

(iii) K(x) is of bounded variation and is differentiable in (B- e, B2)
for some e> 0,

(iv) fnK(x)dx= 1,
(v) g(u)Cl[O, 11,
(vi) g(0) 0, g(1) 1,
(vii) g(u)>u in (0, 1),
(viii) 0 _< g’(u) _< g’(0) in [0, ],
(ix) g(u)=g’(O)u+O(ul+) as u $0 for some e>0,
(x) g’(u)>0 in [0,o), where o= sup{u: g(u)< 1},
(xi) g(u)/u is nonincreasing in [0, 1].
From the results of Weinberger [4], [5], there exist two real numbers B <-c_* <

c_ <B_ given by

(1.1) c*_+- inf,,>0 lg{g’(O)fne+-"XK(x)dx}"
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For c>_c*+, travelling wave solutions We(X ) of the operator Q exist with We(+)--0,
We(--)- 1, We(X ) is nonincreasing and We(X ) is a fixed point of the operator Qe[u](x)
=Q[u](x +c). There are also travelling wave solutions e(x) of Q for c<_-c*_ that are
facing left, i.e., e(X) is nondecreasing, e(-)--0, e(+)-- and e(X) is again a
fixed point of Qe-All these results are summarized in [3, 1] and further properties of
the travelling waves may be found in [3, 3].

Let fEE and f(+o)-0. We define the function f-(3")-sup{x:f(x)>_3"} for
0<3,< 1. If f(x) is everywhere less than 3’, then f-t(3’)--. Let u0 have compact
support and assume that its integral over is positive. Let un(x ) be the solution to the
recursion u,+(x)-Q[u,](x) for n_>0. Define m+(3’)-sup{x Un(X)>_3’) and
inf{x: u,(x)_>3’}. Then the results in [4] and [5], which are stated as Theorems and 2
in [3, 1], imply the following:

+
(1.2) mn(3’---)) c* and

m(3’)
-c* as n- +n n

for every 0< 3’ < 1. In particular, m (3’) are defined in every compact subset of (0, 1)
for sufficiently large n.

Statement (1.2) is about the long-time behavior of Un(X ). It simply says that under
the conditions stated above, Un(X ) spreads out on the right like nc*+ and on the left like
-nc*_. (1.2) is also valid when x", n_>2. We refer the reader to [4] and [5] for the
details. In [3], more precise results than (1.2) were obtained under the addition assump-
tions that Uo(X ) is monotone and decays rapidly enough at +, liminfx__ u0(x)>0,
and K(x) is of the form of the exponential of a concave function. In such a case, it is
shown that Un(X+m+(3"))n converges to we(x+w,l+(3")) uniformly in R as n--, + for
every 0<3’< 1. The condition liminfx_._o u0(x)>0 on Uo(X ), however, excludes the
case when Uo(X ) has compact support. The main purpose of this paper is to prove
results analogous to those obtained in [3] when the assumption liminf__ u0(x)>0 is
replaced by u0 having compact support.

Conditions (i)-(xi) will be assumed throughout the rest of this paper.
The organization of the paper is as follows. We need K(x) to be a PF function

and we define and discuss this in 2. One of the main handicaps in dealing with
integral operators (as opposed to differential equations) is the lack of the tool com-
monly called phase plane analysis. We therefore have to introduce u as approxima-

Section 4 contains ourtions to u, in 3 so that the results of [3] may be applied to un.
and u, under the assumption that g(u)/u is nonincreasing.basic estimate between u,

The main theorem and an application of it are contained in 5.
The notation fl--g’(0) will be employed, and hereafter, if the domain of integra-

tion is unspecified, it is assumed to be .
Remark 1. The condition that g(u)/u be nonincreasing was used in [3, Thm. 4]

only to prove the uniqueness of the minimum travelling wave Wet(X).
Remark 2. In [3, 2], we defined the sign change of a function f(t) in and PF

functions, r>_ 1. The following is true: Let f(t) be bounded, piecewise continuous and
have no more than r sign changes in . Let K(x) be PFr+ . Then the function
(K, f)(x) does not change sign more than r times in . fPF2 means logf(x) is
concave.

Remark 3. g(u) does not increase the number of sign change for the difference of
two functions. By this we mean that if u(x)-e(x) has r sign changes in N, then
g( u(x )) g( v(x )) cannot have more than r sign changes in N. This follows from the
mean value theorem and the fact that g’(u) >_ 0.
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2. PF3. K(x) is said to be a PF function if K(x)=ek(x), k(x) concave, and if for
any -<x<Xz<X3< +, -m<y <yz<y< +m,

K(xl--Yl) K(xl-Y2) K(xl--y3)
(2.1) det K(x2--Yl) K(x2--Y2) K(x2--y,) >_0.

i,:(x,-y,)

Unfortunately, the condition (2.1) is hard to check and unlike PF2, there exists no
simple representation formula for P_F functions. We first give some examples:

/2e-X/. Ths is the normal denlsty and it is PF ThisExample 1. K(x)=(2r)-
means K, f has no more sign changes than f(x), regardless of how many times f(x)
changes sign. There is a representation formula for PF functions in terms of their
Laplace transforms, but no PF function has compact support (cf. [1]).

Example 2.

x> 0, _> 0 This isK(x)-- O, x<_O,
d,c PFo

Example 3.

K(x)- B

COS X ) q’/" q’/"

<X<

(1+1)’,2
2- -2’ a>-l"

0 otherwise,

This is PF(r_>2) if a_>r--2. For a proof of this fact, see [1, p. 403]. In particular, K(x)
is PF if a_> 1, and one sees that it is also in cl(R) for such values of . f K(x)dx--
and B(x,y) is the beta function.

LEMMA 1. Let f(x) be a boundedpiecewise continuous function which has the property
that, for two points Xo<x

_<0, x<xo or X>Xl,
(2.2) f(x) >0, Xo<X<Xl.

Let K(x ) be PF and define F(x ) (K f )(x ). Then F(x ) changes sign no more than
twice in .

Proof. This is a special case of a general theorem in [1, p. 21 ].
LEMMA 2. Let K(x) be PF and let uo satisfy the following conditions: For two

points Xo<x
(i) Uo(Xo) Uo(Xl)O,
(ii) Uo(X)>_8o in (Xo,X),
(iii) Uo(X) is nonincreasing for x>x and nondecreasing for x<xo,

(iv) u0(--+c) 0.
Let be defined by the recursion 3.+ =g(3.). Then there are two sequences ofpoints

(x,}, (y,}, x.<_y., n>_O, such that either u.(x.)=u.(y.)=3., u.(x)>_3, in [x.,y.] and
u.(x) monotone outside of [x.,y.] for all n, or there is an N such that, for n>_N,
u.(x)<_3, in and u.(x) is constant in [x,y.] and monotone outside of this interval.

Proof. The proof is by induction and our hypotheses say that the result is true
when n=0. Assume that the result is true up to n. Consider the function f(y)=
g( u.( y )) g( 3. ). By our induction hypothesis, it has the property that f(y)>_O in
(Xn,Yn) and f(y)<_O for y<x,, or Y>Yn" By Lemma 1, the function (K, f)(x)=
u,+ (x)-8,+ changes sign no ,more than twice. Suppose first that u,+ l(X*)>8,+ for
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some x*. Set Xn+ =inf(x: Un+l(X)>--n+l} and y,+, :sup(x: U,+ l(X)>-Sn+ ,}. Then x*
is in (x,+,y,+l) and all it remains to show is that u,+(x) is monotone outside of
(x,+,y,+ 1). We shall prove that u,+ l(X) is nonincreasing in (y,+ 1, +), as the other
case is similar. Let ff>Y,+l and = Un+ l(Y). Then <i,+1 and

(2.3) Un+,(X+ff)<,+ for x_>0.

Choose 3’ such that g(3’)-<8,+-g(6,), hence 3’<6,. Set -inf(x" u,(x)_>3’} and
)7 sup {x" u,(x_) _> 3’ }. The functionf(y) g(u,(y)) g(3’) has the property that f_-(y) > 0
in (:,y) and f(y)<0 if y< or y>)7. Lemma implies that h(x)--(K, f)(x)-
u,+ (x)- cannot change sign mote than twice, and h(i)- 0._ Now Un+ l(x*)_> 6,+ 1, so
that h(x*)>8,+l->0. Also, (2.3) implies that x* <ft. If h(Y)>0 for some if>i, then
by continuity there must exist a , 0<<6_n+-, such that h(x)-h is negative at
--+ and at , while it is positive at x* and i. Thus h(x)- changes sign at least four
times. Choose y such that g(y)-+ and x’ such that Yn+l<X’<i, Un+l(X’)--C/+.
Repeat the argument before with ff replaced by x’ and replaced by +; we arrive at
the conclusion that u,+ l(x)--k- h(x)- cannot have more than two sign changes,
which is a contradiction. Thus h(x)<_O if x>i, which means U,+I(X)<--U,+I(Y.) if
X_>if, and u,+(x) is nonincreasing for x>y,+ 1.

If u,+ 1(x)_<,+1 in all of R, let N be the smallest integer such that UN(X)N in
R. By our previous argument, UN_I(X)--N_ has two sign changes and is positive for
some x. Choose 0<<tN so that UN(X)--I has at least two sign changes. Let 0<60<60
be such that gN(60)--/. Repeat the argument with 80 replaced by 0, x0 replaced by

inf{x" u0(x)_>60} and x replaced by sup(x: Uo(X).>_6o}. We arrive at the conclusion
that UN(X) is monotone outside of the connected interval where UN(X)-->/. Since
0</<8u is arbitrary, this means there exists XNYN such that UN(X) is constant in
[Xu,Yu] and is monotone outside of this interval. For n>N, the same situation con-
tinues to be true, but we will omit the obvious proof. Q.E.D.

Remark 1. We shall hereafter refer to conditions (i)-(iv) of Lemma 2 as the
two-sided condition.

Remark 2. We close this section by briefly discussing the regularity properties of a
PF function having compact support. After this, it will be clear that all the conditions
stated in for K(x) are satisfied, save the condition that f K(x) dx 1. In particular,
pl--p.-0, so that K(x) is absolutely continuous in . Let K(x) be PF such that
K(x)>0 in (B, B2) and vanishes outside of it. Then the results of Karlin in [1, Chapt.
4, 4] imply that K(x)U_C2(BI,B2), K’(x) and K"(x) have finite limits as x $ B and

)-0 and limx K(x)/(x-B2)-O for any 0<cas x’B2 Also limx+B,K(x)/(x-B
< 1. Hence K(x) C"() for any 0<a< 1. But in general K(x) is not in C(), as the
following example shows. The function

(sinx) 0_<x_<rr,A(x)
0 otherwise,

is PF+2 if 3’_>r. See [1, Chapt. 8, 4] for a proof of this fact. Putting 3’- 1, we see that
A l(X ) is PF3, but is not differentiable at the origin.

n We begin by an almost trivial lemma, which says that if3. ApproximatiOns by u..
there exists a >0 such that g(u)- in [1-i, 1], then the behavior of Uo(X ) near - is

w (3’)), c>_c*+ and q+(3’)immaterial and [3, Thm. 6] may be applied. Let o(3’)-w( -1

u’,(m+,(3’)) for 0<3’< 1.
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LEMMA 3. Let K(x) be PF2. Let uo be such that either (a) Uo(X)-O for x>A,
u0(x)>0 and nonincreasing in [A-e,A) for some e>0, or (b) u0(x)>0 near +,
U’o(X)-lUo(X ) as xo + for some g>g* In addition let g(u)- in [1-t, 1] forC+"
some 0<6< 1. Then for eery 0<’< and -c* <c <c*+ we hae

(3.1) lim Un(X+m+n (3[))--Wc_(X+W,I+(3[)) uniformlyin [nc)--m+ (3/), +),

(3.2) lim + +m,+(/)--m ({) c*+
n-- +or3

and

(3.3) lim b+ (3,) 0, (3,) uniformly in compact subsets of (0, 1).

Proof. Let D>B2-c)>O. Then (1.2) implies that there exists an N such that
Un(X)>_ 1-8 in (ncJ-D-B2, ncJ +D-BI) for nN-1. Hence u,(x)- in (nc--
D, nc +D) for n N. Set

UN(X), xNc,v(x)-
1, xNc,

and define recursively vj+=Q[vj], j>_O. It is clear from an induction argument that
V.j(X)>_UN+j(X ) forj_>0. Since vj[O, 1], we have Vj(X)--UN+j(X)- in ((N+j)c3--D,
(N+j)c3 + D) forj_>0. We claim that

(3.4) Vj(X)--UN+(X ) in ((N+j)c3, +o) forj_>0.

This is clear when j=0. Assume that it is true up to j--J. Then Vs(X)=UN+s(X ) in
((N+J)c3, +o).Hence from the definitions of vs+ and UN+S+ l, we have VS+I(X)--
UN+J+I(X ) in [(N+J)c +B2, +o). But the interval ((N+J+ 1)c3, (N+J)c3 +B2) is
a subset of the interval ((N+J+ 1)c3 D, (N+J+ 1)c3 + D) from our choice of D.
Since vj+ and Uu+s+ are both one inside this larger interval, (3.4) is proved. Now
Vo(X ) satisfies all the hypotheses for an initial datum of [3, Thm. 6] and hence we
conclude that

lim l)j ( x -+- l); ( "y ) Wc_ ( x -qt- w,l+ ( .[ )
j

uniformly in R and

lim l);+ll()--/);l(’y)--C* for each+
j---,

Equations (3.1) and (3.2) follow from this and from (3.4). The proof of

lim,_vj(vfl(3,))-%.(3,) uniformly in compact subsets of (0, 1) is contained in the
proof of [3, Thm. 6]. Equation (3.3) follows from this observation and from (3.4).
Q.E.D.

Lemma 3 allows us to restrict our attention to the case where 0 <g(u)< in (0, 1).
Assuming this, we shall now construct a family of functions (g*: 0<<0) which
approximate g as 8 $ 0. For each 8, g*(u) equals in a left neighborhood of u- 1. More
precisely, g*(u) has the following properties:

(a) g(u)(ECI[O, 1],
(b) g(u)<-g(u)<- in [0, 1],
(c) g(u)=g(u) in [0, 1-8],
(d) g(u)= in [1-i(, 1] for some
(e) O<_[g]’(u)<-fl in [0, 1],
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(f) [g]’(u)>0 whenever g(u)< 1,
(g) g(u)/u is nonincreasing in [0, 1].
It is clear that g(u) has all the properties of g(u).
Let o>0 be such that

(3.5) fl(1-Bo)> 1.

Suppose that g(u) has the property that there exists a sequence (uj}, u. ’ 1, such that for
eachj,

g(u)-g(us)
(3.6) g’(us)> in [uj., 1].

u-uj

Then given <0, choose the first j such that u> 1-, and define g(u)-g(u) in

[0,uj], g(u)-g’(u)(u-u)+g(u) for u>_u and as long as g(u)<l. From (3.6),
g,(u)<_g,(u) and condition (g) follows from the assumption that g(u)/u is nonincreas-
ing. Let Q be the point where g(u) intersects y-1. If Q4=(1,1), then we may place a
small circle above g(u) which touches g’(ua.)(u- u) + g(u) at Q and y- at
Q2-(1-J-, 1). Define g(u) to be the arc of 0 between Ql, Q2 and g(u)-I in
[1-6, 1]. It can be verified that conditions (a)-(g) are all satisfied. If Q-(1,1), then
[g]’(u)< <_g(u)/u near u-1. We modify g(u) according to a procedure described
below. Suppose that (3.6) is not valid, so that for every u0 [1-o, 1), there exists
U >U0 such that

g,(u0)<g(u,)--g(u0)
b/1 --b/0

Then g’(u)<g’(1)_< in [1-80, 1). Let g(u)--g(u)+Ch(U-- +8)2 in [1--8, 1-8+hi,
and let it continue at u- 1- 8 + h as a straight line of slope until it intersects y- at
Q. Here Ch-(1-g’(1-8+h))/2h>_O and h>0. Near Q, we construct g as before,
and it is clear that conditions (a)-(f) are all satisfied. Condition (g) is equivalent to
[g]<_[g](u)/u. Since ul>uo, we have (g(ul)-g(uo))/(u-uo)<_g(uo)/Uo, so that
g’(uo) <g(uo)/uo. By continuity, (g) is true in 8, 8 + h for sufficiently small h.
On the part where gn(u) is a straight line, the y-intercept.is positive, since g(u)>u in
(0, 1), which shows that (g) is true there also.

Having constructed g(u), we define the associated operator Q by

(3.7) Qa[ ul(x)=fK(x-y)gn(u(y)) dy.

Given u0
, we define Uo--Uo and Un+ Q[una] for n_>0. Also, we denote by w,.(x)

the travelling wave of speed c associated with the operator Q and set
w,. ]’(w,.-t 3’)) for 0< 3’ < 1. From (1.1) and property (c) of ga, the range c]_, + oo), over
which travelling waves of the operator Qn exist, is independent of and is the same as
that of the operator Q. However, Wc(X) themselves will be identically one near

8,+(Let us introduce the following notations for later use. m, ,) sup(x"
and p’+(y)-[ n’ +u,,](m,,’ (y)). Statement (1.2) now holds with m-(y) replaced by

,). Also, for each 0<<0, g(u)-- in [1-g, 1]; Lemma 3 therefore implies the
following results. For each 0<,< 1, -c_* <c <c_, 0< 6< 60,

(3.8) lim u(x+m’+(7))-w.(x+w.+’(7))
rt -t-o

’+(v), +),uniformly in nc
8(3.9) lim m.’++l(y)--m. (y)--c*

--b o
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and

(7) uniformly in compact subsets of (0 1).(3.10) lim f’+(V) %

The next lemma compares f’ +(V) with w.(7) for a fixed 0 < 7< and c> c_.
LEMMA 4. Let K(x) be PF and let 0<g(u)<l in (0, 1). Let Uo satisfy the

following conditions near +o. Either there exists a constant A such that Uo(X)=0 for
x>_A, Uo(X)>0 and nonincreasing in [A-e,A) for some e>0; or Uo(X)>O near

U’o(X)-IUo(X as x + for some >. Let Uo(X ) also satisfy the following condi-
tions near -o. Either there exists a constant L such that Uo(X)=0 for x<_L, Uo(X)>O
and nonincreasing in ,L+g] for some ’>0, or Uo(X)>O and nondecreasing near
and limx__oUo(X)-O. Then given c>c_, 0<<o and 0<7< 1-, there exists an
integer Nc,, such that

(3.11) P’ + (y)--<w(V) forn>_N,,v.

Proof. From our hypotheses, it is not difficult to see, as in the beginning of the
proof of [3, Thm. 6], that Um(X ) will satisfy the two-sided condition of Lemma 2 for
sufficiently large m. Thus without loss of generality, we assume that Uo(X ) itself
satisfies such a condition. As a consequence of Lemma 3, there exists N-Nl(8) such
that for eachj>Nl, there are numbers a<b such that u(x)- in [a,b] and u(x) is
monotone outside of [a,b]. Also from (3.9) and the fact that c>c*+, there exists

N N(7, c, such that

(3.12) mj_,(y)-mj+ ’+ (3,)<c forj_>N2.

Let N=max(N,N2). We claim that there exists N3--N3(7,5,c) such that, for n>_N3,
the function

(3.13) USN(X + mN+nS’+ (’)l’)-- nc)-- Wc(X-k-wl(’))
has two sign changes. From [3, Lemma 6] and the fact that 0<g(u)< 1, w,f(x)<0 in
Since UN(-O)--0 and UN(X)-- in an interval, there is one sign change in the region

+on the left where UN(x+m+n(Y)--nc) is nondecreasing. Since 0<w(x)< in , in
the region on the right where UN(X+mN+,,(y)--nc) is nonincreasing, (3.13) has one
sign change. The proof of this fact may be found in the proof of [3, Thm. 6]. Note that

m++n(y)(N+n)c*+ as n +o and c>c* imply that m +
+ +n(V) nc diverges to

as n-o +o. The facts (5.10) and (5.11) in [3, Thm. 6] carry over to our present
situation, because their proofs used only the properties of travelling waves and [3,
Lemma 11] which do not assume anything about the behavior of UN(X) near -o. By
increasing N3, we may assume that (3.13) vanishes in the region where UN(X + +m+(y)
--nc)< 1--.

Let N,.,,v----N+N and ff_>N,,v be given. Write ff=N+n, n>_N and set

(3 14) vj(x)-u n’+ c) .<_j_n.0mN+

We shall prove that v(x)-w(x+ w(7)) has exactly two sign changes for O<_j<_n.
First observe that for a function f(t) which is positive or negative in a neighbor-

hood of a point Y, the number of sign changes of f(t) in is the sum of the number of
sign changes of f(t) in the respective interval (-,Y) and (if, +). We are going to
prove the following claim with the help of this observation.

CLAIM. For O <_j <_n, vj(x ) w,.(x + w,71( y )) has two sign changes and the larger one
occurs in the interval vl(1-), /).
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Proof of claim. The proof is by induction, and our earlier remark about (3.13) says
that the claim is true when j-0. Assume that it is true for j. We first consider the
number of sign changes of the function

(3.15) g(v(x))-g(w,.(x + w-l (y))).
Let aj aj+N-m+ m+n(y)+(n--j)c and b b+N +nt3")+(n-j)c. In (-o,a),
(3.15) has exactly one sign change. In [a, bj], v(x)- 1, hence our induction hypothesis
implies that v(x)>_Wc(X+wl(y)) in (a,v-l(1-6)). Since g>_g, (3.15) is non-
negative in (aj, v-l(1 6)) and has exactly one sign change in (-o, v:l(1 )). In
(vf(1-), +o), g=g in (3.15), and since g(u) does not increase the number of sign
changes for the difference of two functions, the same is true of (3.15) in (v-l(1-6),
+o). To continue, (3.15) is negative near +o. If (3.15) is positive at x-vfl(1-8),
then the observation before the claim implies that (3.15) has two sign changes in R or if
(3.15) vanishes at x-v:(1-8), then it must have a sign change in [b, +o). At any
rate, (3.15) has two sign changes, and by Lemma 1, so does the function_ V+l(X )
-w(x+ w,-?(y)). To complete our induction, it suffices to produce an >0 such that

For this means there is one sign change in [if, +o). But if x0[ Y, +) and vj(xo)-
wc(Xo+ wl(3")), then Wc(Xo+ w,Tl(v))_< 3’ < -i. Thus xo is_actually in (vj:l(1 -i), +).

m,+ 8 +m+(3’Now simply take =(n-j 1)c+ s+j+l(3’)- ). is positive because of (3.12).
This completes our induction as well as the proof of our claim.

Returning to the proof of Lemma 4, using the claim when j-n, we get %(x)-
wc(x+w,Tl(3")) has two sign changes. But UN+n(X-k-mfn(3’))--Wc(X-+-wl(3")) has a
zero at x--0, and since UN+,(X +m++,(3’)) for some x<0, we have

[UN+]’(
or what is the same, qff’ +(3’)_< w(3’) if ff_>N,.,,v. Q.E.D.

COROLLARY. Given c> c*+, K--[3", ] in (0, 1), there exists a * >0 such that for any
0< i< i*, e> O, there exists an integer Nc,K,, such that

pf’+(3’)--<%(3’)+e for3’K, n>--Nc,K,,.
Proof of Corollary. Set 8*-min(80, 1-). Then for any 3,, 0<8<6", we have

3’_<_< 1-8" < 1-6. Hence Lemma 4 implies that

qf’ + (3’) _< 0,.(3’) for sufficiently large n.

Let n +o and use (3.10). We have ot(3’)_<0,.(3’) for 3’, 0<8<6". But (3.10)
actually says that +f’ +
for sufficiently large n, 3’. Combining the two inequalities, we are done.

The rest of this section is devoted to the study of sufficient conditions on the
u,(m, (3’)) is bounded away from 0 as n- +o.behavior of Uo(X) near +o so that +

What needs to be shown is that there exists a t0>0 such that for t>_to, ul(x / t)-Uo(X )
changes sign only once. The difficulty lies in getting ul(x + t) below Uo(X ) near +.
From the fact that g(u)_</3u in [0, ], we have

(3.16) ul(x + f,  IC(y)Uo(X + t-y)dy.

Let >0 be given and suppose that A(x)=uo(x)e has the property that A(x/
Xo)/A(x)- as x --, + for every x0 (i.e., A(logx) is slowly varying). Let e>0 be given
and choose so large that e-t(1-ke)fle<- 1. Let Xo--t-B in above property of
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A(x). Then for sufficiently large x, Uo(X + t-B.)_<(1 +e)e-t-B2)Uo(X). Since Uo(X is
nonincreasing near +o, (3.16) implies that for sufficiently large x, u(x+t)<_(1 +
e) f K(y) dyeTMt-_)Uo(x) <_ Uo(X ). Thus a sufficient condition is for Uo(X) to have the
form A(x)e-x where A(x)>0 in R and A(logx) is slowly varying. It is easy to show
that our condition on Uo(X ), that is, U’o(X)-lUo(X ) as x--, +o, actually implies this.
Finally, if for a given t0>0, we can find Lo such that Ul(X+to)<_Uo(X ) for x>_Lo,
choose o so large that Ul(X ) is nonincreasing for x>_Lo+ o. Then we have Ul(X+ t)_<
Uo(X ) for x>_Lo, t>_to.

LEMMA 5. Let K(x), g(u) and Uo(X ) satisfy the hypotheses statedfor them in Lemma
4. Then given K y_, ] in (0, 1), there exists a positive integer NK,uo and a co Co( Uo) > c*+
such that

p+(,)_<%o(y ) for, n>_NK,uo.

Proof. The first step is to show that there exists t _>0 such that u(x+ t)-Uo(X )
has one sign change for t>t1. From Lemma 2, we may assume that un(x ), n>_O, have

the property that for some , << 1, un(x)>_, in the interval (m(), m+()), and
are monotone outside of it. We may also assume that m()--m?)(,l)>B2--B for
sufficiently small r/> 0. Let Lo, o>max(m-(), B2 be such that

(3.17) Ul(X+t)<_Uo(X ) forx>_Lo, t>_to.

Let Lo-m-(l for sufficiently small . This is possible if L0<m-(0) (it is obvious
what m-(0) means). If m-(0)< +, then we take Lo-m-(O)-to in (3.17). Since
m-(0)-m-(0)-B2, L0 has the desired form. We further decrease ,/ if necessary, so
that

(3.18) m3()--m-f(l)>-B
(3.18) is clearly possible if m(0)--. If m(0)>-,_ then since m()-m)(l)-
BI<B2 as ,/$0, we have for sufficiently small ,/, m()-m(,1)--m)()-m)(vl)-
(m(,1)-m(,1))>m)()-m)(l)-B:>-B1. Having fixed the ,/>0, we choose
(0, /) and set

(3.19) -max(m (/)-m( ),m-()-m(/), o ).
We divide R into three intervals. First

(3.20) u(x+t)<_Uo(X ) in (m3(/),
This follows from (3.17) and the fact that in (m(/),m-(/)) we have x+t>_m)(,1)+t
_>m-(/), so that Ul(X + t)<_,l<_Uo(X). Next,

(3.21) Ul(X+t)>_Uo(X ) in (-,m-((vl)-t).
If x<m(l)-t, then (3.18) implies that x+t-B<m)(y), and since Uo(X ) is nonde-
creasing in (-, m3()), we have

u,(x + t)=fK(y)g(Uo(X+ t-y))dy>_g( Uo(X + t-B))>--Uo(X + t-B2)>--Uo(X )

In (m{(*l)-t, m-(*l)-t), u(x + t)>--,l>--Uo(X) since m)(,1)>_m-(,1) t. Hence (3.21) is
valid. Finally, in (m-(,1)-t, mD(,l)), Ul(X+t ) is nonincreasing and Uo(X ) is nonde-
creasing, u(x+t)>Uo(X) at x-m-(,l)-t<_m)() and u(x+t)<Uo(X) at
>_m-()-t. Thus there is one sign change of u(x+ t)-Uo(X) in this interval. (3.20)
and (3.21) imply that this is the only sign change in .
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Lemma 5 now follows from the following three assertions:
(a) There exists a subsequence {nj} of positive integers such that

++ (),)<t for all/K, j>l.mn..+ I(Y) mnj

(b) There exists NK such that if n>NK and m+(’) -m+n- (7)<t- we have

p+ (3,)_<0co(3,) for

where co depends only on uo and not on .
(c) If n is such that m+(,{)-m+ (3,)>tl then qn+(3’)<q+_ 1() for 0<<
Part (c) is trivial, since from what we have just done, the function u(x + mn (,)-

m+_l(y))--u0(x) changes sign once from positive to negative as x increases from
to /. K(x) is PF2 and g(u) does not increase the number of sign changes for the
difference of two functions, hence an inductive argument implies that u(x/m+(,)-
m+_ (-{))-u_ (x) changes sign no more than once and has a nonpositive derivative at
its zero. At x-m+ (), its derivative is nonpositive, which proves (c).

We next show assertion (b); we begin by determining c0. Let Xo=(B-t) and
co B2-xo. We have, for c>_co,

wc(xo+ w:(Y))--fo’K(xo+ c-y)g(wc(Y+ w-(y)))

In particular, %0(x0+w1(3’))<g(V) for all 0< 3’ < 1. Under our hypotheses on u0(x),
+there exists N depending on we0, u0 and K such that Uo(X +m () nco) Woo(x +

wcl(,)) has two sign changes for "1’ K, n_>N (see Lemma 4). From Lemma 3 and an
inductive argument, the function

(3.22) u,(x + m+ (’))--Woo(x + wcl())
has no more than two sign changes. Let N N2( be such that

(3.23) -Bz+xo+m+()-m 1()>0 ifn>N
+This is possible because of (1.2). Set N max(Nl,N) and let n

(y))- fK(x+m+(y)-m+ (y)-y)g(Un_(y+ +mn_ I(’Y))) dy. The domain of integra-
tion is

+ + (y)<_y<x+m+(y)-- +(3.24) -B2 /x /m (’/ ) m,_ m._l(V)--B 1.

+(’)--m+ (T)--tl<0, whileAt x x0 B -tl, the right-hand side of (3.24) equals m
the left-hand side of (3.24) equals, by (3.23),

-B+xo+m+(v) m+ +n-(Y)>-B.+Xo+m+()--m-,()+m--l() mn-
>--m- ( )-- +m,,_({)>m,_(y)--m+

if , n _>N. Hence the domain of integration is a subset of the interval (m_ (y)-
m+ (,),0) for all ,, n>_N In this interval, u,_(y+ +mn_l(’y))3t. Hence (3.22)
at x=xo is positive, which implies that it has two sign changes. Since t>_B, xo is
negative, and since (3.22) vanishes at x 0, we must have

+ (x+ (3,))_<0 at x 0.Un(X / mn (T)) W’ W
-1

Co Co

This proves (b).
Finally, assertion (a) is clear for a fixed since t>_B2>c]_ and m+(,)nc_ To

do this for 3’ in a compact subset of (0, 1), we observe that u(x + tl)-uo(x ) has one
sign change. Since K(x + l) is PF and g(u) does not increase the number of sign
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changes in the difference of two functions, an inductive argument implies that un(x +
ntl)-Un_(x+(n- 1)tl) has no more than one sign change. Let xn_ be a point where
the above function vanishes and set ,_ l-un_ (x,_ 1). Then

+ + (7){-->t if
(3.25) m. (7)--m._

_<t if7<7_.

If 7j_<’ for all j, then (3.25) implies that m+(-)-.mn_(-)>t+ > c*+ for all n sufficiently
large, which is impossible. Hence there exists a subsequence {nj} such that 3,,.>, j_>0,
and from (3.25), (a) is proved. Q.E.D.

4. Uniform estimates. In this section we are going to prove our basic estimates
that u 8. is close to u when is small independently of . From this we will be able to
conclude that +if’ / is also close to +ff when i is small independently of n.

We recall the following condition on g(u).

(4.1) g(u)
1S nonincreasing in (0, 1).

This condition implies that g’(u)<_fl in [0, 1], which in turn implies the condition
g(u) _< flu in [0, ]. The second condition is an immediate consequence of (4.1) and the
fact that limu+og(u)/u= ft. If we now differentiate the function g(u)/u and use (4.1),
we get g’(u)<_fl in [0, 1].

Condition (4.1) also implies the existence of a function 0()(0, 1), defined in
(0, 6o), with the properties
(4.2) lim 0()

850

and

(4.3)

In fact, we may take

g(u)<
u --1-/J implies u>_O().

O(6)._inf{O<u<_l.g(u)< )u -1-

Since 1/(1-o)< fl by (3.5), [0,o) implies that 1/(1-)<fl, and hence 0(6)>0.
Also g(1) 1, hence 0()< if (0, o)- To prove (4.2), we suppose that there exists a
sequence 6 $ 0 while 0j. 0(j.) < 0o< 1. From (4.1) and the fact that g(u) > u in (0, 1), we
get

l<g(Oo) g(Oy) forj_>l.Oo 6 -1-Bj.
Lettingj go to +o, we obtain a contradiction. Hence if we define 0(0)- 1, 0() is right
continuous at the origin. (4.3) follows from the definition of 0(6).

We recall that u--uo and gS>g. Hence we have 8> 8_
Un__U for n >0 and supp un-

suppu for n_>0. If Un(X)-O, we define u(x)/u,(x)-1. Our basic estimate is a
corollary of

LEMMA 6. Let uo and let g(u) satisfy the conditions 0<g(u) < in (0, 1) and
(4.1). Then, for 0< <o, we have

(4.4) un+_l _<max u___.__l ,-1
Un+, Un

for all n >_ O.
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Proof. Write

(4.5) Un+I(X ) u.+(x)=fg(x-y)g(u(y)) g(u,,(y))
Let R I() tA I2( ), where

Then in

by (4.1). For

Ii()-- (y" u(y)_< 1-6), I2(8)-- (y" u(y)> 1--).

Ii()" g(Un(Y))--1- -1<_
g(Un(Y)) g(Un(Y)) Un(Y)

gS(u(y)) u(y) g(u,,(y)) gn(u,,(y))
12( )" If we have < <

g(Un(Y)) U,,(y) Un(Y) u(y) --1--

From (4.3), we conclude that un(y) -> 0(). Therefore g(un(y))_>g(0(6)), and hence
g(u,(y))/g(u,(y)) <_ 1/g(O())- 1. So in I2(6), we have

)g(u(y))_
lmax --1,--1g(u.(y)) u.(y)

Going back to (4.5), we obtain

(X)--Un l(x)<max(Un+l + g(O(8)--I Q[u,,l(x).

Divide by un+ (x), and (4.4) follows. Q.E.D.
COROLLARY. Let e> O. There exists > 0 such that for 0< 6<, we have

O<_u](x)-u(x)<e in g for n>_O.

Proof. From Lemma 6, induction on (4.4), and the fact that Uo=--Uo, we obtain
un/u-111o-< I/g(0(8))-1 for n_>0. Since g(0(6)) is right continuous at 8-0 and

g(O(O))-1, there exists a 8>0 such that O<_l/g(O(6))-1 <e if 0<<,. Thus 0_<

u(x)/u,(x)- <e in R for n_>0. The corollary then follows by multiplying by u(x).
LEMMA 7. Let K(x ) be PF and let g( u ) satisfy the conditions 0 <g( u ) < in (0, 1)

and (4.1). Let uo satisfy the hypotheses stated in Lemma 5. Then given e > O, N y, ]
in (0, 1), there exist 8>0 and N,K such that

foryN, n>N,K andO<6<6.

,+( +Proof. The first step is to show that m, y) and m (y) are close for y and n
sufficiently large. Let e>0 be such that ,>e>0. Then there exist >0 and N --Nl(e N)
such that

(4.6) + +(y)<m._ m. (y)

for 3’ N, n_>Nl, and 0<8< 8. The left-hand inequality follows from the fact that
>u for all n while the right-hand inequality follows from the Corollary of LemmaUn

6. N is chosen so that every term in (4.6) is defined for n_>N, /.
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From Lemma 5, we have for 3’ N, n>_N (possibly increased)

+(3’ e) m+ frymn (7) ff

This, together with (4.6) and the fact that Wo(x)<0 in R, accomplishes the first step of
our proof.

We now come to qn’ + (3’)--qn+ (3’)- Let e>0. Since K(x) is PF3, it is absolutely
continuous, and we can write

,+ 8(+2,-(V)-+.++,(v)=fK’(m.+,(V)-y)[g U,,(y))--g(Un(Y)) dy

+ fK’(m.,++(V)-y)[g(ua.(y))--g(u.(y))] dy

(m (3’)-y)]g(Un(Y))dy+ f[K’(mn’++(V)-Y) -K’ n+l

+12+13
Furthermore,

f{ m._ ,(3’)--y)[ (1--g(u,,(y))) dy_<[1-g(1-iS)] IIK’II,.IK’(
u>-a}

]I2IBeIIK’II, whenever 0<3<3, where 3 is from the corollary of Lemma 6. For 13,
note that since K(x) is uniformly continuous, there exists .> 0 such that IK(x) K(y)l
<e if Ix-yl <. With this and our first step, there exists N-N(,N) and 3g>O such

n + m+that 0_<m.,+(3’)- n+(3’)< whenever 3’, n+l>_N,, 0<8<8. Integrating by
parts, we get, if 3’, n+ _>N,, 0<8<8g,

f [K(mn’++(3’)-Y)-K(mn+l(3’)-Y)] g’(Un(Y))Un(Y) dY

m,_ ,(3’)--y)-K(m.+ ,(3’)-y)]lu.(y)l dy

+
+ + e]. Putting all the pieces together, if Nwhere } [m,()-B2-e, m,+() B

n >N and 0<8< min(8, 8), we have

This inequality implies our lemma. Q.E.D.

5. The case uo(-m)-O. This section contains our main result, for the second case
when u0(-m)- 0, and an interesting application of it. The idea is to prove that

(5.1) lim ()-c: () uniformly in compact subsets of (0, 1).
n

In [3, Corollary of Lemma 13], we have shown that the inequality liminf,.+
()%:() holds uniformly in compact subsets of (0, 1) when uo

, uo(+m)-0 and
K(x) is PF2. The difficulty lies in obtaining the opposite inequality.



NONLINEAR INTEGRAL OPERATOR IN POPULATION GENETICS, II 951

THEOREM 1. Let K(x), g(u) and Uo(X ) satisfy the conditions stated for them in
Lemma 4. In addition, let g(u) satisfy (4.1). Then for every 0<y -c*_ c c*+, we
have

lim u.(x/m+. (y))--w,(x/w[.l+ (y))
4- 4-uniformly in nc rn. (y), /) and lim.+ rn.+ 1(Y)- m. (y)- c_.

Proof. The assumption that 0<g(u)< in Lemma 4 is really not a condition on
g(u) because of Lemma 1. At any rate, we first construct g, Q as in the beginning of
3, after which we obtain an approximation u, to u, by setting
for n_>0. The major step here is to prove (5.1).

Let [3’, ] be a subset of (0, 1) and write

Given e>0, from [3, Lemma 8], there exists c>c_ such that 0_<%(y)-%(y)_<e for
y N. With this c and N, let * be that obtained from the corollary of Lemma 4. From
Lemma 7, there exist N,K and > 0 such that ]qn’ + (y) qn+ (y)] < e for y , n _>N,K
and 0< 8<8. Choose 8 such that 0< 8< min(8*, 8). Again from the corollary of
Lemma 4, there exists Nc,,, such that ,’ + (y)_< %(3,) + e for , n_>N,,,.
Combining all these, we have from (5.2)

p+(y)_<%(y)+3e fory, n>_max(N,,N,,,).
This implies that limsup,_+ p,+(y)_<%(y) uniformly for. When the foregoing
is coupled with the remark at the beginning of this section, (5.1) is proved.

Next we show that

Un(X/mn+ (y)) converges to w(x+ w- ())
uniformly in compact subsets of R.

Differentiate u,(m+,(e))-e and wc_(w[(e))-e to get

fu x+m V d fWc.+ "- W -1 d
x_

for a given 0<y< and n sufficiently large. Rearranging this, we have

(5.4) fvw*+(x+w:*’+(’))( )_fu,(x+m+,(,))d+2 +n+ (n) -o

If x lies in a compact set in N, %(x +w7(y)) is bounded away from 0 and 1. (5.1)
implies that the first integral in (5.4) converges to 0 as n +. Since + i[ K’[[ 1,

(5.4) implies (5.3).
To get the rest, we let e>0 and choose L so that 1-e<w(x+w[(y))<l in

+(-m,L). Set L2 min(L,m+(1, -e)-m, (y)). Then for nc-m+()xL2, we have
+ncx+m, (7)m, (l-e). Statement (1.2) and our assumption on c imply that

1-eu,(x +m+ (7)) <_ for n sufficiently large. This implies that

+ +(5.5) [Un(X+m (y.))--w,(x+w[(y))l<e in [nc--m (y),L2].
Similarly,

(5.6) in [L4, +m),
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+ +where L4 max(L3,m (e)-m,, (,{)) and L is chosen so that O<_wc_(x+w[,l+(’))<_e in
[L3,-t-or?). The set [L2,L4] is bounded as a result of (5.1). Thus (5.3), (5.5) and (5.6)
together imply the first statement of our theorem. The second statement follows from
[3, Lemma 12]. Q.E.D.

COROLLARY. Let K(x) be PF and let u0 be such that Uo(X ) vanishes outside of
(A,A2 ). Uo(X) is nonincreasing andpositive in (A2 e,A 2 ), nondecreasing andpositive in

(A 1,A + e) for some e> O. Then for every 0< < 1,

]Un(.X)--Wc_(x+w(3/)--m+n(’f))--c,_(x+(’f)--m-(T))+ [--, 0
as n + uniformly in R.

Proof. Theorem implies that for each c (-c_*, c_), we have

+lun(x)--WcX(X+W(y))--mn (y)l0 as n-,

uniformly in [nc), +). Let c,_(x + nc*_) be the travelling wave which faces left and is
moving towards . That is, ._,(x) is nondecreasing, c*_(-) 0, c_*( +) 1. Then
the counterpart to Theorem is that lu.(x)-W._(x+W()-m;())l-O as n- +m
uniformly in (-m,nc]. The statement of the corollary follows from this and from the
fact that nc m (/) -w-c as n --, +m.

THEOREM 2. Let fr0(x), go(X) be initial data so that Theorem (or [3, Thin. 6]) is
applicable to them. Assume that fr0(x) 0/fx _>A and go(X) 0 ifx >_A 2. Set

m(y)--sup(x; ff,,(x)_>y), mn(y)--sup(x
for 0 <y< 1. Let g(u) satisfy (4.1). Then for 0 <y< 1,

m(y)-m(y) is bounded as n +
Proof. We first prove the following:
CLAIM. Set Zo--ff0+g0, Zn+ Q[zn]. Then Zn(X)<--ffn(X)-+-gn(x) for all n >_O.

Proof of claim. If we define g(u)-I for u> 1, then (4.1) actually implies the
inequality g( u + v) _< g(u) + g(v). To see this, we may assume without loss of generality
that u>_v. Then (4.1) holds for u_>0 and hence g(u+v)/(u+v)<_g(u)/u. This implies
that

g(u+v)<--g(u)+Vg(u)<--g(u)+g(v).
u

The claim now follows easily by induction and the above inequality.
We return to the proof of Theorem 2. First let e>0, and set Uo(X)--I6,A 1,

Vo(X)--I_,AI, do(x)--Uo(X)--Vo(X ). From our claim, we have Un(X)lgn(X)-+-dn(x),
and hence

(5.7) Un(X + m(’))<--Vn(X + m,(’f )) + dn(X + m,(y)).
It is clear from the definitions of u0, v0 and do that u,(x)-d,(x-e). From this we get
mU()-ma(y)+e. Substitute this into (5.7) and let n +. If m,(v)-mV(’) is
unbounded, we get by our hypotheses the contradiction,

+ w:,l+ w:.l+
Hence mUn(y)-mV(y) is bounded for these two special initial data. Now let Zo(X)-
av0(x), 0< a< 1. For some integer N, take e>0 in the definition of v0(x) to be so small
that supn VN(X)< 1. From (1.2), there exists an integer N such that ZN,(X)N(X). It is
trivial to deduce from this fact that Zn+N,(X)I)n+N(X ) for all n_>0. Thus

(3,)>m (’) for all n>0mn+N n+N
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Since 0 < a < 1, we have z0(x) <v0(x), and hence

m(y)<_mV(y) for all n_>0.

Combining all these, we get

mVn+ N,(’Y mZn+N,( 3[ ) mVn+N(/ ) mVn+ N,( 3/ ) + mvn+ N(’Y ) mVn+N,( y )
Since mVn+N(Y)--mv+N,(y)(N--N1)c_, we find that mVn(Y)-mZn(y) is bounded as
n +o for any small e> 0, 0< a< 1.

Finally, with our given 70(x ) and 60(x), we set A =max(A1,A2). Then fr0(x)_<
Uo(X-A), 6o(X)<_Uo(X-A), and hence

tS(5.8) man(y)<m,(y)+A, mn(Y)<_m,(y)+A n>O.

We then choose e>0, 0<a< 1, each small enough that ffo(X)>_Zo(X+s), o(X)>_Zo(X
+ s2) for some constants s, s2. Then

(5.9) m(y)>m(y)-s, m(y)>_m(’y)-s2, n>_O.

From (5.8), (5.9) and the fact that m(’)-mZn(7) is bounded as n +, the conclu-
sion of Theorem 2 is obvious. Q.E.D.
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NONEXISTENCE OF SMOOTH SOLUTIONS FOR SHEARING FLOWS
IN A

NONLINEAR VISCOELASTIC FLUID*

GUSTAF GRIPENBERGf

Abstract. This paper studies the development of singularities in smooth solutions of an equation arising
from a perturbation problem for steady sheafing flows in a nonlinear viscoelastic fluid. It is proved that
under certain assumptions (that make the equation studied nonlinear), singularities will develop in the
derivatives of the velocity of the flow, provided that some derivatives of the initial data are sufficiently large.

1. Introduction and statement of results. The purpose of this paper is to study the
development of singularities in a classical solution of the equation

(1.1)
)vt(x,t)--o a(,)vx(x,t-’)d" +f(x,t),

v(O,t)-v(h,t)-O, t>_O,
O<_x<_h,

where o,a, vo and f are given functions and the subindices and x denote partial
differentiation. It will be shown that singularities can arise in a finite time from certain
smooth initial data if the function o is increasing and not linear. Thus, the results of
this paper extend those of [4], where it is assumed that a()= e-’. In fact, it turns out
that we need rather weak assumptions on the kernel a.

The equation (1.1) arises from a shearing perturbation of a steady shearing flow in
the following way: Suppose that we have a rectilinear shearing flow with velocity
components (in a fixed Cartesian coordinate system x,y,z)vx=O, vY--v*(x,t), vz=0,
0<x<h. Now we make the assumption that the shearing stress TXy(t) is given by
o*(f a()v*(x,t-)dr), where o* is a certain nonlinear function and v* is the shear
rate. If the fluid is simple, then the equation of conservation of linear momentum
becomes

)Pvt*(x,t)--o* a(,)V*x(X,t-)d +pf(x,t),

where O>0 is the density (assumed to be constant) and f(x, t) represents the body and
driving forces in the y-direction (assumed to be independent of y and z). The boundary
conditions are taken to be of the form v*(0,t)= V, v*(h,t)--V. When f--=0 this
equation admits the solution (xV +(h-x)V)/h (steady rectilinear flow). If one wants
to study sheafing perturbations and takes v(x,t)=v*(x,t)-(xVz+(h-x)V)/h, then
one gets (1.1) with o()=(o*(+ k)-o*(k))/p, where k--(V2- V)f a()d+/h. Ob-
serve that the results below cannot be applied to the case when f(x, t) is e.g. a nonzero
constant. For more details see, for example, [1], [4] and the references mentioned there.
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Here we will prove the following result (BV stands for bounded variation, R +=
[0, ), a-=(-,0]):

THEOREM. Assume that h >0 and that

(1.2)

(1.4)
(1.5)
(1.6)

(1.V)

a cl(n + n) fq Ll(n + ;n), a(0) 1,

a’ GLI(n + ;R) f) BVloc( +;),
o’(o)>o, o"(o)+o,

fC’([O,h]n + ;n), f(O,t)=f(h,t)=O,
vo(O,t)=Vo(h,t)-o,

sup (Ivo(x,t)l+lVotx(x,t)l+lvoxx(x,t)l)< .
x [O,h ], g

If now T>0 and supto,hl,tn-(IVo(X,t)l + IVo(X,t)l) and supto,hl, tto,l[f(x,t)l are
sufficiently small and

sup
x[O,h],j{O,1}

o"(0) a(’r)Votx(X,-r)dr

+(-1)J]o’( foa(’)Vox(X,-r)dr)
sup (IVotx(X,t)l+lVoxx(X,t)l) +

x[O,h],tg-

1/2 c )fo a(r)Vxx(X’-r)dr

sup [L(x,I)I) -1/2

x[O,h],t[O,T]

is sufficiently large, then (1.1) cannot have a solution that is twice continuously differentia-
ble on [0,h] (-o, T].

The basic ideas in the proof of this theorem are the same as those in [4]; i.e., (1.1)
is reduced to the form (2.10) and then one can use the techniques from [2].

The conditions (1.7) and a, a’ LI(+;) are introduced in order to ensure that
certain integrals like fff a(r)Voxx(X,t-r)dr are well defined, but it would be easy to
use other assumptions instead of these. Since a(0)5-0 and a is continuous, the hypothe-
sis of the theorem is satisfied if e.g. Vote(x, t) and Vox(x, t) are positive and quite large
at some point x when belongs to some small interval (-r, 0] and elsewhere relatively
small in absolute value.

Finally, we remark that (1.1) differs from the equation studied in [5] (and the
references mentioned there), because in that paper the nonlinear function o appears
inside the integral (another difference is that there the existence of global smooth
solutions is established). But this is of no great consequence because one could ap-
parently use the same kind of argument to establish the breakdown of solutions in that
case too. The idea would be to take u(x, t) vt(x, t), w(x, t) Vx(X, t) instead of (2.4)
and (2.5) below. The main difference would then be that the assumptions needed on the
initial values would look slightly different.

2. Proof of the theorem. We may assume that o"(0)>0 because the case o"(0)<0
is treated in exactly the same manner.

Let v C2([0,h] (-o, T];R) satisfy (1.1). We will show that there exist constants

o and Mo (depending on a, o and T) such that if

(2.1) sup ([Vo,(X,t)l+lVox(X,t)l)+ sup If(x,t)l<8o
x[O,h ], tg- x[O,h ], [0,T]
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and

sup a( ,’r ) o,x(X, -,r ) a,r
x[O,h]

+(-1)y o’ a(r)Vox(X,-)dr
(2.2)

1/2

a()VOx(X,-)d+ sup
x[O,h],t[O,T]

hold, then we get a contradiction.
By (1.4) there exist positive constants 8, e l, e2 and k such that

-1/2

]fx(X,t)]

forj 0 or 1,

(2.3) el_< inf o’(), sup o’()<k1, inf 4-10"()(0’())-5/4-->e2.
I1-< i1_< I1-<

We define

(2.4) u(x,t)= a()vt(x,t-)d’, x [0,h], t[0, T]

and

(2.5) w(x,t)= a()Vx(X,t-)d, x [0,hi, t[0, T].

Next we derive (2.10). An integration by parts gives by (2.4) (recall that a(0)= 1),

u(x,t)--,9(x,t)+ a’(’)(x,t-’)d’,

and if both sides of this equation are differentiated with respect to t, then one obtains

(2.6) u,(x,t)-,(x,t)+ a’(),(x,t-,)d, x[0,h], [0, rl.

It follows from (1.3), and standard Volterra integral equation theory, see e.g. [3], that
we can define a locally finite, continuous (except perhaps at 0) Borel measure on N +

by the equation

([o, l) +jo,- ,(a t-’)a([0,’l)d" a’(t) tn +

or equivalently

(2.7) io,t]a(t-’)da(*)-a’(t)’ tR +

If we take the convolution of both sides of (2.4) with the measure a and use (2.7), then
we conclude that

(2.8)

where

(2.9)

a’(’)vt(x,t-’)d’= u(x,t-,)da(,)+g(x,t),
,t]

x[0,],

g(x,t)= a’(’r)vt(x’t-’)d’-f fo a(li)vt(x,t-’-li)dli da(’).
"[O,t]"t--
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Now we conclude from (1.1), (2.4)-(2.6) and (2.8) that u and w are continuously
differentiable on [0,h] [0, T] and satisfy

(2.10) ut(x,t)-o(w(x,t))x+f u(x,t-z)da(z)+F(x,t)
[o,t]

when (x,t)=(O,h)[O, T], where

(2.11) F(x,t)--f(x,t) + g(x,t).
We extend the functions u(x, t) and F(x,t) as odd functions of x and the function
w(x,t) as an even one, all with period 2h in x. Then we see from the boundary
conditions and (2.10) that if ]w(x,t)]<_8, x[0,h], t[0,z], z_<T, then the functions
u, w and F extended in this way are continuously differentiable on N [0, z].

Next we show that if (2.1) holds, and 0 is sufficiently small, then

(2.12) sup (lu(x,t)l+lw(x,t)])<-6.
xR,t[O,T]

From (2.4) and (2.5) we see that if 80 is small enough, then [u(x,O)l+lw(x,O)l<8, and
therefore, there exists z0 [0, T] such that (2.12) holds with T replaced by z0. We define
the characteristic curves xl(t, fl) and Xz(t, y) at least on [0, z0], by the equations

(2.13)
dy(t)=X(y(t) t)dt
dy(t)
dt

--(y(t),t),

y(0)-- fl,

where

X(x,t) )_ t)) 1/2(2.14) .(X,t)J

We takeq,(w)=f’o’(t)I/dt and

(2.15)
r(x,t) } (x,t) +k(w(x,t))
s(x,t)

--u

With these definitions, the equations (2.10) become (note that u--(r+ s)/2)

(2.16)

dr(x(t,) t)dt
d
-d- s( x2( t, ), )

-(2-’ f[0,t](r(x,t-z)+s(x,t-z))da(z)+F(x,t)) x=x(t,B)
x=x2(t,7)
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Define

(2.17)
R(t)-- sup Ir(x,t)l, S(t)= sup [s(x,t)[,

x@R xR

h(t) =fo’ sup IF(x,lld.
xGN

If we integrate the equations (2.16) and use the definitions (2.17) in deriving an upper
bound for the right-hand side, then we obtain

Ir(xl(t’[3)’t)l<--R(O)} fo’(R(t_)+S(t_))var(a,[O,])d,is(xa(t,),t)]<_S(O) /h(t) /2-’

It follows from (2.3), (2.13) and (2.14) that for each [0, z0] we can choose fl and 7 so
that Ir(xl(t, fl),t)l=R(t) and Is(x2(t,V),t)l=S(t ). Thus we have

R(tl+S(tl<_R(O)+S(O)+2h(tl+fo’(R(t-z)+S(t-zllvar(a; [O,z]) dz,

and by Gronwall’s inequality we deduce that

(2.18) R(t)+S(t)<_(R(O)+S(O)+Zh(T))exp(tvar(a; [0, T])),
If we recall the definitions (2.9), (2.11), (2.15) and (2.17), then we conclude from (2.1),
(2.3) and (2.18) that R(t)+ S(t) can be made arbitrarily small by choosing o small
enough, and we see that we can take 0 T, i.e., the inequality (2.12) holds (since the
mapping (u,w) (r,s) has a continuous inverse as long as Iwl _< 8).

Now that we have picked 80 so that (2.1) yields (2.12), we choose M0 to be so large
that

)_,Mo>max 4(Tell/2e2 ,2
E1E2

(2.19)
X + [[a’llL,(n+)+var(a, [0, T])liall L,n+)1+2 klE1 1/2(l+kl/2)

Since (2.3), (2.12) and (2.13) hold, (2.10) or (2.15) can be rewritten in the form

(2.20)

Define

(2.21)

st(X,t)+p’(x,t)Sx(X,t) ,tl

O(x,t)--po(x,t)l/2rx(x,t),

(r(x,t--z) + s(x,t--)) da() + F(x,t),

xn, t[O,T].

xR, t[O, r].
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Next we want to show that

(2.22)

X=Xl( t,fl)
x-- x2( t,’g

These two equations will follow from (2.20) by the same calculations that were used in
[4, pp. 219-220], provided that we can show that rx(Xl(t, fl),t is a continuously
differentiable function of with derivative

(2.23) -rx(X,(t,),t)- -x (rt(x’t)+x(x’t)rx(x’t))-xx(x’t)rx(x’t)
x=x,(t,)

(and similarily for Sx(X2(t,7),t)). This is a consequence of the fact that by (2.3), (2.12)
and (2.14) we know that ) and are continuously differentiable on N X[0, T] and
because it is Nso clear that the right-hand side in (2.20) is a continuously differentiable
function of x (here we use the fact that a is a continuous measure).

Now we establish the continuous differentiability of rx(X(t, fl),t ) (the argument
for Sx(X2(t,y),t ) is the same). Let be a C function with compact support in
N X [0, T] and denote the right-hand side in (2.20) by d(x,t). Then we deduce from
some partial integrations and (2.20) that

(2.24)

f,r(r,(x,t)x(X,t)+rx(x, tlX(x,t)x(X,t)+rx(X,t)Xx(X,t)W(x,t))dtdx
(ex(x

Changing variables , x x 1( , B), we conclude that

d( (:)(x’t) ) d’dfl"

(Observe that the Jacobian O(x, t)/(fl, z) exp fg x(X1(, fl), )d is continuously
differentiable with respect to z.) Take 0 to be a continuous function with compact
support in N and l a continuously differentiable function with compact support in
(0, T ) and replace the function by a sequence % such that %(x l( , fl ), z)o(x, t)/0( fl, )
and (d/dz)(%(x(,fl),z)O(x,t)/O(fl, t)) converge uniformly to 0(fl)(z) and
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o(fl)’l(r). Then we see from (2.24) and (2.25) that

-00(/3) r(xl(r,),)dp’l()ddfl

=f.,o() foT(dx(xl(t,),’r)-rx(Xl(’r,),’r)Xx(Xl(’r,),’r))*l(’r)d’rd,
and since o and are arbitrary, we get (2.23). Thus, we obtain (2.22) as noted above.

Define
M(t)- sup

xN, r[0,tl

(2.26 KT- sup
xN,t[O,T]

Lr=(k/e)l/2var(a; [0, TI).
The equations (2.22) imply that (see (2.3), (2.12) and (2.26))

d

(2.27)
e5(x’(t’)’t)(x’(t’)’t)

)
--M(), t[0, Tl.

(x(,v), t) (x(t,v)

The sequence (%},o is defined by

(2.28) o-0, r,+--min{T, inf{,l[O,T],M()--2M(,)}}.
We will show that sup,o%< T, since this fact would give the desired contradiction as
M(O)> el/2Mo> O.

Assume that n0, %<T and that xoN, to[$n,$n+l] are such that for example
+(xo, to)-infxe,,e,.,,.+,l+(x,t)<-M(%). It is possible to choose 7 so that x2(to,7 )
=xo and at this point the derivative of + along the characteristic curve x2(t,) is
positive since e2M(%)2-Kr-2LrM(%)>O by (2.2)-(2.5), (2.12), (2.14), (2.15), (2.19),
(2.21) and (2.28). But this is impossible in view of our choice of (xo, to). Thus, we have
established that if %< T, then

(2.29) inf {O(x,t),,(x,t)} -M(%), t[t,,t,+].

Define

(2.30) d’,- sup
{O(x,%),/(x,%)}

xea M(%)
Clearly _>d0>0 and if %+1 < T, then d,+ 1- 1, n>_0 by (2.28) and (2.29). Let n>_0 and
assume that r, < T. In order to derive an upper bound for %+1-%, we observe that if
y(t) is continuously differentiable and satisfies (d/dt)y(t)>_cly(t)2-c2, c2y(0)2>c2,
then

>_- 1+ y(O)-- y(O) +
c Cl Cl

Xexp(2(Clc2)l/2t)(1--(Y(O)--(c2) 1/2

y(0) +-- exp(2(clca t)
Cl
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Thus, if y is to remain finite, we must have

(2.31)

4ct<
172

In y(O) +
1

1/2

When we apply this result to (2.27) we choose /3 or ,/ so that O(x(zn,fl),Zn) or
/(x2(", "{), ’n)--d,M(’), and we take c e2, c2--KT+ 2LrM(%) and y(O)-d,M(’,).
It follows from (2.19) and (2.2)-(2.5), (2.12), (2.14), (2.15), (2.21), (2.28) and (2.30) that
we always have (Kr+2LrM(n))(d2M(z,)2e2)-I< 1/4, and therefore, it follows from
(2.31) that ’n+l --’rn 2(e2d.M(’.))-l. Using this inequality we deduce that

n--1 n--1

%-- E (+-j)<2(e2doM(O))-l E 2-J<4(el/Ze2Mo)-’,
j=o j=o

because e/2Mo<doM(O) by (2.2), (2.3), (2.14), (2.21) and (2.30). From (2.19) we see
that sup,_>0 rn< T, and hence, we obtain the desired contradiction.
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COMPLETE MONOTONICITY AND RESOLVENTS OF VOLTERRA
INTEGRODIFFERENTIAL EQUATIONS*

KENNETH B. HANNSGENf AND ROBERT L. WHEELER

Abstract. We prove that if u’(t)+ff)a(t-y)u(y)dy=O (t-->0), u(0)- 1, where a is completely mono-
tonic and locally integrable, but not constant, then -u is the sum of a completely monotonic function and a
function which decays exponentially as t-o o.

1. Introduction. Concerning the problem

(1.1) u’(t) +ffa(t-y)u(y)dy-O
.’0

(t0), u(0)-l,

d), we prove the following theorem.
THEOREM 1. Let a be completely monotonic on (0, ) with 0 <_ a(o)< a(O + ) <_

and f a(t)dt< . Let u satisfy (1.1). Then there exist positive numbers K and e and a

finite nonnegative measure on [-e, 0] such that

u( ) f)etdl( o ) + Ul( ),
(1.2)

lu(t)l<_ge -"

In particular, u-u is completely monotonic and u is negative for all sufficiently
large unless u decays exponentially.

The function u is important because of the resolvent formula

ffuCt y )dyxCt) u(t)Xo+ )f(y
ao

for solutions of

x’(t) +fota(t--y )x( y ) dy --f(t),

For the Volterra integral equation

x(O)-xo.

x(t) +fota( t--y)x(y) dy--f(t),

the appropriate resolvent r(t) satisfies

r(t) +fota( t-y)r(y) dy a(t);

Reuter [14] has shown that r is completely monotonic if a satisfies the hypotheses of
Theorem 1.

Equation (1.1) has been studied intensively since 1960; see [12], [11], [6], [7], [17],
[5], [1], [9], [4], for example. In 1975 Shea and Wainger [15] proved that uLl(O, 0)
when a(t) is a locally integrable, nonnegative, nonincreasing, convex function which is
not piecewise linear and of a special form. The proof of this result relies on deep
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frequency domain techniques. We remark that in the. case where aft) is locally integra-
ble, nonconstant, positive and nonincreasing, and log a(t) is convex, then one can
show, without using transform theory, that the integral resolvent r(t) belongs to
Ll(0, ) [3], [13]. From this result one can deduce that u(t) also belongs to LI(0, ) by
using local analyticity as recently studied in [10, Props. 7.3, 7.4].

For the case where aft) is completely monotonic, (1.2) easily yields yet another
proof that uLl(O, ); we present this proof in 3. In that section we also give a
formula for the measure/ in a special case.

2. Proof of Theorem 1. Since aft) is completely monotonic and not constant,
Bernstein’s theorem yields a nondecreasing function aft) on [0, ) with 0-a(0)_<
a(0+)<(o)-a(0+)_< o and (x)-(x-) for 0<x< o, such that

aft)-- e-Xtda(x) (t>0).

Using the additional fact that a L(0, 1), we get that the Laplace transform

t(s e-Sta( ) dt

exists for s-o+ir with o>0. It follows from the theory of Laplace and Stieltjes
transforms [16, Chapt. 8] that fi(s) can be analytically continued to the slit plane
C’ C \(-, 0] by the formula

da(x)(2 1) fi(s) f0 sC
s--Fx

where the integral converges uniformly for s in any compact subset of C’.
Define D(s)--R(s)+ iI(s) by

(2.2) D( s ) s + gt( s ), s C’.

By (2.1) and elementary algebra, we get the formulas

(2.3) R(s)-+fo (+1))d2a((o+x+’r-) sC,’,

d(x) se’(2.4) I(s)-’-
(o+x)2+2’

Observe that D(g) =D(s ), s C ’.
LEMMA 2.1. The boundary value

D(o)--lim D(o+i)
,rO+

exists and is finite and nonzero for a.e. o (-o, 0).
Proof. Since Im h(s)<0 for s in the upper half plane 1-I + {s: Ims> 0}, the

function A(s)=(t(s)-i)- +(s+i)- is a nonconstant bounded analytic function on

1-I +. Thus, the limit A(o)=--lim,_o+A(o+ir) exists and is finite and nonzero for a.e.

a (-, ). Then lim,_0+(fi(a + ir)-i) exists and is bounded away from zero a.e. on

(-,c). Since D(s)=(gt(s)-i)(s+i)A(s) for sl-I+, the proof of Lemma 2.1 is

complete. E]

Next we use the expressions (2.3) and (2.4) to obtain estimates for R(s) and I(s)
that hold when s is near the cut s o + it, o< 0, r 0, and in a neighborhood of zero.
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LEMMA 2.2. There exist positive constants ,1, and B so that for each s-o/ iT

(2.5) I(s ) _< -1
’r

Then

or

(2.6) R(s)>_B.
Moreover

(2.7) Io(s)l->l l for-*l<--o<--O,

Proof. First consider the case where

is finite. Since a(O+)<a(c), we can find 3>0 so that

2 fv da(x) f da(x)
x2 7- >0.

Set B-(V/8)f da(x)/x 2 and -min{y,B/3}. Finally, choose 8, 0<8<B, so small
that

xa+a x

Suppose that (2.5) fails for some s-o+i satisfying-o0, 0<1. It follows
from (2.4) and our definition of that

Also, using our choices of , and B, and the fact that o--, 0<1, we easily
see that

> >2B.
2

Combining this last estimate with (2.8) and formula (2.3), we see that (2.6) must hold
whenever (2.5) fails. Also, the trivial inequality D(s)l min{IR(s)l and (2.5) or
(2.6) together with the fact that <B, yields (2.7), and the proof of Lemma 2.2 is
complete when

Next, suppose that
may be chosen so small that (2.5) always holds when -o0, Namely,
choose >0 so that f d(x)/x>4, and >0 so that

(xl e(x

fo x )da()x) >_ >2
(O/X /’r 2 X 2/’r2

whenever -/_<o_<0 and 0<[rl_<8, and (2.5) now follows from formula (2.4). (2.7)
follows trivially from (2.5). U]

satisfying-,l<_o<_O, O<lrl<, either
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We now turn to the proof of Theorem 1. By rewriting (2.1) as

+x)
Jo (s+x) +x sC’,

we see, using the dominated convergence theorem, that

(2.9) lim fi(o+iz)--0 uniformlyinanyhalfplane-o<o0_<o<.

Let r/, 8 and B be the positive constants that occur in Lemma 2.2, and use (2.9) to
find A _> 8 so that D(s) #= 0 when -,/_< o< oo and [1 -> A. D(s) can have at most a finite
number of zeros in the compact set -_<o_<0, i$_<lrl_<A. Since R(s)>0 for o>_0, s =/= 0,
we can find e, 0 < e_< r/so that

(2.10) D(s)vaO forsC’ with

In addition, by Lemma 2.1 we can insure that the e that we have just selected is such
that the boundary value D(-e)--lim,_.o+ D(-e+ i’) exists and is different from zero.

It is well known [6] that the solution u(t) of (1.1) can be expressed by the complex
inversion formula for Laplace transforms as

u(t)- lim if+it StD_l(s)ds t>0
T---> - c-- iT

e

where c is a suitably large positive constant. For each fixed O, 0< O<, we can use (2.9)
and (2.10) together with Cauchy’s theorem to deform the above line integral, and write

(2.11) u(t)-- V(t)+Ho(t)+Co(t), t>0,

where V, Ho and Co are defined by

(2.12) V(t)-lim [f_-T--,o
"}- e(-+i)tD-t(-e+ir)dr’

(2.13) ,f0H(t) --’i [e(-i)tD-l(a--ip) e(O+i)tD-l( o -t- ip )] do,

i)eidO.

e-t fTRV(t) --rr r+olim e(eitD-l(-e+ i’r)} dr.

(2.14) Co( ) -P-rrr fr/Zexp(tpei)D-’(pe"-r/2

We first show that for fixed >0,

(2.15) Co(t)O aspO+.
To see this note that D(s)--,fi(0)>0 as s--,0 in Res_>0 when aL(O,), while
D-(s)--,O as s0 in Res_>0 when aL(O, ) by [6, Cor. 3.2]. In either case elemen-
tary estimates then give ICo(t)[-O(oet) as p--,0+ and (2.15) holds.

Next, we consider Vo(t). Differentiating (2.1) yields 16, p. 328]

fo da(xl2 sC’,

and dominated convergence can then be used as before to deduce that [fi’(o+i-)lO
as 1] uniformly in any half plane -o<o0_<o<c. Since D(g)=D(s), we can
rewrite (2.12) as
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An integration by parts now yields

lRe[eitD-l(-e+ i’r)] d’rv.(t)-

D2(_e+i)

where the second integral is absolutely convergent. Since, by our choice of e, D(-e + z)
D(-e) 0 as 0 +, we can let O 0+ in the above formula to get

(2.16) lim (t)-u,(t) t>0,
p0

where

(2.17)

u,(t)-

+ 1Re ie"D-l(-e+i) + e, D’(-e+i’)
d"

D(_e+iz)

Clearly etu l(t) O( 1)(t --+ ).
Now we use the term Hp(t) to construct the measure 1. Since D(g)=D(s), (2.13)

can be rewritten as

et cos pt + sin pt do.(2.18) no(t)- r [O=(o_ i)[ iO-(o_io)[

Next we show that for >0

(2.19) li+ fo R(o-itg)
do-O.

o _e, sin pt
ID2( o- io )1

To see this note that for small enough t9 >0, and -e_<o_< 0,

R(o-ip) ]<_ tatetsinpt
D2(o_ip) ID(o-io)l

where the second inequality follows from (2.7). By Lemma 2.1, D(o-ip)-+D(o)=/=O as
p-0+ for a.e. o [-e, 0], and (2.19) is a consequence of the dominated convergence
theorem.

Let (Pk) be any sequence with O<iok<8 SO that Ok-*O as k o. Set t= 1, and use
(2.11), (2.15), (2.16), (2.18), and (2.19) to deduce that

(2.20) {f l(--iP’)d } k=12,. is a bounded

Define, for k 1,2,- .,

(x+o
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S’-[-e, 0]\Sk, and let Xk(O) denote the characteristic function of Sk. By (2.3), (2.4) and
Lemma 2.2, II(o-io,)l<_Ok and R(o-io,)>_B whenever oS; hence

I( o- ipl, )fs do - O ok

Thus, by (2.20), the sequence

f
is bounded. From (2.4), I(o--ipk)>_O when oS,, and therefore

(2.21) {dsk(o)-- Xk()l(-iPk)

is a bounded sequence of nonnegative measures on [-e,0]. By the Helly selection
theorem [16, p. 31], there exist a finite nonnegative measure t on [-e, 0] and a subse-
quence (/),} of the sequence of measures (/k} such that/),-/ (k- o) in the weak*
topology. In particular, for each > 0

f_ge Ot dlk( o ) fo
as k - o. Combining this with (2.11), (2.15), (2.16), (2.18) and (2.19), we see that

u(t)---fetdl(o)+Ul(t), t>0.

Since etu(t) is bounded for large t, and since u(t) and f_o e or dt(o) are continuous on

[0, ), we can find K>0 so that [u(t)[<_Ke-t (t>0). This proves Theorem 1.

3. Further remarks.
COROLLARY 3.1. Under the hypotheses of Theorem 1,

fo[U(t)ldt<.
As noted earlier, more general versions of this result are known.

Proof. Write fu(y)dy wl(t ) + Wz(t), where wl(t ) fui(y)dy. Then
Wz(t)$ f(u(t)-u,(t))dt and [w,(t)l_< fglu,(y)[ dy<_K/e. Integration of (1.1) yields

(3.1) u(t)--l-- Wl(t-y)a(y)dy- w2(t-y)a(y)dy.

The argument of Levin [11] (as arranged in [8]) shows that [u(t)[_<l (0_<t<o); in
particular, 1-u(t)>_O. We also have the elementary estimates

fot fo <2K ft/2w(t-y)a(y)dy <- a(y)dy_-jo a(y)dy,

ft/2w2(t-y)a(y)dy>_-w2(t/2)j a(y)dy.

Inserting these estimates in (3.1), we get

-w2- -<-,
so

glu(t)ldt3ge
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In conclusion, we point out that if the function a of {}2 satisfies

foxdxa’( x---<
for some x0>0, then on the interval -min{e, Xo} _<o_<0, the measure in (1.2) is given
by

) do(3.2) d(o)=
[o+ o +

where q,(o)=--limoRet(a-i7) is well defined for a.e. a by Lemma 2.1.
To prove this, note that by the Schwarz inequality, if -Xo_<O_<0, 0<<Xo/2, and

E(a,7)=--[O, xo]Q[-o-7,-o +], then

72< f dx <_ a’(x)dx

Thus, by (2.1)

7 --272 (,,,) (o,,)a’(x)
as 7-,0, uniformly in -Xo<_o<_O.

Let

dx

fox 2 72rr (o+x +
By the Schwarz inequality,

>7 >1(3.4) Ima(o-iT)rrB,(o)_> 7

(o+x)2 +72 y2 + 72

if 7>0 is small. But B,(-o) is the Poisson integral of X/a’ (x--characteristic function
of [0,x0]), so B,(o) 1/a’(-o) (7--, 0 +) a.e. on (-x0,0) and in L(-xo,O). Thus, by (3.3)
and (3.4), one can use the Vitali convergence theorem [2, p. 150] to show that the
functions

I(o--ip) a’(-o)
rlD2(o-io)l [o+(o)]2+ [ra’(-a)] 2

(p0+) in L(-xo,O). Therefore, on [-min(x0,e),0 the measures d#k of (2.21) con-
verge to the absolutely continuous measure given by (3.2).
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RUNGE’S THEOREM AND FAR FIELD
PATTERNS FOR THE IMPEDANCE BOUNDARY

VALUE PROBLEM IN ACOUSTIC
WAVE PROPAGATION*

DAVID COLTON"
Abstract. Let H denote a Hankel function-of the first kind, Jn a Bessel function and suppose 0< k<,

0<ImX>, where X and k are constants. Let D be a bounded domain with smooth boundary 0D and let v

be the unit outward normal to 0D. Then it is shown that the sets

(-v+X)Hn(kr)cosnO, (---+X)Hn(kr)sinnO
and

+X J(kr) sinn0,

n =0, 1,2, 3,- ., are complete in L(D). These results are then used to show that, in contrast to the limiting
cases X :0 and :, the class of far field patterns corresponding to the scattering of entire incident fields

by a bounded obstacle having surface impedance X are dense in L[0, 2] for all values of the wave number
k.

1. Introduction. A basic difficulty in studying the inverse scattering problem for
acoustic waves is to obtain information on the class of far field patterns corresponding
to boundary conditions of a given type. The first step in such an investigation is to
construct the mapping taking given boundary data onto the corresponding far field
pattern, and the usual approach in this regard is through the use of integral equations
(cf. [2]). However, such an approach is not always the optimal choice for obtaining the
desired information. In particular, we shall be concerned in this paper with the method
of least squares for solving time harmonic scattering problems, and our aim is to first
present a contribution to the existing theoretical basis for this method and then to
apply our results to the problem of classifying those functions which can be far field
patterns corresponding to a given physically realizable scattering problem.

To be more precise as to our aims, we first formulate the acoustic scattering
problem that we are concerned with in this paper. We shall restrict ourselves to
two-dimensional scattering problems, although all of our results can be immediately
generalized to the case of three dimensions. Let D be a bounded simply connected
domain in the plane with smooth boundary OD and let v denote the unit outward
normal to D. Then we want to construct (or approximate)a solution u C2(R2\/)N
Cl(R 2\D) of the Helmholtz equation

(1.1a) A2u+k2u-O in 2\/-

such that u satisfies the impedance boundary condition

(1 lb) Ov
xu-O on0D

and u is of the form

(1.1c) u-ui+us,

Received by the editors July 28, 1981. This research was supported in part by the National Science
Foundation under grant MCS78-02452, and the Air Force Office of Scientific Research under grant 81-0103.

Department of Mathematical Sciences, University of Delaware, Newark, Delaware 19711.
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where u (the incident field) is a given entire solution of (1.1a) and u (the scattered
field) is a solution (to be determined) of (1.1a) in the exterior of D satisfying the
Sommerfield radiation condition

Ou
(1.1d) lim V -r-iku -0

uniformly with respect to 0, where (r, 0) are polar coordinates centered at an origin
contained in D. In (1.1a) the wave number k is assumed constant, finite and positive,
and in (1.1b) the surface impedance is assumed to be a constant satisfying 0_<Im<
Under these conditions there exists a unique solution to (1. l) [2].

The method of least squares for approximately the solution of (1.1) proceeds as
follows (cf. [4], [5]). Separate variables in (1.1a) to obtain the set of solutions

(1.2)
Hn(kr)csnO’

n-O, 1,2,-..,
Hn kr ) sin n O

where H denotes a Hankel function of the first kind. Then each member of the set
(1.2) satisfies the radiation condition (1.1 d) and we look for an approximate solution to
(1.1) by choosing an integer N and constants a and bn, n 0, 1,2,... ,N, such that

is minimized, where

(1.4)

Ou ,
L2(3D)

N

USN E Hn(kr)[ancsnO+bnsinnO].
n--O

The constant N is chosen large enough in order to make (1.3) smaller than an a priori
determined value. The attraction of the above procedure lies in its inherent simplicity
and, from a theoretical viewpoint, is a valid algorithm provided the following two facts
are true:

1) The scattered field u depends continuously with respect to the maximum norm
on the impedance boundary data measured with respect to the L2-norm over D, and

2) The set of functions

(1.5) -v+X Hn(kr)cosnO, -v+X Hn(kr)sinnO

is complete with respect to the LZ-norm over D.
The first condition follows from the solution of (1.1) by the method of integral
equations (cf. [2], [5]). However, to the author’s knowledge the second condition has
only been established for the limiting cases of Dirichlet boundary data (i.e.,) oo, cf.
[1], [3], [4], [5], [7]) and Neumann boundary data (i.e., X=0, cf. [4], [5]. The proof in [4]
is incomplete--the integral equation C2 in [4] can have nontrivial solutions if k 2 is an
eigenvalue of the interior Dirichlet problem). Hence, in the next section of this paper,
we shall establish the validity of this second condition for finite values of the surface
impedance 3,. We shall also show that the set of functions

(1.6) --+X Jn(kr)cosnO,
n-O, 1,2,-..,-- + )t Jn ( kr ) sin n O
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where J, denotes a Bessel function and 0< IMP,< , is complete with respect to the
LZ-norm over OD for any value of the wave number k. This result is not true for the
limiting cases ,=0 and ,= (cf. [5]). We refer to the above results as Runge’s
theorem for the impedance boundary value problem and urge the reader to consult the
excellent tutorial paper by Miller [4] for the corresponding results for the case of
Dirichlet boundary data. The proofs of our theorems will be based on the method of
integral equations where in the case of the set (1.5) we make use of the recent approach
due to Ursell [6] which avoids the problem of eigensolutions to interior boundary value
problems. We note that the proofs given in [4], [5] and [7] for the limiting cases ,-0
and - do not appear to have an immediate generalization to the present case where
0<Im?<.

With the above results at our disposal, we shall then examine the far field patterns
of solutions to (1.1). The far field pattern is defined in terms of the asymptotic behavior
of the scattered field us. In particular, it can be shown [1 ], [2], that

uS( r, o ) -eir F( O; k)+ 0(r-3/2),

where for each fixed k, F is an entire function of 0 of exponential type. F is known as
the far field pattern of us, and the question arises as to whether or not the class of far
field patterns for a fixed domain D, wave number k and surface impedance ?, but
arbitrary entire incident field u i, is dense in L2 [0, 2r]. We shall show by an example
that this is not true in general for the limiting cases ?-0 and ? but using the above
described approximation theorems is true for 0<Im?<. We note that such a result
only represents a beginning in the difficult problem of classifying far field patterns. A
possible next step in this line of inquiry is to determine the compact subset in L2[0, 2r]
that corresponds to a fixed incident field and wave number but with surface impedance
lying in a given compact subset of the complex plane. As opposed to the problem
considered in this paper, this problem is complicated by the fact that it is nonlinear.

2. Runge’s theorem for impedance boundary value problems. We begin by showing
the set of functions (1.6) with 0<Im?< is complete in L2(OD). In order to do this,
we need the following well-known lemma which we include here for the convenience of
the reader.

LEMMA 1. Let uC2(D)tqC() be a solution of the Helmholtz equation in the
interior of D such that the boundary condition (1.1b) is valid where 0<IMP<. Then u
is identically zero.

Proof. Using Green’s theorem and the boundary condition (1.1b), we have

0= u -3--u-ff ds- 2i Im? lul=ds.
D D

Hence u=0 on OD and the boundary condition (1.1b) implies that Ou/Ou=O on OD. It
now follows from Holmgren’s uniqueness theorem [1] that u is identically zero in D.

We can now prove the following theorem:
THEOREM 1. Let 0<IMP,<. Then the set offunctions given in (1.6) is complete in

L2(3D).
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Proof. Since the set of continuous functions is dense in L(OD) it suffices to show
that if g C(OD) and

(2.2)
,0) -v + )t J, ( kr cos n O ds O,

zg( r, O ) -v + )t J( kr) sinnO ds-O

for n--0, 1,2,..., then g is identically zero on 3D. Suppose (2.2) is true for some g that
is not identically zero. Let f be a disk centered at the origin and containing D in its
interior and let x R2\f and/j OD. Then from the expansion (valid for r<rx)

(2.3) no(klx-l)-Ho(krx)Jo(kr)+2 nn(krx)Jn(kr)cosn(Ox-O),
n---I

where (rx, 0x) and (r, 0) are the polar coordinates of x and l, respectively, we can
conclude from (2.1) that

(2.4) u(x)-- g(@)-g4v/, no(klx--@l)dse--O

for x R2\,q. Since u, as defined by (2.3), is a solution of the Helmholtz equation in the
exterior of D, we can conclude by the analyticity of solutions to the Helmholtz equation
that u(x)=0 for xR2\/S. Letting x tend to OD and using the well-known continuity
properties of single and double layer potentials, we can now conclude that g .is a
solution of the Fredholm integral equation

(2.5) 0-g(x)+5 z)g(/2) -v/X no(k[x-@l)dse

for x COD. Hence g is an eigenfunction of the integral equation (2.5), and by the
Fredholm alternative there exists a function q C(OD), e# not identically zero, such that
q is an eigenfunction of the equation adjoint to (2.5) with respect to the dual system
(C(OD),C(OD)),i.e.,

(2.6) 0-q(x)+-oq(j) -Vx+X Ho(klx-l)ds

for x OD. Now for x 2 define w by

ri fo dp( )Ho(k[x- l)dsw(x)-T
Then w is a solution of the Helmholtz equation in the interior and exterior of D, and
using the continuity properties of single layer potentials, we can conclude from (2.6)
that

where the minus sign denotes the limit of (Ow/Ou)(x) as x tends to OD from inside D.
Hence, from Lemma we can now conclude that w is identically zero in D. Since w as
defined by (2.7) is a continuous function of x in all of , we now have that w is a
solution of the Helmholtz equation in the exterior of D, satisfies the Sommerfield
radiation condition and vanishes on OD. Hence, from the well-known uniqueness
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theorem for radiating solutions of the exterior Dirichlet problem for the Helmholtz
equation, we have that w is identically zero in the exterior of D. But from (2.7) and the
jump discontinuity property of the normal derivative of the single layer potential, we
now have that

(2.9) O- ( )w Ow

for xOD, where the plus sign denotes the limit of (Ow/Ov)(x) as x tends to OD from
outside D. Hence q is identically zero, which is a contradiction. Hence the only solution
of (2.1) is g identically zero, and the theorem is now proved.

We want to prove the analogue of Theorem for the set of functions (1.5). The
proof proceeds along similiar lines as that of Theorem 1, except that the roles of
interior and exterior domains are reversed, and it is this fact that creates a problem.
Indeed, if we construct our auxiliary functions u and w as in (2.4) and (2.7), respec-
tively, we can conclude that w is identically zero in the exterior of D but not in the
interior of D if k 2 is an eigenvalue of the interior Dirichlet problem. We shall avoid this
difficulty by following the work of Ursell [6] and replacing the fundamental solution
appearing in (2.4) and (2.7) by one which satisfies a dissipative boundary condition on
a circle lying inside D.

THEOREM 2. Let 0 <_ ImX< o. Then the set offunctions given in (1.5) is complete in
L2(OD).

Proof. It again suffices to show that ifg C(OD) and

r,O) -u+X Hn(kr)cosnOds-O
(2.10)

g( r O ) - +X H,( kr sin nO ds O

for n =0, 1, 2,..., then g is identically zero on D. Suppose on the contrary that (2.10)
is valid for some g that is not identically zero. Let a be a disk of radius a centered at
the origin and contained in the interior of D and let x Dx, OD. Let G be a
fundamentM solution of the form

(2.11) G (x,)-H0(lx- + r(x,
where F is a regular solution of the Helmholtz equation with respect to both x and for

Ixl >a2, satisfies the Sommerfield radiation condition, and is such that G satisfies the
dissipative boundary condition

on [x[=a, where , is a fixed constant satisfying 0<Im3,< o. Such a fundamental
solution was explicitly constructed by Ursell in [6] and can be written in the form

(2.13) a(x,)--no(klx-l)/aono(krx)/2 Y an(krx)COSn(Ox-Oe),
n--1

where the constants a,, n=0, 1,2,- ., are in fact functions of/j and are defined by

kJ ka ) + yJ,( ka )(2.14) an-Hn(kr) [kH(ka)+YHn(ka)
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Then from (2.10), (2.13) and the expansion (2.3) (with the roles of/j and x inter-
changed) we have as in Theorem that

(2.) ,(x) () 5-+x (x,),s-0

for x D\f, and g is a solution of the Fredholm integral equation

g() +x O(x,)ds(216) 0 (x) 5
for x 0D. Hence there exists a function C(OD), + not identically zero, such that

Z ,() +x a(x,)(.7) 0-,(xl- o

for x 3D. Again following the proof of Theorem 1, we define for x

(a.18) w(x)-
and conclude that

+;kw- 0.(2.19)
+

It now follows from the fact that w satisfies the Sommerfield radiation condition that w
is identically zero in R 2\D-. Hence, using the continuity of w for x R 2\2, we have that
w is a solution of the Holmholtz equation in D\2, vanishes on 0D and satisfies

(2.20) (-r +3, ) w-0
on Ixl-a. It now follows from a slight modification of Lemma (cf. [6]) that w is

identically zero in D\f. Hence, we can now conclude as we did in Theorem that is

identically zero, and this is a contradiction. Hence, the only solution of (2.10) is g
identically equal to zero, and the theorem is proved.

3. Far field patterns of solutions satisfying impedance boundary data. We now

address ourselves to the problem of showing that the set of far field pattern corre-
sponding to solutions of (1.1) are dense in L2[0,2r] for any fixed values of the wave
number k and surface impedance X, 0<ImX<. We shall first give an example
showing that this is in general not the case if X-0, in particular if k 2 is an eigenvalue of
the interior Neumann problem. A similar example can also be constructed for the
limiting case X- (i.e., Dirichlet boundary data).

Example. Consider problem (1.1), when D is the unit disk and 2-0. Then, since u

is an entire solution of the Helmholtz equation, we can expand u in the form

(3.1) ui(r,O) ’ Jn(kr)[anCosnO+bnsinnO],
n:0

where the series (3.1) is uniformly convergent on any compact subset of N 2. Then for
r >_ 1 we can expand u in the uniformly convergent series

(3.2) uS(r,O) , H,(kr) J/(k)
.:o H,(k) [a,cosnO+b,,sinnOl,
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and from the asymptotic behavior of Hankel’s function we have that the far field
pattern for u is given by

(3.3) F( O; k ) e_ir/4 2 (-t ) J/,( k )
n---=0 (i" [anCSnO+bnsinnO]"

If k is an eigenvalue of the interior Neumann problem, then J(ko)-O for some
integer n-no, and hence in this case F(O;ko) is orthogonal to cosn00 and sinn00 for
all incident fields u i. Hence, the class of far field patterns for such values of k is not
dense in L2[0, 2r].

We shall now show that, in constrast to the above example, the class of far field
patterns corresponding to surface impedance 2, satisfying 0< Im)t< are dense in
L2[0,2r] for all values of the wave number k and any bounded simply connected
domain D with smooth boundary D.

THEOREM 3. Let 0<Im)t<. Then the class offar field patterns ofproblem (1.1) is

dense in L2[0, 2qr].
Proof. Let fL[0,2r] and e>0 be given. Then there exists a trigonometric

polynomial
N

(3.4) F(O)= X [a, cosnO+bnsinnO]

such that

(3.5)

where denotes the norm in L[0, 2r]. Then

ir/4 /-
N

(3.6) uS(r’O)--e V - (i)nHn(krl[anCSnO+bnsinnOl
n--O

is a radiating solution of the Helmholtz equation having F as its far field pattern. Let
g C(OD) be defined by

(3.7)
OuS+u g.Ov

Then from Theorem we have that for every >0 there exists a integer M=M(6) and
constants c and do, n-O, 1,...,M, such that

M

(3.8) ui(r,O) E Jn(kr)[cncsnO+dn sinnO]
n--O

satisfies

(3.9) --u+Xu+g <8.
L2(OD)

Now let fi-fis+ u be the solution of (1.1) corresponding to the incident field u given
by (3.8) and let/ be the far field pattern of fis. From the method of integral equations
it can be seen that the mapping of the boundary data g to the far field pattern F is a
continuous mapping from L2(OD) into L2[0,2r]. Hence, if 6 is chosen sufficiently
small, we have

(3.10) IIP-FII<,



IMPEDANCE BOUNDARY VALUE PROBLEM 977

and from (3.5) and (3.10), we now have

(3.11)
Since f and e are arbitrary the theorem is now proved.

Acknowledgment. The author would like to thank Professor Fritz Ursell for help-
ful discussions concerning this paper.
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INTEGRAL RELATIONS FOR LAMI FUNCTIONS*

HANS VOLKMER"
Abstract. In this paper we introduce a new general integral relation for Lam6 functions. We show that

the known linear integral equations for periodic Lam6 functions are special cases of this new relation. We are

able to determine the characteristic values of the integral equations for Lam6 functions using our relation. We
pay special attention to integral relations for Lam polynomials.

Introduction. Integral relations for Lam6 functions were discovered by Whittaker
[15], [16] in 1915 and have since been investigated by Ince [7], [8], [9], Erd61yi [4],
Arscott [1], [2], [3], Shail [11] and others. These integral relations are generated by the
usual method which depends on the simultaneous separability of the wave equation in
different orthogonal coordinate systems. A systematic application of this method was
presented by Schmidt and Wolf [10].

In [13] and [14] I introduced a new method to generate integral relations with
variable boundaries for several classes of special functions. This method is closely
connected with Vekua’s theory [12] of solving elliptic equations by integral operators.
We also refer the reader to the paper of Henrici [6] who applied such integral operators
to the theory of special functions.

In this paper we compare the new relation in the special case of the Lam
functions with the known integral equations. The main results are:

1) The known integral equations of Erd61yi, Magnus, Oberhettinger, Tricomi
[5, 15,5.3] and Whittaker, Watson [17, 23.6 and 23.6.1] are special cases of this one new
relation.

2) Using the new relation we are able to express the characteristic values of the
integral equations for periodic Lam functions by values of any second solution of the
Lam6 equation. This is not possible with the usual method to generate these integral
equations.

3) The new relation is valid for any Lam6 function (i.e., any solution of Lam6’s
equation) in contrast to all known relations which are valid only for Lam6 functions of
special types.

In we shall state the general integral relation with variable boundaries for Lam6
functions. In the 2, 3, 4 we shall discuss this result for periodic Lam6 functions and,
in 5, for Lam6 polynomials.

In this paper we denote by sn, cn, dn the Jacobian functions corresponding to the
fixed modulus k ]0, 1[. As usual, k’ ]0, 1[ is the modulus complementary to k, i.e.,
k2-+-k’2= 1. 2K is the real period of dn and 2iK’ is the imaginary period of sn. Let
C() be the set of complex (real) numbers and let M--{2mK+(2n+ 1)iK’: m,n
integers} denote the set of poles of the functions sn, cn, dn.

1. A general integral relation for Lam functions. We start with an integral rela-
tion which follows easily from [14, (2.30)] by setting x=, y=K+iK’-il. It is a
special form of Riemann’s formula for integrating partial differential equations.

THEO,IVI 1.1. Let D be a subset of (C\M) (C\M) which can be written in the form
D {( x,y ) C 2: (x y, x +y G G2 } with two simply connected domains G 1, G2 in

Received by the editors November 18, 1980, and in final revised form October 16, 1981.
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(3. Let w: D- (3 be a solution of the partial differential equation (with a complex parame-
ter u)

2W O2W
)X 2 )y2

+ u(u+ 1)k(sn2y-snx)w-O.

Then we have for three points (xo,Yo), (x,y), (x2,Y2)D, with x-y-xo-Yo, X2-t-y2
xo +Yo and any path L in D from (x 1,Y ) to (x2,Y2 ),

w(x,y) + w(x ,y2) + fL(( Ow
W(xo Yo ) - - 2 - A --fy (Ow
where A" D D (3 is the analytic function defined by

A(x,y,xo,Yo)--P,, ( k2snxsnxosnysnyo
k )k ’-- cn x cnxo cny cnyo + dnx dn Xo dny dnyo

In the special case that , is a nonnegative integer, this kernel function appears in [5,
15.7(5)].

With regard to the function A, we remark that P, denotes the Legendre function
with parameter , (which is analytic at 1). For (x,y) close to (xo,Yo), the argument of P,
is close to 1. The function A(., .,xo,Yo), defined locally this way, can then be continued
analytically on D. In [13] and [14] we proved that this is possible.

The argument of P, may be represented by means of

f(z ) k cn z + dn z

and the cross ratio

CR(zl,z2,z3,z4)- z4-zl z2-zl
z4 -z z2 Bz

in the form

k 2

(1.3) k2snxsnxosnysnyo--cnxcnxocnycnyo+-dnxdnxodnydnyo
1-2CR(f(xo-Yo),-f(xo+Yo),-f(x+y),f(x-y)).

If u and u2 are solutions of the Lam6 equation (with complex parameters ,, ?),
(1.4) d2u (3, u(u+ l)kEsn2z)u 0

dz 2

then w(x,y)--u(x)u2(y ) fulfills the partial differential equation (1.2). Therefore, set-
ting in Theorem 1.1 w(x,y)-u(x)u2(y) and L-Ls with fixed s(3, we obtain the
following general integral relation for Lam6 functions.

COROLLARY 1.5. Let D be a domain of the form D-((x,y)(3:(x-y,x+y)
G G2 } as in Theorem 1.1 .and let D and D2 be domains in (3 \M such that D CD O2.

Let Ul: D (3 and u: D2 (3 be solutions of (1.4) (with the sameparameters u,).
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Then we have, for all (xo,Yo) D and any path L in C from Xo- (Yo- s) to

Xo+(yo-s ) (sC) with (L s)CD,

(Xo- +u (Xo+

+ u’2(s)A(x,s,xo,Yo)-U2(S ) "-(X,S,Xo,Yo) Ul(X)dx.

The kernel A is the same as in Theorem 1.1.
The integral relation in Corollary 1.5 has many interesting applications as we shall

see in the following sections. For example, with fixed Y0 and s, 1.5 is an integral relation
for the Lame function Ul, because u2 only appears with the values u2(Y0), u2(s), u’2(s ).
With fixed x0 and s, 1.5 is an integral representation of the solution u2 of the initial
value problem for (1.4) at z=s in terms of the Lame function u.

2. Integral relations for Lam functions of period 2K or half-period 2K. In
Corollary 1.5 we set D D2 G G2 (z C -K’< Imz<K’}. These domains satisfy
the assumptions of the corollary. Moreover, we have D R CD. Now Corollary 1.5
with s 0 reads:

THEOREM 2.1. Let Ul,U2:D be solutions of (1.4). Then we have, for all
(xo,Yo)D,

u,( xo )u( yo )-u(O)( u,( xo--yo) + u,C xo +Yo ))

+_1 xo+YOo_yo u’2(O)A(x’O’x’Y)-u2(O)-Y (X’O’x’Y) Ul(X)dx"

For the path of integration we can choose any path in D from xo-Y0 to xo+Yo. The
integrand is analytic in x D.

We make the following remark concerning the kernel A. It is easy to see that for
the function f(z) kcn z + dn z we have

f(a,)=f(a2)= {zC: Rez>0}.
If we represent the argument of P as in (1.3) the well-known properties of the cross
ratio yield

k 2

k 2 sn x sn xo sny snyo -cnx cn xo cny cnyo + dnx dnxo dny dnyo ]- o,

for (x,y)D, (xo,Yo)D.
Therefore, if we consider the Legendre function P as an analytic function on

C\ ]-oo,-1], we can define the function A globally on DD. Using this observation
the kernels of Theorem 2.1 are

k 2 )A(x, O,xo,Yo)-P -7cnx cnxocn Yo+-7dnx dnxodnyo

0A k2 snyo e,( )Oy (x’O’x’Y)- snxsnx

For some pairs of parameters v,X, there exist (nontrivial) periodic solutions Ul: DC
of the Lame equation (1.4).
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(2.2)
(2.3)
(2.4)
(2.5)

We consider:

even Lam6 functions of period 2K,
odd Lam6 functions of period 2K,
even Lam6 functions of half-period 2K,
odd Lam6 functions of half-period 2K.

Half-period 2K means Ul(X + 2K)=-Ul(X) (x D1).
For periodic Lame functions we obtain from Theorem 2.1 integral equations with

fixed boundaries. These integral equations are well known (see Erdelyi/Magnus/Ob-
erhettinger [5]), but our approach to these integral equations is new. Moreover, we can
determine the characteristic values of the integral equations.

COROLLARY 2.6. Let u: D - C be a solution of (1.4) belonging to one of the classes
(2.2)-(2.5) and let u2: D-C be any second solution of (1.4) which is linearly independent
of u 1. Then we have for all xo D
in case (2.2)

u(K)-u2(-K)

in case (2.3)

u,(xo) u’(K)--u’(-K)

u (O) =_ -Tdnx dnxo u(x)dx,

r (’ )k4k’ Kenx cnxo snxsnxoPt’’ dnxdnxo ul(x)dx,
*’-g

in case (2.4)

u(x) u’2(K)+u’2(-K)u’2(O) -----;k2 -tcftCcnxcnxP;( -Tdnl
in case (2.5)

xdnxo)u(x)dx,

Proof. Case (2.2). The value of (u2(K)-u2(-K))/u’2(O) does not depend on the
choice of the second solution u2. Therefore, without loss of generality, we can choose u 2

such that u2(0)- 0 and u(0)- 1. In this case we have (u2(K)- u2(-K))/u’2(O)-
2u(K). Now we apply Theorem 2.1 with yo=K and, since D N CD, we obtain for
all x0D

(Ul(Xo)u(K)=- o_Kf Tdnxdnxo u(x)dx.

Since the integrand is periodic mod 2K, we can replace rxo+c by fc" thus the equationYxo--K
in case (2.2) is shown.

The proof in case (2.5) is similar.
In case (2.3) we may assume u2(0)- 1, u(0)-0. Then we dfferentiate the integral

equation in Theorem 2.1 with respect to Y0 and set yo=K. Using the properties of u
and u2 we see that on the right-hand side of the equation only the integral is left. Now
this integral may be handled as in case (2.2).

The proof in case (2.4) is similar.
We point out another interesting application of Theorem 2.1. For an arbitrary pair

of parameters v,?, the Lam6 equation (1.4) has one even and one odd solution (up to
constant factor). Further, there are solutions which are even or odd with respect to K.

Ul(X0) u2(K)+u2(-K) 2 ( )u2(O)
-.k "-KfKSnxsnxP’ -;dnxdnx u,(xldx.
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Using Theorem 2.1 we are able to represent one of these solutions in terms of another
such solution. For example if Ul,Uz:O C are the solutions of (1.4) with Ul(0)= 1,
u’l(0)- 0 and u2(0)-0, u(0)-- 1, then we have, for, all Y0

u2(Yo) P--k--cnxcnyo+-dnxdnyo ul

This follows immediately from Theorem 2.1 with x0 =0. If we choose /t such that
ua(K)- 1, u(K)-0 and u2 as above, then Theorem 2.1 with xo-K yields

C+y0u2(Yo)-f t’(-kTdnxdnyo)U3(x)dx.
We refer to the papers of Arscott [3] and Shail [11], who also obtained representa-

tions of a second solution in terms of a first solution. They consider the case that the
first solution is a Lam6 polynomial and the second solution is the usual F-solution. This
F-solution is even or odd with respect to iK’ but not with respect to 0 or K.

3. Integral relations for Lam6 functions of period 2iK’ or half-period 2iK’. In
Corollary 1.5 we set

D D2-- (zC :0<Rez<2K ),
G :DI-K Gz=DI+K.

Then we have D (K+ iR)CD. Again, from Corollary 1.5 we obtain with s--K:
THEOREM 3.1. Let u l, u2: D C be solutions of(1.4). Then we havefor all (xo,Yo)D

ul(xo )u2( Yo ) =-u2(K )( u,(xo- ( yo-K )) + ul( xo + ( yo-K )) )

fxo+(yo-I,:)+ - Xo--(yo- K)

where the path of integration & in D and

ui( )A ( xo ,Yo )

-uv.(K) -y (X,K,xo,Yo) ul(x)dx,

)A(x,K,xo,Yo)-P k2snxsnxosnyo+-Tdnxdnxodnyo
OA k 2

8y (x’K’x’Y)---cnxcnxcnyP:(’’" )"

Here the function A may be defined globally by the Legendre function P.: C\ ]-,- 1]
C as in 2. This follows from

f(G) (zC: [zl<k’}.

Now we consider

(3.2)
(3.3)
(3.4)
(3.5)

Lam6 functions of period 2iK’, even with respect to K,
Lam6 functions of period 2iK’, odd with respect to K,
Lam6 functions of half-period 2iK’, even with respect to K,
Lam6 functions of half-period 2iK’, odd with respect to K.
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In the same manner as in {}2, we obtain from Theorem 3.1:
COROLLARY 3.6. Let u: D C be a solution of (1.4) belonging to one of the classes

(3.2)-(3.5) and let u2: D C, be any second solution of (1.4) which is linearly independent
of u. Then we have for all Xo D
in case (3.2)

u2(K+iK’)-u(K-iK’)

in case (3.3)

in case (3.4)

fK+iK’p,( k snx snx0 )u(x ) dx,"K-- iK’

u’(K+ iK’) -u’2(K- iK’)
u2(K)

k fK+iK’
dnxdnxocnxcnxoP,,(ksnxsnxo)ul(X)dx,

K-- iK’

u’2( K+ iK’) + u’( K-- iK’)

in case (3.5)
u2(K+ iK’) +u2(K- iK’)u(x) u(K)

iK’
=i dnxdnxoP’(ksnxsnxo)ul(X)dx,

"K-- iK’

ki
rIK+iK’

cnxcnxoP’(ksnxsnxo)Ul(xldx.
"K-- iK’

4. Integral relations for Lam6 functions of period 2(K+iK’) or half-period
2(K+ iK’).

In Corollary 1.5 we set

D-D2-G-G- zC’-K’<Imz--Rez<K’
Then we have D (K+ iK’) CD. From Corollary 1.5 we obtain with s-0:

TI-IEORE 4.1. Let Ul,Uz:D be solutions of (1.4). Then we hae, for all
(xo,Yo)@O,

u,Co)u( Yo ) -- u(O)( u,(xo-yo) + u,( zo +Yo ))

+

where the path of integration is in D and the kernels A(x, O, xo,Yo) and (x, O, xo,Yo) are
given in 2.

However, here the function A cannot be defined globally by the function P:
e\l-,-ll-e as in the 2 and 3. For example, if we choose x=2(K+iK’), Xo=y=
Yo =0 the argument of P (see (1.3)) belongs to the interval ]-m,-l[.

Now we consider

(4.2) even Lam functions of period 2(K+ iK’),
(4.3) odd Lam functions of period 2(K+ iK’),
(4.4) even Lam functions of half-period 2(K+ iK’),
(4.5) odd Lam functions of half-period 2(K+ iK’).

From Theorem 4.1 we obtain:
COROLLARY 4.6. Let uI:D C be a solution of (1.4) belonging to one of the classes

(4.2)-(4.5) and let u2: D-C be any second solution of (1.4) which is linearly independent
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of U Then we have for all Xo Dl,

in case (4.2)

ul(Xo) u2(K+iK’)-u2(-K-iK’)
ui(O)

rr+i/’ ik
cnx cnx0 ) ul(x)dx,

in case (4.3)

u’2( K+ iK’)- u’(-K- iK’)

i-7.,_l<_ii,:,snxsnxodnxdnxoP’ Tcnxcnxo u(x)dx,

in case (4.4)

Ul(Xo) u’2(K+ iK’)+u’2(-K-iK’)
ui(0) dnxdnxoP,; -;cnxcnxo ul(x)dx,’7 -K-- iK’

in case (4.5)

Ul(X0) u2(K+iK’)+u2(-K-iK’)__
u (0)

.k fK+iK’ ( ik )snxsnxoP; -Tcnxcnxo ul(x)dx.
-K-- iK’

Here the kernel P,((ik/k’)cnxcnxo) is defined for x,xo near the line (K+ iK’).R by
the Legendre function P" C\ ]- o, - C and then is continued analytically on D D1.

5. Integral relatiens for Lam+ polynomials. It is well known that for every non-
negative integer n there exist 2n + characteristic values of the parameter X such that
the Lam6 equation

(5.1) -d2u(X-n(n+ 1)k2sn2z)u-O
dz

has a Lam6 polynomial as a solution. Lam6 polynomials are solutions of (5.1) which are
of the form

snOz cnz dn’z Up(sn2z),
where p, o, ’-0 or 1; Up is a polynomial of degree p and 2p + O + o /-n. We adopt
the notation of Arscott [1] and denote the eight types of Lam6 polynomials, obtained
by giving p,o, their possible values, by uE, sE, cE, dE, scE, sdE, cdE, scdE. Each of
these eight types of Lam6 polynomials belongs to one of the classes (2.2)-(2.5), to one
of the classes (3.2)-(3.5) and to one of the classes (4.2)-(4.5). This is shown in detail in
Table 5.1.

TABLE 5.1

even odd

periodic mod 2K
half-periodic mod 2K

(2.2)" uE, dE (2.3)" scE, scdE
(2.4)" cE, cdE (2.5)" sE, sdE

even with odd with
respect to K respect to K

periodic mod 2iK’
half-periodic mod 2iK’

(3.2) uE, sE (3.3)" cdE, scdE
(3.4)" dE, sdE (3.5)" cE, scE

even odd

periodic mod 2(K+ iK’)
half-periodic mod 2(K+ iK’)

(4.2)" uE, cE (4.3) sdE, scdE
(4.4)" dE, cdE (4.5) sE, scE
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Every Lam6 polynomial thus satisfies one integral equation of each of {}{}2, 3, 4. The
kernels now involve the Legendre polynomial P,.

In the following we shall show that for Lam6 polynomials the integral relations of
the preceding sections can be modified in several ways. It is possible to extend the
range of validity of the integral relations by analytic continuation and to admit new
paths of integration. We first extend Corollary 1.5.

THEOREM 5.2. Let be one of the 2n+ characteristic values such that (5.1) has a
Lamb polynomial E as a solution. Then every solution G of (5.1) is meromorphic on C with
poles at most in M, andfor all xo,Yo,SC\M with Xo+-(yo-S)C\M, we have

E(xo )G(Yo -- G(s )( E(xo- ( Yo-S )) / E(xo/ (Yo-S ))

+ -1 ,fx+(Y-S)xo_(yo_,) G’(s)A(x’s’x’Y)-G(s)-Y(X’S’x’Y) E(x)dx,

where

k2
A(x,y,xo,Yo)-P k2snxsnxosnysnyo--cnxcnxocnycnyo

+ -dnxdnxodnydnyo

and Pn & the Legendre polynomial of degree n. For the path of integration we may choose

anypath in C\Mfrom Xo-(yo-s ) to Xo+(yo-S).
Proof. It is well known that under the assumption of the theorem every solution of

(5.1) is meromorphic on C with poles at most in M. This fact would also easily follow
from the remarks below.

Now we prove the integral relation for a fixed s C \M. It is easy to see that for all

xo,yo C\M the integrand is even with respect to any point in M as a function of x.

Therefore, for xo,Yo C\M the integrand is meromorphic in x on C with poles at most

in M and residues equal to 0 at any pole. Thus, both sides of the formula above
represent analytic functions on the domain ((xo,Yo): xo,Yo C\M, Xo+-(Yo-S)CxM).
From 1.5 follows that these functions coincide in a neighborhood of (s,s), and hence,
they are identical. 73

For example, we now extend the first equation of Corollary 3.6. The other 11

equations of 2, 3, 4 can be handled in a like manner.
COROLLARY 5.3. Let G denote any second solution of (5.1) which is linearly indepen-

dent of the first solution uE or sE of (5.1). For example, we can choose for G the Lamb

function F of the second kind. Then we have, for all xo C \M,

(i) uE(xo) G(K+iK’)-G(K-iK’) I’K+iK’

G’(K) --JK--iK’ P"(’ksnxsnx)uE(x)dx’

(ii) sE(xo)

(iii) uE(xo)

(iv)

G(K+ iK’) G( K-- iK’) rK+iK’

-(2- :JK-iK’ Pn(’ksnxsnx)sE(x)dx’

G(K)-G(-K)
(-K- ) (k snx snx ) uE(x ) dx

sE(xo) G(K)+G(-K) fKKP6’(K+iK’)
(ksnxsnx)sE(x)dx’
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(v) uE(xo) G(K+iK’)-G(-K-iK’) rK+iK’

G;(. j =J-K--iK’Pn(ksnxsnx)uE(x)dx’
(vi) se(xo) G(K+iK’)+G(-K-iK’) I’K+iK’

G’(K) =J_K--iK,Pnksnxsnx)sE(x)dx"
Proof. (i), (ii). The value of (G(K+iK’)-G(K-iK’))/G’(K) does not depend on

the choice of the second solution G. Therefore we can assume G(K) 0, G’(K) 1.
Now (i) and (ii) follow from Theorem 5.2 with s K, Yo--K+ iK’.

(iii) We shall assume G(K+iK’)=O, G’(K+iK’)=I. Then Theorem 5.2 with
s K+ iK’, Yo -+- K, yields

fx-iK’pn(ksnxsnxo)uE(x)dx

Xo-K-’p(_snxsnxo)uE(x)dx"
For Lam polynomials of type uE, n is even, thus, P,,(-ksnxsnxo)=P(ksnxsnxo).
The integrands are periodic mod2iK’ and mod(4K+ 2iK’); hence, we obtain

f-(K+K3...e(Xo a(Kl-g - r(snxsnxo)ue(x)dx,

f-(K+i’l
snx sn 0 )

It follows that

f.e(x0 -g

(iv). For Lam polynomials of type sE n is odd; thus P(-ksnxsnxo)=
-P(ksnxsnxo).
The rest of the proof is the same as above.

(v), (vi). We can assume G(K)=0, G’(K)= 1. Then we apply Theorem 5.2 with
s K, Yo (K+ iK’) and proceed as before.

The integral equations in Corollary 5.3 (iii), (iv) are given in Whittaker and
Watson’s book [17, 23.6], without however the determination of the characteristic
values. Every integral equation for Lam polynomials of this book can be found by a
method similar to that which gives Corollary 5.3. In all cases the characteristic vNues
can be determined.

Aeiegem. The author thanks the referees for suggestions which led to the
improvement of the manuscript.
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SOME CONJECTURES FOR ROOT SYSTEMS*

I. G. MACDONALD"
Abstract. We present a collection of conjectures relating to root systems (or, equivalently, to Lie groups)

together with the evidence we possess in support of them. They may be regarded as generalizations of
Dyson’s conjecture [J. Math. Phys. 3 (1962), pp. 140-156] and Mehta’s conjecture [Random Matrices,
Academic Press, New York, 1967].

Introduction. In this paper we present a somewhat heterogeneous collection of
conjectures relating to root systems (or, equivalently, to Lie groups) together with the
evidence we possess in support of them. The first group of conjectures may be consid-
ered as generalisations of "Dyson’s conjecture" [2]. Thus if R is a reduced root system,
let e denote the formal exponential corresponding to et R, and let k be an integer
_> 0; then we conjecture (2.1) that the constant term in the polynomial

(1) 1"I (1 e’) k

aGR

should be equal to II;= l( ), where the d are the degrees of the fundamental invariants
of the Weyl group of R.

We generalise this further, in two different directions. First, suppose now that R is
a root system, not necessarily reduced, and for each etR let k be a nonnegative
integer, such that k:kt if let[ I/l; then we conjecture (2.3) that the constant term in
the Laurent polynomial

(2)

should be equal to the product

(3)
([(tak,l-+-k+1/2k/])!

where 0k-1/2 Y,>ok,et, etv-2a/lal2 is the coroot corresponding to et, and k/2-O if
1/2 et R. When the k are all equal, this reduces to the previous conjecture.

Secondly, if q is an indeterminate and R is a reduced root system, we conjecture
(3.1) that the constant term (i.e., the term not involving any e ") in the product

k

(4) II I-[ (1-qi-’e-)(1-q’e)
aR+ i=

(where R+ is a system of positive roots in R) should be equal to 1-Iti=l[kkdi], where[]
denotes the "q-binomial coefficient" (1 qn) (1 qn-r+l)/(1 q) (1 qr).
Clearly (4) reduces to (1) when q= 1.

This conjecture can be reformulated in terms of the affine root system [9] defined
by R, and in turn this reformulation suggests a more ambitious conjecture (3.3) for any
reduced affine root system.

Received by the editors July 14, 1981.
Department of Pure Mathematics, Queen Mary College, University of London, London E1 4NS,

England.
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The second group of conjectures generalize Mehta’s conjecture [12]. Let S be a (not
necessarily reduced) root system in a real Euclidean space V of dimension l, with inner
product (x,y) and norm Ixl-(x,x)1/. Attach to each aS a "multiplicity" k
(which need not be an integer, but may be a complex number with real part >_0) such
that k-k if lal-lBI; also define a-(a/ia (so that a is proportional to a and
=- 2). Let

aS+

where S+ is a system of positive roots in S, and let y denote the Gaussian measure on
v defined by dy(x)-(2)-U2e-ll/2dx, where dx is the Lebesgue measure on the
Euclidean space V. Then we conjecture (6.1) that

where Ok-- Ees+ ka, a is the coroot 2a/lal, and k/a-0 if a S. The right-hand
side of (5) is reminiscent of the formula of Gindikin and Karpelevich [3] for the
Harish-Chandra c-function, and we show that (5) is true when S is the restricted root
system of a symmetric space G/K and the k, are the multiplicities of the roots.

A. "Dyson’s coNecre" and generalizations.
1. In 1962 F. J. Dyson [2] cowectured that

(1.1). The constant term in the expansion of

ij

(where x,. ., x, are in@endent variables and k is a positive integer) is

This conjecture was soon proved true by J. Gunson [5] and K. Wilson [15], who
showed more generally that

(1.2). The constant term in the expansion of

(where a 1," ", an are nonnegatite integers) is

(al+’’. +an)!
a! ...an!

For an elegant proof of (1.2) we refer to I. J. Good [4].
Next, G. E. Andrews [1] conjectured that a q-analogue of (1.2) should be true.

Write

(X)n-- fi (1--qi-’x)
i=1

where q,x are independent variables, and n >_0.
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(1.3). The polynomial ( 71[x , ...,x,q])
H (EijXiX;1)a,

where eij-1 or q according as i<j or i>j, has constant term (i.e., independent of
XI" .Xn)

(q)a,+...+a.
(q)a’’’(q)a."

When q= 1, (1.3) reduces to (1.2). For arbitrary q and n-2, (1.3) is an easy
consequence of the q-binomial theorem. Andrews [1] gives a proof of (1.3) for n- 3. For
n > 3, the question is still open, as far as I am aware. Incidentally, (1.3) still makes sense
if some (or all) of the a are + , and is implied by the finite version.

We shall see later ({}3) that (1.3) is true for arbitrary n and q when a a 1,2
or +.

2. The form of the polynomial in (1.1) suggests that it should be attached to the
root system of type A_ , and prompts the following generalization. Let R be a reduced
root system and for each aR let e be the corresponding formal exponential. Let
d,...,d be the degrees of the fundamental invariants of the Weyl group W of R.

CONJECTURE 2.1. With the above notation, the constant term in

(1--e)k,

where k is an integer 0, should be equal to

kdi
i=1

When R is of type A_, the d are 2,3,. .,n, so that in this case

n ki --(k)(3k)"" (nk) -(nk)
i:1 k k k (k[)

in agreement with (1.1).
Also (2.1) is true when k- 1, for any R. For we have

(1--e)-- (e"/--e-a/2) (e-/--ea/)

by Weyl’s identity (e(w)-m is the sign of w W; 0 is half the sum of the positive
roots). Since wO-w’o if and only if w-w’, the constant term is , and it is well
known that I di.

We shall show in 3 that (2.1) is true for any R and k-2. It is also true when R is
of classical type (A,B, C,D) for any k, as a consequence of Selberg’s integral [13].

Before coming to these verifications, we shall write (2.1) in an equivalent form. Let
G be a compact connected Lie group, T a maximal torus of G, such that R is the root
system of (G, T). We regard the exponentials e now as characters of T, and write

(t)- (e/(t)-e-/a(t)).
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Then

IA(t)l2- 1] (1-e<(t))
aR

is a positive real-valued continuous function on T, which enters in Weyl’s integration
formula

flvA(t)12f(t)d(2.2) ff(x)dx
for any continuous class function f on G, where dx, dt are the normalized Haar
measures ( fG dx fvdt 1). Then (2.1) is equivalent to

CONJECTURE 2.1’. With the above notation

i--1 k

for all integers k >_0.

The equivalence of (2.1) with (2.1’) follows from the fact that integration over T
kills all but the trivial character, i.e., picks out the constant term in

IA(t)lk- 1] (1--e(t)) k.
aGR

Taking f to be the constant function in (2.2), we see again that (2.1’) is true for
k-1.

We may remark also that (2.1’) makes sense if the integer k is replaced by a
complex number s with Re(s)>0, the binomial coefficients on the right being replaced
by the appropriate combination of F-functions:

CONJECTURE 2.1". For all s C with Re(s) > 0,

r(sd,+ 1)()TIA(t)I:dt- I-[ r(s+ 1)r(sd-s+ 1)i--l

I do not know how to generalize (1.2) (with unequal exponents al,.. ",an) to

arbitrary root systems. However, a generalization of (2.1) which allows for unequal
exponents corresponding to roots of different lengths is contained in the following
conjecture. Let R be a root system, not necessarily reduced, and for each a R let k be
a nonnegative integer such that k, kt whenever I l-I l. Let

ka,

where R+ is a system of positive roots in R.

CONJECTURE 2.3. The constant term in the Laurent polynomial

II (1--e)
aR

should be equal to

II
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Here a 2a/lal2 is the coroot corresponding to a, and k,/2-O if 1/2a R.
(a). When all the k, are equal, say k,-k, then (2.3) reduces to (2.1). For then

( Ok, a ) k ( O, av ) k ht(a*), and it follows from 10, (2.5)] that

l’I (kht(a)/k)!- fi (kdi)!
R (kht(a)) k’+ i--1

and that

II
a@R+

(kht(a)-k)
(kht(aV)), 1-I 0!

i=1 (k(di-1))!"

Hence in this case the constant term as predicted by (2.3) is equal to H ti=l(kkdi)
(b) Next, when R is of type BC,, (2.3) is equivalent to an integral formula of

Selberg [13]. Selberg’s formula is the following: let

J,(a, b; c)-- fo fo fi (xia (1--xi)b ). [O(x) 12cdx’--" dxn,
i--1

where

D(x)- H (Xi--Xj)
i<j

and a, b, c are complex numbers satisfying

Re(a)>- 1, Re(b)>-l, --min/1 Re(a+l)Re(c)> n’ n--1
Re(b+ 1) )

Then

(2.4) fi (rc)!(a+(r-1)c)!(b+(r-1)c)!
r=l c!(a+b+ +(n+r-2)c)!

where we have written x! in place of F(x + 1). (When n- 1, this integral is Euler’s beta
function.)

Now make the change of variables xi-sin20i (l_<i_<n), so that the range of
integration is 0_< 0i _< (1 _< i_< n). Since dx 2sinOcosOidO and x xj.
sin(0 Oj) sin(0 + Oj), we obtain

n

Jn(a b c) H (sin2’+’Oicos2b+’oi) II Isin( 0, Oj)sin(Oi+Oj)]
2

dOl’" dO,.
i=1 i<j

For our applications it is more convenient to rewrite this as follows. Put

a-a+1/2, fl-b+1/2, V-c

and let

Kn(a,/; T)

=qr for" fo fi (4sinZOi)a(4cos2Oi)B II (4sinZ(Oi-Oj)4sin2(Oi+Oj))vdO1 dO,.
i=1 i<j
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Then from Selberg’s formula we have

K,(a,fl; ,)-
4n(a+fl)+ n(n- l)

4n(a+B)+n(n-l)v I (rT)!(ot+(r--1),--1/2)!(fl+(r--1)Y--1/2)!
7rn r=l V!(a+fl+(n+r-2)V)!

Use of the duplication formula for the gamma function, in the form

r/Z(2x)!
22Xx!

(2.5) (x-1/2)!-

then reduces this to

1 (rT)!(2a+2(r--1){)!(2fl+ 2(r--1))!(2.4’) r=lll ,!(c+(r--1)3,)!(fl+(r--1)V)!(a+fl+(n+r--2)y)!"
Suppose now that R is of type BCn, with roots +-xi, +--2x (1 <_i<_n), +__xi+__x

(1 <_i<j<_n). Write

k k x,, k2 k +_x,+_xj, k3 k +_2x,.
To obtain the constant term in the Laurent polynomial FI,eR(1- e)k" we shall replace
each e by the complex exponential exp(2ria), and integrate from 0 to with respect
to each variable xi. Since

( exp(2ria))( exp( 2ria)) 4 sin2

it is easy to see that in the present case the constant term is equal to the integral
K,(k + k3,k3; k2), hence by (2.4’) to

(1) (I (rk2)!(Z(kl+k3+(r-1)k2))!(Z(k3+(r-1)k))!
r= (k2)!(k +k3+(r- l-kT!(k3+(r-1)k2)!-(-k2k3+(n+r-2)k2)
Now consider the product

The positive roots may be taken to be xi, 2xi, xi+xj (i<j), so that we have Ok
Yi(1/2k +(n-i)k2+k3)x. Hence we find that the contribution to P from the roots
---X is

(2) I (2(k, +(n-i)kz+k3))!(Z((n-i)kz+k3))!
i=, (k +Z(n-i)k2+2k3)!2

the contribution from the roots -+ 2x is

n (k, +(n-i)k2+2k3)!((n-i)k2)!(3) i=1I1 (k7 --7i- ((n i)k2 + k )!

the contribution from the roots -+ (x- xj) is

(4)
(nk2)!
(k2]) n’
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and the contribution from the roots +--(xiq-xj) is

(5) 1-I k, + 2(n -i)k2 + 2k3)! (k + (2n 1)k2 + 2k3)!
i=1 (-5(2n-2i+i2c) (kl+(n-1)k-+Zk3)!

Since the product of (2), (3), (4) and (5) is equal to (1), it follows that (2.3) is true for
BC, (and therefore also for B,, C, and D,). Thus it is true for all the classical root
systems.

When k-k2 k -k say, the constant term is equal to

where (dl,...,d,)-(4,6,...,2n+2). These "degrees" d; for BC, also occur in the
formula

1-tht)+s) 1-td,

(2.6) 11
,>0 1--tht(a) i--1

1-t

where s(et)- or 2 according as 1/2 a R or 1/2 a R.
Hence we may rephrase (2.1) as follows to include the nonreduced root systems"

CONJECTURE 2.7. Let R be a (not necessarily reduced) root system. Then the constant

term in

II (1-e)
aR

should be

}1"I kdi
i--I k

where the d are given by (2.6).

Of course this is included in the more general conjecture (2.3).
(c) When R is of type G2, let k (resp. k2) denote k for a a short (resp. long) root.

In this case (2.3) asserts that the constant term in IIcR(1-- e")ko is equal to

(3k + 3k2)!(2kl)!(2k2)!(3k2)!
(2k + 3k)!(k, + 2k.)!(k + k2)]k !k2 !2’

which agrees with a conjecture of W. Morris [R. Askey, private communication].
Finally, (2.1’) has the following consequence. Let be a regular element of the

maximal torus T of G. Then the centralizer of in G is just T, and the conjugacy class
C(t) of in G is a smooth submanifold of G, of codimension 1= dim T, and diffeomor-
phic to G/T. The class C(t) meets T in a single orbit of the Weyl group W, and the
weighting factor IA(t)] in (2.2) measures the size of the conjugacy class C(t): more
precisely, it is the Riemannian volume of C(t). Hence the maximum value of the
function IA(t)l2 on T gives the volume of the "largest conjugacy class in G". This
maximum value can be deduced from (2.1’), because

max IA(t)l- lirn IA(t)12kdt
tT ,(lim 1-[ kdi

kt’= k

1/k
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which by Stirling’s formula we find to be equal to

d
/--1 (di- 1) di-"

Hence (2.1’) implies

CONJECTURE 2.8. The maximum value of IA[2 on T is

) me

I II 1+--
i--1 mi

where mi--di- are the exponents of W.
In the case of G2, for example, the function to be maximized is

l’I 4 sin x; I 4sin(xi-xj)
i--1 l_<i<j_<3

subject to x +x2+x3-0. This is an elementary exercise in calculus, and it is not
difficult to verify that the maximum value is 22.66/55 in agreement with (2.8) (since
d 2, d2 6).

For the classical types, (2.8) can of course be attacked directly. For example, in
type B calculation shows that the maximum value of IAI2 is

i=1 <_i<j<--n

where the i are essentially the roots of a Jacobi polynomial (to be precise, they are the
roots of (1 +x)P(’ll)(X), in the usual notation [14]). In the case of C a similar
phenomenon occurs, but with Legendre polynomials in place of Jacobi polynomials.

3. We come now to "q-analogues" of the conjectures in [}2. Consider Andrews’
conjecture (1.3) with a=...--an-k. Writing x-e-u, (formal exponentials) and
thinking of u-uj as the roots in a root system of type A , we are led to generalize
(1.3) as follows"

CONJECTURE 3.1. The constant term (i.e., involving q but no exponentials e) in

k

1-[ 1-[ (1--qi-’e-)(1-qie),
a>0 i--

where k is a positive integer or + and the product is over a system ofpositive roots in a
reduced root system R, should be

’[l’I kdi
i--I k

where is the "q-binomial coefficient"

(1--qn)(1--qn-1)’’’(l--qn-r+l)
(1--q)(1--q2)’"(1--qr)

Clearly (3.1) implies (2.1), by setting q- 1.
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An equivalent formulation of (3.1) is the following. As in 2, let G be a compact
connected Lie group with R as its root system. Then (3.1) is equivalent to

CONJECTURE 3.1’.

k--1 k--I

fdet 1-I ( -q idx)dx-1] II (1-q
"G ./’=1 i--1 j--I

where dx is the normalised Haar measure on G, and the m are the exponents of G (i.e.,
mi=di-1).

To prove the equivalence of (3.1) and (3.1’) we shall use the identity [10]:

qkdiX 1"I 1--qke :W(qk) 1-[ 1--

w W a>0
e

i: qk

Multiply both sides by II.n lI= (1- qJ-e’) and we have

k k

1"I I’I (1--qj-lew’)(1--qJe-W’)--W(q) lI (1--qJ-e’)
wWa>O j:l j:l

Each of the terms in the sum on the left has the same constant term c(q), hence

W( qk) k

Ck(q)-- [14 fvaGRj=ll’I I (1--qj-le’)(t) dt

W(qk) (]A(t)12]l- det(m-qJAdt)
dt

/] JT XXj=l (1 __qj)l
which by Weyl’s formula (2.2) is equal to

W(qk) fk-k_l( qj),
H det(1-qJAdx) dx.

IIj= j=l

Hence (3.1’) implies that

(l_qkd,)(l_qkmi+l)... (l__qkm,+k--l)
ck(q)- I k

i:1 (1-q)(1-)i--) i---7-)

I kdi
i--1 k

which is (3.1), and conversely (3.1) (3.1’).

PtOPOSITION. Conjecture (3.1) is true for any reduced root system R when k- 1,2 or

Proof. Conjecture (3.1’) is obvious for k- (both sides are equal to 1). When k- 2,
(3.1’) asserts that (replacing q by -q)

/_det(1 + qAdx ) dx 1"I (1-[--q2mi+l).
i=1

Now the left-hand side of (1) is the Poincar6 polynomial of the graded R-algebra
(/), the G-invariants of the exterior algebra of (the Lie algebra of G) under the



SOME CONJECTURES FOR ROOT SYSTEMS 997

adjoint action. But it is well known that (/g)H*(G, R) (via de Rham cohomology)
and that H*(G,I) is an exterior algebra over R on generators of degrees 2mi+ 1, so
that the Poincar6 polynomial is equal to the right-hand side of (1).

Finally, when k- + z, the identity [9, (8.5)] shows that the constant term in

I 1-[ (1--qi-le-’)(1--qie’)
ct>0 i_

is equal to Iii>_l(1--qi)-t, which confirms (3.1) in this case. []

COROLLARY. Conjecture (2.1) is true for k-2 and any R.
Remarks. 1. The case k- + of (3.1’) (which we have just proved) is

-t,-f’/1-[1:det(1 qJAdx dx

(the integrand is to be regarded as a formal power series in q, and integrated term by
term; alternatively as a convergent infinite product, with q a complex number such that
Iql< 1).

2. In connection with (3.1’) we may recall that

fcdet(1 qAdx)-ldx 1-[ (1 qd,)-l.
i--1

Here the left-hand side is the Poincar6 series of the graded algebra (Sfi), the G-
invariants of the symmetric algebra of , and the right-hand side is the Poincar6 series
of (St)w, where is the Lie algebra of the maximal torus T; the identity (2) is a
consequence of the isomorphism (S)(St)w. I do not know whether (2) has an
extension analogous to (3.1’).

We shall next reformulate (3.1) in terms of the affine root system S--S(R) [9]
defined by R. We recall that the affine roots are a rn + a (rn 7/, a R), and we write

where q--e -1 (=/= 1/2.718...). Let

e-a--qme-a

o-- av,
where ct is the coroot of a, so that ct(o) is the height of a.

We shall use the following fact [10]" if 0 is any mapping of the positive integers
into a multiplicative abelian group, we have

II 0(l+a(o))__ I O(di)
>o 0((o)) i=, 0(1)

By taking 0(m)-(1- qm)(1 __qkm--1)... (1 qkm--k+ l) for all m 1, we see that

(3.2) H
i= k >0 i= 1-q

Now the affine roots ai-a (1 il), and a0- -ff (where a,. .,az is a basis of
R, and is the highest root relative to this basiswe are assung, as we clearly may,
that R is irreducible) form a basis of S(R) [9]. Let C be the fundamental alcove
deterned by this basis, so that x C if and only if ai(x)> 0 for 0 l, and let
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for a positive integer k. Since each a R takes values between 0 and at points of C, it
follows that Sk consists of the affine roots i- + a, i-a (1 <_ <_ k, a R+), which are
precisely the negatives of the roots whose exponentials feature in the product in (3.1).
Also the exponents on the right-hand side of (3.2) are a(ko) + (i- a)(-ko) and
a(ko)-i+ -(i- +a)(-ko). Hence we may write Conjecture 3.1 in the equiva-
lent form

CONJECTURE 3.1". For the affine root system S(R ), where R is reduced, the constant
term in

should be

1-[ (1 qla(s’)l) e(a)

a Sk

where sk -ko and e( a is the sign of a(sk ).
It is natural to ask whether there exists someth!ng analogous to (3.1") for the other

reduced affine root systems (i.e., S(BQ) or S(R) in the notation of [9]). For each
a S, let u be the smallest positive real number such that a + u is a root, and assume
that the constant c of [9, 6] is equal to (so that each u is a positive integer). As
before, choose a fundamental alcove C and let

for each positive integer k. Let u be the least common multiple of the u (so that u- 1,2
or 3). Some experimental evidence then suggests the following:

COYJECTURE 3.3. Let ao,...,a be the basis of S determined by the alcove C, and
assume that the vertex xo of C defined by ai(x0)--0 (1 <_i<_l) is a special vertex. Let sk
be the point for which ai(s)=-k (1 <_i<_l). Then, provided that k is a multiple of u, the
constant term in

II (1-e-a)
a S,

should be

H (1 --qla(sk)l) e(a)

a Sk

where e(a) is the sign (+-- 1) of a(sk).

When S-S(R) we have u- 1, and (3.3) is a restatement of (3.1").
We may remark here that (3.3) makes sense, and is true, in the limit as k . For

it asserts that the constant term in

H (1-e-a)
a>O

is

lim l’I (1 qla(s’)l) e(a)
ko aSk
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To compute this limit we may take x0 =0; the affine roots belonging to Sk are then,
using the notation of [9],

+iu (+, O<_iua<k ),
-+iu (Z+, O<iua<k )

where Z is the gradient root system of S; hence the values of a(sk) are correspondingly

-kht(a)+iu (+, O<-iua<k),
kht(a)+iu (aZ+ O<iua<-k )

so that la(s)l>k except when a:Da has height 1, i.e., is a simple root of Z. It follows
that

k/u

l’I (1-qlask)l)a)- l’I I (1-qrU")-’ (modqk)
aS aB(Z) r--1

and hence that

lim l’I (1--qla(sk)[) e(a)- H H (1--qrU")-1,
k a@Sk aB(X) r--

which by the main theorem of [9] is indeed the constant term of 1-l a>0 (1- e-a). Since
the determination of this constant term was the crucial part of the proof of the main
theorem of [9], we may regard (3.3) as a "truncated form" of that result.

Remark. Since the number of affine roots a S with given gradient a is the same
as the number with gradient -a (namely k/ua), it follows that

a S,

is a constant function, hence the "highest" term in 1-las(1-e -a) is e-C-qc. On the
other hand, the degree in q of l-Ias(1--qla(s)l)(a) is

e(a)la(s,)l--,a(s,)--C,(Sk)--Ck.
aSk

So in (3.3) the two sides have at any rate the same degree and leading coefficient.
When q= 1, (3.3) is compatible with (2.3).
Finally, as a q-analogue of (2.7), we put forward
CONJECTURE 3.4. For any (finite) root system R, the constant term in the product

k

I 1"I (1 qiS(a)-le-a)( q(i-l)s(a)+ lea )
a>0 i--

should be

kdi
i--I k

where s( a) and the d are defined in (2.6).
When R is reduced, this is a restatement of (3.1). When R is of type BCn, it is not

covered by any of the previous conjectures. By (2.7), it is true when q--1 and R is
classical (including BC,). It is also true for R of type BC and all integers k>0 JR.
Askey]; also for R of type BC2 and k-- (by direct calculation).
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B. Mehta’s conjecture and generalizations.
4. In his book Random Matrices [12], Mehta conjectured that

(4.1) fn.e-lXl=/)lD(x)12dx-(2r) "/2 I (rk)!
r=l

k!

for any kC with Re(k)>0. (Here, as before, k! means F(k+ 1) even if k is not an
2 and D(x)--integer; dx-dx dx is Lebesgue measure on

IIi<(xi-x) as in 2.)
The formula (4.1) can be proved by use of Selberg’s integral (this observation is

due to Bombieri). If we put xg-1/2(1 +(2a)-/2yi) (1 <_i<_n) in the integral J,,(a,a;k)
(2), where a is real and positive, we obtain

2a,’/ ((2a)l/ fi ( yi2 2

(20),/2" .1_(2a),/2 ---a IO(y)l dy," dy
i=1

(4.2) 4,a(8a )(,(n-1),+n)/2 Jn(a, a; k )

fi (rk)!(a(r-1)k)!2

4na(8a )(n(n-1)k+n)/2 r=lLl k!(2a+ +(n+r-2)k)!
-yi2/2by (2.3). Now let a-,m, since (1-y2/2a)ae it is not hard to see that the

integral (4.2) tends to the left-hand side of (4.1). The right-hand side of (4.2) can be
evaluated by Stirling’s formula

(4.3) (a-+-x)!-’a’e-aaa+x+l/2 asa
which shows that its limit as a--, m is II’}=l((rk)!/k!), thus proving (4.1).

5. We shall generalize (4.1) as follows. Let G be a finite group of isometries of N
generated by reflections in hyperplanes through the origin. The equations of these
hyperplanes are of the form Y’ax-O, which we normalize (up to sign) by taking
Na]-2. Let P(x) be the product of these normalised linear forms, for all reflections
belonging to G. Thus P is a homogeneous polynomial fuunction on N n, of degree say N
equal to the number of reflections in G.

The group G acts on N", hence on the algebra S(N n) of polynomial functions on
N". The G-invariant polynomial functions form an N-algebra N[f,...,f,] generated by
n algebraically independent polynomials f/. The f are not uniquely determined, but
their degrees d are.

Let 3’ denote the Gaussian measure on N" defined by

dy(x)- (2r )-n/2e-lX12/2 dx
(so that -/(N ") 1).

CONJECTURE 5.1. For all complex k with Re(k)> 0,
n

IP(x)l= d (x) II (kdi)!
i=

k!

Mehta’s conjecture (4.1) in the case where G-S,, the symmetric group, acting by
permuting the coordinates in N", so that P(x)=II<(xi-x)=D(x) in this case; the
invariant polynomials may be taken to be the elementary symmetric functions of
x,. .,xn, so that the d are 1,2,...,n.
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The scalar product (x,y)- Y?=,xiy on R extends canonically to polynomials in
such a way that for any two monomials x", xa

( x’, xt ) .ta (Kronecker delta)
’. - and a!--a t... an!). An(here a, fl[" are multi-indices, i.e., x means x x

equivalent definition is (f,g)=f(D)g(O), where f(D) is the differential operator ob-
tained fromfby replacing each x by O/Oxi.

For each polynomialfR[Xl,’’ ",x], define

Then [11] we have

(5.2)

f*(x)=f.f(x-y)d,(y)-( f , ,)(x).

f, eA/2f
where A-’ O-/Ox2 is the Laplacian, and

(5.3) f..f*(ix)g*(-ix)dv(x)- (f,g)

for all f, g[x,. -,x].
Suppose that f is homogeneous, of even degree 2r. Then by (5.2),

v( f )_f,/(y)dv(y)=f,(O)_(ea/f )(O)_ 72r
Taking f= p2k, where k is now a positive integer, an equivalent version of (5.1) is

COYCTUR 5.1’. With the aboe notation, for each integer k0

ANk(p2k) (kdi)!
2Nk(-k’i"i-" fi/:l k’".

(Clearly (5.1’) is equivalent to (5.1) for positive integral values of k, and then for
all k by Carlson’s theorem [12].)

Consider in particular the case k- of (5.1). The polynomial P is skew-symmetric
for G, and the scalar product (hence also the Laplacian) is G-symmetric, hence AP is

skew-symmetric: since degAP<degP we have AP-0 and therefore P*-P by (5.2).
Hence (5.3) gives

(5.4) f=ot,(x) dv(x) (t,,t’).

Conjecture 5.1 is true in the following cases:
(a) G any Weyl group, k- 1;
(b) G a classical Weyl group (types A, B, D), k arbitrary [A. Regev].
(c) G dihedral, k arbitrary.
(a) Let R be a reduced root system, W its Weyl group. By (5.4) we have to evaluate

(P,P). The following argument is due to Steinberg: clearly P is proportional to
II- II,>0a, indeed

II 2

p2=

II ([ 1272)
a>0
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in view of the chosen normalization of P. Hence

(1)
where II -II>o

Now from Weyl’s identity

H (e’/:--e-"/:) X e(w) ew,
a>O wW

by picking out the terms of degree N, the number of positive roots, on either side we
have

n- X 4w) (WP) 
N

wW

and therefore

(2) (YI I-IV) X e(w)((wp)N’H")
N!

wW

Since II is skew-symmetric for IV, all the terms in this sum are equal to

(pN, II’)/N!- H (p,a")-- H ht(a’),
a>0 a>0

so that

(n,rI )-Iw1 H ht(av)

But [10] the partition formed by the root-heights is the conjugate of the partition
formed by the exponents m l,...,mt, hence

(3) H ht(av) H mi!-- H (di--1)!.
a>O i:1 i:1

Since l IIdi, it follows from (1), (2) and (3) that

and hence from (5.4) that

as required.
(b) In the next section we shall prove a result which contains as special cases

Conjecture 5.1 for W of type B, or D,. For type A,, (5.1) reduces (as we have already
observed) to Mehta’s original conjecture (4.1).

(c) When G is a dihedral group of order 2N acting on R2-C, we have p2=

--2-N(zN--.N)2, and the Laplace operator is A-4O2/OzO, whence (5.1’) is easily
verified (the d being 2,N). Alternatively, the integral in (5.1) can be computed directly
by transforming to polar coordinates.

CONJECTURE 5.5. The minimum value of [xl2- loglP(x)[2 is

n

N(1 +log2)- dlogd.
i=1
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This follows from (5.1) in the same sort of way that (2.8) follows from (2.1). For

1max e P(x lim e x
xN k---,

lim (2k)-N-n/2 dy
k x

1/k

lim (2k)-N fi ( (kdi)’)-+ i=
k!

by (5.1); now use Stirling’s formula to evaluate the limit.
As with (2.8), the points at which this minimum is attached are related to the zeros

of classical orthogonal (Hermite, Laguerre) polynomials.
Remarks. 1. As we remarked in {}2, the function IX(t)l2 on a maximal t.orus T

occurs in Weyl’s integration formula. Likewise IP(x)l2 occurs in the Lie algebra coun-
terpart of this formula, namely

ff() d-I(G/T)IW ff(r)lII(r)12dr
where f is a G-invariant function on the Lie algebra , d and dr are Lebesgue
measures on , respectively and H is the product of the positive roots of (, t). From
this point of view the Mehta conjecture (5.1) is the Lie algebra counterpart of the
Dyson conjecture (2.1’).

2. Does there exist a "q-analogue" of (5.1)?

6. A generalization of (4.1) in a slightly different direction goes as follows. Let S be
a (not necessarily reduced) root system consisting of linear forms on a real Euclidean
space a. Choose a set S+ of positive roots in the usual way, and attach to each a S a
"multiplicity" k such that k=kt if I 1- I/1, and define

aS+

Here the k, need not be integers; they may be complex numbers with real part _>0.

It will avoid extraneous numerical constants and facilitate comparison with {}5 if
we normalize the linear forms a S so that they have norm v-, i.e., if we replace II(x)
by

2v/2
,,(x)= .n(x)

aS+

where v-Yes+ k. Let 0h-1/2 es ket, then I conjecture that

CONJECTURE 6.1. With the above notation,

where (as in 5) 7 is the Gaussian measure on a, and a is the coroot 2/112; also

k/2-O if aS.
The pattern of the k’s on the right-hand side in (6.1) is reniscent of the formula

[3] of Gindikin and Karpelevich for Harish-Chandra’s c-function.
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The evidence in favor of (6.1) is as follows.
(a) It is true for S of classical type (Bn, Cn,.Dn,BC,) by virtue of Selberg’s integral,

for all values of the "multiplicities" k.
(b) It is true when the k are the multiplicities m of the roots in the restricted root

system S of a symmetric space G/K.
(c) When S is reduced (so that ka/2-O for all aS) and the k are all equal, it

reduces to (5.1). For if k-2k for all a, the right-hand side becomes

1"[ (k(1 +ht(av)))!
,s+ (kht(aV))

where ht(a )-p,a ) is the height of the coroot a and this product is equal to

=(kd)/k by virtue of [10, (2.5)].
(a) Suppose that S is of type BC, and that the roots are

x (1 in) with multiplicity k,
xxy (1 i<jn) with multiplicity k2,

2x (1 in) with multiplicity k3,

where (x,...,x,) is an orthonormal basis of a. Ts includes the cases where S is of
type B, (resp. C,, resp. D,) by taking k3-0 (resp. k-0, resp. k-k3-0).

We have

P(x)--(2n/2lXl’’’Xnl)k’Wk3 Ix -xfl
Gi<jn

so that if J denotes the integral in (6.1) we have, as in 4,

J-lim (2)-n/2f(2a)i/2(2a)l/2. "(2a)1/2 ( --X)(2a),/2P( x ) dx dx,.
a i=1

In this integral we make the subsitutiony-x/2a, and we thus obtain

J_lim (a)"/2 (1
a

(4a)"(k’+k3)/Z(2a)"("--l)k#ZJ (k, +k3- 1),a; k2
lim () "/

(4a)"(k’+)/2(Za)"("-)#2

3
r=,ll (k2)(a+(kl+k3+l+(n+r_2)k2))

by Selberg’s formula (2.3). Since

(a+x)l ax-y
(a+y)

as a , by Stirling’s formula, we obtain

j-
2"(’+k3+("-l)k) (rk2)[((kl+k3-1+(r-1)k2))

n/2 r=, (k2)’.

H (r)3)+k3+(r-1)k2)
r:,

by use of the duplication formula for the gamma function.



SOME CONJECTURES FOR ROOT SYSTEMS 1005

Now consider the right-hand side of (6.1). We have

Pk-- - kl + (n i)k + k x
i--I

so that the contributions of the roots x (1 <_i<_n), 2x (1 <_i<_n), xi-xj (1 <_i<j<_n),
x+x (1 <j n ) to the product (6.1) are respectively

i=1 (kl +(n-i)k2+k3)’
(k, +(n-i)k2+k3)

i=l

(4)

The denominator of (1) and the numerator of (2) cancel out (4), hence the
right-hand side of (6.1) is equal to

i=1" ((;7(n-i)k2+k3))(k2)
which is visibly equal to the integral J as calculated above. This establishes (6.1) for S
of classical type and arbitrary values of the k.

(b) Finally, we shall indicate a proof of (6. l) in the case that S is the restricted root
system of a emannian symmetric space G/K, and the k are the multiplicities m of
the roots a S.

Let G be a connected sesimple Lie group with finite center, the Lie algebra of
G; let fi =f + be a Caftan decomposition and let O denote the associated Cartan
involution of fi (equal to + on k and to -1 on p). Then (X, Y)=-B(X, OY) (where B
is the lling form on ) is a positive definite inner product on .

Let a be a maximal abdian subspace of p and let S denote the set of roots of
(, a). Let S+ C S be a set of positive roots and let n es , es fi-. Then

f + a + n is an Iwasawa decomposition; let G N be the corresponding global
decomposition, so that K is a maximal compact subgroup of G. Finally let M,M’ be
respectively the centralizer and normalizer of a in K, so that W=M’/M is the Weyl
group of G/K (or of S).

We shall make use of the following two integral formulas, in which all the
measures are the emannian measures induced by the scalar product (X, Y. First, for
a functionfL(p ) we have [7, p. 381

(1) f(x)&-(x) (Ad()x) &u &

where as before H is the product of the positive roots aS+, each counted with its
multiplicity. Next, for a continuous function on K we have [6, Lemma 44]

(2) f2(k)dk-c fMXN-dp(mk())e-2"(n(a))dmd
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where N is the subgroup of G with Lie algebra fi; O is as usual half the sum of the
positive roots; and for an element gG, k(g) and expH(g) are respectively the
K-component and the A-component of g in the Iwasawa decomposition G-KAN. In
[6], Harish-Chandra normalizes the measures so that c-1; however, in the present
situation all measures are those induced by the inner product (X, Y) and one can show
that

(3)
where v Y, es m, dim n.

If we take f(x)-e-<x’x)/a in (1), the left-hand side of (1) is equal to (2)(t+)/:
where 1- dim (since dimO- dimn + dimn- l+ ). Hence from (6.6) we obtain

(:
(4) H(x) dy(x)-

vol(K/ )
Now vol(K/M) can be computed by taking- in (2), which gives (in view of (3))

vol(K/M) 2/ fe-o"
This integral may be computed by reduction to the split-rank case, as in [8]. If we
follow through the computation there, with our choice of Haar measure dff, we find
that for any a*

I1 + F(m.+Jm./2+k(X,a))
aS+

Hence, taking h-O, we obtain

2/2 F(Jm+ ( p, a ).)(5) vol(K/M)- H I"m" aS F(}m2;}m2;;--,a ))"
aS+

But also

ma+1/2ma/2+(p,a" )I<- II
aS+ 1/2ma/2+ (P,a")

so that (4) and (5) lead to

fII ( x ) d’( x ) 2-"/2
aS aS+

(1/2m,+1/4m,/2+1/2(O,a"))!

which establishes (6.1) in this case.
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A q-BETA INTEGRAL ASSOCIATED WITH BCI*
RICHARD ASKEY+

Abstract. A conjecture of I. G. Macdonald [SIAM J. Math. Anal. 13 (1982), pp. 988-1007] about the
constant term in a Laurent polynomial expansion associated with the affine root system of BCl is extended
and then proved by evaluation of an integral that extends a beta function integral.

Macdonald [4] (this issue, pp. 988-1007)has formulated many conjectures about
the constant terms in certain Laurent polynomial expansions. For the affine root
system of BC he conjectured that

(1) C.T.( qx; q)k (x-’ q)k(qx2; q2 ), (qx-2; q2 )k

where

(q; q)4zc
(q;q),(q;q)3,

(2) (a;q)k--(1-a)(1--aq)... (1 --aq-’),
and C.T.f(x) is the constant term in the Laurent expansion of f(x). In the case q he
proved a result for BC [4] using an integral of Selberg [5]. Selberg’s integral leads to a
more general result where it is possible to separate roots according to their lengths. In
the present case the roots are -+r and -+-2r, so it is natural to try to find

(3) f(j,k)-C.T.(qx;q)j(x-1;q)j(qx2;q2),(qx-2;q2).
Integration gives

for(qe2iO, q)j(e_2io, q)j(qe4iO, q:Z)(qe_4io, q:),dO.(4) f(j,k)=g

For the present take Iql < 1. Ramanujan showed that

(5)
(at’q)o -;q (q;q)o

b
a;q

(t;q)o -;q (b;q)o -;q
o a

a

where

(6) (a; q) 1"I (1-aqn)
n=0

and

(a;q)
n_0,_+l,..(7) (a; q),, "-- (aq"; q)oo’

See [1] or [2] for a simple proof of (5).
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,Using Ramanujan’s sum in (4) gives

(qJ+’;q)Z(q2k+2;q2)2o
r (q;q)(q:Zj+l;q)o(qZ;q2)o(q4,+2;q:Z)o

(’i;q)m q (q::-S-q,q )n
(q;q)2 (.)# (q-;q)2n (q-2. q2)n 2k+l,n

(q.q) 2 2 2 - ’-- q(2+
(q ;q ) ()T;q)2n (q2+,q)n

Assume for the moment that 2j> k. Then the terms in the series vanish when In] > k, so

f(j,k)_(q.q)2j(q2, q2)2k (q-j;q)2n_2k(_-2k-; ;: ();)Z q,2+"2k+ 1), .k)
(q;q)(q2 q2)2, n:0 (q q)2n-2k

A bit of simplification using

and

(a; q)n_k--(a; q)_,(aq-’; q)n

(a;q)-k=(aq-,;q)k
leads to

(8)

where

(q; q)j(q; q2 )2,(qJ+ 1--2k; q)2q-(j+k+ ,)

f(j,k)-
(q; q)(q2; q2)k (q-j-2,; q)2k (q-4,; q2

q-4k -j-2k l-j-2k

q:Zj ),q ,q 2 +2k+l
3q

q+j-,ql+)-2
q

(a0;q)n’’’(ap;q)n
q" (-b" q) (bp" q)n--O (q;q)n

Jackson [3] showed that

(9) 3q2

q-2n,a, b 1--n
l--2n ql--2n q, qab
a b

(qn+l;q)n(abqn;q)
(aqn;q)n(bqn;q)n

Using this in (8) and simplifying, we get

(10) f(j,k)
-(q;q)2j(q2;q2)zk(q:zj+l;q:z)k

(q; q)j.(q2; q)(q; q)j.+2
Formula (10) can be rewritten in a form closer to the result for BC when q-1. One
such form is

( qk+l.(q q)j’+z,(q q)k ,q)
(11) f(j,k)-(q;q)+,(q;q)j+k(q;q)k (_q+; q).
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The restrictions that 2j>k and Iql< can now be removed, since f(j,k) is obviously a
polynomial in q. Formula (11) reduces to (1) whenj k.

Note added in proof. Further conjectures and identities are contained in W. G.
Morris, II, Constant term identities for finite and affine root systems: conjectures and
theorems. Ph.D. thesis, University of Wisconsin-Madison, January, 1982.
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KRAWTCHOUK POLYNOMIALS, A UNIFICATION OF TWO
DIFFERENT GROUP THEORETIC INTERPRETATIONS*

TOM H. KOORNWINDER"
Abstract. The canonical matrix elements of irreducible unitary representations of SU(2) are written as

Krawtchouk polynomials, with the orthogonality being the row orthogonality for the unitary representation
matrix. Dunkl’s interpretation of Krawtchouk polynomials as spherical functions on wreath products of
symmetric groups is generalized to the case of intertwining functions. A conceptual unification is given of
these two group theoretic interpretations of Krawtchouk polynomials.

1. Introduction. Let G be a compact group. Then matrix,elements belonging to
inequivalent irreducible unitary representations of G are orthogonal to each other. This
phenomenon lies in the background of many instances of group theoretic interpreta-
tions of orthogonal polynomials. However, if r( and ’n’,,n,n(g ) denotes the matrix
elements of r with respect to an orthonormal basis then there is also a discrete
orthogonality relation for rm,,,(g ) (gG fixed) which is just the column or row
orthogonality for the unitary matrix (rm,n(g)). By looking at rm,,,(g ) in this way we
may identify it with a quite different system of orthogonal polynomials. For instance,
in the case G--SU(2) or U(2) the first kind of orthogonality is a group theoretic form
of the orthogonality relations for Jacobi polynomials and the second kind of ortho-
gonality is similarly related to Krawtchouk polynomials. Surprisingly enough, although
the first fact is well known, the second fact seems to have been unobserved in literature
until now. Section 2 deals with this result.

Krawtchouk polynomials also have a group theoretic interpretation as spherical
functions on wreath products of symmetric groups. It is no accident that this class of
special functions has two group theoretic interpretations of so different nature. In 3
we give a conceptual proof that, for one special g U(2), the corresponding canonical
matrix elements can be expressed in terms of spherical functions on the wreath product
of S2 and SN. ,A similar explanation can be given for the occurrence of Bessel functions
both as generalized matrix elements for discrete series representations of SL(2, R) and
as spherical functions for the group of Euclidean motions. Weil’s metaplectic represen-
tation here plays an important role. These things are shortly discussed in 4.

Not just spherical functions but also interwining functions on wreath products of
symmetric groups can be written as Krawtchouk polynomials. This result, which seems
to be new, is proved in 5. Finally, in [}6 we describe a conceptual way to identify these
intertwining functions with matrix elements for U(2), thus generalizing the results of 3.

The interpretation of Krawtchouk polynomials as matrix elements for representa-
tions of SU(2) is a suitable point of departure for several different lines of research.
Here the author already announces some results, which he intends to publish in
subsequent papers. First, the row orthogonality for unitary matrices yields group
theoretic interpretations for several other classical orthogonal polynomials, by choosing
suitable groups and bases (or double bases) for the representation spaces. We mention
Meixner, Laguerre and Pollaczek polynomials for discrete series representations of
SL(2, R), Charlier polynomials for the Heisenberg group, Hahn polynomials for SU(2)

SU(2) (Clebsch-Gordan coefficients), Racah polynomials for SU(2) SU(2) SU(2)

Received by the editors May 18, 1981, and in revised form October 27, 1981.
Mathematisch Centrum, P.O. Box 4079, 1009 AB, the Netherlands.
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(Racah coefficients). Next, a unification of two different group theoretic interpretations
can also be given in the Hahn polynomial case (Clebsch-Gordan coefficients for SU(2)
and spherical functions for the symmetric group, respectively). Finally, the group
theoretic interpretations of classical orthogonal polynomials mentioned above lead to
group theoretic proofs of certain formulas for these polynomials, for instance for the
Poisson kernel.

2. The canonical matrix elements of the irreducible unitary representations of
SU(2). Consider the natural representation T of GL(2, C) on C 2. The restriction of T
to U(2) or SU(2) is a unitary representation, where we consider C 2 as a Hilbert space
with respect to the orthonormal basis e0 := (1,0), e := (0, 1).

The N-fold tensor product (R)NT of T is a representation of GL(2,C) on (R)NC 2.
The space VN of symmetric tensors in (R)NC 2 is an invariant subspace of (R)Nc 2. Let
TN be the corresponding subrepresentation of (R)NT. A model for VN is given by the
space of all homogeneous polynomials of degree N in two complex variables with
GL(2, C) acting on VN by

F VN,

b )F)(x’ y) F(ax+cy,bx+dy)
d

C d

The space VN has dimension N+ 1. A natural basis for VN is given by the tensors fnu
(n--0, 1,’’ .,N):
(2.2)

(R) (R) il N_fff N! cio,,) Cio, N)’ iN_n+ :iN- 1.

We have

(2.3) fnN(X,y)--xN-ny n, x,yC.

It follows from (2.2) that the Hilbert space norm of f,N is given by

2,n( nIIfn ll=- N)- I/(N)
so we have an orthonormal basis

(2.4) e(x,y) (N) ’/2
xN-ny n--O 1... N,n

for VN. By construction, the restriction of TN to U(2) or SU(2) is a unitary representa-
tion with respect to this orthonormal basis. It is well known (cf., for instance, Hewitt
and Ross [6, Thms. (29.20), (29.27)]) that the representations TN restricted to SU(2) are
irreducible and that each unitary irreducible representation of SU(2) is equivalent to
some TN (N=0, 1,2, ).

Consider the subgroup

(2.5) g’- uo
0 e

of SU(2). We have

(2.6) TN( uO )eNn ei(2n--N)OeNn U0 K,
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so Tu restricted to K splits as a direct sum of inequivalent irreducible representations
of K. We call (enN) a K-basis for Vs.

For g GL(2, C) let

N) m n--0, N,(2.7) TNn(g) (TN( g)eU, e,,
where (.,.) is the inner product with respect to the orthonormal basis (e). We call
NT,,(g) the canonical matrix elements of Ts. These matrix elements can be calculated

from the generating function
N

(aN--n 1/2

m=O c d m

First of all, we conclude from (2.8):

’" c d -T_,_ b a

Binomial expansion of the left-hand side of (2.8) yields

a--bc N- n n ad

’ c d n m m-ll=OV(m+n--N)

This expression goes back to Wigner [13, (15.21)]. In view of (2.9) we can suppose
m + nN without loss of generality. Thus it is possible to rewrite (2.10) in terms of the
hypergeometric function

(2.11) F(a,b;c;)’- tatbz
=o (e)

where (a)k :- a(a + 1)--. (a + k- 1). In general, the right-hand side of (2.11) is only
defined if Izl< and cC\(0,-1,-2, }. However, for a=-n, n nonnegative integer,
the infinite series in (2.11) terminates:

(2.12) 2Fl(-n,b;c;z) (-n)’(b)’zk
k=0 (c)kk!

and the right-hand side of (2.12) remains meaningful for all complex z and for all
c C\{O,-1,.- .,-n+ 1}.

We obtain from (2.10) and (2.12):

(2.13)
m,n d n!(N--n)! n

( ad)aN-n-mbncm2F -m,-n;N-n-m+ 1; -c
Usually, this expression is rewritten in terms of Jacobi polynomials

(2.14) P.(’*’’(x) (a+ 1), { l--x)n! 2F! -n,n+a+fl+ 1;a+ 1;
2

m+n<_N.

by the use of the transformation

(2 15) 2F(a b" c" z)-(1-z) (2F a,c-b;c; z)
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cf. [3,2.1 (22)]. Thus (2.13) takes the form

T.N (a b)_(_l)m(m!(N-m)! )1/2m,n C d n!(N-n)! aN-n-mbn-m(ad-bc)m
(2.16)

.pU-,-,-ml 1-2ad_bc m+n<_N.

For ,B>-I, Jacobi polynomials are orthogonal polynomials on the interval (-1, 1)
with respect to the weight function (1- x)(1 + x). For integer , B this orthogonality
property can be derived from (2.16) combined with Schur’s orthogonality relations on
SU(2) and an expression for the Haar measure on SU(2) in terms of suitable coordi-
nates. The observation that the T,n2S can be written in terms of Jacobi polynomials,
goes probably back to Gelfand and Sapiro [4, p. 280].

However, we may also transform (2.13) by means of the formula

2F,(-n b" c" z)- (c-b)n Fl(-n b" b-c-n+ 1" l-z)-(-;i-n(2.17)
n--0, 1,2,...,c-b, cv0,-1, ...,-n+ 1,

(cf. [3,10.8(13)] together with (2.14)). Then we obtain

m,n C d m n aN-n-mbncm2 FI -m,-n’, -N’, bC-bcad
am+n--NbN--mcN--nm n

2FI(-(N-m) -(N-n)’-N; bc-ad)bc

where the second identity follows from

(2.19) 2Fl(a,b; c; z)-(1--z)"-a-bzFl(c--a,c--b; c;z)
(cf. [3,2.1(23)]). Thus we have proved (2.18) for m+n<_N, but, in view of (2.9), the
formula remains valid without this restriction.

For N 0, 1,. ., n 0, 1,- .,N and p C \ (0} the Krawtchouk polynomial
Kn(x; p, N) is defined by

(2.20) K,(x;p,U) Fl(-n,-x;-N;p-1).
By (2.12) this is a polynomial in x of degree n. For 0<p< Krawtchouk polynomials
are orthogonal polynomials on the set (0, 1,.-.,N) with respect to the binomial
distribution:

(2.21)
x:0
] Km(X;p’N)Kn(x’P’ N)( N) Nn -pP

(cf. Szegi3 [10, 2.82]; we follow the modern notation as used in Askey [1, (2.41)]).

!

(2.22) T.N | a
m,n C

In particular, put

It follows from (2.18) and (2.20) that

b ) --( N) I/2( N) 1/2

d m n b c A n; bc_ad,N

(a b)._ (cosq sinq) 0<q<r
c d sintp -cos
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which is in U(2). Then

(2.23)

’ sin g, -cos g, m n (cos g, ) N- (sin g, ) +,Km( n sina g,, N ).

Thus, for each value of the parameter p (0, 1) and for each N we can realize the
Krawtchouk polynomials Kn(X;p,N ) in terms of the canonical matrix elements of the
representation Tu of U(2). Furthermore, the left-hand side of (2.23) being a unitary
matrix, the row orthogonality

n (COS sinp )TN ( cos q sin)(2.24) T.u --m
=0

m,, sin+ -cosq m’,, sin6 -cosq ,m’

just yields the orthogonality relations (2.21) for Krawtchouk polynomials. This also
holds for the column orthogonality, since

Km n sinZ/ U ) Kn(m sinZp, N)
(cf. (2.20)).

3. Identification of spherical functions on a Hamming scheme over an alphabet of
two letters with canonical matrix elements for SU(2). Consider the Abelian group of
two elements F:= {0, } 7/(mod2) and its N-fold direct product F (N= 1,2, ).
Write elements of FN as x:(xl,. "’,XN) xiF. The space of all complex-valued
functions on FN becomes a Hilbert space L2(FN), where the inner product is taken
with respect to the normalized Haar measure on FN:
(3.1) (f,g):=2-u f(x)g(x), f,gLZ(VU).

xFN

Note that LZ(FN) can be identified with the tensor product (NLZ(F).
The characters on F are X 0 and X l, defined by

(3.2) Xo(X) := 1, Xl(X) := (-1)x, xV,

and they form an orthonormal basis of L2(F). The characters on FN are

X y X y(R)X y2
(R) (R)X yu’ Y (Yl, ,YN) FN,

X y(X) X yl(xl)X y2(X2)" X yN(XN)
--(-1) x’y’+x2yz+’’’+xuyu, x,yFN,

and they form an orthonormal basis of L2(FN). Since X yXy,-Xy+y,,Y,Y’ FN, the
dual group of FN can be identified with FN. The Fourier transform on LZ(FN) is
given by

(3.4) (f l(y) 2-N/2 f(x)X y(X ),
xFN

where we chose the constant 2-N/2 such that oy is a unitary transformation from
L2(FN) onto itself.

The symmetric group Su acts as a group of automorphisms on Fu by

(3.5)

(Xl,"" ",XN)FN, oSN.
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Let G be the semidirect product FN SN corresponding to this action. Then FN can be
identified with the homogeneous space G/Su. This homogeneous space is called a
Hamming scheme over the alphabet F of two letters. The terminology stems from
coding theory (cf., for instance, MacWilliams and Sloane [7, Ch. 21, 3]). Let ? be the
regular representation of G on LZ(FN), i.e.,

(3.6)
( X(0, o )f )(x ) =f( o-’x ), a Su
((y,id)f )(x)=f(x-y), yrN,

wherefL2(FN), xFN. Then

(3.7) ?(0, o)Y= YX(0, o), oSN

Hence, iffLZ(FN) is symmetric in x l,...,xN then off is symmetric and

(3.8) (f)(y)-2-N/2 E f(x)xy(x) -2-N/2 2 f(x) E X,
xFN xFN oSN

The Hamming distance on FN is defined by

(3.9) d(x,y) := I{ilx,:/:y}l, x,Y CFN.
It is translation invariant. The symmetric functions in x CFu are just the functions
which only depend on d(x, 0). The expression

N! E Xy(Ox)
aSN

occurring in (3.8) is symmetric both in x and y. Hence, for n=0, 1,...,N, we can define
functions q,N on FN and N on (0, 1,..., N) such that

(3 10) N (d(x 0)) N (X)--(y,O) N’ E X y( Ox ) x,Y FN"’d(y ,0)
oSN

Note the similarity between these functions on the one hand and the Bessel
functions in connection with the Fourier transform of rotation invariant functions on
R on the other hand. In fact, the functions ,/,u are the spherical functions on Fu with
respect to the group G, i.e.:

qr’NPROPOSITION 3.1 LZ(FN) is an orthogonal direct sum of G-invariant subspaces
n-O, 1,...,N, where ](N._ span{xld(y,O)_n}" In each subspace }CN there is a
unique SN-invariant function which takes the value in O, namely the function qN. The
subspaces }CN are irreducible under the action of G. The proof.is immediate, by the use
of (3.10). Note that a similar proposition more generally holds for finite semidirect
product groups A o H with Abelian normal subgroup A.

It follows from (3.10) and (2.17) that

N(m) -n’(N-n)’’/m ( )(N’ X (-1) ’ rn N-m
k n k

k=0

_(N-m)!(N-n)!
N!(N--m-n)! 2F(-n,-m;N-m-n+ 1;-1)

2 F1 (-n, -m; -N; 2)

(Although the third expression is not meaningful if m+n>N, the equality of the
second and fourth expression follows by continuity, because the second and third
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equality are valid for all noninteger numbers N.) Hence by (2.20):

(3.11) Un (m)--K,(m; 1/2,N),
i.e., the spherical functions on Fu are Krawtchouk polynomials of order p-1/2. This
result goes back to Vere-Jones [11].

On comparing (2.23) and (3.11) we find that

m,n 2_1/2 _2_1/2
--2-1/2N Nm 1/2 Nn 1/2mU(n)

We will give now another, more intrinsic proof of this relation, only using the group
theoretic characterization of T.u and @N and not any a priori knowledge that they canm,n
be expressed in terms of Krawtchouk polynoals.

Consider th natural action of U(2) on L2(F) with respect to the basis X 0, X of
L(F), i.e., if =() U(2) thn

TX o aX o + CX TX bX o + dX
Ts yidds a unitary action of U(2) on L(FN) @NL(F) which commutes with th
action of SN on L2(FN). Hnce th space L(SNXF) of symmetric functions on FN is
invariant under the action of U(2). e can make the following identification between
the concepts from {}{}2 and 3, respectively:

(3.13)

U(2)-moduleC 2 U(2)-moduleL2( F ),
(eo,e,) (Xo,X,),
U(2)-module (R)Nc2 U(2)-moduleL:(FU),
U(Z)-module Vu ,-, U(Z)-moduleLz(SN\FN),
fnN -> pNn,

eNn -> (N)l/2Nn n"

Now the crucial point is to identify the Fourier transform o with the action of a
certain element in U(2). Consider first the Fourier transform acting onfLZ(F)"

oyf )(x) 2-’/2( f(0)X x(0) +f(1)X ,(1))

Hence

2-’/2( f(O)x o(X) +f(1)X 1( X )).

Xo-2-’/2(Xo+X,),
i.e., corresponds with the unitary matrix

X1--2-1/2(Xo--XI),

2-1/2 2-1/2 t(3.14) So 2-,/2 _2-1/2 ]
Since oy acting on LZ(FN) is the N-fold tensor product of oy acting on L2(F), this
correspondence is also valid on LZ(FN)
(3.15) TN(so)gacting on L2(SNxFN).
It follows from (3.13), (3.15) and (2.7) that

n ( N T.Nn(SO) N oNto(X))q)’ )(x) E , m
m=O
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The left-hand side of (3.16) can be evaluated by means of (3.10) and (3.4):

(O-V N n!(N-n)!
3rh )(x)-- N! (Xy)(X)

d(y,O)=n

_n!(N-n)!
N!

d(y,O)=n

2U/2n!(N--n)!

2-N/2 E X y(Z)Xx(z)
zFu

N d(x,0), n"

Hence

Now multiply both sides of (3.17) with Tp,N,(s0), sum over p and use that TmN,,(So) is a
unitary matrix with real entries (by (2.8)). It follows that

This settles (3.12).

P Up(l)_2U/2 N Tu (So)p,l

4. Connection with the metaplectic representation of SL(2,R). Let us put the
results of 3 in a more general framework. Let F be a locally compact Abelian group
and let F be isomorphic to the dual group F* via the isomorphism y X-. Let G be a
locally compact group and let r be a unitary representation of G on LF) with the
following properties:

(i) For some so G, rr(s0) is the Fourier transform on L(F).
(ii) For some closed subgroup H of G there is a function c on H F such that

(r(h)f)(x)=c(h,x)f(x), fL2(F), xF, hH,

and

c(h,x)--c(h,y) for allhH=x--y.

Then the Dirac measures on F form a (generalized) H-basis for L2(F) and r(s0) has
(generalized) canonical matrix elements (x,y) X y(X) with respect to this basis.

Next suppose that for each natural number N there is a compact group KN of
automorphisms of FN such that:

(i) KN acting on L:(FN) commutes with (R)N(G).
(ii) If c(h,x) c(h,XN)--c(h,y) c(h,YN) for all hH then (x,. ",XN) and

(Y,’" ",YN) are in the same KN-orbit. Let N be the subspace of LE(FN) consisting of

KN-invariant functions.
Let rN be the corresponding subrepresentation of (R)Nr. Write ff for the KN-orbit

through x FN and put

) ) f ( k x ) x ( x ) dk x,yFN.

Then q,; is a spherical function on FN KN/KN. Now the Dirac measures on KN\FN
form a (generalized) H-basis for U and ru(So) has (generalized) canonical matrix
elements (:,)7) q,y.(:).
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In {}3 we had F= {0, 1 }, G- U(2), H is the subgroup of diagonal elements, rr is the
natural representation of U(2) on L2({0, }), KN is the symmetric group and the
spherical functions q2) were Krawtchouk polynomials.

For another example let F--R, G a two-fold covering group of SL(2,) and rr the
metaplectic representation of G on L2(N) (cf. Weil [12] for the definition). Let KN be
the rotation group SO(N). Then the functions ff) can be expressed in terms of
Bessel functions and the representations rru are irreducible and belong to the discrete
series. Thus we have a conceptual interpretation that discrete series representations of
SL(2,) or its covering groups are related to the Hankel transform. See Sally [9], Gross
and Kunze [5] and Rallis and Schiffmann [8] for further information.

The analogy between the cases F= (0, } and F--N is not perfect, since U(2) is not
contained in the metaplectic group related to (0, }, so rr is not a metaplectic represen-
tation in this case.

5. Krawtchouk polynomials as intertwining functions on Hamming schemes. Let G
)N )Nbe the wreath product (Sk+ Su (k,NN), i.e., the semidirect product of (Sk+

and Su with Su acting on (S,+)u by

Let X’- {0, 1,..-,k}. G acts transitively on XN by

(O,,’" ",ON)(X,,’" ",XN)"-- (OlXl,"" ",ONXN) oilSk+l, xiX
and

(x,,...,x)’-(x-,,,...,x,-,), S, x,X.
Let Sk denote the stabilizer of 0X in Sk+. Put 0 "--(0,0,...,0)XN. Then the
stabilizer K of 0XN in G equals (Sk)No SN. The homogeneous space XN- G/K is
called a Hamming scheme over the alphabet X of k+ letters.

Fix an integer such that O<_q<k-1. Let Sq+l Sk_q denote the stabilizer of the
subset {0, 1,-..,q} of X in Sk. Let L2(X) be the space of all complex-valued functions
on X provided with the inner product

(f,g) (k+ 1)-’ f(x)g(x), f,gL2(X).
xF

Let X 0, X ," ", X k be an orthonormal basis of LZ(x) stlch that

(5.1) Xo(X) "-1, xX,

k-q) 1/2

q+ x-O,. ,q,
(5.2) X,(x)

q+ t 1/2
x--q+l k.

k-q

Note that X is Sq+X Sk q-invariant.
2 NThe Hilbert space L X ), provided with the inner product

(f,g) (k+ l)-N f(x)g(x), f,gL2(XN),
x.XN

can be identified with the tensor product (R) NL2(X). Put

(5.3) X y(X) X yl(Xl)" X yN(XN),
x-(x,,...,XN)XN, y--(y,,...,yu)Xu.
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Then the functions X yN(Y XN) form an orthonormal basis of L2(xN). The Hamming
distance on Xu is defined by

(5.4) d(x,y) := I{ilxi=/=yi}l, x,yXN.
PROPOSITION 5.1. (a) L2(XN) is an orthogonal direct sum of G-invariant subspaces

nN, n O, ,..., N, where

(5.5) CN span{x yl d(y,O)-n}.
(b) Each space N contains a unique function qNn’q which (i) is invariant under the

)N SN of G and (ii) takes the value in 0 XN.subgroup H" (Sq+ Sk_q

(c) The spaces are irreducible under G.
Proof. Part (a) is evident. For the proof of (b) let fN satisfy (i). Then f is a

linear combination of functions of the form

X.--+Xl(Xil)Xl(Xi2)...Xl(Xin), i<--il<i2 <’’’ <in<__N

because of the (Sq+ 1X Sk_q)N-invariance. By SN-invariance we get

C
f(x)---. E X l(Xr(l))" X l(Xr(n))

rSN

for some constant C. Iff also satisfies (ii) then

1-c( k--q )
Hence (b) holds with

q+ n/2

(5.6) Nn’q(x)--
k-q "U---( E XI(Xr(1)) Xl(Xr(n))

rSN

Finally (c) follows from the case q=0 (i.e., K=H) of (b). 7-1
The functions q,U,q are called intertwining functions because the G-intertwining

operators from L2(G/K) into LZ(G/H) can be written in terms of these functions. The
functions qnu’ are called the sphericalfunctions on the homogeneous space G/K.

By using (5.6) we can evaluate the intertwining functions in terms of special
functions. First note that an H-invariant function on X’ only depends on

(5.7)
Write

c’- I{ilq+ lx,k}l,

Nn,q(.) N q(x)

xXN.

It follows from (5.6), (5.2) and (2.17) that

@N,q(m)_nl(N--n)! q+ n/2nAm (n--k)/2 k/2

N! k-q =0
k n k q+

(N-m),(N-n), ( q+l )N!(N--m--n)! 2F! -n,-m;N-m-n+ 1;-k_ q

k+l)2 El -n, -m; -N;
k- q



KRAWTCHOUK POLYNOMIALS 1021

where the equality of the second and .fourth expression for m+n>N follows by
continuity, starting with noninteger N. Hence, by (2.20):

(5.9) k_q,N)U,’q(m)--K,, m; k/

The spherical function case q=0 of (5.9) is due to Dunkl [2]. The general case is
probably new. Note that the set ((k-q)/(q+ 1)10_<q_<k- 1, k= 1,2,. ) is just the
set of rational numbers between 0 and 1. R. Askey suggested to me that Krawtchouk
polynomials of rational order might have a group theoretic interpretation as intertwin-
ing functions.

6. The connection between two different group theoretic interpretations of
Krawtchouk polynomials of general order. Let Fbe the set {0, }. Fix 0<p< and let w
be the weight function on F given by

(6.1) w(0) -p, w(1) p.

Let L2(F; w) be the space of complex-valued functions on F with inner product

( f,g) f(x)g(x)w(x), f gU_L2(F; w).
xU_F

We will now extend the results of [}3 to the case of this weighted L2-space. Let N be a
natural number. Let

(6.2) W(x) W(Xl)W(X2)... W(XN) xFu.
Then L2(FN; W)- NL2(F; w). Let

(6.3)

(6.4) X,(X)

X.o(X) 1, x_F,

p )/2 x-0,

1/2

Then {X0,X ) is an orthogonal basis for L2(F; w) and the functions X y (yFN), given
by

(6.5) X y(X)--X y,(Xl)" X yN(XN), xFN,

form an orthogonal basis of L2(FN, W). By symmetrization of the basis functions (6.5)
we obtain a basis for the symmetric functions in L2(FN, W)"

(6.6) ~N,p 0)) N p X y(OX)
FN(,0(d(x, P,(j,0)(x)" N! ] x

.s x (o)
where the Hamming distance d on FN is defined by (3.9). It follows from 5 that the
intertwining functions q,N,q are special cases of (6.6)"

(6.7) Nn q lf_nN,(k--q)/(k+ 1).

There is a natural unitary action of U(2) on L(F; w) with respect to the basis

X 0, X 1, just as in 3. Via the tensor product this yields a unitary action of U(2) on
L2(FN, W), which commutes with the action of Su on L2(FN, W). Thus, similarly to
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(3.13), we can make an identification between concepts from2 and 6, respectively:

(6.8)

U(2)-moduleC 2 U(2)-moduleL2( F; w ),
(e0,el) (Xo,X
U(2)-module (R)Nc2 U(2)-moduleL2(FN; W),
U(2)-module VN U(2)-moduleL2(SN\FN; W),

fN --p nN’P

n --p

The "Fourier" transform Yon L-(F; w), defined by

(6.9) (3f )(Y)-w(y)/2 xFE f(X)X y(X)W(X),

is clearly a unitary transformation from L2(F; w) onto itself. A calculation using (6.1),
(6.3), (6.4) shows that this unitary transformation is given by the matrix

(6.10) Sp’-
(1 --P)l/2 2

pl/2 -(1 _p)/2
Let acting on LZ(FN; W) be defined as the N-fold tensor product of o acting on
LZ(F; w). Then

(6.11) (f )(Y)-
W(y),/2 xF

f(X)X y(X)W(x).

Just as in (3.15) we have the correspondence

(6.12) TN(sp)O3 acting on Lz(SN\FN; W).
It follows from (6.8), (6.12) and (2.7) that

n p’ (IpnN’P)(x) X TN.(sp) N P qmN,P(x).m, m 1--n
m-O

The left-hand side of (6.13) can be evaluated by means of (6.9) and (6.6):

-Pp
n/2 d(x, O),n

pd(x,O)/2(1 -p )(N--d(x,O))/2
Hence

X N N P qUm,P(l ) N -,/2 U)/2

m--O
Tm’n(Sp) m 1--p n P (1 --P)(’-

Now we use that (TmU,,(Sp)) is a.real orthogonal matrix (cf. (2.8)). Finally

(6.14) TNr’I(Sp )-- (N)1/2(rN)
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In particular, by combination of (6.14) with (6.7), we have given a conceptual explana-
tion that both the canonical matrix elements of SU(2) and the intertwining functions
on Hamming schemes can be expressed in terms of the same special functions.

Acknowledgment. I would like to thank Dr. T. A. Springer for calling my attention
to the metaplectic representation and Richard Askey for suggesting the group theoretic
interpretation of,Krawtchouk polynomials as intertwining functions.
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THE GAUSS HYPERGEOMETRIC RATIO AS A POSITIVE REAL
FUNCTION*

VITOLD BELEVITCH"
Abstract. The Gauss continued fraction for the ratio of two hypergeometric functions is converted into

an ordinary fraction (all partial numerators are 1) and simplifications occurring for particular relations
between the parameters are discussed. In particular, a very simple expansion is obtained for the ratio ElK of
the complete elliptic integrals. For the argument -z and for certain ranges of the parameters, the Gauss
expansion is a Stieltjes fraction and represents the input impedance of a passive ladder network. The Stieltjes
integral representations of the corresponding positive real functions are established and yield many new
definite integrals. A general method for obtaining indefinite integrals involving independent solutions of a
self-adjoint differential equation, by means of the Wronskian, is also mentioned. Finally, some continued
fractions originating from other contiguity relations for hypergeometric functions are discussed.

1. The Gauss continued fraction. The continued fraction expansion of the ratio
F(a, fl, 7; z)/F(a, fl + 1,7 + 1; z) of two contiguous hypergeometric functions is dis-
cussed in [1, pp. 122, 151]. For further convenience we replace fl by fl- and z by -z.
One then has

F(a,fl- 1,7;-z) - az a2z(1) r(o,fl,7/l;-z) ---4- /""

with

(fl+k-1)(7-a+k)
a,- (7+2k-1)(7+2k)

(ozd--k-1)(7-fl-+-k)
a2k_ (7+2k-Z)(7+2k- 1)

k-1,2,3,---

For real values of the parameters a, fl,7, and 7:0,-1,-2,..., the expansion (1) is
valid in the complex z-plane with a branch cut from -m to -1 on the real axis.

The input impedance of an electric ladder network is an ordinary continued
fraction (all partial numerators are 1). The expansion (1) can be reduced to the desired
form by introducing common factors. This yields

F( a, fl- l, 7; -z ) _+_ 1__(3) F( a, fl, 7 + -z ) bl/z + b--z + b3/z +4 +
with

(4) bl_%m,1 b2 __,a b3 b4 _,ala bs_
al a2 b2a3 a2a4 b4a5 b6

For

(5) 0<a<Tq-1, 0</3<7+1, 7>0

ala3a5
a2a4a6

all values (2) are positive, and so are the values (4). The expansion (3) is thus a Stieltjes
fraction in the range (5) and represents the impedance of a passive RL-network (series
resistances and shunt inductances) as a function of z= i0 (0=radian frequency). The
change of the argument into -z has been introduced to make (3) a positive real function
of z, and the replacement of/3 by/3- makes (5) symmetric in a and/3.

*Received by the editors July 15, 1980, and in revised form January 27, 1982.
Philips Research Laboratory, B-1170 Brussels, Belgium.
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We now check that (3) remains positive real when any one of the inequalities
occurring in (5) is changed into an equality. For a=0, the function reduces to 1. For
a , + 1, the transformation [2, eq. 15.3.3]

(6) r(a,-1,7; -z) F(Y-a,Y-fl+ 1,7;-z)
V(a,,v+ l;-z) F(7+l-a,v+l-fl,v+l;-z)

shows that (3) reduces to + (7-/3 + 1)/7z. Similar results hold by symmetry for the
extreme values of ft. For 7--0, a has a factor 7 in the denominator but all the other
elements (2) remain finite nonzero. In (4) all bzk+l thus contain the factor 7 and all b2k
the factor 1/7; these factors are cancelled if one multiplies (3) by 7 and the resulting
function is

(7) lim yF(a,fl-1,7;-z)=a(1-[3)zF(a+ 1,fl,2;-z)
v-o F(a,fl,y+ 1;-z) F(a,, 1;-z)

by [2,eq. 15.1.2].

2. Simplifications. In general, the elements (4) grow in complexity with their rank,
and the resulting impedance is of no practical interest. By contrast, there is a large
engineering interest in finding closed form expressions for Stieltjes continued fractions
having the form of the right-hand side in (3) where the elements bk are rational
functions of k of low degree. Such a fraction is obtained for a fl, producing a drastic
simplification in the ratio a2k_ l/a2k of (2); the resulting expansion (3) multiplied by 7,

i.e.,

7F(a, a- 1, ,/; -z )(8) ((-i’+ 1," -z) =c/ c,/---/ c--2/ c3/z /
with

3,+2k+(9) Czk--’+2k’ c2k+’-’a+k’"y-a+k+,), 1)’
k-0,1,2,...

represents a simple network. In particular, for a- 1, --1/2, (8) yields, via [2, eq. 15.1.7]
the known expansion of

vfil/z)z
(10)

( 3 ) 2arcsinh2F 1,1, - -z

with

4k+ 4k+3(11) C2k-- 2 CZk+l--(k+ 1)(2k+ 1)"
With z replaced by z 2 this coincides with [2, eq. 4.6.36] after reduction to an ordinary
fraction.

An additional simplification occurs in (9) for a---(,+ 1)/2. The expansion result-
ing from (8) and (9) is then, with z replaced by 4z,

y+l y-1 ]
(12)

7F 2 2 ’7;-4z!
F(,{+I y+l )=7+2 2

,y+l;-4z 1/z(y+l)+y+2+l/z(,+3)+""
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For ,= this yields the known expansion [2, eq. 15.1.3]
4z(13) ln(1 +4z)= + 1//2------ +-+ 1/4z ++ """

For/3 4: 1, the ratio (3) apparently involves two distinct hypergeometric functions,
but it is in fact expressible in terms of the logarithmic derivative of a single function.
By [2, eq. 15.2.7] we have

d )’-’r(a ).dz
(1-z)’r(a’B’V’z)-a(-V) (1-z + 1,/3,V+ z

Introducing the notation
dG(a,, 7; z)=zz In r(a,/3, V; z)

F(a+l,/,,+l;z)__ "Y [l+Z-lG(a,,’y’z)].,(14)

By permuting the first two parameters in (14), taking the inverse and decreasing the
second parameter by 1, one expresses (3) in terms of G(a,/3- 1, ,;-z) but this destroys
the symmetry in a and/3. However, by [1, p. 122 eq. 2] one has

(15) F(a,/-1,,;-z)- 1_ a(,,--]+ 1)z F(a+ 1,],T-+-2;-z)
r(a,fl,v+ l;-z) V(v+l) F(a,fl,v+ l;-z)

By inserting (14) with replaced by + and z by -z into (15), and multiplying by ,
one obtains

(16) yF(a,fi-1,3,;-z) l+z
--((---,-- i -- y + az 1-

a
G( a, fl, y + -z )

and this result also holds for ,--0.
With the usual notations for the complete elliptic integrals E and K of modulus k

(and with k’2= -k2) we have [3, pp. 499, 521]
2(17) F 5’-’ 1;k2]--K’

(18) dK= e-k’2K
dk kk’2

For 3,-0 and a-/3-1/2 the left-hand side of (16) can be evaluated by (7) whereas the
right-hand side simplifies via (17)-(18) with -z k 2, hence k i2-. This gives

z ""’2;-z =1 E(i/)_
(1 ) 2 K(if-

(19) 4
F ,-,l;-z

Since the left-hand sideof (16) with z changed into 4z is (12) and thus equals the
right-hand side of (19) with the elliptic modulus 2i2-, one obtains a simple closed-form
expression for the continued fraction (12) with ,=0. Changing z with z 2 and dividing
by z one obtains

[E(2iz)_l]_(20) 2z ]K(2iz 1/z + 2/z + 1/3z + 4/z + 1/5z +"’"

one obtains
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Since E and K are even functions of their arguments, the left-hand side of (20) is real in
z. By Jacobi’s imaginary transformation [4, p. 274], we have

(21) K -7 k’K( k ), E -; --7
For

k u(22) Z-
2k, =-

one obtains the following explicit real expression of (20):

(23) k-7-/()
-k’ - (1--U2) (-/--1

3. The Wronskian. The Wronskian

du2 du
(24) W=ul--z -u2 dz

of two solutions of the self-adjoint differential equation

(25) -z P(Z)-z +q(z)u-O

satisfies the equation

and is thus

aw ap
w=0

C
(26) W--

p(z)
where C is a constant which can be determined by considering the value of (24) at some
z. The self-adjoint form of the hypergeometric differential equation is [7, p. 5, eq. lb]

d[ ,+-+l du l_oflz_l(l_ z 0)a+B-vu-(27) dz zV(1-z) dz

and (26) thus becomes

(28) W=Cz-V(1-z)v-"--’

in accordance with [5,p. 84, eq. 28]. Kummer’s 24 solutions of (27) are listed on p. 67
and the corresponding values of C in (28) are given on pp. 84-85.of [5].

Iff(u) is an arbitrary differentiable function, we have

(29) -zf u--- u u- u u--
hence

(30)

A large variety of integrals is obtained for various choices for u and u2 among the
Kummer’s solutions of (27) and for various choices of elementary functions for f(u),
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such as uv, arc tanu or ln u. Moreover, since a hypergeometric function takes simple
values for some particular values of its argument, such as

(31) F(a,fl,7; 0)-
and [2, eq. 15.1.20]

(32) F(a fl y" 1) -r(v)F(v--B) [Re(,{-a-fl)>0,y4=0,-1 -2,... ]
r(v-)r(v-)

many simple definite integrals can be obtained. Note that, by [2, eq. 15.3.3], i.e., by

(33)
F( a, fl, ,{; 1) is infinite for Re(,{ a fl ) _< 0.

4. Examples. We take

(34) Ul r( a, fl, ,{; 2

and [5, p. 67 eq. 9]

(35) u.--r(a,fl,a+fl+ 1-,{;

so that the constant in the Wronskian (28) is [5, p. 84 eq. 29]

(36) C- r(a+/3+ 1-v)r(v)
r()r()

We have Ul(0)-- u2(1)-- but, by (32)-(33)

r(r)r(r--) Re(‘{-fl-) >0
(37) u,(1)-- r(v-)r(v-)

oo, Re(,{-fl- a)_<0

r(.++ -,{)F(1 -‘{)
Re‘{<(38) u(0)- r(/+l-v)r(a+ 1-,{)’

c, Re,{_> 1,

and both u and u2 are analytic for 0<z< 1.
Withf(u)= u, (30) gives

(39) fo Wdz__ u_ I’Ul
2 Ul 0"

For the lower choice in (37) and the upper choice in (38), (39) yields

t’1 z-V(1-z)V-a--ldz_ r(1-v)r(.)r(t)
(40) Jo F2(ai,,-i-z -F(fl+ 1-,{)Y(a+

[Re,{< 1,

For Re,{ >_ 1, the integral (40) clearly diverges. For Re,{< but Re(,{-/3- a)> 0 a
rather complicated expression is obtained by taking the upper choices in (37)-(38).
However, the use of (33) in the left-hand side of (40) and the substitutions
fl’=,{-fl produce Re(,{-fl’-a’)<0 and transform the integral of (40) into a similar
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integral with parameters &,fl’. The same substitutions in the right-hand side of (40)
yield
(41)

f01 z-(1 z)’---’dz r(1 v)r(v- )r(v-)
f2(ctlKi ; F(1-a)r(1-B)r(v) [1 >Re/> Re(x+fl)].

The equivalence of (41) with the more complicated expression resulting from the direct
use of the upper expressions (37)-(38) can be established by applying several times the
complement formula for F-functions.

With f(u) arc tan u, (30) gives

(42) fo u
Wdz

+u---z- arc tanu
u

which becomes 0-vr/2 for the lower choices in (37)-(38). Hence

(43) f0’ z-V(1--z),-"-E-’d =K r()r()
FZ(a,fl,y;z)+F2(a,fl,a+fl+ l-y; l-z) 2 r(v)r(+B+ l-y)

[l_<Rey_<Re(a+fl)].

For y-a + fl- 1, and using the complement relation for the F-function, one simplifies
(43) to

(44) dz

z(1-z)[FZ(a,l-a, 1;z)+F2(a,l-a, 1; l-z)]
2

2 sin ra

For z- k 2 and a-1/2, (44) simplifies by (17) into

(45) fo’ dk

,:(K+K’:)
=1

which can also be established directly by computing the derivative of arctanK/K’ by
(18) and the Legendre identity.

From (45) one can also deduce that

(46) fo dk

k(K;K, --By changing k into k’ in (46), which leaves K2ff K’2 invariant, and eliminating dk’ by
kdk--k’ dk’ one proves that (46) is equivalent to

(47) fo’ kdk _1
,(/g,)-

and the sum of (46) and (47) is (45).
Withf(u)- In u, (30) gives

(48) [’, W__dz =ln u2(1) u,(0)
Jo UlU2 Ul(1 ) U2(0)"
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With the upper choices in (37)-(38) one obtains, after simplification by the comple-
ment relation for the F-functions,

z-( _z)-’--ldz
F(a,fl,3’;z)F(a,fl,o+fl-3"+ 1; l-z)

(49) In
r(v)r(a+B+ l-v)

sinr(7- a)sinr(7- fl)
sin r 3’ sin r(3’- a -/3)

> Re 3’ > Re(a +/3)].

5. Stieitjes representation. The continued fraction expansion of (15) is (3) with
first term omitted. Changing 7 into 3’-1 and multiplying the result by 3’(3’-1)/a(3’
-/3) one obtains the function

F(a+ 1,fi,3’+ 1;-z)(50) f(z)-z r(a, fl, 3’;-z)
From the range (5) of the parameters and its extension discussed at the end of 1 it
results that (50) is positive real for

(51) 0_<a_<3’, 0_</3_<3’, 3’>_1.

Consequently,

F(+I,/3,T+I;-1/z)(52) g(z)=f- -(i -i-- 1/z)
is positive real and analytic in the entire complex plane with a branch-cut from -1 to 0,
and one has g(z)-O(z-) for large

G F

Re f

FIG.
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We have the Cauchy-integral

fc g(t)dt=g(z)’ largzl<rr(53) 2rri z-Z-7-t
on any simple contour C not crossing the cut. The contour we choose is shown in Fig.
and the contribution on the large circle AB around the origin tends to zero because of
the remark preceding (53). The contributions to (53) on BC and HA cancel each other
since the interval -m <t<-1 is outside the cut, so that the function is continuous and
both paths coalesce. Also, the contributions on the quarter-circles CD and GH tend to
zero because g(z) is finite at z=-I by (32) and (33).

As regards the contribution of the small half-circle EF, we must investigate the
nature of the singularity of (52) at the origin. By [5, p. 70, eq. 1], we have

r(/--a)
F()F(,- a)

F(a-/)(54) F(a,/3,v;z)-r(v) ws+ W6

where % and w6 are [5, p. 67, eqs. 17, 21]

(55) w--(z-lei’)F(a,a+ 1--T,a+ 1--/; z-l),

(56) w6-(z-’eir)r(jS,18+ 1-3’,/3+ l-a; z-’)
and where (54) holds for 0<argz <2rr [5, p. 69]. From the above equations and (52) we
deduce that g(z) is finite at the origin for/3-a> 1, has a simple pole with positive
residue 7(a- fl)/a([- fl) for fl- a < 0, whereas the singularity at the origin is a
branch-point weaker than a simple pole for 0 </3- a< and is logarithmic for/3- a 0
or 1. In any case, the contribution of EF to (53) is "t(a-fl)/2a(),-fl)z for a > fl, else
zero.

We set

(57) g(-z-- iO)=A( z) + iB( z)
on the parallel below the cut, and the conjugate value holds on the parallel above the
cut. The corresponding contributions to (53) on DE and GF result in

foq’l" z-- r z +

Taking into account the contribution of the pole at the origin, one thus reduces (53) to

a<-B,
[, B(t)dt+g(z)-g z +---7-

Changing z into 1/z and dividing by z one obtains

(59) F(a+ __1,/3,3,+_ ;-z) ___1 f01B(t)dt
__

(ol-)
F( a, 8 {" -z ) r + zt

a<_fl,

a> fl,

where, by (57),

(6o) B( ) Img(-z )[-t+ iO Imf(-z )lz= -1- iO"
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From a comparison of (50) and (14) we deduce

(61) B(t)- 7(t-l)ImG(a,fl,7;z)
,(,-)t z--t -1 --iO

Setting

(62) F( a, fl, 7; z iO) U( z ) + iV(z)
one deduces from the definition of G preceding (14) that

d V VU’- UV’(63) ImG(a,fl,7;z-iO)---zarctan--- U2 + V2
VU’- UV’

where the argument z in the denominator stands indifferently for z-+ i0. By (54)-(56),
(62) is of the form

(64)
where

(65)

F= eiraX-} eirB Y,

X=e_,,, r()r(-) _,, r()r(-)
r()r(v-)w’ Y=e r()r(v-)w

and are real when Imz tends to 0. By comparison of (62) and (64) we have

(66) U=Xcosra + Ycosfl, V=Xsinra + Ysinrfl
and the combination occurring in (63) is

(67) VU’- UV’ ( XY’ YX’) sinr( fl).
From the expression (65) and from the Wronskian [5 p. 85, eq. 34]

(68) wsw -w6w (fl- a) e’Vz-V(1 z ) v-,-B-

we deduce

(69) XY’- YX’-eir(v-’-B) Fz(7)F(fl-a+ 1)F(a-fl) -v(r()r()r(v-)r(v-)
z l-z)

From (67), (69) and the complement relation for F(a-fl), we obtain

r() -((70) VU’- :V’--
r()r()r(v-)r(v-)

z z- 1)

Finally, by (61) and (63), we have

r(v)r(v + 1) t’+B-’(1-t)v--t(71) B(t)-r r(+ 1)r(v-/+ 1)r(/)r(v-a)
and (59) becomes

(72)

IF(a,fl,7; t-1)l2
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The result (72) is valid within the restrictions (51) on the parameters, but the restriction
largzl<r of (53) can be dropped outside the cut because of the cancellations of the
integrals on BC and HA, so that (72) holds for all z outside the open interval -1 <z < 0.

The integral in (72) is symmetric in a and /3; one easily checks by contiguity
relations that so is its expression. For a =0, (72) coincides with the integral representa-
tion [2, eq. 15.3.1 of F(1, fl, , + 1; -z). The corresponding impedance has been dis-
cussed in 11 ].

For z 0, (72) reduces by (31) to

r()r(+
1) Jo

(73) f0,
For z--1, (72) reduces, by (32)-(33) to

(74)

r( )1-’( r- 1) fo
a+fl- 1_(__1 . t_)__.Y--j_

r(a+ 1)r(B)r(v-a)r(v-B+ 1) iy(a,B,y,,t_l)12
dt

2a(7-/3)

2a(-/3)

a>B, v>a+B,

a>/3,

In all the above integrals F(a,/3, 7, t-l) has in fact the argument - -+ i0 and can be
evaluated in terms of hypergeometric functions of argument by means of (54)-(56).
The resulting expression becomes undetermined for a =/3 but an alternate expression in
terms of functions of arguments and 1-t can be deduced from the relation resulting
from the remark following [5, p. 71, eq. 19] by using the expressions of w4 and w6 given
in [5,p. 67, eq. 16,21].

6. Stieltjes integrals involving E and K. For a-fl--1/2, 7- 1, and t-k2, the hyper-
geometric function in the integral of (72) is

(75) F -, ,l’k-2 ---K

by (17), whereas the ratio of hypergeometric functions in the right-hand side of (72) is

4/z times (19). Changing z into z :, one obtains

(1 +k2zK(1/k)12-z2 K(iz)

which holds for all z with Rez_>0 except in the open interval ]-i,i[ corresponding to
the cut. The same restriction holds for all the following integrals in this section and will
not be repeated.
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The value of K(1/k) can be evaluated as explained in the last paragraph of 5 or
directly by decomposing the integral from 0 to defining K into integrals from 0 to k
and from k to 1. The result is

(77)

and (76) becomes

(1)K -+-iO -k[K+--iK’]

(78) f0’ dk _1 [ E(iz) ]k(1 +k2z2)(K+K’2) -- K(iz)

For z-0 and z- i, (78) reduces to (46) and (45), respectively. For z- the transforma-
tion from (20) to (23) generates functions E and K of modulus k-k’-1/v- which
have known values [3, pp. 524-526] and (78) reduces to

(79)
dk

k(l+k2)(KZ+K’2)
87/.2

F4(1/4)
For ct--1/2, fl-1/2, ,- and t-k 2 we have in the integrand of (72)

(80) F --,
whereas the ratio in the right-hand side is, by (14),

(81)
)F -,2;-z

] =2 l+2(l+z)G

In (81) with z--k, G is proportional to the logarithmic derivative of E(k) which can
be deduced from [3, p. 521]

(82) dE=E-K
dk k

so that (81) becomes

(83) 2 l_k’2K _2_ (l+z)--I

Finally, changing z into 22, (72) yields

: K(iz)(84) - (l+z
E(iz) f k’:dk
-1

k(1 /kza)lE(1/k)12

The analogue of (77) for E is

(1 k,2Ki(E, k2K,)](85) E ----i0 -- E-

Note that (77) and (85) are in [6] but without mention of the --+ sign and with
incoherent determinations. By (85), (84) becomes

(86) - (1 +z )
E(iz) (1 +kz2)[(E-k’K)2+(E’-kK’)2]
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For z-0, (86) yields

(87)
kk’2 dk _1__

(E_k,2K)+(E,_k2K,) 2"

For z-i, (86) yields

(88) fo kdk

and the difference between (88) and (87) yields

=1

(89)
k3 dk =1

(E_k,2K)2+(E,_k2K,)2 2

which can also be deduced from (87) by changing k into k’. For z- 1, the application
of (21)-(23) yields

(90) kk’2 dk

(1 /kZ)[(E-k’2g)e/(E’-keg’)]
8ra/F4(-)

Adding (88) to z 2 times (86) one obtains

(91)
K( iz ) fo k dk

E(iz) (1 +k2z2)[(E-k’2K)2+(E’-kK’)2]
By a contiguity relation [7, p. 32, eq. 14] we have

r 2F( 3
(92) E(k)-K(k)---k -,-,2;k 2

For a- 1/2, fl-3/2, {-2 and z--k2, the hypergeometric ratio in the right-hand side
of (72) becomes, by (14), by the definition of G and by (92)

(33F -,--,3;-z (1 3 )](1 3 )=4 1-2(1+z)G ",-,2;-z
F ,-,2;-z

k’2 d[k-2(E-K)]/dk }k k-2(E--K)

By (18) and (82), this is

(93) 4

On the other hand, the left-hand side of (72) with t-k 2 becomes by (92)

(94) 4f0’ dk
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Identifying (93) with (94), using (77) and (85) and replacing z by z 2 one obtains

2 fo kdk(95)
E(iz)/K(iz)-1 z 2-- (1 +k2z2)[(E-K)2+E’]2"

For z-0, and l, (95) yields, respectively,

(96) 9

(E_K)2+E,2 16’

(97) fo’ kdk

k’:Z[(E-K)Z+E’2] =1’

(98) f0’ kdk F4(1/4)
-2.

(I+k2)[(E-K)-+E’2] Sr 2

Many other similar integrals can be deduced by replacing k by k’ and by combin-
ing the results in various ways.

7. Continued fractions for ratios of F-functions. The expressions (9) are positive
real functions of 3’, so that (8) also converges for z>0, Re3’>0. In (9), Ck+l is not
positive real in a, but the transformation

(99) u

which changes the range 0<a< 3’ + of (5) into 0< u< , changes the denominator of
c2+ ino

(3"+ /k)k/ (3’+ 1):zu
(l+u)2

which is a positive real function of u. Consequently, (8) also converges for z>0, 3’>0,
Reu>0.

For z- and 3’- 1, the hypergeometric functions of (8) are expressible in terms of
F-functions [2, eq. 15.1.22]. After some elementary manipulations and the replacement
of a by z + one obtains

(100)

with

F(z,z/l,1;-1)
=1+

2/(l-z) + 3 + 4/(22-z2) / 5 / 6/(32-z2) /--"

4 (z)-1
(z)+l

r
2

F(z+l,z/l,2;-1)

(101)

For z- 1, 3’-0, (8) becomes, via (7),

a(1-a)r(a+ 1,a,2;-1)
F(a,c, ;-1)
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and can again be expressed in terms of F-functions [2,eq. 15.1.21]. Changing o/into

F( 3+z -z

(z + 1)/2 and dividing by 2, one obtains, by (9),

(102)

8/(12-z 2) + +24/(32-z2) +2+40/(52-z2) + 3 +--- F( +z -z
4 )F( 4

Owing to the discussion following (99) and the transformations from o/to z, both (100)
and (102) converge for [z < 1. In fact, both (100) and (102) are positive real functions of
the argument u (1 + z)/(1 z).

For z--0, (102) is 2r2/F4(1/4) and the continued fraction multiplied by 4 coin-
cides with (20) for z 1/2. This checks with the value (79) of (78) for z-- 1.

8. Continued fraction generated by y-contiguity. From the many contiguity rela-
tions, various continued fractions for ratios of hypergeometric functions can be gener-
ated, different from the Gauss expansion, and we have investigated several of these.
The only simple ordinary fraction thus obtained results from the contiguity relation for
o/, ]3 (and z) constant and for variable y; we abbreviate F(o/,/3, 3’; z) into F(y). One has
[2, eq. 15.2.27]

7(7--1)(1--z)F(7-1)-717- l(2y-o/-/--1)z]F(7)+(y-o/)(7-8)zF(7+ 1).
For/: o/- 1, this can be rewritten as

3’-1 1 z F(3’-l):y-l-2(3’-o/)z+
3’-o/ z F(3’) (3’-o/)z(1-z) 3’ ./1-z F(3’)

3’-o/+1V z r(3’+l)

With 3’ changed into 3’ + o/, with z 1/2 and then o/changed into + o/, this becomes

3"+o/+ F( 3" + o/ + 1)
3’+1

thus generating the expansion

F ,)o/+ 1,o/,y+o/; -F o/+ 1,o/,3’+o/+ 1; - 2o/

2o//(3’ + 1) + 2o//(3’ + 2) +

By [2, eq. 15.3.3], this is also

F 3’-1,3’;3’+o/;-

( 1)"F 3’,3’+ 1,7+a+ 1; -Changing o/into z/2 one thus obtains

(103)
( zl)F 3’-1,3’,3’+-;

( z
F 3’,3’+ 1,3’+-+ 1; - z

3" z/(7+1)+z/(3"+21+""



1038 VITOLD BELEVITCH

For , >0, (103) is a Stieltjes fraction converging for Re z >0. The fact that it does
converge to the left-hand side of (103) results from an expansion mentioned by Perron
[1, p. 299, eq. 23] which, transformed into an ordinary fraction, becomes

(104)
l-x) dx(a+ 1)fx +x

tfx-( l-x )+x
2",{/(a + 1) + 27/(o+ 2)+ 27/(+ 3) +---

[a>0,’r>0].

If 2y is replaced by z and a by y- 1, the right-hand side of (104) becomes the inverse of
the right-hand side of (103), and the same relation between the left-hand sides of (103)
and (104) results from the integral representation of the hypergeometric function [2, eq.
15.3.1] and its analytic continuation for Izl > [2, eq. 15.3.5].

For y- 1, (103) is

(105) 2+z

F 1,2,2+- -By a contiguity relation [2, eq. 15.2.11 we have

F 1,2,2+-;-- -2+z-zF 1,1,2+,-
and the last function is a combination of q-functions [2,eq. 15.1.27]. Finally, the
reciprocal of (105) is

(106)
z/1 + z/2 + z/3 +""

by [2, eq. 6.3.5]. The expansion (106). is known ([8, p. 162, eq. 3.7], after reduction to an
ordinary fraction) to be

(107) z e -zt tanh dt

and the equivalence of (107) with the last form of (106) can be proved directly by
replacing the q-functions by their integral representations [2, eq. 6.3.2] (see also [12]).
By [2, eq. 6.3.7], (106) reduces for z--1 to the ordinary form of Euler’s fraction for
[1,p. 23, eq. 3].

We next consider (103) for y- 1/2. By contiguity relations [2, eqs. 15.2.21, 15.2.24]
one has

F-,--, 2 ; 2z
F ,-, 2

(1 3 z/3 1) z/l
F ,-, 2 ; -(z+l)F ,-, 2

Since [2, eq. 15.1.26]
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(103) becomes
z+l 1)V -,-, 2 ;-

=2z-
_H(z)/l(108) 2(z+l)

F-’’2(13 z+3;l) 2z/3+Zz/5+’"--H(z)--l’

where

(109) H(z)
r +

and this coincides with the particular case m-n-1/2 in Ramanujan’s continued fraction
[1,p. 34,eq. 15] when transformed into an ordinary fraction. More generally, the
ordinary form of Ramanujan’s expansion remains simple for m-1- n, and two other
particularly simple expansions are obtained for n-0 and n- .

9. Confluent hypergeometric functions. If one replaces z by --22/O2 in (8) and lets
ct tend to infinity, one obtains, via [2, eq. 9.1.69], the well-knownexpansion involving
modified Bessel functions

(1101 Iv-l(2z) =3,+
Iv(2z) z (y+ 1)/z+ (y+2)/z+""

If one replaces z by y/z in (8) divided by ,, and lets , tend to infinity, one obtains,
via [2, eq. 13.1.33], an expansion involving Wittaker’s functions

W-,,/2(z)
--1/(1111 - W(,/21_,,0(z) z/a -t- /z/(c/ 11 +""

Known particular cases are [9, eq. 25]

Kl(Z/4)(112) Ko( z/4) /11_1/1 1
z+ +z/3 +""

for c- 1/2 and z changed into z/2, and

e(113) zE(z)
=1/-z+ +z/2+""

for ct- [2, eq. 5.1.22].
The known expansion 10, App.]

(1141
l_j,+z+(1/z)(Z)

1/
(2a+ 1)/z + + (2ct+ 31/z +

resulting immediately from the Bessel recurrence is a particular case of (3) where z is
replaced by -2iz/fl, with fl tending to infinity, with ),=2a, and with a replaced by
a / z. The reduction of the resulting continued fraction to (114) requires, however, some
heavy algebraic transformations. The function (114) is positive real in z for c_>-1/2, and
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in a for z>0. For a-1/2, (114) becomes Jz(Z)/J;(z). For a-0, z-1 one obtains the
curious expansion

(115) tan 1-1 +-]- +-i- + +-i-++-i-+-+
Acknowledgments. The author is grateful to J. Boersma, P. J. de Doelder (Techni-

cal University Eindhoven, The Netherlands) and M. L. Glasser (Clarkson College,
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ORTHOGONAL POLYNOMIALS ASSOCIATED WITH
SINGULAR INTEGRAL EQUATIONS HAVING A

CAUCHY KERNEL*

DAVID ELLIOTT"
Abstract. The Chebyshev polynomials of both the first and second kind are of fundamental importance

when considering the particular case of the singular integral equation a(t)q(t)+(b(t)/r)Xf_l(q(z)/
(z-t))dz:f(t), -1 <t< 1, in which a=0 and b=-I on [-1, 1]. We identify the two sets of orthogonal
polynomials which play a corresponding role for the singular integral equation with general a, b and consider
some of the relationships between these two sets of polynomials.

1. Introduction. In this paper we shall consider some properties of orthogonal
polynomials which arise from the dominant singular integral equation defined on the
arc (-1, 1) and given by

(1.1) a(t)q(t)+ b(t) f, q(r)d__T___f(t) -1 <t<l
9"1" -1 "r--

The integral arising in (1. l) is a Cauchy principal value integral which is defined by

(1.2) ( d"
lim

t- +
-1 ’r--t e---, 0+ +e

In (1.1) the functions a,b and f are assumed known and it is required to find the
function . The theory of such equations has been given by many authors (see, for
example Gakhov [3], Muskhelishvili [6]) and the equations arise in many branches of
applied mathematics such as aerodynamics, elasticity, fracture mechanics, theory of
radiative transfer, etc. One of the most widely studied of these equations is the
particular one (which we shall call our prototype) in which a=0 and b-----1. In this
case we find that the Chebyshev polynomials T and Un, of the first and second kind
respectively, play an important role. We have the following interesting equations (see,
for example, Tricomi [9]):

(1.3)
’rr (1 _,r2)l/2(,r_ t)

lfl (1--’r2)l/2Un(’r) d,r__
r -1 -t

U_,(t), n- 1,2,3,. .,

T+l(t ), n-0,1,2,...

Equations (1.3) have been widely used to obtain approximate solutions to (1.1) when
a:0 and b-----1 and equations for which the left-hand side of (1.1) is the dominant
part (see, for example, Linz [5]). Again, when a and b are arbitrary constants, the
Chebyshev polynomials in (1.3) are replaced by certain Jacobi polynomials (see Tricomi
[8] and Karpenko [4]). It is the purpose of this paper to consider the orthogonal
polynomials which arise when a and b of (1.1) are arbitrary functions and to obtain
relations between them similar to (1.3). A particular application of these polynomials to
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finding approximate solutions of singular integral equations having the left-hand side
of (1.1) as a dominant part will be discussed elsewhere (see Elliott [2]); but first we shall
need some results from the theory of singular integral equations.

2. Some basic results. In quoting results we shall follow.the analysis given by Dow
and Elliott [1] where some of the quantities to be defined differ slightly from those
given by Muskhelishvili [6] and Gakhov [3]. First we assume that b(-1)_<0; if b(-1)>0
we multiply (1.1) by -1. From a and b we first evaluate the index of (1.1). To do this
we let denote the real function continuous on [- 1, with <(- 1)_< 0 such that
O(t) (1/r) arg[ a(t) + ib(t)] for [- 1, ]. Although the arg function is multivalued,
the restrictions that 0 be continuous on [-1, 1] with its value at t=- being in (-1,0]
are sufficient to define 0 uniquely. The index r is given by

(2.1) r=-[0(1)],
where [x] in (2.1) denotes the largest integer not exceeding x. In the prototype case
where a--0, b---1, we have 8(t)--1/2 and r- 1. From (2.1) we see that the integer r
may be positive, negative or zero.

In terms of the function 0 and the index r, we define (i) the cananicalfunctian X by

X(z) (1 z)-’exp-f’0()d(2.2) z[-1,1],
.J-I J"r--z

and (ii) the fundamentalfunction Z by

(2.3) Z(t)-(1-t)-exp- t(-1 1)
-1 --t

If, for

_
(- 1, 1), X -+ (t) is defined as lim +0 X(t --+ ie), then from the Sokhotski-Plemelj

formulae we find that

(2.4) X-+(t) {a(t)wib(t)}Z(t)/r(t), t (-1, 1),
where the function r is defined by

(2.5) r(t)-(a2(t)+b2(t)) ’/2, t [-1, 1].
Throughout the analysis we shall assume that r(t)> 0 for all [-1, 1] so that (1.1) is of
normal type. Although we shall develop further properties of the canonical function
later, it is useful to observe from (2.2) that, for large [z
(2.6) X(z) (-1)z + lower order terms,

so that X is of order -r at infinity and X- will be of order r.
Let f be any arbitrary function which is defined in the deleted complex plane (i.e.,

the complex plane with the interval [-1, 1] deleted) and suppose that it has an expan-
sion about the point at infinity of the form

N

f( z ) E
j--OQ

where N is an integer (positive, negative or zero). The principal part of f evaluated at
some point (usually taken in (-1, 1)) will be denoted and defined by

N

(2.7) p.p.(f;t)-- E ft.
j=0
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If N<0, then p.p.(f; t)--: 0. From this definition it follows immediately that, for
k- 1,2,3,. .,
(2.8) p.p.(zk-l(z-t)f;t}- ( f-k if N+k_>0,

0 if N+ k_< 1.

In terms of the principal part we shall now quote two results from Dow and Elliott [1,
Thms. 3.1 and 3.2]. If, following Tricomi [9], we write

f_l q(’) d"
-1 <t<(2.9) (q; t)-g Tt

then, for any polynomial P, we have

(2.10) ( bZP/r; ) -a( )Z( )P( )/r( ) + p.p.(PX;t),

(2.11) (bP/rZ; t)=a(t)P(t)/r(t)Z(t)-p.p.(px-1; t)
for -1 < < 1. Equations (2.10) and (2.11) are special cases of [1, Theorems 3.1 and 3.2]
respectively; we have no need here for the greater generality of [1]. At this point it is
convenient to quote the Poincar6-Bertrand and Parseval formulae whose proofs may
be found in [6] and [9] respectively. For appropriate functions (1 and q’2 defined on
(-1, 1) we have, on using the notation of [9, 4.3] where the arguments are supressed,
that the Poincar6-Bertrand formula is given by

(2.12) (12) --- (21) (1)(2) 12
The Parseval formula is given by

(2.13) fl (ql(t)s(q2;t)+q2(t)(q;t)) dt-O.

With these preliminaries established, we are almost ready to proceed with our
analysis, but before we do, we must place a restriction (which in practice does not
appear to be too severe) on (1.1). This assumption will be taken to be satisfied
throughout the remainder of this paper.

Assumption A. There exists a function c defined on (-1, 1) such that
(i) cb is a polynomial B say, of degree/, with all its zeros on [-1, ],
(ii) the functions Z/cr and 1/Zcr are nonnegative and integrable on [-1, ].
Firstly, we might note in passing that in [1] we assumed that b was a polynomial;

the introduction of the function c satisfying Assumption A(i) allows us to consider a
more general equation. Secondly, let us consider in more detail Assumption A(ii). As
previously noted we are assuming throughout that r>0. From (2.3) and (2.1) we find
that we can write

(2.14) Z(t)-(1-t)(1 +t)(t),

say, where

(2.15)

a: [0(1)] -0(1), fl=0(-1),

(t) exp{(0(1) O(t)) log(1 t)

+(O(t)-O(-1))log(1 +t)-L’l O()-O(t)w_t d}.
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It is obvious that -1 <c, fl_<0 and is positive on [-1, 1] so that the functions Z and
1/Z are nonnegative and integrable on [-1, 1]. In the prototype equation with a=0,
b=-I so that x=l, we can choose c--=l and we find Z=(1-t2)-1/2, -l<t<l.
Assumption A is trivially satisfied in this particular case.

From Assumption A(ii), if we write wl Z/cr, then from (2.15) we have

(2.16) Wl(t)--(1- t)’(1 + t)31 (t)
say, where o1, Jl >-1 and ’1 is nonnegative and integrable on [-1, 1] with 1(-1)=/=0,
21(1) =/= O. Similarly, if we write w)_- 1/Zcr, then

(2.17) w2(t)--(1--t)2(1 +t)a2(t),
where 2, f12 >-1 and 2 is nonnegative and integrable on [-1, 1] with 2(-1)=/=0,
f2(1) =/= 0. These functions w and w2 will be taken as weight functions for sequences of
orthogonal polynomials associated with (1.1) whose properties we shall explore in the
next two sections.

3. The orthogonal polynomials p,,,q,,. It is a well-known result (see, for example,
Szeg/5 [7]) that since wl, as defined by (2.16), is nonnegative and integrable on [-1, 1]
there exists a sequence of polynomials (Pn) say, where the coefficient of x in p,,(x) is
strictly positive, such that

(3.1) f_l Wl(’r)pj(’r)p,(’r)d’r-hjj,,, j,k-O, 1,2,....

The numbers h. can be prescribed and 8.,k denotes Kronecker’s delta. For our proto-
type equation we can choose the polynomialsp to be the Chebyshev polynomials T of
the first kind. Given the set of polynomials p, we now want to construct a sequence of
polynomials {q} say which correspond in the prototype equation to the Chebyshev
polynomials Un of the second kind. This we do through the next definition; later we
shall establish orthogonality and other properties.

DEFINITION. For n _> max(0,-x) the polynomials qn are defined by

(3.2) qn(z)-p.p.{(-1)XPn+;z} for allz.

Since we have observed (see (2.6)) that X is exactly of order (-) at infinity with
coefficient (-1), it follows that (-1)Xp,+ is exactly of order n at infinity and the
coefficient of z" is strictly positive. From (3.2) we can immediately relate the coeffi-
cients of the polynomial q, to those of p,+. If X(z)-Y-j=_o azj, a*_-(-1), and if
we write

(3.3) Pn(Z) X lj,nZJ,
j-O

then for n _> max(0, x) we find

n--j

(3.4)

qn(Z) flj,n Zj,
j=0

flj.,,,-(-1) ] a*_,_kOt.+j+k,n+ forj-0(1)n.
k=0

We can also, from the above definition, define p, in terms of q, by a similar relation-
ship as the following theorem shows.
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THEOREM 3.1 Suppose X-(z)-Y.J__o ajzj, a- (- 1). Then for n >max(0,x),_ we
have

n--j

(3.5) aj,,--(-1) ] a_,flj_+k,,_ forj-O(1)n,
k---0

so that

(3.6) pn(2)--p.p.((-1)X-lqn_;z } forallz.
Proof. From the expansion about the point at infinity of the functions X,X-, it

follows on equating coefficients of powers of z in the identity =X(z)X-(z) that

(3.7) -kag-s+k-- -k
k--O k=O

s-0, 1,2, . From (3.4) we find
n --j n --j

(-1) E a_kflj_+,,,_-- E a_k
k--0 k=0

n--j--k

/=0

n--j

-x-lOtj+ k+ l,n

k--O s--k

E Olj+s,n a*__+,a_
s=0 k=0

=%,n on using (3.7).
This establishes (3.5) from which (3.6) follows immediately. 3

There is an alternative representation for the polynomials qn which is valid on
(-1, 1) and is of considerable importance in our analysis.

THEOREM 3.2. For n >_ max(0,1 x) and (- 1, 1),

(3.8) (-1)q,(t)=a(t)Z(t)Pn+(t)/r(t)+b(t)c(t)(WlPn+;t).

Proof. Recall (see Assumption A(i)) that is the degree of the polynomial B bc.
From (2.10), on choosing P=p,+, and (3.2), we have (-1)q(t)=p.p.(Xp,+;t)
a(t)Z(t)p,+(t)/r(t)+ (wBPn+; t) for t(-1, 1). Now

Since B is a polynoal of degree , then (B(t)-B())/(-t) is a polynomial of
degree -1 in , and from the orthogonality of the polynomials p with respect to
wl, we have

provided n-, which is assumed to be satisfied. The result follows immediately.

We now come to our first important result which establishes the orthogonMity
property of the polynomials q.
ToN 3.3. Forj, k max(0, ) we have

(.
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Proof. Now

w2qjqkd’-(-1) rqJ aZp_+r +bc(wlPk+ ) dr

-wp+ dr by (2 13)
cr 2

wp+p.p.(q )d by (2.11),
-1

wp+p+d by (3.6).

by (3.8),

From the orthogonality of the polynomials Pn with respect to w, the result follows
immediately.

At this point it is convenient to obtain an expression for pn in terms of q, on (-1, 1)
which is similar to (3.8).

THEOREM 3.4. For n >max(x, I and (- 1, 1),

(3.10) (-1)pn(t)-a(t)q,_(t)/r(t)Z(t)-b(t)c(t)(w2q,_;t).
Proof. From (3.8) we have

(3.11)
a2pn

2 + --- cb cb -cr cr 2 cr

Now, from (2.11) with P =-- 1, we have- --p.p.(X-1),

and combining this with the Poincar6-Bertrand formula (2.12), we find

(3.12) aPn
cr 2

since n_>r and polynomials pn are orthogonal on (-1, 1) with respect to w. Substituting
(3.12) into (3.11) and recalling that r2- a 2 + b2, we obtain (3.10).

At this point we might observe that we now have the required generalization of
(1.3). From (3.8) and (3.10) we have, for (-1, 1),

(3.13)

a(t)Z(t)
r(t) Pn(t)+ b(t)c(t) Xfl Z(’r)pn(’r)d’r

r c()r()(_t)=(-1) q_(t)

a(t)q,(t)
r(t)Z(t) b(t)c(t))tfl qn(’r) dr

r Z(’)c(z)r()(-t)

for n _> max(/, x ),

--(-1)XPn+x(t)

for n _> max(O,/z- x ).

We conclude this section with two further theorems, both concerning elementary
properties of the polynomialsp and q,.
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THEOREM 3.5. Suppose that for n >-- and all z the polynomials Pn satisfy a three term
recurrence relation of the form
(3.14) pn+ l( Z ) Anz + Bn)pn( z ) + CnPn_ ( z) -O.
Then for n >-- max(l, IX x + 1) and all z, we have

(3.15) qn+ l( Z ) ( An+xZ q-nn+x)qn( Z ) -+- Cn+xqn_ l( Z ) =O.

Proof. We shall establish (3.15) for z--t, where t(-1,1). Since all quantities
occurring in (3.15) are polynomials, the result can then be continued into the entire
complex plane.

From (3.8), provided that n- >_max(0,ix- x), we have

(-1) (qn+ 1(t)--(An+xt-+- Bn+)qn(t ) -+- Cn+xqn_l(t) }
a(t)Z(t)

-r(-t (Pn++(t)-(An+t+Bn+)Pn+(t)+Cn+xPn+-l(t)}

+b(t)c(t)((w, pn++,; t)-(An+t-+-Bn+)(W, Pn+,; t)

b(t)c(t) An+x f_l Wl ( ,r )pn+x(,r d,r,
qr

=0 sincen+x_>l. 73

THEOREM 3.6. For n >_ max(x, Ix) and all z,

q-’Cn+(WlPn+_l;t)}.

on using (3.14),

(3.16) Pn+l(Z)qn-(z)-Pn(Z)qn-x+l(Z)-(-l)+l( tn+-l"n--+-!hn )o(2)q’l" Oln

Proof. Firstly, let us suppose that (-1, 1). Then by (3.8)

Pn+ ,( )qn-( ) --Pn( )qn-+ ,( )

fl z() {pn+,(t)Pn(Z)-Pn(t)Pn+,(-)}d=(-1)"b(t)c(t)

(_1).+, b(t)c(t), a.+ ,n+lh,,
qT" Oln, n k=0 hk -1

by the Christoffel-Darboux formula (see Szeg6 [7, 3.21),

(_1)+, b(t)c(t)
ell" Ol n

by the orthogonality of the polynomials Pn with respect to w. This result has been
proved for all (-1, 1). Since all quantities occurring in (3.16) are polynomials, the
region of validity of the equation can be extended into the complex plane so that it is
true for all z.

Equation (3.16) provides some information on the relationship between the zeros
of Pn and qn-x- It is well known (see [7]) that all the zeros of each polynomial are real,
distinct and lie in (-1, 1). Suppose ,9,n,j l(1)n, are the zeros of Pn and ti,n_,i=
l(1)(n x), are those of qn-. From (3.16)with z =.,n we find

Pn+,(’9, )qn-(’, (-1)+’ an+’ n+lh ) B(,,n).q.l. Oln,
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Now Pn+ 1(),,) =/=0 so that ’,n can only be a zero of qn-x if it is a zero of B. Similarly
ti,,_ can only be a zero of p, if it is a zero of B. Thus, in general, the zeros of Pn and
q,_ are distinct unless either polynomial has a zero which coincides with a zero of B.

4. Expansions about the point at infinity. The canonical function X and its inverse
X-1 are of fundamental importance in the analysis of singular integral equations.
Previously (see 3) we have introduced the expansions of these functions about the
point at infinity, and we shall now give computable forms for the coefficients a and a.
in these expansions.

THEOREM 4.1. Suppose

X( z azj and X-l( z ajzj,
j-- -c j---o

where a*_ a (- 1). Then

(4.) aT--g
-1
wl(’r)B(’r)’r-J-l d’r for j_<min(-x,-1)

and

(4.2) aj----- w2(’)B(’)"--ld$ for j_<min(x,-1).
7/"

Proof. From (2.10), on choosing P zk- l(z t) for k- 1,2, 3,- ., we find

Wl(,r)B(,r),rk-ld,r--p.p.(zk-l(z--t)X(z);t}
r

a* provided k> x,-k

using (2.8). Equation (4.1) now follows. The proof of (4.2) follows similarly on using
(2.11). U]

In numerical work the integrals in (4.1) and (4.2) may be evaluated by quadrature
thereby giving approximate values for these coefficients. We can also use techniques
similar to those in the above proof to obtain some further relations between the
coefficients in the polynomials p, and qm" Since (see (3.2)) we have qn p.p.((-1)Xp,+)
and since (see (3.3)) we have written q,,(z)-E=0flj.,,zJ, let us write

(4.3) (-1)P,,+(z)X(z) E j,n Zj"

We now have the following expressions for the coefficients fl,n.
THEOREM 4.2. For n+ >_0 andj--l, -2, -3,. .,

(-1) fl W ( ,r )B ( ,r ) ,r J- lpn + ( ,r ) d,r(4.4) flJ’"- "B" -1

ZJ--l(Proof. On choosing P-(-1)p,+ z t) in (2.10) and using (2.8), the result
follows at once.

Since B is of degree/, then because of the orthogonality of the polynomials Pn with
respect to w on (-1, 1), it is an immediate consequence of (4.4) that for/-(n + )_<
k_<-1, the coefficients ilk,, are zero.

We can proceed similarly starting from (3.6). If we write, for n-

(4.5) (-1) qn-(z)x-l( )2 oj,n
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then, arguing as above, we find that, forj=- 1,-2,-3,..-,

(4.6) ay,,-
(-1)+’ f_lw2(’r)B(’r)’r-J-lqn_x(’r)d’r

The identification of these integrals is of some interest in numerical work (see Dow and
Elliott [1 ]).

5. Some comments on approximate methods for solving (1.1). Numerical methods
for solving the dominant equation (1.1) and the so-called complete equation, where a
term fl_k(t,r)q(r)dr is added to the left-hand side of (1.1), have been extensively
discussed in the literature for the case of the prototype equation, see, for example, Linz
[5]. In these algorithms extensive use is made of the properties of the Chebyshev
polynomials. It is the purpose of this section to consider similar methods for our more
general equation using the polynomials Pn and qn. Elsewhere (see [2]) we shall consider
in detail the method of classical collocation, and in this section, we shall consider a
Galerkin type method for the dominant equation only.

If we take (1.1), multiply it through by the function c and then write q-- Zq/cr so
that q is the new dependent variable, we obtain an equation which we write as

(5.1) Aq=r, F=cf
where the linear operator A is defined by

(5.2) A/_
aZ ( Z )

In terms of the linear operator A, we observe that the first of equations (3.13) can be
written as

(5.3) Apj-(-1)qj_, j_>max(/, x).
This suggests how we might proceed to obtain an approximate solution to (5.1).
Suppose we write q,-.j=0ajpj; then the residual r, is given by

n max(,)-- n

(5.4) r,- E aAp-F= E aAp+ (-1) , ayq+_- F,
j=0 j=0 j-- max(/x,)

using (5.3). We obtain a system of (n-x + 1) linear algebraic equations for the (n + 1)
unknown coefficients %. by supposing that

(5.5) f’w2(rlrn(r)q()dr-O forj-O(1)(n-x).
-1

(Note that in the case when >0 we need a further x condition to give a system of
(n + 1) linear algebraic equations for the (n + 1) unknown coefficients aj. When x<0
we can "remove" -x equations since F has to satisfy -x consistency conditions (see
[6])). In terms of the operator A, we have from (2.10) that

Apj ()P’P’-PX;t--r -t

so that Ap is a polynomial of degree _<max(j-,/-1). From (5.4) and (5.5), if

flj-(1/h+) f_ w2(r)F(r)q(r)dr, then we find simply that

(5.6) aj.-(-1)flj_ for max(/,x)-<j-<n.

Forj_< max(/, x)- we have slightly more complicated equations for aj. which we shall
consider no further here. From (5.6) we obtain the following result.
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THEOREM 5.1. Suppose p-- Ej’=o%Pj, fE=oflj.q, where

2a,--f_lw,p;d’jf_l,wlP dr, ,--f_lwFq,d’/f_,wq}dr.
Then, for all n >- max(, x),

where =o%P and F, 2 q.
Proof. Now, for nmax(, ),

f’w()(F-Q_,)d
-1 j--n-g+

f_’/1

j=n--x+l -l

and using both (5.6) and (3.9),

k=n+l
a flw,()p(r)d

as required. E]

From (5.7) we have that limn_.f_lw()(qJ-qJn)2d=O, the rate of this mean
convergence being the same as that of Fn_x to F.

We shall conclude this section by considering A as an operator from the space L2
WI

2into Lw2, and obtaining a bound for IIAII. The space Lw, is the space of functions
square integrable on (-1, 1) with respect to the weight function w so that the norm
I1" w, is defined by

(5.8)

where its norm I1" w is defined bySimilarly for the space Lw,

(5.9) Ilgllw=-

We now define the norm of A by

(5.0) I1 sup Ilagllw=/llgllw,.
g0

THeOreM 5.2. Supposef=Ag, then

(5.11) I11
2 flw=-Ilgllw, +2 wlgp.p.(BX-1)(wlg)d

-1

and

(5.12) Wl()R2(,’r)d d’r
qT" _lWl(’r) qr

where R(li, ’)-(p.p.(BX-; )- p.p(BX-1; ’))/(--’r).
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fl LI r ( aZgw, f Z dr +bc ( w, g dr
r

t }
l(awlg+abg}l{abg cb }=fl r 2 (w,g) dT--flWlg +(Wlg) dT

sincef=Ag. On using (2.13) again, we find

(5"13) ’11=1{ aw’gr r } ’ cb+ (Wlg) d,-- wig (wlg)

By the Poincar-Bertrand formula (see (2.12)), we have

( cb2 ( cb2) b2g ( ( cb2)(5.14) (wlg) -- (Wlg)--7-- wig

But, from (2.11), since cb B and B is a polynomial,-- ----P’P’(BX-1)
Substituting this into (5.14) gives

(wg) p.p.(BX-) (wg)-bg- abg
r -w,gp.p.(BX-’)

On substituting this expression into (5.13) and using (2.13) again, we obtain (5.11).
Now p.p.(BX-) is a polynomial of degree + and is independent of g. By

wlgp.p(BX-)(wlg)d w,g(wlgp.p.(BX-1))d,

but

if, wgRdr,(wgP’p’(BX-1)) P’P’(BX-i)’s(wg)-rr
from definition of R. Consequently,
(5.15)

S 1LI (L )2 wlgp.p.(BX-I)(Wlg)dr wl(r)g(r ) Wl()g()R(,r)d dr.
-1 gr

On repeated use of the Cauchy-Schwarz inequality, we find

Is’2 wlgP.p.(BX-l)(wlg) dr -<llgll  . _IWI(r) qr"
WI(

-1

from which (5.12) follows. []

We see from (5 12) that A is a bounded linear operator from L2 into L2w2. In
conclusion, we might note that on choosing g,=p,,, with n_>max(, x), f=(-1)qn_ (see
(5.3)). The second term on the right-hand side of (5.11), which from (5.15) can be
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rewritten as

Wl(’r)Pn(’r ) Wl(})pn(})R(l,,r)dl d’r,
71" -1

vanishes if either/x + x_<0 or, by orthogonality, if n _>/+ x. Thus, we recover (3.9) in the
particular case whenj-k. This particular case shows that we must also have A II--> 1.

6. Conclusion. In this paper we have identified two sequences of orthogonal poly-
nomials which are induced by the singular integral equation (1.1). As indicated already,
these sets of polynomials are of considerable importance in constructing approximate
methods for the solution of both (1.1) and the so-called complete equation in which a
term of the form f-l k(t,)()dr is added to the left-hand side of (1.1). An approxi-
mate method of solution of the complete equation, based on collocation at the zeros of
the polynomials qn, has been described by the author in [2]. There it is noted that much
algorithmic investigation remains to be done, and in particular, we might mention that
of computing the zeros and Christoffel numbers of the polynomials Pn and qn given
only the weight functions w and w2. For some singular integral equations we can
identify the polynomials Pn and qn immediately.

When a, b are constants such that b 4:0 and a 2 + b2-- 1, we find (see 1, Ex. 9.1 ])
that x= and the fundamental function Z is given by Z(t)--(1- t)-l-(1 + t), where
0 (1/r) arc tan(b/a) +N with N-- 0 if b/a< 0 or N-- if b/a> 0. In this case we
choose c so that Wl(t)=(1--t)-l-O(1 +t) and w2(t)=(1-t)l+(1 +t)-. The poly-
nomials p, qn can be chosen as the Jacobi polynomials p-l-O,O) and Pn1 +0,-0) respec-
tively.

For an equation with nonconstant coefficients suppose in (1.1) that

(6.1) a( ) Tll( ), b(t) sgn(x)(1 2 ),/2 UII l(t)"
Here TI and UIt_ denote respectively the Chebyshev polynomials of the first kind of
degree ]xl and of the second kind of degree Ix 1. The index of this equation, as
evaluated in [1 ], is x. We exclude the case of x-0 since this gives b- 0; otherwise, x can
take any integer value. From (6.1) we see that r(t)- 1, and since b is not a polynomial
let us choose c(t)-(1-t)-/. Then B-cb is a polynomial of degree With
this a,b we find that X(z)-(-1)2(z +(z2- 1)/2) so that the fundamental function
Z is given by Z(t)-2, for all t(-1,1). Consequently, Wl-2X(1-t2)/2 and w2--
2-(1- t2)1/2 so that the polynomials p,, qn can both be chosen in this case to be U,.
For another example with nonconstant coefficients see [2, 7].
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ON A FORMULA OF INVERSION*

D. NAYLOR? AND P. H. CHANG

Abstract. This paper develops a formula of inversion for an integral transform of a type similar to that
associated with the names of Kontorovich and Lebedev except that the kernel involves the Neumann function

Y,(kr) and the variable r varies over the truncated infinite interval a<_r< where a>0. The transform is
useful in the investigation of functions that satisfy the Helmholtz equation and a condition of radiation at

infinity.

1. Introduction. In previous papers [3], [4] one of the authors considered the
integral transform defined by the equation

G(u)--fa[Ju(kr)H(u)(ka)-Ju(ka)H(u’)(kr)] f(r) dr

where a> O, k> O. This transform is useful in the solution of certain boundary problems
that are associated with the Helmholtz equation and which involve the radiation
condition

lim rl/2[f’(r)-ikf(r)]-0.

A formula of inversion for the above transform was devised in [4] where it was assumed
that the function f(r) satisfied the integrability condition

r-’/2[rf"(r)+f’(r)+k2rf(r)] L(a, oz)
as well as the radiation condition.

In this paper the authors consider the transform defined by the equation

(1) F(u)- yu(kr)f(r)
dr

where the kernel is a Neumann type Bessel function, the notation being that of Watson
[9]. The transform (1), which was introduced in the earlier paper [5], has a simpler form
than that of the transform G(u), yet is applicable to the same class of boundary
problems. A formula of inversion for transform (1) was constructed in [5]. This formula
involved an integral term as well as a series expansion and was established when the
function f(r) to be expanded satisfied the radiation condition as well as the stated
integrability condition. In this paper an alternative inversion formula for (1) is devel-
oped without assuming that f(r) satisfies the above integrability condition. It is not
assumed either that f(r) satisfies the radiation condition; the essential assumption is
only that r-lf(r)L(a,m). However, although not a necessary condition for the
validity of the inversion formula itself, in practice the radiation condition must be
enforced to permit the application of the transform (1) to the Helmholtz equation.

The method followed to obtain the alternative formula of inversion for the trans-
form (1) is basically similar to that adopted in [1]. This entails an integration in the
complex plane together with an appeal, in the final stage of the proof, to the Mellin
inversion theorem.

*Received by the editors May 28, 1980, and in revised form October 16, 1981.
Department of Applied Mathematics, University of Western Ontario, London, Ontario, Canada 96A5B9.
*Department of Mathematics and Computer Science, University of Nebraska, Omaha, Nebraska 68182.
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The inversion formula established in this paper contains an integral term as well as
a series expansion. The series involves the functions Yu.(kr) where u 1, u2,.., are the
zeros of the function Yu(ka) regarded as function of the order u of the Bessel function.
These functions will not be described as eigenfunctions since they do not form an
orthogonal set on the interval (a, ).

The method followed in [5] was based on a Green’s function technique which
yielded an expansion involving the functions Yu.(kr) associated with those zeros u
positioned in the half plane Re(u)<0. All of these zeros are real. The series that
appears in the inversion formula proved in the present paper involves the functions

Yu.(kr) corresponding to zeros un situated in the half plane Re(u)>0, of which all but a
finite number are complex.

The zeros of the function Yu(x) regarded as a function of u for given positive x
were discussed in [5] where it was proved that there exist three infinite sets of zeros as
follows:

(2)

(i) an infinite set of real zeros u, such that u,- as n-, oc. For large n the zero
u, is given by the asymptotic formula

(ii) two infinite sets of complex zeros u’,-R,e +io. located in the first and fourth
quadrants of the complex u-plane and given for large n by the asymptotic formulas

2 log(2R./ex)

( it(4) R, log(2R,/ex) n--
It is also known that the zeros u, are all simple and that there are no purely imaginary
zeros.

The formula proved in this paper is stated in the following theorem which is
proved in 3.

THEOREM 1. Suppose that f(r) is continuous for r >_ a > 0 and that r- if(r) L(a, ).
Let the transform F( u) be definedfor positive values of k by means of (1). Then, if r> a,

f( r _tl
t
f Yu( kr )Ju( ka )

Yu( ka
ka )Ju( kr ) F( u )u du

+ lim
uYu(kr)Ju(ka)F(u)e"U

.-,o u, (O/i)u)Yu(ka)

where L denotes the imaginary axis in the complex u-plane and the summation is extended
over all the zeros u, of the function Yu(ka), regarded as a function of the order u, that are
located in the halfplane Re(u)> 0.

The exponential function occurring in the series in the formula (5) is a summabil-
ity factor, the parameter c tending to zero through positive values.

In order to establish the above theorem it is first necessary to prove a preliminary
result which appears as Theorem 2 in 2 of the paper.
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2. The integral theorem.
THEOREM 2. Let the functions f(r), F(u) be defined as in Theorem 1. Then if r> a,

-bZ1 lim fLuJu(kr)F(u)eC"duf(r)---
c-O

where L denotes the imaginary axis of the complex u-plane and the parameter c tends to
zero through positive values.

To obtain the above result the expression (1) for F(u) is inserted into the integral
appearing on the right-hand side of (6) and the order of integration changed in the
resulting repeated integral. This leads to the equation

(7) UJu(kr)F(u)edu f(t) u(kr)Yu(kt)e du.

The inversion of the order of integration can be justified with the aid of the following
bounds, derived in [4], [5], which show that the repeated integral is absolutely conver-
gent for any c>0.

I.(kr)[ G cosh (s/2),
(8)

Is(kt)l cosh (s/2).

These inequalities apply on the imaginary axis where u is and s is real.
It will now be shown that the L-integral appearing in (7) is a symmetric function

of the variables r, in the sense that

(9) fMu( kr ) Yu( kt )ec: dU=fLMu( kt ) Yu( kr )e ‘’u: du.

To obtain this result we appeal to the identity

(10) Y.(x)= u(X)COtU -Zu(X)cosecu 
from which it is seen that

fu[Ju( kr ) Yu( kt ) Ju( kt ) Y( kr )] ec: du
(11)

c2u[J,(kr),(kt)-J,(kt),(kr)]e cosecudu-O,

since the integrand is an odd function of the variable u. Therefore (9) follows from (11).
The domain of the t-integration in (7) is now decomposed into the parts (a, r) and

(r, m). This leads to the equation

M(kr)F(u)eC"du= (t) M(kt)Y(kr)eC"du

the variables (r, t) having been interchanged in the first integral on the right-hand side
by virtue of (9).

It is convenient to introduce the function h(u, r, t) defined by the equation

(13) h(u r t)-M.(kr)L(kt)+(r/t) ".
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The function h is, like the Bessel functions themselves, an entire function of the
complex variable u. If the Bessel functions present on the right-hand side of (12) are
eliminated with the aid of (13) we find the equation

fLUJu(kr)F(u)eCU2du- lfa?(t)dtfL CU2-- -t- (t/r) e du

(14)
dt

eff(,)--i- f,(r/t) CUdu+, +I2,

where

(15) I,-- (t) h(u,t,r)e du,

(16) I2= f(t)-t- h(u,r,t)e du.

The first integral on the right-hand side of (14) can be combined with the second
integral appearing therein after changing the sign of the variable u in the latter. This
procedure yields the equation

(17)
UJu(kr)F(u)eCU2du f(t) - r

cu2 du + I + 12

r-UeCU2du tu-lf(t)dt+I +I2,
q’l" L

the inversion of the order of integration in the repeated integral being again justified
for any c>0 by absolute convergence. The L-integral on the right-hand side of (17) is
[8,p. 26] uniformly convergent for c_>0 and it reduces when c--0 to irf(r) by the
Mellin inversion theorem [7, p.46]. It will next be proved that I and 12 tend to zero as
c 0 so that the desired result (6) will follow from (17) on taking the limit of each side
as c0.

To investigate the integrals I and 12 it is necessary to determine the behaviour of
the function h when u is large and to this end we make use of the formula

(18) L(x)-i=(-) 4(1+u-- +O(u-2)

Equation (18) applies whenever u is large compared with x and bounded away from
the negative integers. Upon inserting (18) and (10) and making use of the identity
F(u)F(1-u)=rcosecur, it is found that the function h defined by (13) possesses the
asymptotic form defined by the equation

cot UqT -1(19) h(u,r, t)- k2(r24ur t2) (r/t) +(k-rt/4) ur(u)r(u) )]

for large values of u bounded away from the integers. The F-functions appearing in this
formula may be estimated for large values of u by means of Stirling’s formula

(20) F(u)-(2r/u)/exp(ulogu-u)[1 + O(u-)],
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which holds as u--, in arg u] _< r-e. It is then seen that

k2 2 2h(u,r,t)--4u (r -t )(r/t) [l+O(u- )]
(21)

+ 0 -- cot ur exp (-2 u log u + 2u)

for large u bounded away from integer values, largul_<r-e and uniformly in any
bounded domain of values of t.

W

FIG.

Let W (Fig. 1) denote the wedge [arg u[-a where <a< . An inspection of the
asymptotic formula (21) reveals that the dominant term in the integrand of the L
integral in equation (15) is the summability factor exp(cu2). If we set u-Rei this
factor has magnitude exp(cR2cos20) which provides convergence as R in the
sector a_< 0_< since cos 20<0 there. The path L may then be deformed onto W so
that

(22) fLh(u,t,r)e"U2du- fwh(U,t,r)eCU2du.
Now [exp (cu 2)[ < on W, therefore, by (21),

<_,h(u t,r)[ O[u-l(t) u]Ih(u t,r)eCU2l

which is absolutely integrable on W if a_< t_< r- e where e> 0. Therefore, if t_< r- e,

lim fLh(u,t,r)eCU:du- fwh(U,t,r)du-Oc--* O

after closing the contour W on the right-hand side by means of a sequence of arcs of
radii lu[- n + 1/2, where n m and applying Cauchy’s theorem. Since the convergence as
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c--, 0 is uniform for a <_ <_ r-e it follows that

(23) lim ?(t) h(u,t,r)e du-O.
c--,0

It will now be shown that, uniformly for c> 0,

fr_f ctt f(24) (t) -- h(u,t,r)eC"2du-O(e).

To verify this result the path L is again deformed onto W which is then decomposed
into the parts W on which lul<R together with the remainder W2 on which[ul_>R I.

The quantity R is chosen large enough to ensure that the asymptotic formula (21)
applies on W2. Let h l(u, r, t) denote the dominant (leading) term on the right-hand side
of (21); then

f cu2] 2(r2 ’(t) csw:hl(U,t,r)e du <--k R- - ecR2cs"dR

k r -t )R e’cdR
2

k2(r2-t2)
2 rrR [cos c log (r/t) cR cos 2c]

k2(r2-t2) 2r
2rR cosalog(r/t) 2rR1 cosa

since log(r/t)>_(r-t)/r for a<_t<_r. Therefore the integral of h along W2 is bounded
uniformly for c>0 and a_< t_<r. Similarly, the contributions from the remaining terms
in (21) as well as that corresponding to the finite part W are bounded. Therefore (24)
follows and upon combining (23), (24) it is seen that 11 -, 0 as c 0.

The investigation of 12 is carried out in a similar manner by deforming L onto W
and decomposing the domain of the t-integration in (16) into three parts (r,r+e),
(r+ e, r0) and (r0, ), where r0 is chosen large enough to ensure that

0
bc(t)l 7 Ih(u’r’t)dul<e"

To justify this inequality it is by (13) sufficient to verify that the double integrals

(25) UJu(kr) dUfr Yu( kt)f(t) dt dt
7’ fro f(t) - (r/t) du

are absolutely convergent. The second double integral in (25) is evidently absolutely
convergent since t>_ro>r+e therein and t-lf(t)L(a, ). To discuss the first double
integral in (25) we note that it equals

(26) fwUJu( kr)Fo( u) du,

where

(27) Fo(u)_ Yu(kt)f(t)
at

ro
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The function Fo(u ) can be estimated for large values of u by means of equation (35),
developed in the following section of this paper, with a replaced by r0 therein. This
shows that

(28) Fo( u ) O[ u-’ / (2/kro )Ur( u )
Since from (18),

(29) Ju(kr)- O[(kr/2)U/F(u+ 1)],
it follows from (28), (29) that the integrand in (26) is O[u-/2(r/ro)u] and this is
absolutely integrable on W since r0> r+ e.

The contributions to I2 of the double integrals over the remaining intervals (r, r+ e)
and (r+ e, ro) are treated in a fashion similar to that used in discussing I which shows
that the first such interval contributes a term that is O(e) uniformly for all c>0 while
the contribution from the second interval tends to zero as c 0. Thus 12-- 0 as c--, 0.

3. The complex residue series. The formula (6) just established may now be used
to construct the expansion formula stated in Theorem 1. The first step is to prove that

(30) fwo uYu( kr )J( ka )F( u ) du
Yu(ka)

=0,

where W0 is the contour, illustrated in Fig. 2, whose asymptotes are the lines arg u-- +--a
where <a< and which is positioned to lie to the right of all of the zeros u of the
function Y,(ka). This choice of W0 is possible, since by (3) the complex zeros are such
that argun __+ as lunl while there is at most a finite number of positive zeros.

FIG. 2

It is first noted that the function F(u) is an entire function of the complex variable
u. This follows from the fact that the function Y,(kr) is itself an entire function of u

and is O(r -1/2) as r-o uniformly in any bounded domain of values of u. Since
r-lf(r)L(a, o) the integral (1) is absolutely and uniformly convergent in any such
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domain so that F(u) is entire. The contour W0 appearing in (30) will now be closed on
the right-hand side and Cauchy’s theorem applied. To carry out this procedure it is
necessary to determine the asymptotic behaviour of the integrand. Upon substituting
(18) into (10) it is found that

_1F(u) (2)" 1- r(kr/2)Uctur](31) Yu(krl--r r(u)r(,+ 1) [1 + O(u-1)]

for large u bounded away from integer values. As u o on W0, cot ur-__+ so, by
Stirling’s formula (20), equation (31) simplifies to the equation

1F(u) r [l+O(u )](32)

as u on W0. The contour Wo will be closed by adding the part of the line
Re(u)-n + 1/2 cut off inside W0. Here n is a positive integer which is allowed to tend to
infinity. The line 3’ passes midway between the poles of cot urr and on this line we set
u- n + 1/2 + is where s is real and find that Icot ur -Itanh sr -< 1. Thus (32) is valid on
as well as on Wo itself so that

Yu(kr) --(a)u[l+O(u-1)](33) Y,( ka ) -;
as u--, o on { and W0.

An asymptotic bound on the function F(u) appearing in (30) can be obtained from

(1) by applying the Schwarz inequality which shows that IF(u)l_<ll f(r)ll.llYu(kr)ll,
where

f(r)ll- [[(r)lr- dr

The factor IlY(kr)ll can be obtained from the formula [5, eq. (10)]

sinh(resinO)+kaIm Y,(ka)Y,(ka)’
(34) r-’lY(kr)12dr rRe sin20

where u= Re, if= Re-. Upon using (32) to estimate the Bessel functions occurring in
(34) it is found that

(2/ka)2cslr(u)lf r_llYu(kr)ldr sinh (rRsin0)rR2sin 2 0
+

2rR cos 0
[1 + O(u-1)].

For largul_<a the dominant term on the right-hand side of the preceding equation is
that involving the F-function, therefore

(35) F(u)-O R-1/2 a
as u m on and W0. Upon combining (18), (33) and (35) it is found that the
integrand appearing in (30) is

This tends to zero sufficiently rapidly as R--, to permit the contour to be closed in
the manner described. Since the integrand has no poles inside W0 it follows that the
integral in (30) is equal to zero, by Cauchy’s theorem.
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The next step is to deform the path W0 in (30) onto the imaginary axis. The
justification of this procedure requires the insertion of the summability factor exp (cu 2)
which enables (30) to be written as the limit

(36) lim fWo uY(kr)Ju(ka)F(u)e"du.-o Yu(ka)
--0.

The introduction of the summability factor into (30) is permissible since the integral in
question is absolutely convergent and lexp(cu2)l-exp(cR2cos2o) <- on W0 for all
c_>0 since <a< 3.

Upon deforming W0 onto L and taking into account the residues at the poles it is
found that

(37) lim f uYu(kr)Ju(ka)F(u)eUdu
o 2iY,,(ka)

lim
C--* C--O

uYu( kr)Ju( ka)F( u)ecu

(/u)Yu(ka)

the summation extending over all of the zeros of the function Yu(ka) that are located in
the half plane Re(u)_> 0.

To establish the truth of (37) estimates of the various functions appearing in (36)
are needed in the region traversed. The path W0 in (36) will be connected to the
imaginary axis L by a sequence of paths C which will be defined shortly and which
avoid the zeros of the function Yu(ka). On the paths Cn, ]Im u] and cot ur tends to
-i in the upper half plane or to + in the lower half plane. Introducing this change into
(31) and estimating the F-functions by means of Stirling’s formula (20) yields the
equation

(38) e-i/4sinh ulog +log/--+-- [l+O(u )],

which applies as u in 0<6_<argu_< . Upon setting u-Rei equation (38) can be
written as the equation

(39) Yu(ka)-_2(ru)-/2 e-ir/4 sinh ( A + iB ) [1 + O(R )],

where

(40)
A R cos O log RO sin O + log /-

B-RsinOlog +ROcosO+-.
The complex zeros u--Re +- io lie in the half plane Re(u)_>0 and those of large modulus
are given by the equations A-0, B--nrr, where n is a large (positive) integer. The
solution of these equations gives the values R Rn, 0-- +-O quoted in 1, (3) and (4)
which show that Rn- and 0 as n--, . Therefore if 6>0 the complex zeros of
sufficiently large modulus all lie in the sectors 8_< 101 _< .

As the curve C we may select that whose polar equation in the sectors -6<
10[_< is B-(n + 1/2)r and which is continued beyond these sectors by means of two
circular arcs lul R of suitable radius to meet the wedge W0. On the parts of C lying
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inside the stated sectors, sinh(A + iB) reduces to -+ coshA so that

Yu( kr ) sinh A + iB + u log ( a/r
Yu( ka ) sinh ( A + iB )

cosh [A +ulog(a/r)]
coshA

(41) --cosh[ulog()]+tanhAsinh[ulog()]

=exp [Rcos01og ()]
as R m in -_<101_<. The behaviour of the function F(u) in this sector can as
before be found by means of the Schwarz inequality in conjunction with equation (34)
in which the function Y,(ka) and its derivatives are calculated from (39). This gives the
equation

F(u)-O [R2sin2Ol-/Zexp -Rsin0
(42)

/0 IRsin2Ol-/exp Rcos01og -ROsinO/log(-

as R--, m. The preceding bound breaks down on the imaginary axis 0---+ where,
however, it is permissible to use the following alternative bound:

(43) F(u)-O[explRsinOI].
This bound, which is derived in Appendix to this paper, applies as IR sin 01--, oe in the
strip IR cos I_< 1/2.

In the remaining sectors _<IOI_<N-, Icotu,l- while F(u)-, as u- so
that the leading term on the right-hand side of (31) is the dominant one. Therefore (32),
(33), (35) also apply in this sector.

The behaviour of the Bessel function Ju(ka) occurring in (36) can be obtained
immediately by combining (18) and (20), which leads to the asymptotic equation

(44) IJu(ka)lR-l/2exp-Rcos01og +ROsinO.

An inspection of the equations (33), (35), (41), (42), (43), (44) reveals that on the curve
C the expression

UJu( ka ) Yu( kr )F( u )
Yu(ka)

tends to zero as n oe except in the vicinity of the imaginary axis where it is
O[R-/2exp(RlogR)] at most. However the presence of the summability factor, which
has magnitude exp(cR2cos20), where cos20<0, ensures that when c>0 the actual
integrand in (36) tends to zero sufficiently rapidly as n--, oe to permit the path W0 to be
deformed onto L. This verifies the validity of equation (37), which when combined with
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(6) yields the following formula:

(45)
f( r ) _lll ,.-01im f/ u Ju( kr ) Yu( ka ) Juyu( ka)(ka ) Yu( kr ) F( u ) e ,.u: du

+ lim
uYu(kr)Ju(ka)F(u)eCU:

The expansion formula stated in Theorem follows from (45) on setting c--0 in the
integrand, a step that will. be justified by demonstrating that the integral in (45) is
uniformly convergent for c_>0. To establish this result, appeal is made to the following
theorem, similar to that proved in [8, p. 26] concerning the integrals

fk(s)ds e-’:k(s)ds.
--00 --00

If the first integral above exists, the second is uniformly convergent for c>_0. The
integral appearing in (45) is of the above type since u= is on L where s is real. This
integral will be uniformly convergent for c_>0 provided that the integral

(46) s[Js(kr)Ys(ka)-Jis(ka)Yis(kr)]F(is)ds
-o Yis(ka)

exists.
To discuss the convergence of (46) it is first noted that by (10) the cross-product of

Bessel functions appearing in (46) is equal to

(47)
Js( kr ) Ys( ka ) 4s( ka ) Ys( kr )

i[ J,s( kr ) J-,s ka ) -Js( ka )J-is( kr ) cosech (sr)

__2 sinbs_ k:(r:-a:) cosbs+O(s_3)
s’n" 2,n.s 2

after estimating the Bessel functions by means of (18), using the identity F(1 + is)F(1-
is) sr cosech (sr) and setting b log (r/a).

The behaviour of the function Ys(kx) for large values of s will be obtained from
the formula

( + - ir )[ -fip+i
5is 2

(48) Yis(kx)--(2rp)-’/2exp sr+i +O(s-2)
2403

where

(49) -o-slog[ S+O]kx

0- (s: +

and (48) applies as s + , uniformly for 0_<x< 0. The formula (48) follows upon
substituting a similar formula for Jis(kx) into the relation (10), with u set equal to is
therein. The asymptotic formula for Jis(kx) which is quoted in [2,p. 140] can be
obtained from an integral representation of the Bessel function by applying the method
of steepest descents, which requires the ratio six to remain fixed as s,x z. This is
stated in [2]. (The authors are indebted to Professor Olver for pointing out that the
expansion in question can also be obtained from the more general theory developed in
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[6, pp. 374-382], where uniform asymptotic expansions for the modified Bessel func-
tions are obtained from the differential equation satisfied by these functions, after
applying the transformations of variables appropriate to the discussion of the case in
which both s and x may be large.) The formula (48) can be obtained from the
expression quoted [6, p. 382] with the aid of the identity

-rrYis( x ) eS/2Ki(xe -ir/2 ) + e-/2Kis( xeir/2 ).
In the present notation Olver’s expansion for Ki(sx applies as s + , uniformly for
0<x<.

If, however, attention is confined to positive real values of s and x and if only the
leading terms of the expansion are required, these can be obtained by following the
initial transformations outlined in [6] but without appealing to the general theory,
which is designed to provide the full expansion as well as allow for general complex
values of the variables. The simplified procedure suggested is carried out in Appendix 2
of this paper. An examination of the method followed there confirms that the expan-
sion (48) is valid as s , uniformly for 0 _< x<

If s --, + 00 while x remains bounded the formula (48) simplifies to give the result
(5)

[1 (2s) l[ ik2x 2 ]Yc,:(kx)--(2rs)-’/2exp -vrs-islog + ri +-s + 4s +O(s-2)

This formula applies in particular for x=a. On dividing (48) by the expression for
Y(ka) obtained from (51) we find the formula

(52) Yis(kx) -( s 1/2

yi(ka ) - exp [ixt’(s)][1 +g(s)],

where

(53)

k2a 2 5is 2

(54) g(s)- p + +
4is

+ q-O(s-2)
2403

Equation (52) holds as s + uniformly for a<_x< . If O<_x<_as where 0_<c_< 1/4
the formula (52) simplifies, after expanding the various terms appearing there, to yield
the equation

Yi*(kx)-[1 + ik2(x2-a2) +H(x s)(55)
Yi,( ka ) 4s

eiS log (x/a)

where IH(x, s)[ _< Cs 4a-- 2, C being a constant.
The equation (52) shows that [Yi,(kx)/Yi,(ka)[<_C’, some constant, whenever s is

large enough, so that the substitution of the O(s -3) term in (47) into (46) leads to a
term of O(s -2) which is absolutely integrable.

We consider now the first two terms appearing in the expression (47). Let s l, s2 be
large and positive and s2 >s. On expressing the trigonometric functions appearing in
(47) in terms of exponentials and substituting the resulting expression into (46) it is
seen necessary to consider the integrals

Yi,( ka ) f( x ) Yii*( kx ) dXx



ON A FORMULA OF INVERSION 1065

sYi ka ) f( x )Y( kx )
dX

The integration with respect to x in (56) is now decomposed into the parts (a, as) and
(as, oe). The contribution of the first such interval to I is

$2 e +- ibs ds as dx
--"(58) I1-- Y,(ka) f(x)Yis(kx) x

On substituting the expression (55) we find that

e
dx

ds asl x/a)f( x ) xi1 ibs e is log

Sl

(59)
ik2fS:s-le/ibs fa 2 2 eilog dx+i+--4- ,, ds aSr(x --a ) x/a)f(x)

X

This tends to zero as s "-’) (N since a< 1/4.
Consider now the first term on the right-hand side of (59). To show that this term

tends to zero as s l, s2 --’ m we write it as the difference of two integrals, in the form

(60) ib, ds e i, log (x/,,)f( x ) dx ibs is log (x/a)f( dx
e- ds e X) xs X as

The first integral occurring here tends to zero as s, s2 m by the theory of Fourier
integrals, since if we set y=log(x/a) it becomes equal to the integral

+ibds eiSyf(aeY)dy.
si

The second repeated integral in (60) is absolutely convergent, since x-if(x)c L(a, ).
On changing the order of integration and carrying out the resulting integration with
respect to s we find that its modulus does not exceed the quantity

< I/(x)l --.,, x[log (x/a) +- b] a logs,- b sr x

This tends to zero as s + m. Therefore both terms in the expression (60) tend to zero
as s s2- m so that the same is true of the first term on the right-hand side of (59).

To discuss the second term on the right-hand side of (59) it is written as the sum of
two integrals as follows:

fsi2-le +ibs fa2r -1 2 a 2 ’og(x/a)dxs ds x (x- )f(x)e"
(61)

2-’e+ib" aSlx (X- )f(x)e+ s ds - 2 a 2 ,og(x/a)dx"
"2r

If, as before, we set y log (x/a) the first integral occurring in the preceding expression
becomes equal to the integral

(62) fsi2S-le+-ibs dsfolg(2r/a)( e2y- 1)f( aeY)eiSy dy.

where the term I{ which arises from the H(x,s) term in (55) does not exceed the
quantity

fS2s dSfaa alf(X)[
X fS2s dsfa If(x)[ --1).C 4a-2 "l dx<c 4a--2

oo dx s,
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Now the theory of Fourier integrals applied to a function of compact support shows
that the integral

fSe+ibsdsfolg(2r/a)(e2Y-1)f(aeY)eiSydy
Sl

is convergent as s2 --, c. The same is true, a fortiori, of the integral (62) which therefore
tends to zero as s 1, s2 --* m-

The second term in (61) can be shown to tend to zero as s,s --, oo by changing the
order of integration and applying the second mean value theorem to the resulting
s-integrals. If we write X log (x/a) +- b and recall the definition b log (r/a) it is seen
that the possible values of , are positive throughout the relevant interval 2r<_x <_as.
In fact ,>_log(x/a)-log(r/a)=log(x/r)>_log2, therefore, if S S.---$2,

ff )-’ (sin)s sin)s )s- cossds s?ff;cossds-(s
s!

and similarly for the corresponding integral involving sin)s. Since ,_>log2 it follows
that

f 4s2
S -liXs ds

SI s log2

Thus the modulus of the second repeated integral in (61) does not exceed the quantity

4 f2’s _1 2 2 4a2Sl2a-- f2s dx
SllOg 2

X (X --a )lf(x)ldx<- log2 If(x)l x

since x2<_a2s2 throughout the interval of integration. Since a< 1/4 the last expression
tends to zero as s, s2 . Thus both terms appearing in (61) tend to zero as s l, s2 o
so that the same is true of the expression (59) for I1.

It is now necessary to consider the contribution of the interval (as, ) to I. This
contribution is defined by the equation

This integral is absolutely convergent, since, as has already been noted,
IY(kx)/Y,(ka)l<_C for all relevant x,s. Therefore, on changing the order of integra-
tion, we arrive at the equation

x

To proceed further it is necessary to appeal to the following result, which is developed
in Appendix to this paper,

(64) fie+-iY(kx)dsY(ka) =i(sl)l/2i*(’()l/2q’(-Ole (Sl)
--s2 e+ O(si_l)

where g,( s ) ,t’( s ) +- bs and

+

Equation (64) applies for s, s arbitrarily large, ss and uniformly for x3r. It is
proved in Appendix that ’(s)> log 2 for all relevant values of s and x and it follows
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from (65) that Pl S1 and p>_s therefore (64) shows that

l’s2 e+--ibsYis(kx ) ds 2 B
Y(ka) --log2 s,

where B is a constant. If the preceding bound is inserted into (63) we find that

log2 s x

which tends to zero as s since x-f(x)L(a, ). On collecting these results it is
seen that the integral I= I +I is convergent as s m. The integral J defined by (57)
will also converge, afortiori, as s m so that the integral (46) itself is convergent.

Appendix 1. The formula (64) is derived by substituting the expression (52) into
the integral. This gives the equation

Yis( ka ) - ei ds + - ei+g( s ) ds.

It will be shown that each of the five terms appearing on the right-hand side of (54) for
g(s) contributes a term of magnitude O(si-1) to the last integral in (A.1). First it is
shown that q/(s)_> log2 for s>_3kr and x>_3r. From (53) by successive differentiation
we find the formulas

(s) --- b log a + log
2sx
s+p

,,,( s -o

Since O>s then q/’>0 and q/ is an increasing function of s. Upon recalling that
b--log(r/a) it is seen that +’ cannot be less than

2sx
log

r(s+p)
_>log2

since p <_ s + kx, so that

( ) r(2s + kx) r krr_s+p_
< <-

2sx 2sx x 2s 2

as required.
The s -l terms present in (54) lead upon substitution into (A.1) to an integral of the

form

(A.2) fsl eie/ ds

We write ei+- cos p +/sin 6 and consider the integral

fsi2 cos+ds__fsi2 d(sink) 1_ fd(sinq)
(sol 1/2 (sp)l/2t(S) Sl/2pll/2t(S1 )s

(A.3)
sin,(s) sin ,( S )

sl/Zol,/Ze/,(Sl) Sl <S<S2,
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after applying the mean value theorem, the functions 0 and q’(s) being positive
increasing .functions of s. The quantity O is defined by equation (65). Thus the
expression (A.3) is O(sl) uniformly for all relevant x, that is x_> 3r. The corresponding
integral involving sin+ can be treated in the same way so that it too is O(si). Consider
next the 0

-I term in (54) which when inserted into (A.1) leads to the integral

fsl2( S ) l/2

P

The function s/o--(1 + k2x2//s2)-1/2 is an increasing function of s so that application
of the mean value theorem twice shows that

i2(s )l/2costds_ ( s2 )1/2 [sini/,(s)-- sin+(s)](A.4) 7 P P- p’l+’(s)

,)2+k2x 2 11where s <s <s<s and O [(sl Since P2>s2 and O >sl the expression
(A.4) is O(sl), uniformly for x3r, and similarly for the corresponding integral
involving sin +. The sZ/p term present in (54) can be treated in a similar fashion, with
two applications of the mean value theorem, to show that its contribution to the final
term in (A.1) is also O(sTl). Finally the O(s -2) term in (54) leads upon insertion into
(A.1) to an absolutely convergent integral which is O(s). Thus the last term on the
right-hand side of (A.1) is O(s7 l) uniformly for x>3r. If the remaining term is
transformed by an integration by parts we find the equation

fsi2 e+-ibsYis(kx ds (s1)l/2iq"(s’)(l/2iog(s2)=i
e s2 e

io l (sl)

;
Now s/O is a iorasit fotio o s whereas +"(s) and +’(s)-1 are decreasing
functions of s. Therefore,

(A.6) ,/2 q"(s’)
[sin+(s)-sin+( ’)].

Since I02>$2 and q"( -1sl)_<(Sl) _<s- the expression (A.6) is again O(si-1), uniformly
for x>_3r. The integral remaining on the right-hand side of (A.5) can be estimated by
means of a single application of the mean value theorem to show that it is O(si-1)
uniformly for x>_3r. On collecting these results we obtain the formula (64) quoted
earlier.

It remains to establish the bound (43) used in {}3. This bound can be deduced from
the following formula [2, p. 93]

a,(x)av(x)+ Y,(x)Yv(x)- K.+(2xsinhO)[e("-cosvr+e-("-cosur]dO,
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which is valid for x>0 and IRe(u+v)]< 1. Upon setting u-t+is, v--t-is where t,s
are real it follows that

iL(x)l
2
/ y.(x)lZ ----4 foK2t(2xsinhO)(e2iOcosvqr+e_2isOcosuvr)dO

(A.7)
_< -coshsr g,(2xsinhO)dO

since Icosu,l-lcos,l-<coshx,o Equation (1.7) holds for x>0 and I1< 1/2. A bound
on the Bessel function integral remaining in (A.7) can be obtained by noting that it
cannot exceed

Ka(2xsinhO )coshOdO- -x K,( y) dy- ---x sec tr
by Watson [9, p. 388, eq. (8)]. Equation (A.7) now shows that

Yu( ( /, x)coshsrr sec rr _< (4/rx)coshsr

for I1<o Therefore, IY.(x)l<_Cx-/expl1/2s,l, where C is a constant, and on sub-
stituting this in the integral (1) it follows that F(u)-O(exp 11/2srl) since by hypothesis
r-flr)L(a, z) so that r-/af(r)L(a, ), necessarily.

Appendix 2. In this appendix the asymptotic formula for Ys(x) required in {}3 is
constructed. This function satisfies the differential equation

X Jxx + + + )j- o.
We now apply the standard transformations [6, p. 375] appropriate to the discussion of
the case when both x and s may be large. For the problem at hand the new variables
are defined by the equations

(A.8)
sz-- fx-l(x2+s2)l/2dx--(x2+sZ)l/2--slog[ S+(S2+x2)l/2 ]
V--(X2 ff-S2)I/4j.

The function v(z) introduced in this way satisfies the equation

(A.9) Vzz + S 2v- S2VW(x2 nt- $2 )-1/2,
where

(A.10) w(x)--
4s2x--x

4(S2q-X2)5/2

A particular solution of (A.9) is that defined by the integral equation

(A.11) v(z)--eiSZ--s v(z’)w(t)(t2q-s2)-l/2sins(z-z’)dz’,

where

(A.12) sz (t2q-S2)1/2’
S log [ Sq-(S2q-t2)l/2It
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If we set y(x ) v( z )e -;sz, y( ) v( z’)e -;sz’ in (A. 11) and change the variable of integra-
tion from z’ to we obtain the equation

(A.13)

so that

(A.14)

lfxy(x ) tt y( )w( )[1 e -2i(z(x)-z(t)) dt,

]y(x)]_< + ly(t)w(t)ldt.

Now, by (A.10),

(A.15) fax Iw(t)ldt<- fx / 1+
4(s 2 "+" 2 )5/2 4S + -- 7g 2s’

the integrations being elementary. On applying Gronwall’s lemma to (A.14) and using
(A. 15) we find that ]y(x)l -< exp (1/2s)_< 2 for s> 1/log 4, therefore (A.3) shows that
y(x ) + K(x ), where, by (A. 15),

(a.16) [K(x)l <_2fxlW(t)l dt<_ l_.s
On substituting y-- +K into the integral term in (A. 13) we find that

w(t) dt + w(t)e 2is[z(t)-z(x)] dty(x)-- 1-- -(A.17)
_1 fxK(t)w(t)( l_eZi,lz(,)_z(x)l} dt

2i

Since IK(x)l<_s -1 it follows immediately in view of (A.15) that the modulus of the last
term on the right-hand side of (A.17) does not exceed s -2. The second integral on the
right-hand side of (A.17) is also O(s -2) uniformly for x_>0. This can be verified by
integrating by parts, which yields the equation,

fx -1fxC(4s2t2--t4) d -2isz(t)w( )e-2i’z(t) dt- -t ( s2 +-ti )- - e dt

(A.18)
(4s2xZ-x4) e-ziz(x)

+ lfxe-2iz(,) __dI4s2t2 4]8i(s2+x2)3 -t dt (s2+t2)3
dt.

The modulus of the first term on the right-hand side of the preceding equation does not
exceed

4(s 2 + x 2 )x 2

< _1
8($2-[-- X2) 2S 2

If we set t=s in the integral present on the right-hand side of (A.18), we see that its
modulus is not greater than

8S 2

This is O(s -2) since the above integral is convergent. Thus both terms on the right-hand
side of equation (A.18) are O(s -2) so that the same is true of the second integral
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appearing in equation (A. 17), which therefore reduces to

fxW(t)dt+O(s-2y(x)-- 1---
uniformly for 0_<x< . Upon substituting the formula (A.10) and evaluating the
resulting integral we find that

5is 2

y(x)--l-- / +O(s -2)
8(s2+x2) ’/2 24(sZ+x2)3/2

so that

(A.19) j(x)--
e isz(x) 5is2 -21- +

)3/
+ O(s )

(s+x2) 1/4 8(s-+x2) 1/2 24(sZ+x2

The asymptotic form of a second solution of Bessel’s equation, independent ofj(x), can
be obtained by taking the complex conjugate j*(x) and the general solution is a
combination of these. Therefore Js(x) Aj(x) + Bj*(x) where the values of the coeffi-
cients A, B can be obtained from the known limiting forms of Js(x), either as x 0 or
as x . If we adopt the former procedure and appeal to the result

exp islogs-is--sr-gir [l+O(s-l)]
S

which follows from Stirling’s formula (20), we find that we must take B 0 and

A (2r)-l/exp ( -sr--ir
so that

(1 1)Ji,( x ) (2r )-l/ j(x )exp -sr-- ir

where j(x) is defined by equation (A.19). The formula (48) follows upon using the
above formula in conjunction with (10).

Acknowledgment. The authors wish to thank the referees for drawing their atten-
tion to an error in the original version of the manuscript and for other comments that
led to the clarification of the paper.

REFERENCES

[1] B. L. J. BRAAKSMA, B. MEULENBELD AND H. LEMEI, Integral transforms related to a class of second order
linear differential equations, Indagationes, Proc. Kon. Akad. Wetensch, Amsterdam, Series A, 72
(1969), pp. 77-88.

[2] W. MAGNUS, F. OBERHETTINGER AND R. P. SONI, Formulas and Theorems for the Special Functions of
Mathematical Physics, Springer-Verlag, New York, 1965.

[3] D. NAYLOR, On an integral transform associated with a condition of radiation, Part 2, Math. Proc. Camb.
Phil. Soc., 77 (1975), pp. 189-197.

[4] On an integral transform occurring in the theory of diffraction, this Journal, 8 (1977), pp. 402-411.
[5] On an integral transform, Glasgow Math. J., 20 (1979), pp. 1-14.
[6] F. W. J. OLVER, Asymptotics and Special Functions, Academic Press, New York, 1974.
[7] E. C. TITCHMARSH, Introduction to the Theory of Fourier Integrals, Oxford University Press, London, 1950.
[8] The Theory of Functions, second edition, Oxford University Press, London 1959.
[9] G. N. WATSON, Theory of Bessel Functions, second edition, Cambridge University Press, London, 1958.


	SJMAAH_V13_i1_p0001.pdf
	SJMAAH_V13_i1_p0016.pdf
	SJMAAH_V13_i1_p0040.pdf
	SJMAAH_V13_i1_p0048.pdf
	SJMAAH_V13_i1_p0061.pdf
	SJMAAH_V13_i1_p0081.pdf
	SJMAAH_V13_i1_p0106.pdf
	SJMAAH_V13_i1_p0112.pdf
	SJMAAH_V13_i1_p0122.pdf
	SJMAAH_V13_i1_p0134.pdf
	SJMAAH_V13_i1_p0153.pdf
	SJMAAH_V13_i1_p0162.pdf
	SJMAAH_V13_i2_p0167.pdf
	SJMAAH_V13_i2_p0180.pdf
	SJMAAH_V13_i2_p0208.pdf
	SJMAAH_V13_i2_p0226.pdf
	SJMAAH_V13_i2_p0239.pdf
	SJMAAH_V13_i2_p0254.pdf
	SJMAAH_V13_i2_p0263.pdf
	SJMAAH_V13_i2_p0280.pdf
	SJMAAH_V13_i2_p0295.pdf
	SJMAAH_V13_i2_p0309.pdf
	SJMAAH_V13_i2_p0316.pdf
	SJMAAH_V13_i2_p0324.pdf
	SJMAAH_V13_i2_p0331.pdf
	SJMAAH_V13_i3_p0343.pdf
	SJMAAH_V13_i3_p0353.pdf
	SJMAAH_V13_i3_p0397.pdf
	SJMAAH_V13_i3_p0409.pdf
	SJMAAH_V13_i3_p0421.pdf
	SJMAAH_V13_i3_p0459.pdf
	SJMAAH_V13_i3_p0484.pdf
	SJMAAH_V13_i3_p0vii.pdf
	SJMAAH_V13_i4_p0515.pdf
	SJMAAH_V13_i4_p0532.pdf
	SJMAAH_V13_i4_p0541.pdf
	SJMAAH_V13_i4_p0555.pdf
	SJMAAH_V13_i4_p0594.pdf
	SJMAAH_V13_i4_p0607.pdf
	SJMAAH_V13_i4_p0621.pdf
	SJMAAH_V13_i4_p0632.pdf
	SJMAAH_V13_i4_p0640.pdf
	SJMAAH_V13_i4_p0651.pdf
	SJMAAH_V13_i4_p0656.pdf
	SJMAAH_V13_i4_p0664.pdf
	SJMAAH_V13_i4_p0676.pdf
	SJMAAH_V13_i4_p0690.pdf
	SJMAAH_V13_i5_p0699.pdf
	SJMAAH_V13_i5_p0717.pdf
	SJMAAH_V13_i5_p0739.pdf
	SJMAAH_V13_i5_p0746.pdf
	SJMAAH_V13_i5_p0758.pdf
	SJMAAH_V13_i5_p0770.pdf
	SJMAAH_V13_i5_p0789.pdf
	SJMAAH_V13_i5_p0801.pdf
	SJMAAH_V13_i5_p0811.pdf
	SJMAAH_V13_i5_p0828.pdf
	SJMAAH_V13_i5_p0842.pdf
	SJMAAH_V13_i5_p0856.pdf
	SJMAAH_V13_i5_p0866.pdf
	SJMAAH_V13_i5_p0875.pdf
	SJMAAH_V13_i5_p0879.pdf
	SJMAAH_V13_i6_p0891.pdf
	SJMAAH_V13_i6_p0913.pdf
	SJMAAH_V13_i6_p0938.pdf
	SJMAAH_V13_i6_p0954.pdf
	SJMAAH_V13_i6_p0962.pdf
	SJMAAH_V13_i6_p0970.pdf
	SJMAAH_V13_i6_p0978.pdf
	SJMAAH_V13_i6_p0988.pdf
	SJMAAH_V13_i6_p1008.pdf
	SJMAAH_V13_i6_p1011.pdf
	SJMAAH_V13_i6_p1024.pdf
	SJMAAH_V13_i6_p1041.pdf
	SJMAAH_V13_i6_p1053.pdf

